1
|
Hakami A, Rizzo SA, Bartley OJM, Hills R, Precious SV, Ostler T, Fjodorova M, Alghamdi M, Rosser AE, Lane EL, Woolley TE, Lelos MJ, Newland B. Graft ischemia post cell transplantation to the brain: Glucose deprivation as the primary driver of rapid cell death. Neurotherapeutics 2025; 22:e00518. [PMID: 39788838 PMCID: PMC12014406 DOI: 10.1016/j.neurot.2024.e00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Replacing cells lost during the progression of neurodegenerative disorders holds potential as a therapeutic strategy. Unfortunately, the majority of cells die post-transplantation, which creates logistical and biological challenges for cell therapy approaches. The cause of cell death is likely to be multifactorial in nature but has previously been correlated with hypoxia in the graft core. Here we use mathematical modelling to highlight that grafted cells experiencing hypoxia will also face a rapid decline in glucose availability. Interestingly, three neuron progenitor types derived from stem cell sources, and primary human fetal ventral mesencephalic (VM) cells all remained highly viable in severe hypoxia (0.1 % oxygen), countering the idea of rapid hypoxia-induced death in grafts. However, we demonstrate that glucose deprivation, not a paucity of oxygen, was a driver of rapid cell death, which was compounded in ischemic conditions of both oxygen and glucose deprivation. Supplementation of glucose to rat embryonic VM cells transplanted to the adult rat brain failed to improve survival at the dose administered and highlighted the problems of using osmotic minipumps in assisting neural grafting. The data shows that maintaining sufficient glucose in grafts is likely to be of critical importance for cell survival, but better means of achieving sustained glucose delivery is required.
Collapse
Affiliation(s)
- Abrar Hakami
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sebastiano Antonio Rizzo
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Oliver J M Bartley
- Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff University, Cardiff, CF10 3AX, UK
| | - Rachel Hills
- Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff University, Cardiff, CF10 3AX, UK
| | - Sophie V Precious
- Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff University, Cardiff, CF10 3AX, UK
| | - Timothy Ostler
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
| | - Marija Fjodorova
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Majed Alghamdi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff University, Cardiff, CF10 3AX, UK; Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Brain Repair and Intracranial Neurotherapeutics (B.R.A.I.N.) Biomedical Research Unit, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Thomas E Woolley
- Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK
| | - Mariah J Lelos
- Brain Repair Group, School of Biosciences, Life Sciences Building, Cardiff University, Cardiff, CF10 3AX, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK; Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, D-01069 Dresden, Germany.
| |
Collapse
|
2
|
Ji T, Pang Y, Cheng M, Wang R, Chen X, Zhang C, Liu M, Zhang J, Zhong C. mNSCs overexpressing Rimkla transplantation facilitates cognitive recovery in a mouse model of traumatic brain injury. iScience 2023; 26:107913. [PMID: 37810220 PMCID: PMC10550729 DOI: 10.1016/j.isci.2023.107913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
N-acetyl aspartyl-glutamate (NAAG) is easily inactivated for the hydrolysis of NAAG peptidase on the surface of glial cells, thereby losing its endogenous neuroprotective effect after traumatic brain injury. In this study, lentiviral vectors were used to over express/knock out NAAG synthetase II (Rimkla) in mouse embryonic neural stem cells (mNSCs) in vitro and these mNSCs were transplanted at the lesion site in a mouse model of controlled cortical impact (CCI). In vivo experiments showed that transplantation of mNSCs overexpressing Rimkla regulated glutamate-glutamine cycling between adjacent astrocytes and neurons in the subacute phase of CCI, thereby enhancing support for neuronal metabolism and promoting neuronal synaptic repair in the hippocampal CA3 region. Taken together, these findings demonstrate that transplantation of neural stem cells overexpressing Rimkla can effectively increase the NAAG concentration in local brain regions, which opens up new ideas for the maintenance of NAAG neuroprotective effects after TBI.
Collapse
Affiliation(s)
- Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Cheng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xu Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute for Advanced Study, Tongji University, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Rizzo SA, Bartley O, Rosser AE, Newland B. Oxygen-glucose deprivation in neurons: implications for cell transplantation therapies. Prog Neurobiol 2021; 205:102126. [PMID: 34339808 DOI: 10.1016/j.pneurobio.2021.102126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
Cell replacement therapies hold the potential to restore neuronal networks compromised by neurodegenerative diseases (such as Parkinson's disease or Huntington's disease), or focal tissue damage (via a stroke or spinal cord injury). Despite some promising results achieved to date, transplanted cells typically exhibit poor survival in the central nervous system, thus limiting therapeutic efficacy of the graft. Although cell death post-transplantation is likely to be multifactorial in causality, growing evidence suggests that the lack of vascularisation at the graft site, and the resulting ischemic host environment, may play a fundamental role in the fate of grafted cells. Herein, we summarise data showing how the deprivation of either oxygen, glucose, or both in combination, impacts the survival of neurons and review strategies which may improve graft survival in the central nervous system.
Collapse
Affiliation(s)
| | - Oliver Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK; Neuroscience and Mental Health Institute and B.R.A.I.N Unit, Cardiff University, School of Medicine, Hadyn Ellis Building, Maindy Road, CF24 4HQ, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Wales, UK; Leibniz Institute for Polymer Research Dresden (IPF), Hohe Straße 6, 01069, Dresden, Germany.
| |
Collapse
|
4
|
Liu L, Peng Z, Wang C, Wang C, Liu C, Zhu L, Tang C. Effect of synthetic oxygen-generating system on cell survival under hypoxic condition in vitro. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:967-979. [PMID: 33482710 DOI: 10.1080/09205063.2021.1878806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
A significant challenge in the tissue engineering of injured sites is the lack of vascularization in the engineered sites due to insufficient oxygen supply. A scaffolding system is required to support seeded cells as vascularization develops. In this study, we examined the effects of hypoxic conditions and oxygen release on cell survival in a synthetic system. We developed a three-dimensional system using CaO2/poly(lactic-co-glycolic acid) microspheres suspended in a hydrogel. The system material was evaluated using stem cells under hypoxic conditions alongside controls to evaluate its oxygen-generating potential over a period of 21 days. The hydrogel acted as a flexible carrier supporting cell attachment and growth, protecting microspheres, and prolonging oxygen release. The system generated oxygen and supported cell growth, which are together expected to promote stem cell survival and growth in the weeks following implantation.
Collapse
Affiliation(s)
- Liangle Liu
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenjian Wang
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengxuan Tang
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Kuddannaya S, Zhu W, Chu C, Singh A, Walczak P, Bulte JWM. In Vivo Imaging of Allografted Glial-Restricted Progenitor Cell Survival and Hydrogel Scaffold Biodegradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23423-23437. [PMID: 33978398 PMCID: PMC9440547 DOI: 10.1021/acsami.1c03415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transplanted glial-restricted progenitor (GRP) cells have potential to focally replace defunct astrocytes and produce remyelinating oligodendrocytes to avert neuronal death and dysfunction. However, most central nervous system cell therapeutic paradigms are hampered by high initial cell death and a host anti-graft immune response. We show here that composite hyaluronic acid-based hydrogels of tunable mechanical strengths can significantly improve transplanted GRP survival and differentiation. Allogeneic GRPs expressing green fluorescent protein and firefly luciferase were scaffolded in optimized hydrogel formulations and transplanted intracerebrally into immunocompetent BALB/c mice followed by serial in vivo bioluminescent imaging and chemical exchange saturation transfer magnetic resonance imaging (CEST MRI). We demonstrate that gelatin-sensitive CEST MRI can be exploited to monitor hydrogel scaffold degradation in vivo for ∼5 weeks post transplantation without necessitating exogenous labeling. Hydrogel scaffolding of GRPs resulted in a 4.5-fold increase in transplanted cell survival at day 32 post transplantation compared to naked cells. Histological analysis showed significant enhancement of cell proliferation as well as Olig2+ and GFAP+ cell differentiation for scaffolded cells compared to naked cells, with reduced host immunoreactivity. Hence, hydrogel scaffolding of transplanted GRPs in conjunction with serial in vivo imaging of cell survival and hydrogel degradation has potential for further advances in glial cell therapy.
Collapse
Affiliation(s)
- Shreyas Kuddannaya
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wei Zhu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Chengyan Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Anirudha Singh
- Department of Urology, the James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Piotr Walczak
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jeff W M Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Madsen SD, Giler MK, Bunnell BA, O'Connor KC. Illuminating the Regenerative Properties of Stem Cells In Vivo with Bioluminescence Imaging. Biotechnol J 2020; 16:e2000248. [PMID: 33089922 DOI: 10.1002/biot.202000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/17/2020] [Indexed: 11/10/2022]
Abstract
Preclinical animal studies are essential to the development of safe and effective stem cell therapies. Bioluminescence imaging (BLI) is a powerful tool in animal studies that enables the real-time longitudinal monitoring of stem cells in vivo to elucidate their regenerative properties. This review describes the application of BLI in preclinical stem cell research to address critical challenges in producing successful stem cell therapeutics. These challenges include stem cell survival, proliferation, homing, stress response, and differentiation. The applications presented here utilize bioluminescence to investigate a variety of stem and progenitor cells in several different in vivo models of disease and implantation. An overview of luciferase reporters is provided, along with the advantages and disadvantages of BLI. Additionally, BLI is compared to other preclinical imaging modalities and potential future applications of this technology are discussed in emerging areas of stem cell research.
Collapse
Affiliation(s)
- Sean D Madsen
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Margaret K Giler
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Kim C O'Connor
- Department of Chemical and Biomolecular Engineering, School of Science and Engineering, Tulane University, New Orleans, LA, 70118, USA.,Center for Stem Cell Research and Regenerative Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
7
|
Schirmer L, Hoornaert C, Le Blon D, Eigel D, Neto C, Gumbleton M, Welzel PB, Rosser AE, Werner C, Ponsaerts P, Newland B. Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomater Sci 2020; 8:4997-5004. [DOI: 10.1039/d0bm01249a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The anti-inflammatory cytokine IL-13 can be loaded and released from heparin-based cryogel biomaterials for sustained delivery to the brain.
Collapse
|
8
|
Cell therapy for Parkinson′s disease is coming of age: current challenges and future prospects with a focus on immunomodulation. Gene Ther 2019; 27:6-14. [DOI: 10.1038/s41434-019-0077-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
|
9
|
Green C, Minassian A, Vogel S, Diedenhofen M, Wiedermann D, Hoehn M. Persistent Quantitative Vitality of Stem Cell Graft Is Necessary for Stabilization of Functional Brain Networks After Stroke. Front Neurol 2019; 10:335. [PMID: 31024429 PMCID: PMC6460358 DOI: 10.3389/fneur.2019.00335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
Stem cell treatment after stroke has demonstrated substantial outcome improvement. However, monitoring of stem cell fate in vivo is still challenging and not routinely performed, yet important to quantify the role of the implanted stem cells on lesion improvement; in several studies even mortality of the graft has been reported. Resting state functional magnetic resonance imaging (rs-fMRI) is a highly sensitive imaging modality to monitor the brain-wide functional network alterations of many brain diseases in vivo. We monitor for 3 months the functional connectivity changes after intracortical stem cell engraftment in large, cortico-striatal (n = 9), and in small, striatal (n = 6) ischemic lesions in the mouse brain with non-invasive rs-fMRI on a 9.4T preclinical MRi scanner with GE-EPI sequence. Graft vitality is continuously recorded by bioluminescence imaging (BLI) roughly every 2 weeks after implantation of 300 k neural stem cells. In cortico-striatal lesions, the lesion extension induces graft vitality loss, in consequence leading to a parallel decrease of functional connectivity strength after a few weeks. In small, striatal lesions, the graft vitality is preserved for the whole observation period and the functional connectivity is stabilized at values as in the pre-stroke situation. But even here, at the end of the observation period of 3 months, the functional connectivity strength is found to decrease despite preserved graft vitality. We conclude that quantitative graft viability is a necessary but not sufficient criterion for functional neuronal network stabilization after stroke. Future studies with even longer time periods after stroke induction will need to identify additional players which have negative influence on the functional brain networks.
Collapse
Affiliation(s)
- Claudia Green
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Anuka Minassian
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Stefanie Vogel
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Michael Diedenhofen
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Dirk Wiedermann
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.,Percuros B.V., Enschede, Netherlands
| |
Collapse
|
10
|
Forbes LH, Andrews MR. Grafted Human iPSC-Derived Neural Progenitor Cells Express Integrins and Extend Long-Distance Axons Within the Developing Corticospinal Tract. Front Cell Neurosci 2019; 13:26. [PMID: 30809126 PMCID: PMC6380224 DOI: 10.3389/fncel.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
After spinal cord injury (SCI), regeneration of adult motor axons such as axons in the corticospinal tract (CST) is severely limited. Alongside the inhibitory lesion environment, most neuronal subtypes in the mature central nervous system (CNS) are intrinsically unrepairable. With age, expression of growth-promoting proteins in neurons, such as integrins, declines. Integrin receptors allow communication between the extracellular matrix (ECM) and cell cytoskeleton and their expression in axons facilitates growth and guidance throughout the ECM. The α9β1 integrin heterodimer binds to tenascin-C (TN-C), an ECM glycoprotein expressed during development and after injury. In the mature CST however, expression of the α9 integrin subunit is downregulated, adding to the intrinsic inability of axons to regenerate. Our previous work has shown the α9 integrin subunit is not trafficked within axons of mature CST or rubrospinal tracts (RSTs). Thus, here we have utilized human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) to increase expression of α9 integrinwithin the developing rat CST. We demonstrate that human NPCs (hNPCs) express endogenous levels of both α9 and β1 integrin subunits as well as cortical neuron markers such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) interacting protein 2 (Ctip2) and T-box brain 1 (Tbr1). In addition, lentivirus-mediated α9 integrin overexpression in hNPCs resulted in increased neurite outgrowth in the presence of TN-C in vitro. Following transplantation into the sensorimotor cortex of newborn rats, both wild type (WT) and α9-expressing hNPCs extend along the endogenous CST and retain expression of α9 throughout the length of the axonal compartment for up to 8 weeks following transplantation. These data highlight the growth potential of transplanted human iPSCs which may be a future target for regenerative therapies after nervous system injury.
Collapse
Affiliation(s)
- Lindsey H Forbes
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Melissa R Andrews
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.,Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Mezzanotte L, Iljas JD, Que I, Chan A, Kaijzel E, Hoeben R, Löwik C. Optimized Longitudinal Monitoring of Stem Cell Grafts in Mouse Brain Using a Novel Bioluminescent/Near Infrared Fluorescent Fusion Reporter. Cell Transplant 2018; 26:1878-1889. [PMID: 29390874 PMCID: PMC5802635 DOI: 10.1177/0963689717739718] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Biodistribution and fate of transplanted stem cells via longitudinal monitoring has been successfully achieved in the last decade using optical imaging. However, sensitive longitudinal imaging of transplanted stem cells in deep tissue like the brain remains challenging not only due to low light penetration but because of other factors such as low or inferior expression levels of optical reporters in stem cells and stem cell death after transplantation. Here we describe an optimized imaging protocol for sensitive long-term monitoring of bone marrow-derived human mesenchymal stem cells (hMSCs) expressing a novel bioluminescent/near infrared fluorescent (NIRF) fusion reporter transplanted in mouse brain cortex. Lentivirus expressing the luc2-iRFP720 reporter, a fusion between luc2 codon-optimized firefly luciferase (luc2) and the gene encoding NIRF protein iRFP720, was generated to transduce hMSCs. These cells were analyzed for their fluorescent and bioluminescent emission and checked for their differentiation potential. In vivo experiments were performed by transplanting decreasing amounts of luc2-iRFP720 expressing hMSCs in mouse brain, followed by fluorescence and bioluminescence imaging (BLI) starting 1 wk after cell injection when the blood–brain barrier was restored. Bioluminescent images were acquired when signals peaked and used to compare different luc2 substrate performances, that is, D-luciferin (D-Luc; 25 μM/kg or 943 μM/kg) or CycLuc1 (25 μM/kg). Results showed that luc2-iRFP720 expressing hMSCs maintained a good in vitro differentiation potential toward adipocytes, chondrocytes, and osteocytes, suggesting that lentiviral transduction did not affect cell behavior. Moreover, in vivo experiments allowed us to image as low as 1 × 105 cells using both fluorescence and BLI. The highest bioluminescent signals (∼1 × 107 photons per second) were achieved 15 min after the injection of D-Luc (943 μM/kg). This allowed us to monitor as low as 1 × 105 hMSCs for the subsequent 7 wk without a significant drop in bioluminescent signals, suggesting the sustained viability of hMSCs transplanted into the cortex.
Collapse
Affiliation(s)
- Laura Mezzanotte
- 1 Department of Radiology, Optical Molecular Imaging, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Juvita Delancy Iljas
- 2 Percuros BV, Enschede, the Netherlands.,3 Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Ivo Que
- 4 Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alan Chan
- 2 Percuros BV, Enschede, the Netherlands
| | - Eric Kaijzel
- 4 Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rob Hoeben
- 5 Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Clemens Löwik
- 1 Department of Radiology, Optical Molecular Imaging, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Newland H, Eigel D, Rosser AE, Werner C, Newland B. Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: implications for cell transplantation. Biomater Sci 2018; 6:2571-2577. [PMID: 30132477 PMCID: PMC6157640 DOI: 10.1039/c8bm00490k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
This study outlines the synthesis of microscale oxygen producing spheres, which, when used in conjunction with catalase, can raise the dissolved oxygen content of cell culture media for 16-20 hours. In conditions of oxygen and glucose deprivation, designed to mimic the graft environment in vivo, the spheres rescue SH-SY5Y cells and meschymal stem cells, showing that oxygen producing biomaterials may hold potential to improve the survival of cells post-transplantation.
Collapse
Affiliation(s)
- Heike Newland
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
| | - Dimitri Eigel
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
| | - Anne E. Rosser
- Brain Repair Group
, School of Biosciences
, Cardiff University
,
CF10 3AX
, UK
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
| | - Ben Newland
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
- School of Pharmacy and Pharmaceutical Sciences
, Cardiff University
,
CF10 3NB
, UK
.
| |
Collapse
|
13
|
Rockne RC, Adhikarla V, Tsaturyan L, Li Z, Masihi MB, Aboody KS, Barish ME, Gutova M. Long-term stability and computational analysis of migration patterns of L-MYC immortalized neural stem cells in the brain. PLoS One 2018; 13:e0199967. [PMID: 30071048 PMCID: PMC6071994 DOI: 10.1371/journal.pone.0199967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022] Open
Abstract
Background Preclinical studies indicate that neural stem cells (NSCs) can limit or reverse central nervous system (CNS) damage through delivery of therapeutic agents for cell regeneration. Clinical translation of cell-based therapies raises concerns about long-term stability, differentiation and fate, and absence of tumorigenicity of these cells, as well as manufacturing time required to produce therapeutic cells in quantities sufficient for clinical use. Allogeneic NSC lines are in growing demand due to challenges inherent in using autologous stem cells, including production costs that limit availability to patients. Methods/Principal findings We demonstrate the long-term stability of L-MYC immortalized human NSCs (LM-NSC008) cells in vivo, including engraftment, migration, and absence of tumorigenicity in mouse brains for up to nine months. We also examined the distributions of engrafted LM-NSC008 cells within brain, and present computational techniques to analyze NSC migration characteristics in relation to intrinsic brain structures. Conclusions/Significance This computational analysis of NSC distributions following implantation provides proof-of-concept for the development of computational models that can be used clinically to predict NSC migration paths in patients. Previously, models of preferential migration of malignant tumor cells along white matter tracts have been used to predict their final distributions. We suggest that quantitative measures of tissue orientation and white matter tracts determined from MR images can be used in a diffusion tensor imaging tractography-like approach to describe the most likely migration routes and final distributions of NSCs administered in a clinical setting. Such a model could be very useful in choosing the optimal anatomical locations for NSC administration to patients to achieve maximum therapeutic effects.
Collapse
Affiliation(s)
- Russell C. Rockne
- Department of Information Sciences, Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Vikram Adhikarla
- Department of Information Sciences, Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Lusine Tsaturyan
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Zhongqi Li
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Meher B. Masihi
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Karen S. Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Michael E. Barish
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Margarita Gutova
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Vogel S, Aswendt M, Nelles M, Henn N, Schneider G, Hoehn M. Initial graft size and not the innate immune response limit survival of engrafted neural stem cells. J Tissue Eng Regen Med 2017; 12:784-793. [DOI: 10.1002/term.2497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Stefanie Vogel
- In‐vivo‐NMR LaboratoryMax Planck Institute for Metabolism Research Cologne Germany
| | - Markus Aswendt
- In‐vivo‐NMR LaboratoryMax Planck Institute for Metabolism Research Cologne Germany
| | - Melanie Nelles
- In‐vivo‐NMR LaboratoryMax Planck Institute for Metabolism Research Cologne Germany
| | - Nadine Henn
- In‐vivo‐NMR LaboratoryMax Planck Institute for Metabolism Research Cologne Germany
| | - Gabriele Schneider
- In‐vivo‐NMR LaboratoryMax Planck Institute for Metabolism Research Cologne Germany
| | - Mathias Hoehn
- In‐vivo‐NMR LaboratoryMax Planck Institute for Metabolism Research Cologne Germany
- Department of RadiologyLeiden University Medical Center Leiden The Netherlands
- Percuros B.V., Enschede The Netherlands
| |
Collapse
|
15
|
Hoornaert CJ, Le Blon D, Quarta A, Daans J, Goossens H, Berneman Z, Ponsaerts P. Concise Review: Innate and Adaptive Immune Recognition of Allogeneic and Xenogeneic Cell Transplants in the Central Nervous System. Stem Cells Transl Med 2017; 6:1434-1441. [PMID: 28244236 PMCID: PMC5442707 DOI: 10.1002/sctm.16-0434] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
Over the last 30 years, numerous allogeneic and xenogeneic cell grafts have been transplanted into the central nervous system (CNS) of mice and men in an attempt to cure neurological diseases. In the early studies, human or porcine embryonic neural cells were grafted in the striatum of animals or patients in an attempt to replace lost neurons. Although the immune-privileged status of the brain as a recipient organ was widely accepted, it rapidly became evident that CNS-grafted allogeneic and xenogeneic cells could be recognized and rejected by the immune system, resulting in poor neural graft survival and limited functional recovery. Since then, the CNS transplantation field has witnessed a sharp rise in the number of studies in which allogeneic and xenogeneic neural or mesenchymal stem cells (NSCs or MSCs, respectively) are transplanted, predominantly aiming at providing trophic stimulation and promoting endogenous repair of the brain. Interestingly, in many recent NSC and MSC-based publications functional improvement was used as the principal measure to evaluate the success of cell transplantation, while the fate of transplanted cells remained largely unreported. In this review, we first attempt to understand why primary neural cell isolates were largely substituted for NSCs and MSCs in cell grafting studies. Next, we review the current knowledge on the immune mechanisms involved in the recognition and rejection of allogeneic and xenogeneic cellular grafts in the CNS. Finally, we propose strategies to reduce graft immunogenicity and to improve graft survival in order to design improved cell-based CNS therapies. Stem Cells Translational Medicine 2017;6:1434-1441.
Collapse
Affiliation(s)
- Chloé J Hoornaert
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
16
|
Shendi D, Albrecht DR, Jain A. Anti-Fas conjugated hyaluronic acid microsphere gels for neural stem cell delivery. J Biomed Mater Res A 2016; 105:608-618. [PMID: 27737520 DOI: 10.1002/jbm.a.35930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 01/15/2023]
Abstract
Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017.
Collapse
Affiliation(s)
- Dalia Shendi
- Nano-Neural Therapeutics Laboratory, Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Dirk R Albrecht
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Anjana Jain
- Nano-Neural Therapeutics Laboratory, Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
17
|
Le Blon D, Guglielmetti C, Hoornaert C, Quarta A, Daans J, Dooley D, Lemmens E, Praet J, De Vocht N, Reekmans K, Santermans E, Hens N, Goossens H, Verhoye M, Van der Linden A, Berneman Z, Hendrix S, Ponsaerts P. Intracerebral transplantation of interleukin 13-producing mesenchymal stem cells limits microgliosis, oligodendrocyte loss and demyelination in the cuprizone mouse model. J Neuroinflammation 2016; 13:288. [PMID: 27829467 PMCID: PMC5103449 DOI: 10.1186/s12974-016-0756-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
Background Promoting the neuroprotective and repair-inducing effector functions of microglia and macrophages, by means of M2 polarisation or alternative activation, is expected to become a new therapeutic approach for central nervous system (CNS) disorders in which detrimental pro-inflammatory microglia and/or macrophages display a major contribution to the neuropathology. In this study, we present a novel in vivo approach using intracerebral grafting of mesenchymal stem cells (MSC) genetically engineered to secrete interleukin 13 (IL13-MSC). Methods In the first experimental setup, control MSC and IL13-MSC were grafted in the CNS of eGFP+ bone marrow chimaeric C57BL/6 mice to histologically evaluate IL13-mediated expression of several markers associated with alternative activation, including arginase1 and Ym1, on MSC graft-recognising microglia and MSC graft-infiltrating macrophages. In the second experimental setup, IL13-MSC were grafted on the right side (or on both the right and left sides) of the splenium of the corpus callosum in wild-type C57BL/6 mice and in C57BL/6 CX3CR1eGFP/+CCR2RFP/+ transgenic mice. Next, CNS inflammation and demyelination was induced by means of a cuprizone-supplemented diet. The influence of IL13-MSC grafting on neuropathological alterations was monitored by non-invasive T2-weighted magnetic resonance imaging (MRI) and quantitative histological analyses, as compared to cuprizone-treated mice with control MSC grafts and/or cuprizone-treated mice without MSC injection. Results In the first part of this study, we demonstrate that MSC graft-associated microglia and MSC graft-infiltrating macrophages are forced into alternative activation upon grafting of IL13-MSC, but not upon grafting of control MSC. In the second part of this study, we demonstrate that grafting of IL13-MSC, in addition to the recruitment of M2 polarised macrophages, limits cuprizone-induced microgliosis, oligodendrocyte death and demyelination. Furthermore, we here demonstrate that injection of IL13-MSC at both sides of the splenium leads to a superior protective effect as compared to a single injection at one side of the splenium. Conclusions Controlled and localised production of IL13 by means of intracerebral MSC grafting has the potential to modulate cell graft- and pathology-associated microglial/macrophage responses, and to interfere with oligodendrocyte death and demyelinating events in the cuprizone mouse model.
Collapse
Affiliation(s)
- Debbie Le Blon
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Caroline Guglielmetti
- Bio-Imaging Laboratory, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Dearbhaile Dooley
- Department of Morphology, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Evi Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Jelle Praet
- Bio-Imaging Laboratory, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Nathalie De Vocht
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Kristien Reekmans
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Eva Santermans
- Center for Statistics, I-Biostat, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium
| | - Niel Hens
- Center for Statistics, I-Biostat, Hasselt University, Agoralaan building D, 3590, Diepenbeek, Belgium.,Centre for Health Economic Research and Modeling Infectious Diseases (Chermid), University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Laboratory, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium. .,Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Campus Drie Eiken (CDE-S6.51), Universiteitsplein 1, 2610, Antwerp, Wilrijk, Belgium.
| |
Collapse
|
18
|
Le Blon D, Hoornaert C, Detrez JR, Bevers S, Daans J, Goossens H, De Vos WH, Berneman Z, Ponsaerts P. Immune remodelling of stromal cell grafts in the central nervous system: therapeutic inflammation or (harmless) side-effect? J Tissue Eng Regen Med 2016; 11:2846-2852. [PMID: 27320821 DOI: 10.1002/term.2188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022]
Abstract
Over the past two decades, several cell types with fibroblast-like morphology, including mesenchymal stem/stromal cells, but also other adult, embryonic and extra-embryonic fibroblast-like cells, have been brought forward in the search for cellular therapies to treat severe brain injuries and/or diseases. Although current views in regenerative medicine are highly focused on the immune modulating and regenerative properties of stromal cell transplantation in vivo, many open questions remain regarding their true mode of action. In this perspective, this study integrates insights gathered over the past 10 years to formulate a unifying model of the cellular events that accompany fibroblast-like cell grafting in the rodent brain. Cellular interactions are discussed step-by-step, starting from the day of implantation up to 10 days after transplantation. During the short period that precedes stable settlement of autologous/syngeneic stromal cell grafts, there is a complex interplay between hypoxia-mediated cell death of grafted cells, neutrophil invasion, microglia and macrophage recruitment, astrocyte activation and neo-angiogenesis within the stromal cell graft site. Consequently, it is speculated that regenerative processes following cell therapeutic intervention in the CNS are not only modulated by soluble factors secreted by grafted stromal cells (bystander hypothesis), but also by in vivo inflammatory processes following stromal cell grafting. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Debbie Le Blon
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Jan R Detrez
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Cell Systems and Cellular Imaging, Ghent University, Ghent, Belgium
| | - Sanne Bevers
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Cell Systems and Cellular Imaging, Ghent University, Ghent, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Haematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Meamar R, Nematollahi S, Dehghani L, Mirmosayyeb O, Shayegannejad V, Basiri K, Tanhaei AP. The role of stem cell therapy in multiple sclerosis: An overview of the current status of the clinical studies. Adv Biomed Res 2016; 5:46. [PMID: 27110543 PMCID: PMC4817403 DOI: 10.4103/2277-9175.178791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 08/19/2014] [Indexed: 01/01/2023] Open
Abstract
The complexity of multiple sclerosis (MS) and the incompetence of a large number of promised treatments for MS urge us to plan new and more effective therapeutic approaches that aim to suppress ongoing autoimmune responses and induction of local endogenous regeneration. Emerging data propose that hematopoietic, mesenchymal, and neural stem cells have the potential to restore self-tolerance, provide in situ immunomodulation and neuroprotection, as well as promote regeneration. Thus, in this article, we will first provide an overview of the cell sources for proposed mechanisms that contribute to the beneficial effects of stem cell transplantation, the ideal route and/or timing of stem cell-based therapies for each main stem cell group, and finally, an overview of the current status of stem cell research in clinical trial stages in MS by comparable and healthy therapeutic effects of different stem cell therapies for MS patients.
Collapse
Affiliation(s)
- Rokhsareh Meamar
- Department of Medical Sciences, Islamic Azad University, Najafabad Branch, Tehran, Iran
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Nematollahi
- PhD Candidate in Epidemiology, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Dehghani
- Department of Medical Sciences, Islamic Azad University, Najafabad Branch, Tehran, Iran
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Shayegannejad
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keivan Basiri
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Pouya Tanhaei
- Isfahan Neurosciences Research Center, Al Zahra Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Tennstaedt A, Mastropietro A, Nelles M, Beyrau A, Hoehn M. In Vivo Fate Imaging of Intracerebral Stem Cell Grafts in Mouse Brain. PLoS One 2015; 10:e0144262. [PMID: 26641453 PMCID: PMC4671578 DOI: 10.1371/journal.pone.0144262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 12/03/2022] Open
Abstract
We generated transgenic human neural stem cells (hNSCs) stably expressing the reporter genes Luciferase for bioluminescence imaging (BLI) and GFP for fluorescence imaging, for multimodal imaging investigations. These transgenic hNSCs were further labeled with a clinically approved perfluoropolyether to perform parallel 19F MRI studies. In vitro validation demonstrated normal cell proliferation and differentiation of the transgenic and additionally labeled hNSCs, closely the same as the wild type cell line, making them suitable for in vivo application. Labeled and unlabeled transgenic hNSCs were implanted into the striatum of mouse brain. The time profile of their cell fate after intracerebral grafting was monitored during nine days following implantation with our multimodal imaging approach, assessing both functional and anatomical condition. The 19F MRI demarcated the graft location and permitted to estimate the cell number in the graft. BLI showed a pronounce cell loss during this monitoring period, indicated by the decrease of the viability signal. The in vivo obtained cell fate results were further validated and confirmed by immunohistochemistry. We could show that the surviving cells of the graft continued to differentiate into early neurons, while the severe cell loss could be explained by an inflammatory reaction to the graft, showing the graft being surrounded by activated microglia and macrophages. These results are different from earlier cell survival studies of our group where we had implanted the identical cells into the same mouse strain but in the cortex and not in the striatum. The cortical transplanted cells did not show any loss in viability but only pronounced and continuous neuronal differentiation.
Collapse
Affiliation(s)
- Annette Tennstaedt
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Alfonso Mastropietro
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
- Scientific Direction Unit, IRCCS Foundation Neurological Institute “C. Besta”, Milan, Italy
- Politecnico di Milano, Department of Electronic Information and Bioengineering, Milan, Italy
| | - Melanie Nelles
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Andreas Beyrau
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
- Department Radiology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
- * E-mail:
| |
Collapse
|
21
|
Newland B, Welzel PB, Newland H, Renneberg C, Kolar P, Tsurkan M, Rosser A, Freudenberg U, Werner C. Tackling Cell Transplantation Anoikis: An Injectable, Shape Memory Cryogel Microcarrier Platform Material for Stem Cell and Neuronal Cell Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5047-53. [PMID: 26237446 PMCID: PMC5656175 DOI: 10.1002/smll.201500898] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/03/2015] [Indexed: 05/19/2023]
Abstract
Highly macroporous semisynthetic cryogel microcarriers can be synthesized for culturing stem cells and neuronal type cells. Growth factors loaded to heparin-containing microcarriers show near zero-order release kinetics and cell-loaded microcarriers can be injected through a fine gauge cannula without negative effect on the cells. These carriers can be applied for cell transplantation applications.
Collapse
Affiliation(s)
- Ben Newland
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany; Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Petra B. Welzel
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany
| | - Heike Newland
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany
| | - Claudia Renneberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany
| | - Petr Kolar
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany
| | - Anne Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC) and Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden (CRTD) Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
22
|
Praet J, Santermans E, Daans J, Le Blon D, Hoornaert C, Goossens H, Hens N, Van Der Linden A, Berneman Z, Ponsaerts P. Early Inflammatory Responses following Cell Grafting in the CNS Trigger Activation of the Subventricular Zone: A Proposed Model of Sequential Cellular Events. Cell Transplant 2015; 24:1481-92. [DOI: 10.3727/096368914x682800] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
While multiple rodent preclinical studies, and to a lesser extent human clinical trials, claim the feasibility, safety, and potential clinical benefit of cell grafting in the central nervous system (CNS), currently only little convincing knowledge exists regarding the actual fate of the grafted cells and their effect on the surrounding environment (or vice versa). Our preceding studies already indicated that only a minor fraction of the initially grafted cell population survives the grafting process, while the surviving cell population becomes invaded by highly activated microglia/macrophages and surrounded by reactive astrogliosis. In the current study, we further elaborate on early cellular and inflammatory events following syngeneic grafting of eGFP mouse embryonic fibroblasts (mEFs) in the CNS of immunocompetent mice. Based on obtained quantitative histological data, we here propose a detailed mathematically derived working model that sequentially comprises hypoxia-induced apoptosis of grafted mEFs, neutrophil invasion, neoangiogenesis, microglia/macrophage recruitment, astrogliosis, and eventually survival of a limited number of grafted mEFs. Simultaneously, we observed that the cellular events following mEF grafting activates the subventricular zone neural stem and progenitor cell compartment. This proposed model therefore further contributes to our understanding of cell graft-induced cellular responses and will eventually allow for successful manipulation of this intervention.
Collapse
Affiliation(s)
- Jelle Praet
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Belgium
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
- BioImaging Laboratory, University of Antwerp, Wilrijk, Belgium
| | - Eva Santermans
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium
| | - Jasmijn Daans
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Belgium
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Debbie Le Blon
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Belgium
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Chloé Hoornaert
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Belgium
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Niel Hens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
- Center for Statistics, I-Biostat, Hasselt University, Diepenbeek, Belgium
- Centre for Health Economic Research and Modeling Infectious Diseases (Chermid), University of Antwerp, Wilrijk, Belgium
| | | | - Zwi Berneman
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Belgium
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Peter Ponsaerts
- Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, University of Antwerp, Wilrijk, Belgium
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
23
|
Weinger JG, Plaisted WC, Maciejewski SM, Lanier LL, Walsh CM, Lane TE. Activating receptor NKG2D targets RAE-1-expressing allogeneic neural precursor cells in a viral model of multiple sclerosis. Stem Cells 2015; 32:2690-701. [PMID: 24898518 DOI: 10.1002/stem.1760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 12/11/2022]
Abstract
Transplantation of major histocompatibility complex-mismatched mouse neural precursor cells (NPCs) into mice persistently infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) results in rapid rejection that is mediated, in part, by T cells. However, the contribution of the innate immune response to allograft rejection in a model of viral-induced neurological disease has not been well defined. Herein, we demonstrate that the natural killer (NK) cell-expressing-activating receptor NKG2D participates in transplanted allogeneic NPC rejection in mice persistently infected with JHMV. Cultured NPCs derived from C57BL/6 (H-2(b) ) mice express the NKG2D ligand retinoic acid early precursor transcript (RAE)-1 but expression was dramatically reduced upon differentiation into either glia or neurons. RAE-1(+) NPCs were susceptible to NK cell-mediated killing whereas RAE-1(-) cells were resistant to lysis. Transplantation of C57BL/6-derived NPCs into JHMV-infected BALB/c (H-2(d) ) mice resulted in infiltration of NKG2D(+) CD49b(+) NK cells and treatment with blocking antibody specific for NKG2D increased survival of allogeneic NPCs. Furthermore, transplantation of differentiated RAE-1(-) allogeneic NPCs into JHMV-infected BALB/c mice resulted in enhanced survival, highlighting a role for the NKG2D/RAE-1 signaling axis in allograft rejection. We also demonstrate that transplantation of allogeneic NPCs into JHMV-infected mice resulted in infection of the transplanted cells suggesting that these cells may be targets for infection. Viral infection of cultured cells increased RAE-1 expression, resulting in enhanced NK cell-mediated killing through NKG2D recognition. Collectively, these results show that in a viral-induced demyelination model, NK cells contribute to rejection of allogeneic NPCs through an NKG2D signaling pathway.
Collapse
Affiliation(s)
- Jason G Weinger
- Department of Molecular Biology & Biochemistry; Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | | | | | | | | | | |
Collapse
|
24
|
3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 2014; 41:122-31. [PMID: 25522971 DOI: 10.1016/j.biomaterials.2014.11.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/03/2014] [Accepted: 11/08/2014] [Indexed: 12/19/2022]
Abstract
Transplantation of neural stem cells (NSC) in diseased or injured brain tissue is widely studied as a potential treatment for various neurological pathologies. However, effective cell replacement therapy relies on the intrinsic capacity of cellular grafts to overcome hypoxic and/or immunological barriers after transplantation. In this context, it is hypothesized that structural support for grafted NSC will be of utmost importance. With this study, we present a novel decellularization protocol for 1.5 mm thick mouse brain sections, resulting in the generation of acellular three-dimensional (3D) brain sections. Next, the obtained 3D brain sections were seeded with murine NSC expressing both the eGFP and luciferase reporter proteins (NSC-eGFP/Luc). Using real-time bioluminescence imaging, the survival and growth of seeded NSC-eGFP/Luc cells was longitudinally monitored for 1-7 weeks in culture, indicating the ability of the acellular brain sections to support sustained ex vivo growth of NSC. Next, the organization of a 3D maze-like cellular structure was examined using confocal microscopy. Moreover, under mitogenic stimuli (EGF and hFGF-2), most cells in this 3D culture retained their NSC phenotype. Concluding, we here present a novel protocol for decellularization of mouse brain sections, which subsequently support long-term 3D culture of undifferentiated NSC.
Collapse
|
25
|
Shin YJ, Riew TR, Park JH, Pak HJ, Lee MY. Expression of vascular endothelial growth factor-C (VEGF-C) and its receptor (VEGFR-3) in the glial reaction elicited by human mesenchymal stem cell engraftment in the normal rat brain. J Histochem Cytochem 2014; 63:170-80. [PMID: 25473093 DOI: 10.1369/0022155414564218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To determine whether vascular endothelial growth factor-C (VEGF-C) and its receptor (VEGFR-3) are involved in the glial reaction elicited by transplanted mesenchymal stem cells (MSCs), we examined the cellular localization of VEGF-C and VEGFR-3 proteins in the striatum of adult normal rats that received bone marrow-derived human MSCs. The MSC grafts were infiltrated with activated microglia/macrophages and astrocytes over a 2-week period post-transplantation, which appeared to parallel the loss of transplanted MSCs. VEGF-C/VEGFR-3 was expressed in activated microglia/macrophages recruited to the graft site, where the induction of VEGF-C protein was rather late compared with that of its receptor. VEGF-C protein was absent or very weak on day 3, whereas VEGFR-3 immunoreactivity was evident within the first three days. Furthermore, within three days, VEGF-C could be detected in the brain macrophages localized immediately adjacent to the needle track. At the same time, almost all the brain macrophages in both regions expressed VEGFR-3. Reactive astrocytes at the graft site expressed VEGFR-3, but not VEGF-C. These data demonstrated the characteristic time- and cell-dependent expression patterns for VEGF-C and VEGFR-3 within the engrafted brain tissue, suggesting that they may contribute to neuroinflammation in MSC transplantation, possibly through the recruitment and/or activation of microglia/macrophages and astrogliosis.
Collapse
Affiliation(s)
- Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Joo-Hee Park
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea (YJS, TRR, JHP, HJP, MYL)
| |
Collapse
|
26
|
Liu S, Li Z, Fu J, Sun L, Xu F, Harada T, Lou Y, Chu M, Sun Q, Xu K, Zhang R, Jin L, Xiao H, Wu S. The effects of harvesting media on biological characteristics and repair potential of neural stem cells after traumatic brain injury. PLoS One 2014; 9:e107865. [PMID: 25247595 PMCID: PMC4172630 DOI: 10.1371/journal.pone.0107865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Various solutions are utilized widely for the isolation, harvesting, sorting, testing and transplantation of neural stem cells (NSCs), whereas the effects of harvesting media on the biological characteristics and repair potential of NSCs remain unclear. To examine some of these effects, NSCs were isolated from cortex of E14.5 mice and exposed to the conventional harvesting media [0.9% saline (Saline), phosphate-buffered saline (PBS) or artificial cerebrospinal fluid (ACSF)] or the proliferation culture medium (PCM) for different durations at 4°C. Treated NSCs were grafted by in situ injection into the lesion sites of traumatic brain injury (TBI) mice. In vitro, harvesting media-exposed NSCs displayed time-dependent reduction of viability and proliferation. S phase entry decreased in harvesting media-exposed cells, which was associated with upregulation of p53 protein and downregulation of cyclin E1 protein. Moreover, harvesting media exposure induced the necrosis and apoptosis of NSCs. The levels of Fas-L, cleaved caspase 3 and 8 were increased, which suggests that the death receptor signaling pathway is involved in the apoptosis of NSCs. In addition, exposure to Saline did not facilitate the neuronal differentiation of NSCs, suggesting that Saline exposure may be disadvantageous for neurogenesis. In vivo, NSC-mediated functional recovery in harvesting media-exposed NSC groups was notably attenuated in comparison with the PCM-exposed NSC group. In conclusion, harvesting media exposure modulates the biological characteristics and repair potential of NSCs after TBI. Our results suggest that insight of the effects of harvesting media exposure on NSCs is critical for developing strategies to assure the successful long-term engraftment of NSCs.
Collapse
Affiliation(s)
- Shengliang Liu
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhuying Li
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jin Fu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Sun
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fengyan Xu
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | - Yu Lou
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ming Chu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Sun
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Kun Xu
- The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Rui Zhang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Lianhong Jin
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (SW); (LJ); (HX)
| | - Hui Xiao
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (SW); (LJ); (HX)
| | - Shuliang Wu
- Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- * E-mail: (SW); (LJ); (HX)
| |
Collapse
|
27
|
Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain. Immunol Cell Biol 2014; 92:650-8. [DOI: 10.1038/icb.2014.49] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/09/2014] [Accepted: 05/23/2014] [Indexed: 12/18/2022]
|
28
|
Praet J, Santermans E, Reekmans K, de Vocht N, Le Blon D, Hoornaert C, Daans J, Goossens H, Berneman Z, Hens N, Van der Linden A, Ponsaerts P. Histological characterization and quantification of cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. Methods Mol Biol 2014; 1213:265-83. [PMID: 25173390 DOI: 10.1007/978-1-4939-1453-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and culture eGFP(+) neural and fibroblast(-like) stem cells from embryonic mouse tissue. Second, we describe flow cytometric procedures to determine cell viability, eGFP transgene expression, and the expression of different stem cell lineage markers. Third, we explain how to induce reproducible demyelination in the CNS of mice by means of cuprizone administration, a validated mouse model for human multiple sclerosis. Fourth, the technical procedures for cell grafting in the CNS are explained in detail. Finally, an optimized and validated workflow for the quantitative histological analysis of cell graft survival and endogenous astroglial and microglial responses is provided.
Collapse
Affiliation(s)
- Jelle Praet
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Campus Drie Eiken (CDE-S6.51), Universiteitsplein 1, 2610, Antwerp (Wilrijk), Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Boehm-Sturm P, Aswendt M, Minassian A, Michalk S, Mengler L, Adamczak J, Mezzanotte L, Löwik C, Hoehn M. A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials 2013; 35:2218-26. [PMID: 24355489 DOI: 10.1016/j.biomaterials.2013.11.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/27/2013] [Indexed: 02/08/2023]
Abstract
Neural stem cell implantations have been extensively investigated for treatment of brain diseases such as stroke. In order to follow the localization and functional status of cells after implantation noninvasive imaging is essential. Therefore, we developed a comprehensive multi-modality platform for in vivo imaging of graft localization, density, and survival using 19F magnetic resonance imaging in combination with bioluminescence imaging. We quantitatively analyzed cell graft survival over the first 4 weeks after transplantation in both healthy and stroke-damaged mouse brain and correlated our findings of graft vitality with the host innate immune response. The multi-modality imaging platform will help to improve cell therapy also in context other than stroke and to gain indispensable information for clinical translation.
Collapse
Affiliation(s)
- Philipp Boehm-Sturm
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Markus Aswendt
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Anuka Minassian
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Stefanie Michalk
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Luam Mengler
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Joanna Adamczak
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Laura Mezzanotte
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clemens Löwik
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mathias Hoehn
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Osman AM, Zhou K, Zhu C, Blomgren K. Transplantation of enteric neural stem/progenitor cells into the irradiated young mouse hippocampus. Cell Transplant 2013; 23:1657-71. [PMID: 24152680 DOI: 10.3727/096368913x674648] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Radiotherapy is an effective treatment for brain tumors but often results in cognitive deficits in survivors. Transplantation of embryonic or brain-derived neural stem/progenitor cells (BNSPCs) ameliorated cognitive impairment after irradiation (IR) in animal models. However, such an approach in patients requires a clinically relevant source of cells. We show for the first time the utilization of enteric neural stem/progenitor cells (ENSPCs) from the postnatal intestinal wall as a source of autologous cells for brain repair after injury caused by IR. Cells were isolated from the intestinal wall and propagated in vitro for 1 week. Differentiation assays showed that ENSPCs are multipotent and generated neurons, astrocytes, and myofibroblasts. To investigate whether ENSPCs can be used in vivo, postnatal day 9 mice were subjected to a single moderate irradiation dose (6 or 8 Gy). Twelve days later, mice received an intrahippocampal injection of syngeneic ENSPCs. Four weeks after transplantation, 0.5% and 1% of grafted ENSPCs were detected in the dentate gyrus of sham and irradiated animals, respectively, and only 0.1% was detected after 16 weeks. Grafted ENSPCs remained undifferentiated but failed to restore IR-induced loss of BNSPCs and the subsequent impaired growth of the dentate gyrus. We observed microglia activation, astrogliosis, and loss of granule neurons associated with grafted ENSPC clusters. Transplantation of ENSPCs did not ameliorate IR-induced impaired learning and memory. In summary, while autologous ENSPC grafting to the brain worked technically, even in the absence of immunosuppression, the protocols need to be modified to improve survival and integration.
Collapse
Affiliation(s)
- Ahmed M Osman
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|