1
|
Capistrano KJ, Richner J, Schwartz J, Mukherjee SK, Shukla D, Naqvi AR. Host microRNAs exhibit differential propensity to interact with SARS-CoV-2 and variants of concern. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166612. [PMID: 36481486 PMCID: PMC9721271 DOI: 10.1016/j.bbadis.2022.166612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
A significant number of SARS-CoV-2-infected individuals naturally overcome viral infection, suggesting the existence of a potent endogenous antiviral mechanism. As an innate defense mechanism, microRNA (miRNA) pathways in mammals have evolved to restrict viruses, besides regulating endogenous mRNAs. In this study, we systematically examined the complete repertoire of human miRNAs for potential binding sites on SARS-CoV-2 Wuhan-Hu-1, Beta, Delta, and Omicron. Human miRNA and viral genome interaction were analyzed using RNAhybrid 2.2 with stringent parameters to identify highly bonafide miRNA targets. Using publicly available data, we filtered for miRNAs expressed in lung epithelial cells/tissue and oral keratinocytes, concentrating on the miRNAs that target SARS-CoV-2 S protein mRNAs. Our results show a significant loss of human miRNA and SARS-CoV-2 interactions in Omicron (130 miRNAs) compared to Wuhan-Hu-1 (271 miRNAs), Beta (279 miRNAs), and Delta (275 miRNAs). In particular, hsa-miR-3150b-3p and hsa-miR-4784 show binding affinity for S protein of Wuhan strain but not Beta, Delta, and Omicron. Loss of miRNA binding sites on N protein was also observed for Omicron. Through Ingenuity Pathway Analysis (IPA), we examined the experimentally validated and highly predicted functional role of these miRNAs. We found that hsa-miR-3150b-3p and hsa-miR-4784 have several experimentally validated or highly predicted target genes in the Toll-like receptor, IL-17, Th1, Th2, interferon, and coronavirus pathogenesis pathways. Focusing on the coronavirus pathogenesis pathway, we found that hsa-miR-3150b-3p and hsa-miR-4784 are highly predicted to target MAPK13. Exploring miRNAs to manipulate viral genome/gene expression can provide a promising strategy with successful outcomes by targeting specific VOCs.
Collapse
Affiliation(s)
- Kristelle J Capistrano
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Justin Richner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA; Department of Ophthalmology and Visual Sciences, Ocular Virology Laboratory, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
2
|
Khan MAAK, Sany MRU, Islam MS, Islam ABMMK. Epigenetic Regulator miRNA Pattern Differences Among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide Isolates Delineated the Mystery Behind the Epic Pathogenicity and Distinct Clinical Characteristics of Pandemic COVID-19. Front Genet 2020; 11:765. [PMID: 32765592 PMCID: PMC7381279 DOI: 10.3389/fgene.2020.00765] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
A detailed understanding of the molecular mechanism of SARS-CoV-2 pathogenesis is still elusive, and there is a need to address its deadly nature and to design effective therapeutics. Here, we present a study that elucidates the interplay between the SARS-CoV and SARS-CoV-2 viruses' and host's miRNAs, an epigenetic regulator, as a mode of pathogenesis; and we explored how the SARS-CoV and SARS-CoV-2 infections differ in terms of their miRNA-mediated interactions with the host and the implications this has in terms of disease complexity. We have utilized computational approaches to predict potential host and viral miRNAs and their possible roles in different important functional pathways. We have identified several putative host antiviral miRNAs that can target the SARS viruses and also predicted SARS viruses-encoded miRNAs targeting host genes. In silico predicted targets were also integrated with SARS-infected human cell microarray and RNA-seq gene expression data. A comparison between the host miRNA binding profiles on 67 different SARS-CoV-2 genomes from 24 different countries with respective country's normalized death count surprisingly uncovered some miRNA clusters, which are associated with increased death rates. We have found that induced cellular miRNAs can be both a boon and a bane to the host immunity, as they have possible roles in neutralizing the viral threat; conversely, they can also function as proviral factors. On the other hand, from over representation analysis, our study revealed that although both SARS-CoV and SARS-CoV-2 viral miRNAs could target broad immune-signaling pathways; only some of the SARS-CoV-2 miRNAs are found to uniquely target some immune-signaling pathways, such as autophagy, IFN-I signaling, etc., which might suggest their immune-escape mechanisms for prolonged latency inside some hosts without any symptoms of COVID-19. Furthermore, SARS-CoV-2 can modulate several important cellular pathways that might lead to the increased anomalies in patients with comorbidities like cardiovascular diseases, diabetes, breathing complications, etc. This might suggest that miRNAs can be a key epigenetic modulator behind the overcomplications amongst the COVID-19 patients. Our results support that miRNAs of host and SARS-CoV-2 can indeed play a role in the pathogenesis which can be further concluded with more experiments. These results will also be useful in designing RNA therapeutics to alleviate the complications from COVID-19.
Collapse
Affiliation(s)
| | - Md Rabi Us Sany
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Md Shafiqul Islam
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
3
|
Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages. Proc Natl Acad Sci U S A 2015; 112:E3265-73. [PMID: 26056317 DOI: 10.1073/pnas.1500656112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. Here we explored the hypothesis that extracellular ATP (eATP) could represent a microenvironmental signal potentially affecting virion release from VCC of infected macrophages. Indeed, eATP triggered the rapid release of infectious HIV-1 from primary human monocyte-derived macrophages (MDM) acutely infected with the CCR5-dependent HIV-1 strain. A similar phenomenon was observed in chronically infected promonocytic U1 cells differentiated to macrophage-like cells (D-U1) by costimulation with phorbol esters and urokinase-type plasminogen activator. Worthy of note, eATP did not cause necrotic, apoptotic, or pyroptotic cell death, and its effect on HIV-1 release was suppressed by Imipramine (an antidepressant agent known to inhibit microvesicle formation by interfering with membrane-associated acid sphingomyelinase). Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.
Collapse
|
4
|
Bera A, Zhao S, Cao L, Chiao PJ, Freeman JW. Oncogenic K-Ras and loss of Smad4 mediate invasion by activating an EGFR/NF-κB Axis that induces expression of MMP9 and uPA in human pancreas progenitor cells. PLoS One 2013; 8:e82282. [PMID: 24340014 PMCID: PMC3855364 DOI: 10.1371/journal.pone.0082282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023] Open
Abstract
Activating K-Ras mutations and inactivating mutations of Smad4 are two common genetic alterations that occur in the development and progression of pancreatic ductal adenocarcinomas (PDAC). To further study the individual and combinatorial roles of these two mutations in the pathogenesis of PDAC, immortalized human pancreas nestin postive cells (HPNE) were genetically modified by either expressing oncogenic K-Ras (HPNE/K-Ras), by shRNA knock down of Smad4 (HPNE/ShSmad4) or by creating both alterations in the same cell line (HPNE/K-Ras/ShSmad4). We previously found that expression of oncogenic K-Ras caused an increase in expression of EGFR and loss of Smad4 further enhanced the up regulation in expression of EGFR and that this increase in EGFR was sufficient to induce invasion. Here we further investigated the mechanism that links mutational alterations and EGFR expression with invasion. The increase in EGFR signaling was associated with up regulation of MMP9 and uPA protein and activity. Moreover, the increase in EGFR signaling promoted a nuclear translocation and binding of RelA (p65), a subunit of NF-κB, to the promoters of both MMP-9 and uPA. Treatment of HPNE/K-Ras/ShSmad4 cells with an inhibitor of EGFR reduced EGF-mediated NF-κB nuclear translocation and inhibitors of either EGFR or NF-κB reduced the increase in MMP-9 or uPA expression. In conclusion, this study provides the mechanism of how a combination of oncogenic K-Ras and loss of Smad4 causes invasion and provides the basis for new strategies to inhibit metastases.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shujie Zhao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lin Cao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James W. Freeman
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, Texas, United States of America
- Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, Texas, United States of America
| |
Collapse
|
5
|
Rabna P, Andersen A, Wejse C, Oliveira I, Gomes VF, Haaland MB, Aaby P, Eugen-Olsen J. Utility of the plasma level of suPAR in monitoring risk of mortality during TB treatment. PLoS One 2012; 7:e43933. [PMID: 22937128 PMCID: PMC3429420 DOI: 10.1371/journal.pone.0043933] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/27/2012] [Indexed: 12/03/2022] Open
Abstract
Objective To investigate whether changes in the plasma level of soluble urokinase plasminogen activator receptor (suPAR) can be used to monitor tuberculosis (TB) treatment efficacy. Design This prospective cohort study included 278 patients diagnosed with active pulmonary TB and followed throughout the 8-month treatment period. Results Mortality during treatment was higher in the highest inclusion quartile of suPAR (23%) compared to the lowest three quartiles (7%), the risk ratio being 3.1 (95% CI 1.65–6.07). No association between early smear conversion and subsequent mortality or inclusion suPAR was observed. After 1 and 2 months of treatment, an increase in suPAR compared to at diagnosis was associated with a Mortality Rate Ratio (MRR) of 4.5 (95%CI: 1.45–14.1) and 2.1 (95%CI 0.62–6.82), respectively, for the remaining treatment period. Conclusions The present study confirmed that elevated suPAR level at time of initiation of TB treatment is associated with increased risk of mortality. Furthermore, increased suPAR levels after one month of treatment was associated with increased risk of mortality during the remaining 7-month treatment period.
Collapse
Affiliation(s)
- Paulo Rabna
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
| | | | - Christian Wejse
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Center of Global Health, School of Public Health, Aarhus University, Aarhus, Denmark
| | - Ines Oliveira
- Clinical Research Centre, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Maya Bonde Haaland
- Center of Global Health, School of Public Health, Aarhus University, Aarhus, Denmark
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau
- Bandim Health Project, Statens Serum Institute, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Graziano F, Elia C, Laudanna C, Poli G, Alfano M. Urokinase plasminogen activator inhibits HIV virion release from macrophage-differentiated chronically infected cells via activation of RhoA and PKCε. PLoS One 2011; 6:e23674. [PMID: 21858203 PMCID: PMC3157461 DOI: 10.1371/journal.pone.0023674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 07/25/2011] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA) with its cell surface receptor (uPAR) has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA). By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles. RESULTS uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA. CONCLUSIONS These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed at interfering with the partitioning of virion budding between intra-cytoplasmic vesicles and plasma membrane in infected human macrophages.
Collapse
Affiliation(s)
- Francesca Graziano
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Elia
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Laudanna
- Department of Pathology & Diagnostic, Faculty of Medicine and Surgery, Verona, Italy
| | - Guido Poli
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, School of Medicine, Milan, Italy
| | - Massimo Alfano
- AIDS Immunophatogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Wiederin JL, Donahoe RM, Anderson JR, Yu F, Fox HS, Gendelman HE, Ciborowski PS. Plasma proteomic analysis of simian immunodeficiency virus infection of rhesus macaques. J Proteome Res 2010; 9:4721-31. [PMID: 20677826 PMCID: PMC3285256 DOI: 10.1021/pr1004345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lentiviral replication in its target cells affects a delicate balance between cellular cofactors required for virus propagation and immunoregulation for host defense. To better elucidate cellular proteins linked to viral infection, we tested plasma from rhesus macaques infected with the simian immunodeficiency viral strain SIVsmm9, prior to, 10 days (acute), and 49 weeks (chronic) after viral infection. Changes in plasma protein content were measured by quantitative mass spectrometry by isobaric tags for absolute and relative quantitation (iTRAQ) methods. An 81 and 232% increase in SERPINA1 was seen during acute and chronic infection, respectively. Interestingly, gelsolin, vitamin D binding protein and histidine rich glycoprotein were decreased by 45% in acute conditions but returned to baseline during chronic infection. When compared to uninfected controls, a 48-103% increase in leucine rich alpha 2-glycoprotein, vitronectin, and ceruloplasmin was observed during chronic viral infection. Observed changes in plasma proteins expression likely represent a compensatory host response to persistent viral infection.
Collapse
Affiliation(s)
| | | | | | - Fang Yu
- University of Nebraska Medical Center, Omaha, NE
| | | | | | | |
Collapse
|
8
|
Bergamaschi A, Pancino G. Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 2010; 7:31. [PMID: 20374633 PMCID: PMC2868797 DOI: 10.1186/1742-4690-7-31] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/07/2010] [Indexed: 11/29/2022] Open
Abstract
Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.
Collapse
Affiliation(s)
- Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France.
| | | |
Collapse
|
9
|
D'mello V, Singh S, Wu Y, Birge RB. The urokinase plasminogen activator receptor promotes efferocytosis of apoptotic cells. J Biol Chem 2009; 284:17030-17038. [PMID: 19383607 PMCID: PMC2719341 DOI: 10.1074/jbc.m109.010066] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/17/2009] [Indexed: 11/06/2022] Open
Abstract
The urokinase receptor (uPAR), expressed on the surface of many cell types, coordinates plasmin-mediated cell surface proteolysis for matrix remodeling and promotes cell adhesion by acting as a binding protein for vitronectin. There is great clinical interest in uPAR in the cancer field as numerous reports have demonstrated that up-regulation of the uPA system is correlated with malignancy of various carcinomas. Using both stable cell lines overexpressing uPAR and transient gene transfer, here we provide evidence for a non-reported role of uPAR in the phagocytosis of apoptotic cells, a process that has recently been termed efferocytosis. When uPAR was expressed in human embryonic kidney cells, hamster melanoma cells, or breast cancer cells (BCCs), there was a robust enhancement in the efferocytosis of apoptotic cells. uPAR-expressing cells failed to stimulate engulfment of viable cells, suggesting that uPAR enhances recognition of one or more determinant on the surface of the apoptotic cell. uPAR-mediated engulfment was not inhibited by expression of mutant beta5 integrin, nor was alphavbeta5 integrin-mediated engulfment modulated by cleavage of uPAR by phosphatidylinositol-specific phospholipase C. Further, we found that the more aggressive BCCs had a higher phagocytic capacity that correlated with uPAR expression and cleavage of membrane-associated uPAR in MDA-MB231 BCCs significantly impaired phagocytic activity. Because efferocytosis is critical for the resolution of inflammation and production of anti-inflammatory cytokines, overexpression of uPAR in tumor cells may promote a tolerogenic microenvironment that favors tumor progression.
Collapse
Affiliation(s)
- Veera D'mello
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103
| | - Sukhwinder Singh
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103; Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103
| | - Yi Wu
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103
| | - Raymond B Birge
- From the Departments of Biochemistry and Molecular Biology, Newark, New Jersey 07103.
| |
Collapse
|
10
|
Biological and physical characterization of the X4 HIV-1 suppressive factor secreted by LPS-stimulated human macrophages. Virology 2009; 390:37-44. [PMID: 19447459 DOI: 10.1016/j.virol.2009.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 03/23/2009] [Accepted: 04/07/2009] [Indexed: 11/21/2022]
Abstract
LPS-stimulated macrophages release soluble factors that inhibit HIV-1 infection in both CD4(+) T lymphocytes and macrophages. These inhibitory factors include the CCR5 ligands RANTES, MIP-1alpha and MIP-1beta, which selectively block R5 HIV-1 strains, and a still unidentified factor with activity against X4 HIV-1 strains that we designate soluble macrophage-derived anti-HIV factor (MDAF). Here, we used X4 HIV-1 strains as specific probes to investigate the biological and physical characteristics of MDAF without the confounding effect of CCR5-binding chemokines. We show that MDAF has a broad spectrum of action, as it blocks infection by HIV-1 strains of different genetic subtypes. MDAF is sensitive to heat and proteinase K treatment, and it appears to be preformed within MDM, in that it is rapidly released upon LPS stimulation and its production is insensitive to cycloheximide, an inhibitor of protein neosynthesis. The convergent results of different assays indicate that MDAF acts primarily at the level of viral entry. Finally, MDAF is distinct from several known cytokines that possess anti-HIV-1 activity, including IL-10, IL-12, IL-16, IFN-gamma and alpha-defensins. The biological and physical characterization of MDAF may be instrumental in devising effective new strategies for its identification.
Collapse
|
11
|
Loeuillet C, Deutsch S, Ciuffi A, Robyr D, Taffé P, Muñoz M, Beckmann JS, Antonarakis SE, Telenti A. In vitro whole-genome analysis identifies a susceptibility locus for HIV-1. PLoS Biol 2008; 6:e32. [PMID: 18288889 PMCID: PMC2245987 DOI: 10.1371/journal.pbio.0060032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Accepted: 01/03/2008] [Indexed: 12/13/2022] Open
Abstract
Advances in large-scale analysis of human genomic variability provide unprecedented opportunities to study the genetic basis of susceptibility to infectious agents. We report here the use of an in vitro system for the identification of a locus on HSA8q24.3 associated with cellular susceptibility to HIV-1. This locus was mapped through quantitative linkage analysis using cell lines from multigeneration families, validated in vitro, and followed up by two independent association studies in HIV-positive individuals. Single nucleotide polymorphism rs2572886, which is associated with cellular susceptibility to HIV-1 in lymphoblastoid B cells and in primary T cells, was also associated with accelerated disease progression in one of two cohorts of HIV-1-infected patients. Biological analysis suggests a role of the rs2572886 region in the regulation of the LY6 family of glycosyl-phosphatidyl-inositol (GPI)-anchored proteins. Genetic analysis of in vitro cellular phenotypes provides an attractive approach for the discovery of susceptibility loci to infectious agents.
Collapse
Affiliation(s)
- Corinne Loeuillet
- Institute of Microbiology, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Samuel Deutsch
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospital of Geneva, Geneva, Switzerland
| | - Angela Ciuffi
- Institute of Microbiology, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel Robyr
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospital of Geneva, Geneva, Switzerland
| | | | - Miguel Muñoz
- Institute of Microbiology, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jacques S Beckmann
- Department of Medical Genetics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospital of Geneva, Geneva, Switzerland
| | - Amalio Telenti
- Institute of Microbiology, University Hospital, University of Lausanne, Lausanne, Switzerland
- Swiss HIV Cohort Study, Lausanne, Switzerland
| |
Collapse
|
12
|
Darnell GA, Schroder WA, Gardner J, Harrich D, Yu H, Medcalf RL, Warrilow D, Antalis TM, Sonza S, Suhrbier A. SerpinB2 Is an Inducible Host Factor Involved in Enhancing HIV-1 Transcription and Replication. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84047-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Darnell GA, Schroder WA, Gardner J, Harrich D, Yu H, Medcalf RL, Warrilow D, Antalis TM, Sonza S, Suhrbier A. SerpinB2 Is an Inducible Host Factor Involved in Enhancing HIV-1 Transcription and Replication. J Biol Chem 2006; 281:31348-58. [PMID: 16923810 DOI: 10.1074/jbc.m604220200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine protease inhibitor SerpinB2 (plasminogen activator inhibitor-2) is a major product of activated monocytes and macrophages and is substantially induced during most inflammatory processes. Distinct from its widely described extracellular role as an inhibitor of urokinase plasminogen activator, SerpinB2 has recently been shown to have an intracellular role as a retinoblastoma protein (Rb)-binding protein that inhibits Rb degradation. Here we show that HIV-1 infection and gp120 treatment of human peripheral blood mononuclear cells resulted in induction of SerpinB2. Furthermore, SerpinB2 expression in THP-1 monocyte/macrophage, Jurkat T, and HeLa cell lines increased replication of HIV-1 and enhanced transcription from the HIV-1 long terminal repeat (LTR) promoter by 3-10-fold. Increased HIV-1 gene expression and transcription was also observed in activated macrophages from SerpinB2+/+ mice compared with macrophages from SerpinB2-/- mice. The SerpinB2-mediated elevation of Rb protein levels appeared to be responsible for enhancing transcription from the core promoter region of the LTR by relieving HDM2-mediated inhibition of Sp1 and/or by increasing the Sp1/Sp3 expression ratios. This is the first report associating HIV-1 replication with SerpinB2 expression and illustrates that SerpinB2 is a potentially important inducible host factor that significantly promotes HIV-1 replication.
Collapse
Affiliation(s)
- Grant A Darnell
- Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Roxström-Lindquist K, Ringqvist E, Palm D, Svärd S. Giardia lamblia-induced changes in gene expression in differentiated Caco-2 human intestinal epithelial cells. Infect Immun 2006; 73:8204-8. [PMID: 16299316 PMCID: PMC1307045 DOI: 10.1128/iai.73.12.8204-8208.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parasitic protozoan Giardia lamblia is a worldwide cause of diarrhea, but the mechanism of disease remains elusive. The parasite colonizes the small intestinal epithelium, known to be a sensor for the presence of enteric pathogens, without invading or causing severe inflammation. In this study we investigated the epithelial cell response to G. lamblia. Differentiated Caco-2 cells were infected with G. lamblia isolate WB-A11, and the transcriptome of the intestinal cells was analyzed after 1.5, 6, and 18 h of interaction, using oligonucleotide microarrays. A large number of genes displayed changed expression patterns, showing the complexity of the interaction between G. lamblia and intestinal cells. A novel chemokine profile (CCL2, CCL20, CXCL1, CXCL2, and CXCL3) was induced that was different from the response induced by enteric pathogens causing intestinal inflammation. Several genes involved in stress regulation changed their expression. These findings indicate that the intestinal epithelium senses the G. lamblia infection, and this is important for induction of innate and adaptive immunity. The induced stress response can be important in the pathogenesis.
Collapse
Affiliation(s)
- Katarina Roxström-Lindquist
- Department of Parasitology, Microbiology and Tumor Biology Center, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
15
|
Shushakova N, Eden G, Dangers M, Zwirner J, Menne J, Gueler F, Luft FC, Haller H, Dumler I. The Urokinase/Urokinase Receptor System Mediates the IgG Immune Complex-Induced Inflammation in Lung. THE JOURNAL OF IMMUNOLOGY 2005; 175:4060-8. [PMID: 16148155 DOI: 10.4049/jimmunol.175.6.4060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immune complex (IC) deposition induces an acute inflammatory response with tissue injury. IC-induced inflammation is mediated by inflammatory cell infiltration, a process highly regulated by the cell surface-specific receptor (uPAR), a binding partner for the urokinase-type plasminogen activator (uPA). We assessed the role of the uPA/uPAR system in IC-induced inflammation using the pulmonary reverse passive Arthus reaction in mice lacking uPA and uPAR compared with their corresponding wild-type controls. Both uPA-deficient C57BL/6J (uPA(-/-)) and uPAR-deficient mice on a mixed C57BL/6J (75%) x 129 (25%) background (uPAR(-/-)) demonstrated a marked reduction of the inflammatory response due to decreased production of proinflammatory mediators TNF-alpha and Glu-Leu-Arg (ELR)-CXC chemokine MIP-2. In uPAR(-/-) animals, the reduction of inflammatory response was more pronounced because of decreased migratory capacity of polymorphonuclear leukocytes. We show that the uPA/uPAR system is activated in lung of wild-type mice, particularly in resident alveolar macrophages (AM), early in IC-induced alveolitis. This activation is necessary for an adequate C5a anaphylatoxin receptor signaling on AM that, in turn, modulates the functional balance of the activating/inhibitory IgG FcgammaRs responsible for proinflammatory mediator release. These data provide the first evidence that the uPA/uPAR plays an important immunoregulatory role in the initiation of the reverse passive Arthus reaction in the lung by setting the threshold for C5a anaphylatoxin receptor/FcgammaR activation on AM. The findings indicate an important link between the uPA/uPAR system and the two main components involved in the IC inflammation, namely, complement and FcgammaRs.
Collapse
Affiliation(s)
- Nelli Shushakova
- Department of Nephrology, Medical School Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
HIV-1, like the other lentiviruses, has evolved the ability to infect nondividing cells including macrophages. HIV-1 replication in monocytes/macrophages entails peculiar features and differs in many respects from that in CD4 T lymphocytes. HIV-1 exhibits different tropism for CD4 T cells and macrophages. The virus can enter macrophages via several routes. Mitosis is not required for nuclear import of viral DNA or for its integration into the host cell genome. Specific cellular factors are required for HIV-1 transcription in macrophages. The assembly and budding of viral particles in macrophages take place in late endosomal compartments. Viral particles can use the exosome pathway to exit cells. Given their functions in host defence against pathogens and the regulation of the immune response plus their permissivity to HIV-1 infection, monocytes/macrophages exert a dual role in HIV infection. They contribute to the establishment and persistence of HIV-1 infection, and may activate surrounding T cells favouring their infection. Furthermore, monocytes/macrophages act as a Trojan horse to transmit HIV-1 to the central nervous system. They also exhibit antiviral activity and express many molecules that inhibit HIV-1 replication. Activated microglia and macrophages may also exert a neurotrophic and neuroprotective effect on infected brain regulating glutamate metabolism or by secretion of neurotrophins. This review will discuss specific aspects of viral replication in monocytes/macrophages and the role of their interactions with the cellular environment in HIV-1 infection swinging between protection and pathogenesis.
Collapse
Affiliation(s)
- Alessia Verani
- Human Virology Unit, DIBIT, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
17
|
Collman RG, Perno CF, Crowe SM, Stevenson M, Montaner LJ. HIV and cells of macrophage/dendritic lineage and other non-T cell reservoirs: new answers yield new questions. J Leukoc Biol 2003; 74:631-4. [PMID: 12960251 DOI: 10.1189/jlb.0703357] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Defining how human immunodeficiency virus (HIV) interacts with macrophages, dendritic cells (DC), and other non-T cell reservoirs remains a critical area of research despite widespread use in the developed world of highly active antiretroviral therapy. In fact, as highlighted at the Fifth International Workshop on HIV and Cells of Macrophage/Dendritic Lineage and Other Reservoirs, as viral suppression in T cells becomes increasingly effective, these alternative reservoirs may take on even greater relative importance as sites for viral persistence and as a target for purging. These cells may be especially important reservoirs in several critical settings of clinical relevance, and there are major differences in the molecular mechanisms that regulate HIV replication in these cells compared with T cells. Dysfunction of these cells may also play a major role in particular aspects of pathogenesis. Three broad themes emerged from the workshop regarding areas of recent progress, which also serve to identify current research challenges of (i). determining the role played by macrophages, DC, and other non-T cell viral targets in transmission and dissemination and as viral reservoirs at various stages of disease and in different compartments in vivo; (ii). identifying the molecular mechanisms by which virus-cell interactions affect the inflammatory, immune, and other functions of these cells; and (iii). defining the unique pathways that regulate infection and replication in these cellular compartments. This issue of JLB contains several reviews and original reports resulting from the workshop that address recent progress and highlight the current research questions regarding these cell types.
Collapse
Affiliation(s)
- Ronald G Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|