1
|
Song X, Xu S, Song D, Wang J, Bai B, An Y, Yang B, Wang S, Zhao Q, Yu P. TGFB1/CXCL5 axis regulation by LCN2 overexpression: a promising strategy to inhibit colorectal cancer metastasis and enhance prognosis. Front Immunol 2025; 16:1548635. [PMID: 40313933 PMCID: PMC12043584 DOI: 10.3389/fimmu.2025.1548635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Background Distant metastasis remains a major reason for the high recurrence and mortality of colorectal cancer (CRC). However, the underlying molecular mechanisms driving metastasis in CRC remain poorly understood. In this study, we investigated the mechanisms underlying the inhibitory effects of lipocalin-2 (LCN2) on CRC metastasis. Methods We assessed the expression and clinical significance of LCN2 in human CRC specimens and CRC cell lines using, immunohistochemistry, and western blot analyses. We evaluated the migratory and invasive capabilities of CRC cells influenced by LCN2 using in vitro transwell assays and in vivo lung metastatic models. RNA sequencing and proteome analysis were employed to identify potential downstream targets of LCN2. Rescue experiments were conducted to further elucidate the potential mechanisms of LCN2 and its downstream effectors in CRC. Results LCN2 exhibited high expression levels in human CRC tissues and an inverse correlation with N classification, advanced AJCC stages, and shorter overall survival. LCN2 expression independently predicted a more favorable outcome for CRC patients. Upregulation of LCN2 effectively suppressed CRC cell metastasis both in vitro and in vivo. Mechanistically, Transforming growth factor beta 1 (TGFB1) and C-X-C motif chemokine ligand 5 (CXCL5) were identified as downstream effectors of LCN2, with LCN2 inhibiting CRC metastasis through repression of the TGFB1/CXCL5 axis. Furthermore, either TGF-βR1 inhibitor SB431542 or CXCR2 antagonist SB225002 treatment moderately decreased the migratory and invasive capabilities of DLD-1-LV-shLCN2 cells, whereas the combination treatment of the two agents dramatically decreased the migratory and invasive capabilities of DLD-1-LV-shLCN2 cells. Conclusions This study underscores LCN2 as an independent protective factor and prognostic biomarker for CRC patients. Combined treatment with the SB431542 and the SB225002 significantly attenuated LCN2-related CRC metastasis. Targeting the LCN2/TGFB1/CXCL5 axis emerges as a promising therapeutic strategy for managing LCN2-related metastatic CRC.
Collapse
Affiliation(s)
- Xiaotian Song
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Shuai Xu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Dan Song
- Department of Gastrointestinal Surgery, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Bin Bai
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Bin Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Shiqi Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Qingchuan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Pengfei Yu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Chen L, Ai F, Wu X, Yu W, Jin X, Ma J, Xiang B, Shen S, Li X. Analysis of neutrophil extracellular trap-related genes in Crohn's disease based on bioinformatics. J Cell Mol Med 2024; 28:e70013. [PMID: 39199011 PMCID: PMC11358036 DOI: 10.1111/jcmm.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Crohn's disease (CD) presents with diverse clinical phenotypes due to persistent inflammation of the gastrointestinal tract. Its global incidence is on the rise. Neutrophil extracellular traps (NETs) are networks released by neutrophils that capture microbicidal proteins and oxidases targeting pathogens. Research has shown that NETs are implicated in the pathogenesis of several immune-mediated diseases such as rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. The goal of this study was to identify a panel of NET-related genes to construct a diagnostic and therapeutic model for CD. Through analysis of the GEO database, we identified 1950 differentially expressed genes (DEGs) associated with CD. Gene enrichment and immune cell infiltration analyses indicate that neutrophil infiltrates and chemokine-related pathways are predominantly involved in CD, with other immune cells such as CD4 and M1 macrophages also playing a role in disease progression. Utilizing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) networks, we identified six hub genes (SPP1, SOCS3, TIMP1, IRF1, CXCL2 and CD274). To validate the accuracy of our model, we performed external validation with statistical differences(p < 0.05). Additionally, immunohistochemical experiments demonstrated higher protein expression of the hub genes in colonic tissues from CD patients compared to healthy subjects (p < 0.05). In summary, we identified six effective hub genes associated with NETs as potential diagnostic markers for CD. These markers not only offer targets for future research but also hold promise for the development of novel therapeutic interventions for CD.
Collapse
Affiliation(s)
- Libin Chen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Feiyan Ai
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xing Wu
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Wentao Yu
- Department of Pathology, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xintong Jin
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Bo Xiang
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Shourong Shen
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Xiayu Li
- Department of GastroenterologyThe Third Xiangya Hospital of Central South UniversityChangshaChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
3
|
Bell B, Flores-Lovon K, Cueva-Chicaña LA, Macedo R. Role of chemokine receptors in gastrointestinal mucosa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:20-52. [PMID: 39260937 DOI: 10.1016/bs.ircmb.2024.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokine receptors are essential for the immune response in the oral and gut mucosa. The gastrointestinal mucosa is characterized by the presence of immune populations because it is susceptible to inflammatory and infectious diseases, necessitating immune surveillance. Chemokine receptors are expressed on immune cells and play a role in gastrointestinal tissue-homing, although other non-immune cells also express them for various biological functions. CCR9, CXCR3 and CXCR6 play an important role in the T cell response in inflammatory and neoplastic conditions of the gastrointestinal mucosa. However, CXCR6 could also be found in gastric cancer cells, highlighting the different roles of chemokine receptors in different pathologies. On the other hand, CCR4 and CCR8 are critical for Treg migration in gastrointestinal tissues, correlating with poor prognosis in mucosal cancers. Other chemokine receptors are also important in promoting myeloid infiltration with context-dependent roles. Further, CXCR4 and CXCR7 are also present in gastrointestinal tumor cells and are known to stimulate proliferation, migration, and invasion into other tissues, among other pro-tumorigenic functions. Determining the processes underlying mucosal immunity and creating tailored therapeutic approaches for gastrointestinal diseases requires an understanding of the complex interactions that occur between chemokine receptors and their ligands in these mucosal tissues.
Collapse
Affiliation(s)
- Brett Bell
- Albert Einstein College of Medicine, New York, NY, United States
| | - Kevin Flores-Lovon
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología (GII), Arequipa, Peru
| | - Luis A Cueva-Chicaña
- Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru; Grupo de Investigación en Inmunología (GII), Arequipa, Peru
| | - Rodney Macedo
- Albert Einstein College of Medicine, New York, NY, United States; Grupo de Investigación en Inmunología (GII), Arequipa, Peru; Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, New York, United States.
| |
Collapse
|
4
|
Morais PCR, Floriano JF, Garcia CGP, Chagas ALD, Mussagy CU, Guerra NB, Sant'Ana Pegorin Brasil G, Vicentine KFD, Rocha LB, Oliveira CJF, Soares de Oliveira Junior RT, Caetano GF, Li B, Dos Santos LS, Herculano RD, de Mendonça RJ. Comparing the wound healing potential of natural rubber latex serum and F1-protein: An in vivo approach. BIOMATERIALS ADVANCES 2024; 157:213754. [PMID: 38211507 DOI: 10.1016/j.bioadv.2023.213754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024]
Abstract
Chronic wounds pose significant health concerns. Current treatment options include natural compounds like natural rubber latex (NRL) from Hevea brasiliensis. NRL, particularly the F1 protein fraction, has demonstrated bioactivity, biocompatibility, and angiogenic effects. So far, there is no study comparing F1 protein with total NRL serum, and the necessity of downstream processing remains unknown. Here, we evaluated the angiogenic potential of F1 protein compared to total NRL serum and the need for downstream processing. For that, ion exchange chromatography (DEAE-Sepharose), antioxidant activity, physicochemical characterization, cell culture in McCoy fibroblasts, and wound healing in Balb-C mice were performed. Also, the evaluation of histology and collagen content and the levels of inflammatory mediators were quantified. McCoy fibroblast cell assay showed that F1 protein (0.01 %) and total NRL serum (0.01 %) significantly increased cell proliferation by 47.1 ± 11.3 % and 25.5 ± 2.5 %, respectively. However, the AA of F1 protein (78.9 ± 0.8 %) did not show a significant difference compared to NRL serum (77.0 ± 1.1 %). F1 protein and NRL serum were more effective in wound management in rodents. Histopathological analysis confirmed accelerated healing and advanced tissue repair. Similarly, the F1 protein (0.01 %) increased collagen, showing that this fraction can stimulate the synthesis of collagen by fibroblastic cells. Regarding cytokines production (IL-10, TNF-α, IFN-γ), F1 protein and NRL serum did not exert an impact on the synthesis of these cytokines. Furthermore, we did not observe statistically significant changes in dosages of enzymes (MPO and EPO) among the groups. Nevertheless, Nitric Oxide dosage was reduced drastically when the F1 protein (0.01 %) protein was applied topically. These findings contribute to the understanding of F1 protein and NRL serum properties and provide insights into cost-effectiveness and practical applications in medicine and biotechnology. Therefore, further research is needed to assess the economic feasibility of downstream processing for NRL-based herbal medicine derived from Hevea brasiliensis.
Collapse
Affiliation(s)
- Pamela Cássia Rocha Morais
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo 18.618-687, Brazil; National Heart and Lung Institute, Imperial College London, London, UK; Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil; Science Faculty, São Paulo State University (UNESP), Bauru, São Paulo 17033-360, Brazil.
| | - Cristiane Garcia Paulino Garcia
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Ana Laura Destro Chagas
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil; Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil; Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Lenaldo Branco Rocha
- Department of Pathology, Genetics and Evolution, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Guilherme Ferreira Caetano
- Graduate Program of Orthodontics, University Center of Hermínio Ometto Foundation (FHO), Araras, SP, Brazil; Division of Dermatology, Department of Internal Medicine, University of São Paulo (USP), Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages at Ribeirão Preto, University of São Paulo (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Km 01 Araraquara-Jaú Road, Araraquara, São Paulo, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 West Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Sitaru S, Budke A, Bertini R, Sperandio M. Therapeutic inhibition of CXCR1/2: where do we stand? Intern Emerg Med 2023; 18:1647-1664. [PMID: 37249756 PMCID: PMC10227827 DOI: 10.1007/s11739-023-03309-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Mounting experimental evidence from in vitro and in vivo animal studies points to an essential role of the CXCL8-CXCR1/2 axis in neutrophils in the pathophysiology of inflammatory and autoimmune diseases. In addition, the pathogenetic involvement of neutrophils and the CXCL8-CXCR1/2 axis in cancer progression and metastasis is increasingly recognized. Consequently, therapeutic targeting of CXCR1/2 or CXCL8 has been intensively investigated in recent years using a wide array of in vitro and animal disease models. While a significant benefit for patients with unwanted neutrophil-mediated inflammatory conditions may be expected from a potential clinical use of inhibitors, their use in severe infections or sepsis might be problematic and should be carefully and thoroughly evaluated in animal models and clinical trials. Translating the approaches using inhibitors of the CXCL8-CXCR1/2 axis to cancer therapy is definitively a new and promising research avenue, which parallels the ongoing efforts to clearly define the involvement of neutrophils and the CXCL8-CXCR1/2 axis in neoplastic diseases. Our narrative review summarizes the current literature on the activation and inhibition of these receptors in neutrophils, key inhibitor classes for CXCR2 and the therapeutic relevance of CXCR2 inhibition focusing here on gastrointestinal diseases.
Collapse
Affiliation(s)
- Sebastian Sitaru
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Agnes Budke
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany
| | | | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilian University, Großhaderner Str. 9, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
6
|
Al Aameri RFH, Alanisi EMA, Oluwatosin A, Al Sallami D, Sheth S, Alberts I, Patel S, Rybak LP, Ramkumar V. Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity. Front Immunol 2023; 14:1125948. [PMID: 37063917 PMCID: PMC10102581 DOI: 10.3389/fimmu.2023.1125948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.
Collapse
Affiliation(s)
- Raheem F. H. Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Entkhab M. A. Alanisi
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Adu Oluwatosin
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Dheyaa Al Sallami
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Ian Alberts
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Shree Patel
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P. Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Vickram Ramkumar,
| |
Collapse
|
7
|
Cariaco Y, Durán-Rodriguez AT, Almeida MPO, Silva NM. CCR5 contributes to adverse outcomes during malaria in pregnancy. Cytokine 2023; 162:156110. [PMID: 36565608 DOI: 10.1016/j.cyto.2022.156110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
CCR5 is a chemokine receptor that mediates cell recruitment to sites of inflammation. It has been previously reported that the expression of CCR5 is increased in the placentas of women with malaria, a disease characterized by causing deliveries with low birth weight among other complications. CCR5 has been associated with pathology of protozoan infections during pregnancy but its role during malaria in pregnancy has not been elucidated. In the present work, we assessed the pregnancy outcome, placental structure, and levels of inflammatory markers of pregnant C57BL/6 and CCR5-/- mice infected or not with Plasmodium berghei NK65, with the purpose of determine the role of CCR5 in pregnancy associated malaria complications. We demonstrated that the expression of CCR5 mRNA increases in late pregnancy placentas of C57BL/6 when compared to uninfected controls. Infected pregnant C57BL/6 mice showed preterm birth, decreased fetal weight, placental inefficiency, and reduced placental vascular space. On the other hand, CCR5 deficiency led to increased levels of maternal parasitemia, reduced fetal weight and placental inefficiency compared to C57BL/6 mice. However, the infection did not cause additional changes in these parameters or in the incidence of preterm delivery in infected CCR5-/- mice in relation to C57BL/6 mice, showing that CCR5 may contribute to the adverse effects caused by infection during pregnancy. This improvement in pregnancy outcome, observed in infected CCR5-/- mice, was accompanied by lower placental levels of the inflammatory markers, such as TNF and NAG. Furthermore, it was observed that the placentas of CCR5-/- animals showed structural differences in relation to C57BL/6 mice, which could improve the efficiency of maternal-fetal exchanges, reflecting on fetal weight. Taken together, these results indicate that CCR5 expression contributes to the adverse outcomes caused by malaria in late pregnancy.
Collapse
Affiliation(s)
- Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Andrea Tatiana Durán-Rodriguez
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Mir MA, Bashir M, Ishfaq. Role of the CXCL8–CXCR1/2 Axis in Cancer and Inflammatory Diseases. CYTOKINE AND CHEMOKINE NETWORKS IN CANCER 2023:291-329. [DOI: 10.1007/978-981-99-4657-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Yao YZ, Liao ZK, Jiang S, Dong BQ, Luo LF, Miao F, Lei TC. Uncoupling melanogenesis from proliferation in epidermal melanocytes responding to stimulation with psoriasis-related proinflammatory cytokines. J Dermatol Sci 2022; 108:98-108. [PMID: 36577564 DOI: 10.1016/j.jdermsci.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Few studies have addressed the impact of the psoriasis-related proinflammatory cytokines on the proliferation and melanogenesis of melanocytes (MCs) in lesional psoriatic skin. OBJECTIVE We investigated the effects of TNFα, IL17A, and IL8 on the proliferation and melanin synthesis of MCs. METHODS Skin specimens were biopsied from patients with psoriasis vulgaris at the active stage, or from the tail skin of Dct-LacZ mice with imiquimod (IMQ)-induced psoriasiform dermatitis. Cultured keratinocytes (KCs), MCs, and human skin explants were used in this study. The numbers of MCs were measured via β-galactosidase staining, EdU incorporation and HMB45 immunohistochemical staining. The expression of human β-defensin 3 (hBD3) in KCs was silenced by siRNA, the conditioned medium (CM) from siRNA-transfected KCs was used to treat MCs, then followed by αMSH stimulation. The melanogenesis-related genes were examined by using qRT-PCR and western blotting. RESULTS The increased number of MCs and decreased melanin content were highly relevant to the enhanced expression of IL8 and BD3 both in human psoriatic skin and in IMQ-treated mouse tail skin. IL8 expression in KCs and CXCR2 expression in MCs was significantly increased by IL17A and TNFα, the αMSH-induced upregulations of microphthalmia-associated transcription factor (MITF) and tyrosinase in MCs were abrogated by the CM from hBD3-unsilenced KCs, but not from hBD3-silenced KCs. CONCLUSION Our results suggest the roles of IL8-CXCR2 activation in promoting MC proliferation and of BD3 upregulation in reducing melanogenesis. These findings have been implicated in the underlying mechanism that active psoriasis prefers hypopigmentation despite chronic inflammation.
Collapse
Affiliation(s)
- Yun-Zhu Yao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Kai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing-Qi Dong
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Long-Fei Luo
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Miao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Khan A, Khan A, Shal B, Aziz A, Ahmad S, Amin MU, Ahmed MN, Zia-Ur-Rehman, Khan S. Ameliorative effect of two structurally divergent hydrazide derivatives against DSS-induced colitis by targeting Nrf2 and NF-κB signaling in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1167-1188. [PMID: 35851927 DOI: 10.1007/s00210-022-02272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The environmental factors and genetic vulnerability trigger the inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn's disease. Furthermore, the oxidative stress and inflammatory cytokines have been implicated in the aggravation of the IBDs. The aim of the present study was to investigate the effect of N-(benzylidene)-2-((2-hydroxynaphthalen-1-yl)diazenyl)benzohydrazides (NCHDH and NTHDH) compounds against the DSS-induced colitis in mice. The colitis was induced by 5% dextran sulfate sodium (DSS) dissolved in normal saline for 5 days. The effect of the NCHDH and NTHDH on the behavioral, biochemical, histological, and immunohistological parameters was assessed. The NCHDH and NTHDH treatment improved the behavioral parameters such as food intake, disease activity index, and diarrhea score significantly compared to DSS control. The NCHDH and NTHDH treatments significantly increased the antioxidant enzymes, whereas oxidative stress markers were markedly reduced. Similarly, the NCHDH and NTHDH treatments significantly suppressed the activity of nitric oxide (NO), myeloperoxidase (MPO), and eosinophil peroxidase (EPO). The histological studies showed a significant reduction in inflammation, immune cell infiltration, and fibrosis in the NCHDH- and NTHDH-treated groups. The immunohistochemical results demonstrated that NCHDH and NTHDH treatments markedly increase the expression level of Nrf2, HO-1 (hemeoxygenase-1), TRX (thioredoxin reductase), and IκB compared to the DSS-induced group. In the same way, the NCHDH and NTHDH significantly reduced the NF-κB and COX-2 (cyclooxygenase-2) expression levels. The NCHDH and NTHDH treatment significantly improved the symptoms associated with colitis via inducing antioxidants and attenuating oxidative stress markers.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Shal
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Abdul Aziz
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Muhammad Usman Amin
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar, 25000, KPK, Pakistan
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan
| | - Zia-Ur-Rehman
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Laboratory, Department of Pharmacy, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
11
|
Four Immune Modulating Genes in Primary Melanoma That Predict Metastatic Potential. J Surg Res 2022; 279:682-691. [PMID: 35940046 DOI: 10.1016/j.jss.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Histologic characteristics cannot adequately predict which patients are at risk of developing metastatic disease after excision of primary cutaneous melanoma. The aim of this study was to identify immunomodulatory genes in primary tumors associated with development of distant metastases. MATERIALS AND METHODS Thirty-seven patients with primary melanoma underwent surgical excision. RNA was extracted from the primary tumor specimens. cDNA was synthesized and used with Human Gene Expression microarray. Differential expression of 74 immunomodulatory genes was compared between patients who developed distant metastases and those who did not. RESULTS Six of 37 patients developed distant metastases during the time of the study. Differential expression of microarray data showed upregulation of four immunomodulatory genes in this group. These four genes-c-CBL, CD276, CXCL1, and CXCL2-were all significantly overexpressed in the metastatic group with differential expression fold change of 1.15 (P = 0.01), 1.16 (P = 0.04), 2.51 (P < 0.001), and 1.68 (P < 0.02), respectively. CXCL1 had particularly high predictive value with an area under the curve of 0.80. Multivariate analysis showed only expression of CXCL1 (P = 0.01) remains predictive of distant metastases in melanoma patients. This result was confirmed using quantitative real-time polymerase chain reaction. CONCLUSIONS CXCL1, CXCL2, c-CBL, and CD276 are immunomodulatory genes present in primary melanoma that are strongly associated with development of metastatic disease. Identification of their presence, particularly CXCL1, in the primary tumor could be used as a predictor of future risk of metastatic disease and thereby to identify patients who might benefit early from immunotherapy.
Collapse
|
12
|
Sun X, He X, Zhang Y, Hosaka K, Andersson P, Wu J, Wu J, Jing X, Du Q, Hui X, Ding B, Guo Z, Hong A, Liu X, Wang Y, Ji Q, Beyaert R, Yang Y, Li Q, Cao Y. Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut 2022; 71:129-147. [PMID: 33568427 DOI: 10.1136/gutjnl-2020-322744] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy and lacks effective treatment. We aimed to understand molecular mechanisms of the intertwined interactions between tumour stromal components in metastasis and to provide a new paradigm for PDAC therapy. DESIGN Two unselected cohorts of 154 and 20 patients with PDAC were subjected to correlation between interleukin (IL)-33 and CXCL3 levels and survivals. Unbiased expression profiling, and genetic and pharmacological gain-of-function and loss-of-function approaches were employed to identify molecular signalling in tumour-associated macrophages (TAMs) and myofibroblastic cancer-associated fibroblasts (myoCAFs). The role of the IL-33-ST2-CXCL3-CXCR2 axis in PDAC metastasis was evaluated in three clinically relevant mouse PDAC models. RESULTS IL-33 was specifically elevated in human PDACs and positively correlated with tumour inflammation in human patients with PDAC. CXCL3 was highly upregulated in IL-33-stimulated macrophages that were the primary source of CXCL3. CXCL3 was correlated with poor survival in human patients with PDAC. Mechanistically, activation of the IL-33-ST2-MYC pathway attributed to high CXCL3 production. The highest level of CXCL3 was found in PDAC relative to other cancer types and its receptor CXCR2 was almost exclusively expressed in CAFs. Activation of CXCR2 by CXCL3 induced a CAF-to-myoCAF transition and α-smooth muscle actin (α-SMA) was uniquely upregulated by the CXCL3-CXCR2 signalling. Type III collagen was identified as the CXCL3-CXCR2-targeted adhesive molecule responsible for myoCAF-driven PDAC metastasis. CONCLUSIONS Our work provides novel mechanistic insights into understanding PDAC metastasis by the TAM-CAF interaction and targeting each of these signalling components would provide an attractive and new paradigm for treating pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoting Sun
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingkang He
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jing Wu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jieyu Wu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Qiqiao Du
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoli Hui
- Department of Geriatric-Endocrinology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bo Ding
- Department of Respiratory Disease, The Fourth Hospital of Jinan, Jinan, China
| | - Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Xuan Liu
- Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB; Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Basso PJ, Sales-Campos H, Nardini V, Duarte-Silva M, Alves VBF, Bonfá G, Rodrigues CC, Ghirotto B, Chica JEL, Nomizo A, Cardoso CRDB. Peroxisome Proliferator-Activated Receptor Alpha Mediates the Beneficial Effects of Atorvastatin in Experimental Colitis. Front Immunol 2021; 12:618365. [PMID: 34434187 PMCID: PMC8382038 DOI: 10.3389/fimmu.2021.618365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/20/2021] [Indexed: 01/20/2023] Open
Abstract
The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.
Collapse
Affiliation(s)
- Paulo José Basso
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Helioswilton Sales-Campos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Murillo Duarte-Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Beatriz Freitas Alves
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Giuliano Bonfá
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cassiano Costa Rodrigues
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Bruno Ghirotto
- Departmento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Lara PG, Esteves E, Sales-Campos H, Assis JB, Henrique MO, Barros MS, Neto LS, Silva PI, Martins JO, Cardoso CRB, Ribeiro JMC, Sá-Nunes A. AeMOPE-1, a Novel Salivary Peptide From Aedes aegypti, Selectively Modulates Activation of Murine Macrophages and Ameliorates Experimental Colitis. Front Immunol 2021; 12:681671. [PMID: 34349757 PMCID: PMC8327214 DOI: 10.3389/fimmu.2021.681671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The sialotranscriptomes of Aedes aegypti revealed a transcript overexpressed in female salivary glands that codes a mature 7.8 kDa peptide. The peptide, specific to the Aedes genus, has a unique sequence, presents a putative secretory nature and its function is unknown. Here, we confirmed that the peptide is highly expressed in the salivary glands of female mosquitoes when compared to the salivary glands of males, and its secretion in mosquito saliva is able to sensitize the vertebrate host by inducing the production of specific antibodies. The synthetic version of the peptide downmodulated nitric oxide production by activated peritoneal murine macrophages. The fractionation of a Ae. aegypti salivary preparation revealed that the fractions containing the naturally secreted peptide reproduced the nitric oxide downmodulation. The synthetic peptide also selectively interfered with cytokine production by murine macrophages, inhibiting the production of IL-6, IL-12p40 and CCL2 without affecting TNF-α or IL-10 production. Likewise, intracellular proteins associated with macrophage activation were also distinctively modulated: while iNOS and NF-κB p65 expression were diminished, IκBα and p38 MAPK expression did not change in the presence of the peptide. The anti-inflammatory properties of the synthetic peptide were tested in vivo on a dextran sulfate sodium-induced colitis model. The therapeutic administration of the Ae. aegypti peptide reduced the leukocytosis, macrophage activity and nitric oxide levels in the gut, as well as the expression of cytokines associated with the disease, resulting in amelioration of its clinical signs. Given its biological properties in vitro and in vivo, the molecule was termed Aedes-specific MOdulatory PEptide (AeMOPE-1). Thus, AeMOPE-1 is a novel mosquito-derived immunobiologic with potential to treat immune-mediated disorders.
Collapse
Affiliation(s)
- Priscila G. Lara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Helioswilton Sales-Campos
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Josiane B. Assis
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maressa O. Henrique
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Michele S. Barros
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Leila S. Neto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Pedro I. Silva
- Laboratory for Applied Toxinology, Butantan Institute, Sao Paulo, Brazil
| | - Joilson O. Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina R. B. Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Liu YF, Liang JJ, Ng TK, Hu Z, Xu C, Chen S, Chen SL, Xu Y, Zhuang X, Huang S, Zhang M, Pang CP, Cen LP. CXCL5/CXCR2 modulates inflammation-mediated neural repair after optic nerve injury. Exp Neurol 2021; 341:113711. [PMID: 33785307 DOI: 10.1016/j.expneurol.2021.113711] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Previous studies reported that mild inflammation promotes retinal ganglion cell (RGC) survival and axonal regeneration after optic nerve (ON) injury with involvement of infiltrating macrophages and neutrophils. Here we aimed to evaluate the involvement and regulation of the main inflammatory chemokine pathway CXCL5/CXCR2 in the inflammation-mediated RGC survival and axonal regeneration in mice after ON injury. METHODS The expressions and cellular locations of CXCL5 and CXCR2 were confirmed in mouse retina. Treatment effects of recombinant CXCL5 and CXCR2 antagonist SB225002 were studied in the explant culture and the ON injury model with or without lens injury. The number of RGCs, regenerating axons, and inflammatory cells were determined, and the activation of Akt andSTAT3 signaling pathways were evaluated. RESULTS Cxcr2 and Cxcl5 expressions were increased after ON and lens injury. Addition of recombinant CXCL5 promoted RGC survival and neurite outgrowth in retinal explant culture with increase in the number of activated microglia, which was inhibited by SB225002 or clodronate liposomes. Recombinant CXCL5 also alleviated RGC death and promoted axonal regeneration in mice after ON injury, and promoted the lens injury-induced RGC protection with increase in the number of activated CD68+ cells. SB225002 inhibited lens injury-induced cell infiltration and activation, and attenuated the promotion effect on RGC survival and axonal regeneration through reduction of lens injury-induced Akt activation. CONCLUSIONS CXCL5 promotes RGC survival and axonal regeneration after ON injury and further enhances RGC protection induced by lens injury with CD68+ cell activation, which is attenuated by CXCR2 antagonist. CXCL5/CXCR2 could be a potential therapeutic target for RGC survival promotion after ON injury.
Collapse
Affiliation(s)
- Yu-Fen Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Zhanchi Hu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Shantou University Medical College, Shantou, Guangdong, China
| | - Ciyan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xi Zhuang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaofen Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ling-Ping Cen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China.
| |
Collapse
|
16
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
17
|
Zhou D, Chen Y, Bu W, Meng L, Wang C, Jin N, Chen Y, Ren C, Zhang K, Sun H. Modification of Metal-Organic Framework Nanoparticles Using Dental Pulp Mesenchymal Stem Cell Membranes to Target Oral Squamous Cell Carcinoma. J Colloid Interface Sci 2021; 601:650-660. [PMID: 34091312 DOI: 10.1016/j.jcis.2021.05.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Engineering a targetable nanoparticle to tumor cell is a challenge issue for clinical application. Our results demonstrated that the chemokine CXCL8 secreted by oral squamous cell carcinoma (OSCC) could act as a chemoattractant to attract dental pulp mesenchymal stem cell (DPSC), which expressed the CXCL8 binding receptor, CXCR2, to the OSCC. Therefore, to create OSCC targetable nanoparticles, we used DPSC membranes to modify nanoparticles of metal-organic framework nanoparticles (MOFs) resulting in a novel MOF@DPSCM nanoparticle. Interestingly, results from in vitro and in vivo experiments illustrated that MOF@DPSCM possessed specificity for the OSCC, and the MOF@DPSCM carried DOX (doxorubicin), MOF-DOX@DPSCM could induce CAL27 cell death in vitro and block CAL27 tumor growth in vivo. Our data suggest that this novel MOF-DOX@DPSCM nanoparticle is a potential targetable drug delivery system for the OSCC in the future clinical application.
Collapse
Affiliation(s)
- Dabo Zhou
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China
| | - Yixin Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wenhuan Bu
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China
| | - Lin Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Congcong Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Nianqiang Jin
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China
| | - Yumeng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chunxia Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hongchen Sun
- School and Hospital of Stomatology, China Medical University, 117 Nanjing North Street, Shenyang 110002, China.
| |
Collapse
|
18
|
Hosseini-Farahabadi S, Baradaran-Heravi A, Zimmerman C, Choi K, Flibotte S, Roberge M. Small molecule Y-320 stimulates ribosome biogenesis, protein synthesis, and aminoglycoside-induced premature termination codon readthrough. PLoS Biol 2021; 19:e3001221. [PMID: 33939688 PMCID: PMC8118496 DOI: 10.1371/journal.pbio.3001221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 05/13/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.
Collapse
Affiliation(s)
- Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carla Zimmerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
19
|
Guillemot-Legris O, Muccioli GG. The oxysterome and its receptors as pharmacological targets in inflammatory diseases. Br J Pharmacol 2021; 179:4917-4940. [PMID: 33817775 DOI: 10.1111/bph.15479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Oxysterols have gained attention over the last decades and are now considered as fully fledged bioactive lipids. The study of their levels in several conditions, including atherosclerosis, obesity and neurodegenerative diseases, led to a better understanding of their involvement in (patho)physiological processes such as inflammation and immunity. For instance, the characterization of the cholesterol-7α,25-dihydroxycholesterol/GPR183 axis and its implication in immunity represents an important step in the oxysterome study. Besides this axis, others were identified as important in several inflammatory pathologies (such as colitis, lung inflammation and atherosclerosis). However, the oxysterome is a complex system notably due to a redundancy of metabolic enzymes and a wide range of receptors. Indeed, deciphering oxysterol roles and identifying the potential receptor(s) involved in a given pathology remain challenging. Oxysterol properties are very diverse, but most of them could be connected by a common component: inflammation. Here, we review the implication of oxysterol receptors in inflammatory diseases.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Horrigan O, Jose S, Mukherjee A, Sharma D, Huber A, Madan R. Leptin Receptor q223r Polymorphism Influences Clostridioides difficile Infection-Induced Neutrophil CXCR2 Expression in an Interleukin-1β Dependent Manner. Front Cell Infect Microbiol 2021; 11:619192. [PMID: 33718269 PMCID: PMC7946998 DOI: 10.3389/fcimb.2021.619192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Neutrophils are key first-responders in the innate immune response to C. difficile infection (CDI) and play a central role in disease pathogenesis. Studies have clearly shown that tissue neutrophil numbers need to be tightly regulated for optimal CDI outcomes: while excessive colonic neutrophilia is associated with severe CDI, neutrophil depletion also results in worse outcomes. However, the biological mechanisms that control CDI-induced neutrophilia remain poorly defined. C-X-C chemokine receptor 2 (CXCR2) is a chemotactic receptor that is critical in neutrophil mobilization from bone marrow to blood and tissue sites. We have previously reported that a single nucleotide polymorphism (SNP) in leptin receptor (LEPR), present in up to 50% of people, influenced CDI-induced neutrophil CXCR2 expression and tissue neutrophilia. Homozygosity for mutant LEPR (i.e. RR genotype) was associated with higher CXCR2 expression and more tissue neutrophils. Here, we investigated the biological mechanisms that regulate neutrophil CXCR2 expression after CDI, and the influence of host genetics on this process. Our data reveal that: a) CXCR2 plays a key role in CDI-induced neutrophil extravasation from blood to colonic tissue; b) plasma from C. difficile-infected mice upregulated CXCR2 on bone marrow neutrophils; c) plasma from C. difficile-infected RR mice induced a higher magnitude of CXCR2 upregulation and had more IL-1β; and d) IL-1β neutralization reduced CXCR2 expression on bone marrow and blood neutrophils and their subsequent accrual to colonic tissue. In sum, our data indicate that IL-1β is a key molecular mediator that communicates between gastro-intestinal tract (i.e. site of CDI) and bone marrow (i.e. primary neutrophil reservoir) and regulates the intensity of CDI-induced tissue neutrophilia by modulating CXCR2 expression. Further, our studies highlight the importance of host genetics in affecting these innate immune responses and provide novel insights into the mechanisms by which a common SNP influences CDI-induced neutrophilia.
Collapse
Affiliation(s)
- Olivia Horrigan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shinsmon Jose
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anindita Mukherjee
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Divya Sharma
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Alexander Huber
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
21
|
Cristina Borges Araujo E, Cariaco Y, Paulo Oliveira Almeida M, Patricia Pallete Briceño M, Neto de Sousa JE, Rezende Lima W, Maria Costa-Cruz J, Maria Silva N. Beneficial effects of Strongyloides venezuelensis antigen extract in acute experimental toxoplasmosis. Parasite Immunol 2020; 43:e12811. [PMID: 33247953 DOI: 10.1111/pim.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Toxoplasma gondii is a protozoan with worldwide distribution and triggers a strong Th1 immune response in infected susceptible hosts. On the contrary, most helminth infections are characterized by Th2 immune response and the use of helminth-derived antigens to regulate immune response in inflammatory disorders has been broadly investigated. OBJECTIVES The aim of this study was to investigate whether treatment with Strongyloides venezuelensis antigen extract (SvAg) would alter immune response against T gondii. METHODS C57BL/6 mice were orally infected with T gondii and treated with SvAg, and parasitological, histological and immunological parameters were investigated. RESULTS It was observed that SvAg treatment improved survival rates of T gondii-infected mice. At day 7 post-infection, the parasite load was lower in the lung and small intestine of infected SvAg-treated mice than untreated infected mice. Remarkably, SvAg-treated mice infected with T gondii presented reduced inflammatory lesions in the small intestine than infected untreated mice and decreased intestinal and systemic levels of IFN-γ, TNF-α and IL-6. In contrast, SvAg treatment increased T gondii-specific IgA serum levels in infected mice. CONCLUSIONS S venezuelensis antigen extract has anti-parasitic and anti-inflammatory properties during T gondii infection suggesting as a possible alternative to parasite and inflammation control.
Collapse
Affiliation(s)
- Ester Cristina Borges Araujo
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Yusmaris Cariaco
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Marcos Paulo Oliveira Almeida
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | | | - José Eduardo Neto de Sousa
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Wânia Rezende Lima
- Instituto de Biotecnologia, Universidade Federal de Catalão, Rua Terezinha Margon Vaz, s/n Residencial Barka II, Catalão, Brasil
| | - Julia Maria Costa-Cruz
- Laboratório de Diagnóstico de Parasitoses, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - Neide Maria Silva
- Laboratório de Imunopatologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brasil
| |
Collapse
|
22
|
Eiger DS, Boldizsar N, Honeycutt CC, Gardner J, Rajagopal S. Biased agonism at chemokine receptors. Cell Signal 2020; 78:109862. [PMID: 33249087 DOI: 10.1016/j.cellsig.2020.109862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
In the human chemokine system, interactions between the approximately 50 known endogenous chemokine ligands and 20 known chemokine receptors (CKRs) regulate a wide range of cellular functions and biological processes including immune cell activation and homeostasis, development, angiogenesis, and neuromodulation. CKRs are a family of G protein-coupled receptors (GPCR), which represent the most common and versatile class of receptors in the human genome and the targets of approximately one third of all Food and Drug Administration-approved drugs. Chemokines and CKRs bind with significant promiscuity, as most CKRs can be activated by multiple chemokines and most chemokines can activate multiple CKRs. While these ligand-receptor interactions were previously regarded as redundant, it is now appreciated that many chemokine:CKR interactions display biased agonism, the phenomenon in which different ligands binding to the same receptor signal through different pathways with different efficacies, leading to distinct biological effects. Notably, these biased responses can be modulated through changes in ligand, receptor, and or the specific cellular context (system). In this review, we explore the biochemical mechanisms, functional consequences, and therapeutic potential of biased agonism in the chemokine system. An enhanced understanding of biased agonism in the chemokine system may prove transformative in the understanding of the mechanisms and consequences of biased signaling across all GPCR subtypes and aid in the development of biased pharmaceuticals with increased therapeutic efficacy and safer side effect profiles.
Collapse
Affiliation(s)
| | - Noelia Boldizsar
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | | | - Julia Gardner
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA.
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Olli KE, Rapp C, O’Connell L, Collins CB, McNamee EN, Jensen O, Jedlicka P, Allison KC, Goldberg MS, Gerich ME, Frank DN, Ir D, Robertson CE, Evans CM, Aherne CM. Muc5ac Expression Protects the Colonic Barrier in Experimental Colitis. Inflamm Bowel Dis 2020; 26:1353-1367. [PMID: 32385500 PMCID: PMC7441107 DOI: 10.1093/ibd/izaa064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The mucus gel layer (MGL) lining the colon is integral to exclusion of bacteria and maintaining intestinal homeostasis in health and disease. Some MGL defects allowing bacteria to directly contact the colonic surface are commonly observed in ulcerative colitis (UC). The major macromolecular component of the colonic MGL is the secreted gel-forming mucin MUC2, whose expression is essential for homeostasis in health. In UC, another gel-forming mucin, MUC5AC, is induced. In mice, Muc5ac is protective during intestinal helminth infection. Here we tested the expression and functional role of MUC5AC/Muc5ac in UC biopsies and murine colitis. METHODS We measured MUC5AC/Muc5ac expression in UC biopsies and in dextran sulfate sodium (DSS) colitis. We performed DSS colitis in mice deficient in Muc5ac (Muc5ac-/-) to model the potential functional role of Muc5ac in colitis. To assess MGL integrity, we quantified bacterial-epithelial interaction and translocation to mesenteric lymph nodes. Antibiotic treatment and 16S rRNA gene sequencing were performed to directly investigate the role of bacteria in murine colitis. RESULTS Colonic MUC5AC/Muc5ac mRNA expression increased significantly in active UC and murine colitis. Muc5ac-/- mice experienced worsened injury and inflammation in DSS colitis compared with control mice. This result was associated with increased bacterial-epithelial contact and translocation to the mesenteric lymph nodes. However, no change in microbial abundance or community composition was noted. Antibiotic treatment normalized colitis severity in Muc5ac-/- mice to that of antibiotic-treated control mice. CONCLUSIONS MUC5AC/Muc5ac induction in the acutely inflamed colon controls injury by reducing bacterial breach of the MGL.
Collapse
Affiliation(s)
- Kristine E Olli
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Caroline Rapp
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lauren O’Connell
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Colm B Collins
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Digestive Health Institute, Children’s Hospital Colorado, Aurora, Colorado, USA
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Eoin N McNamee
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, County Kildare, Ireland
| | - Owen Jensen
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen C Allison
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew S Goldberg
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mark E Gerich
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Daniel N Frank
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Diana Ir
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Charles E Robertson
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher M Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carol M Aherne
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA
- School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
24
|
Acker G, Zollfrank J, Jelgersma C, Nieminen-Kelhä M, Kremenetskaia I, Mueller S, Ghori A, Vajkoczy P, Brandenburg S. The CXCR2/CXCL2 signalling pathway - An alternative therapeutic approach in high-grade glioma. Eur J Cancer 2020; 126:106-115. [PMID: 31927212 DOI: 10.1016/j.ejca.2019.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Besides VEGF, alternative signalling via CXCR2 and its ligands CXCL2/CXCL8 is a crucial part of angiogenesis in glioblastoma. Our aim was to understand the role of CXCR2 for glioma biology and elucidate the therapeutic potential of its specific inhibition. METHODS GL261 glioma cells were implanted intracranially in syngeneic mice. The 14 or 7 days of local or systemic treatment with CXCR2-antagonist (SB225002) was initiated early on the day of tumour cell implantation or delayed after 14 days of tumour growth. Glioma volume was verified using MRI before and after treatment. Immunofluorescence staining was used to investigate tumour progression, angiogenesis and microglial behaviour. Furthermore, in vitro assays and gene expression analyses of glioma and endothelial cells were performed to validate inhibitor activity. RESULTS CXCR2-blocking led to significantly reduced glioma volumes of around 50% after early and delayed local treatments. The treated tumours were comparable with controls regarding invasiveness, proliferation and apoptotic cell activity. Furthermore, no differences in CXCR2/CXCL2 expression were observed. However, immunostaining revealed reduction in vessel density and accumulation of microglia/macrophages, whereas interaction of these myeloid cells with tumour vessels was enhanced. In vitro analyses of the CXCR2-antagonist showed its direct impact on proliferation of glioma and endothelial cells if used at higher concentrations. In addition, expression of CXCR2/CXCL2 signalling genes was increased in both cell types by SB225002, but VEGF-relevant genes were unaffected. CONCLUSION The CXCR2-antagonist inhibited glioma growth during tumour initiation and progression, whereas treatment was well-tolerated by the recipients. Thus, the CXCR2/CXCL2 signalling represents a promising therapeutic target in glioma.
Collapse
Affiliation(s)
- Güliz Acker
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Julia Zollfrank
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Claudius Jelgersma
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Irina Kremenetskaia
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Adnan Ghori
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Neurosurgery and Experimental Neurosurgery, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
25
|
Bhattacharya U, Gutter-Kapon L, Kan T, Boyango I, Barash U, Yang SM, Liu J, Gross-Cohen M, Sanderson RD, Shaked Y, Ilan N, Vlodavsky I. Heparanase and Chemotherapy Synergize to Drive Macrophage Activation and Enhance Tumor Growth. Cancer Res 2020; 80:57-68. [PMID: 31690669 PMCID: PMC6942624 DOI: 10.1158/0008-5472.can-19-1676] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/19/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
The emerging role of heparanase in tumor initiation, growth, metastasis, and chemoresistance is well recognized, encouraging the development of heparanase inhibitors as anticancer drugs. Unlike the function of heparanase in cancer cells, little attention has been given to heparanase contributed by cells composing the tumor microenvironment. Here, we focused on the cross-talk between macrophages, chemotherapy, and heparanase and the combined effect on tumor progression. Macrophages were markedly activated by chemotherapeutics paclitaxel and cisplatin, evidenced by increased expression of proinflammatory cytokines, supporting recent studies indicating that chemotherapy may promote rather than suppress tumor regrowth and spread. Strikingly, cytokine induction by chemotherapy was not observed in macrophages isolated from heparanase-knockout mice, suggesting macrophage activation by chemotherapy is heparanase dependent. paclitaxel-treated macrophages enhanced the growth of Lewis lung carcinoma tumors that was attenuated by a CXCR2 inhibitor. Mechanistically, paclitaxel and cisplatin activated methylation of histone H3 on lysine 4 (H3K4) in wild-type but not in heparanase-knockout macrophages. Furthermore, the H3K4 presenter WDR5 functioned as a molecular determinant that mediated cytokine induction by paclitaxel. This epigenetic, heparanase-dependent host-response mechanism adds a new perspective to the tumor-promoting functions of chemotherapy, and offers new treatment modalities to optimize chemotherapeutics. SIGNIFICANCE: Chemotherapy-treated macrophages are activated to produce proinflammatory cytokines, which are blunted in the absence of heparanase.
Collapse
Affiliation(s)
- Udayan Bhattacharya
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lilach Gutter-Kapon
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Tal Kan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilanit Boyango
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - JingJing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yuval Shaked
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
26
|
Kuboi Y, Nishimura M, Ikeda W, Nakatani T, Seki Y, Yamaura Y, Ogawa K, Hamaguchi A, Muramoto K, Mizuno K, Ogasawara H, Yamauchi T, Yasuda N, Onodera H, Imai T. Blockade of the fractalkine–CX3CR1 axis ameliorates experimental colitis by dislodging venous crawling monocytes. Int Immunol 2019; 31:287-302. [DOI: 10.1093/intimm/dxz006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yoshikazu Kuboi
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | | | - Wataru Ikeda
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
| | | | - Yukie Seki
- Research Institute, EA Pharma Co., Ltd., Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| | - Yui Yamaura
- Research Institute, EA Pharma Co., Ltd., Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| | - Kana Ogawa
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
| | | | - Kenzo Muramoto
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
- Medical Communication Section, Medical Division, Eisai Co., Ltd., Bunkyo-ku, Tokyo, Japan
| | - Keiko Mizuno
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
| | | | - Toshihiko Yamauchi
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Nobuyuki Yasuda
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
- Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hiroshi Onodera
- Photon Science Center of the University of Tokyo, Department of Electrical Engineering and Information System, Graduate School of Engineering, Bunkyo-ku, Tokyo, Japan
| | - Toshio Imai
- KAN Research Institute Inc., Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
27
|
Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A, Alicea-Torres K, Gluck C, Sinha S, Gabrilovich D, Chakrabarti R. ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. J Clin Invest 2018; 128:5095-5109. [PMID: 30295647 DOI: 10.1172/jci99673] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/28/2018] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is particularly aggressive, with enhanced incidence of tumor relapse, resistance to chemotherapy, and metastases. As the mechanistic basis for this aggressive phenotype is unclear, treatment options are limited. Here, we showed an increased population of myeloid-derived immunosuppressor cells (MDSCs) in TNBC patients compared with non-TNBC patients. We found that high levels of the transcription factor ΔNp63 correlate with an increased number of MDSCs in basal TNBC patients, and that ΔNp63 promotes tumor growth, progression, and metastasis in human and mouse TNBC cells. Furthermore, we showed that MDSC recruitment to the primary tumor and metastatic sites occurs via direct ΔNp63-dependent activation of the chemokines CXCL2 and CCL22. CXCR2/CCR4 inhibitors reduced MDSC recruitment, angiogenesis, and metastasis, highlighting a novel treatment option for this subset of TNBC patients. Finally, we found that MDSCs secrete prometastatic factors such as MMP9 and chitinase 3-like 1 to promote TNBC cancer stem cell function, thereby identifying a nonimmunologic role for MDSCs in promoting TNBC progression. These findings identify a unique crosstalk between ΔNp63+ TNBC cells and MDSCs that promotes tumor progression and metastasis, which could be exploited in future combined immunotherapy/chemotherapy strategies for TNBC patients.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David W Wilkes
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nina Samuel
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario Andres Blanco
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Christian Gluck
- Department of Biochemistry, State University of New York, Buffalo, New York, USA
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York, Buffalo, New York, USA
| | | | - Rumela Chakrabarti
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Yago T, Liu Z, Ahamed J, McEver RP. Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood 2018; 132:1426-1437. [PMID: 30068506 PMCID: PMC6161769 DOI: 10.1182/blood-2018-05-850859] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a major contributor to deep vein thrombosis (DVT). Flow restriction of the inferior vena cava (IVC) in mice induces DVT like that in humans. In this model, P-selectin-dependent adhesion of neutrophils and monocytes leads to release of neutrophil extracellular traps (NETs) and expression of tissue factor. However, it is not known what signals cause myeloid cells to generate these procoagulant effectors. Using ultrasonography and spinning-disk intravital microscopy in genetically engineered mice, we found that engagement of P-selectin glycoprotein ligand-1 (PSGL-1) and the chemokine receptor CXCR2 on rolling neutrophils propagated signals that cooperated to induce β2 integrin-dependent arrest in flow-restricted IVCs. Unlike previous reports, PSGL-1 signaling in neutrophils did not require L-selectin, and it used tyrosine 145 rather than tyrosines 112 and 128 on the adaptor Src homology domain-containing leukocyte phosphoprotein of 76 kDa. PSGL-1 and CXCR2 signaling cooperated to increase the frequency and size of thrombi, in part by stimulating release of NETs. Unlike in neutrophils, blocking PSGL-1 or CXCR2 signaling in monocytes did not affect their recruitment into thrombi or their expression of tissue factor. Our results demonstrate that neutrophils cooperatively signal through PSGL-1 and CXCR2 to promote DVT.
Collapse
Affiliation(s)
- Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Zhenghui Liu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
29
|
Salvianolic acid B alters the gut microbiota and mitigates colitis severity and associated inflammation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
The inhibition of 5-Lipoxygenase (5-LO) products leukotriene B4 (LTB 4 ) and cysteinyl leukotrienes (cysLTs) modulates the inflammatory response and improves cutaneous wound healing. Clin Immunol 2018; 190:74-83. [DOI: 10.1016/j.clim.2017.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022]
|
31
|
Jose S, Abhyankar MM, Mukherjee A, Xue J, Andersen H, Haslam DB, Madan R. Leptin receptor q223r polymorphism influences neutrophil mobilization after Clostridium difficile infection. Mucosal Immunol 2018; 11:947-957. [PMID: 29363668 PMCID: PMC5976520 DOI: 10.1038/mi.2017.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023]
Abstract
Clostridium difficile is the leading cause of nosocomial infections in the United States. Clinical disease outcomes after C. difficile infection (CDI) are dependent on intensity of host inflammatory responses. Specifically, peak peripheral white blood cell (WBC) count >20 × 109 l-1 is an indicator of adverse outcomes in CDI patients, and is associated with higher 30-day mortality. We show that homozygosity for a common single nucleotide polymorphism (Q to R mutation in leptin receptor that is present in up to 50% of people), significantly increases the risk of having peak peripheral WBC count >20 × 109 l-1 (odds ratio=5.41; P=0.0023) in CDI patients. In a murine model of CDI, we demonstrate that mice homozygous for the same single nucleotide polymorphism (RR mice) have more blood and tissue leukocytes (specifically neutrophils), exaggerated tissue inflammation, and higher mortality as compared with control mice, despite similar pathogen burden. Further, we show that neutrophilia in RR mice is mediated by gut microbiota-directed expression of CXC chemokine receptor 2 (CXCR2), which promotes the release of neutrophils from bone marrow reservoir. Overall these studies provide novel mechanistic insights into the role of human genetic polymorphisms and gut microbiota in regulating the fundamental biological process of CDI-induced neutrophilia.
Collapse
Affiliation(s)
- Shinsmon Jose
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anindita Mukherjee
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Jianli Xue
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Heidi Andersen
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David B. Haslam
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA,Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45267, USA,Correspondence:
| |
Collapse
|
32
|
Zhang Z, Wu X, Cao S, Wang L, Wang D, Yang H, Feng Y, Wang S, Li L. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice. Oncotarget 2017; 7:31790-9. [PMID: 27177331 PMCID: PMC5077976 DOI: 10.18632/oncotarget.9306] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence shows that dietary agents and phytochemicals contribute to the prevention and treatment of ulcerative colitis (UC). We first reported the effects of dietary caffeic acid (CaA) on murine experimental colitis and on fecal microbiota. Colitis was induced in C57BL/6 mice by administration of 2.5% dextran sulfate sodium (DSS). Mice were fed a control diet or diet with CaA (1 mM). Our results showed that dietary CaA exerted anti-inflammatory effects in DSS colitis mice. Moreover, CaA could significantly suppress the secretion of IL-6, TNFα, and IFNγ and the colonic infiltration of CD3+ T cells, CD177+ neutrophils and F4/80+ macrophages via inhibition of the activation of NF-κB signaling pathway. Analysis of fecal microbiota showed that CaA could restore the reduction of richness and inhibit the increase of the ratio of Firmicute to Bacteroidetes in DSS colitis mice. And CaA could dramatically increase the proportion of the mucin-degrading bacterium Akkermansia in DSS colitis mice. Thus, CaA could ameliorate colonic pathology and inflammation in DSS colitis mice, and it might be associated with a proportional increase in Akkermansia.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xinyue Wu
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Shuyuan Cao
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Li Wang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Di Wang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Hui Yang
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Yiming Feng
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Shoulin Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Lei Li
- Department of Hygiene Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
33
|
Aboura I, Nani A, Belarbi M, Murtaza B, Fluckiger A, Dumont A, Benammar C, Tounsi MS, Ghiringhelli F, Rialland M, Khan NA, Hichami A. Protective effects of polyphenol-rich infusions from carob (Ceratonia siliqua) leaves and cladodes of Opuntia ficus-indica against inflammation associated with diet-induced obesity and DSS-induced colitis in Swiss mice. Biomed Pharmacother 2017; 96:1022-1035. [PMID: 29221725 DOI: 10.1016/j.biopha.2017.11.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
In the present study, we have investigated the effects of polyphenol-rich infusions from carob leaves and OFI-cladodes on inflammation associated with obesity and dextran sulfate sodium (DSS)-induced ulcerative colitis in Swiss mice. In vitro studies revealed that aqueous extracts of carob leaves and OFI-cladodes exhibited anti-inflammatory properties marked by the inhibition of IL-6, TNF-α and nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells concomitant with NF-κβ nucleus translocation inhibition. For in vivo investigations, Swiss male mice were subjected to control or high fat diet (HFD). At the 8th week after the start of study, animals received or not 1% infusion of either carob leaves or OFI-cladode for 4 weeks and were subjected to 2% DSS administration in drinking water over last 7 days. After sacrifice, pro-inflammatory cytokines levels in plasma and their mRNA expression in different organs were determined. Results showed that carob leaf and OFI-cladode infusions reduced inflammation severity associated with HFD-induced obesity and DSS-induced acute colitis indicated by decrease in pro-inflammatory cytokines expression (as such TNF-α, IL1b and IL-6) in colon, adipose tissue and spleen. In addition, plasma levels of IL-6 and TNF-α were also curtailed in response to infusions treatment. Thus, carob leaf and OFI-cladode infusions prevented intestinal permeability through the restoration of tight junction proteins (Zo1, occludins) and immune homeostasis. Hence, the anti-inflammatory effect of carob leaves and OFI-cladodes could be attributed to their polyphenols which might alleviate inflammation severity associated with obesity and colitis.
Collapse
Affiliation(s)
- Ikram Aboura
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Natural Products, University of Abou-Bekr Belkaid, Tlemcen 13000, Algeria
| | - Abdelhafid Nani
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France; Laboratory of Natural Products, University of Abou-Bekr Belkaid, Tlemcen 13000, Algeria; Department of Natural and Life Sciences, African University Ahmed Draia, Adrar, Algeria.
| | - Meriem Belarbi
- Laboratory of Natural Products, University of Abou-Bekr Belkaid, Tlemcen 13000, Algeria
| | - Babar Murtaza
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Aurélie Fluckiger
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Adélie Dumont
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Chahid Benammar
- Laboratory of Natural Products, University of Abou-Bekr Belkaid, Tlemcen 13000, Algeria
| | - Moufida Saidani Tounsi
- Laboratoire des Plantes Aromatiques et Médicinales, Centre de Biotechnologie de Borj-Cédria, Hammam-Lif, Tunisia
| | | | - Mickaël Rialland
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Naim Akhtar Khan
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Aziz Hichami
- INSERM U1231, Université de Bourgogne Franche-Comté, 21000 Dijon, France.
| |
Collapse
|
34
|
Wakita H, Yanagawa T, Kuboi Y, Imai T. E6130, a Novel CX3C Chemokine Receptor 1 (CX3CR1) Modulator, Attenuates Mucosal Inflammation and Reduces CX3CR1 + Leukocyte Trafficking in Mice with Colitis. Mol Pharmacol 2017; 92:502-509. [PMID: 28842393 DOI: 10.1124/mol.117.108381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
The chemokine fractalkine (CX3C chemokine ligand 1; CX3CL1) and its receptor CX3CR1 are involved in the pathogenesis of several diseases, including inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, rheumatoid arthritis, hepatitis, myositis, multiple sclerosis, renal ischemia, and atherosclerosis. There are no orally available agents that modulate the fractalkine/CX3CR1 axis. [(3S,4R)-1-[2-Chloro-6-(trifluoromethyl)benzyl]-3-{[1-(cyclohex-1-en-1-ylmethyl)piperidin-4-yl]carbamoyl}-4-methylpyrrolidin-3-yl]acetic acid (2S)-hydroxy(phenyl)acetate (E6130) is an orally available highly selective modulator of CX3CR1 that may be effective for treatment of inflammatory bowel disease. We found that E6130 inhibited the fractalkine-induced chemotaxis of human peripheral blood natural killer cells (IC50 4.9 nM), most likely via E6130-induced down-regulation of CX3CR1 on the cell surface. E6130 had agonistic activity via CX3CR1 with respect to guanosine 5'-3-O-(thio)triphosphate binding in CX3CR1-expressing Chinese hamster ovary K1 (CHO-K1) membrane and had no antagonistic activity. Orally administered E6130 ameliorated several inflammatory bowel disease-related parameters in a murine CD4+CD45RBhigh T-cell-transfer colitis model and a murine oxazolone-induced colitis model. In the CD4+CD45RBhigh T-cell transfer model, E6130 inhibited the migration of CX3CR1+ immune cells and decreased the number of these cells in the gut mucosal membrane. These results suggest that E6130 is a promising therapeutic agent for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Hisashi Wakita
- Eisai Co., Ltd., Tsukuba Research Laboratories, Ibaraki (H.W., T.Y., Y.K.) and KAN Research Institute Inc., Hyogo (T.I.), Japan
| | - Tatsuya Yanagawa
- Eisai Co., Ltd., Tsukuba Research Laboratories, Ibaraki (H.W., T.Y., Y.K.) and KAN Research Institute Inc., Hyogo (T.I.), Japan
| | - Yoshikazu Kuboi
- Eisai Co., Ltd., Tsukuba Research Laboratories, Ibaraki (H.W., T.Y., Y.K.) and KAN Research Institute Inc., Hyogo (T.I.), Japan
| | - Toshio Imai
- Eisai Co., Ltd., Tsukuba Research Laboratories, Ibaraki (H.W., T.Y., Y.K.) and KAN Research Institute Inc., Hyogo (T.I.), Japan
| |
Collapse
|
35
|
Sakai H, Yabe S, Sato K, Kai Y, Sato F, Yumoto T, Inoue Y, Narita M, Matsumoto K, Kato S, Chiba Y. ELR+
chemokine-mediated neutrophil recruitment is involved in 2,4,6-trinitrochlorobenzene-induced contact hypersensitivity. Clin Exp Pharmacol Physiol 2017; 45:27-33. [DOI: 10.1111/1440-1681.12839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroyasu Sakai
- Department of Analytical Pathophysiology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Saori Yabe
- Department of Analytical Pathophysiology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Ken Sato
- Department of Analytical Pathophysiology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Yuki Kai
- Department of Analytical Pathophysiology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Fumiaki Sato
- Department of Analytical Pathophysiology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Tetsuro Yumoto
- Department of Analytical Pathophysiology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Yuka Inoue
- Department of Pharmacology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Minoru Narita
- Department of Pharmacology; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| | - Kenjiro Matsumoto
- Department of Pharmacology and Experimental Therapeutics; Division of Pathological Sciences; Kyoto Pharmaceutical University; Yamashina Kyoto Japan
| | - Shinichi Kato
- Department of Pharmacology and Experimental Therapeutics; Division of Pathological Sciences; Kyoto Pharmaceutical University; Yamashina Kyoto Japan
| | - Yoshihiko Chiba
- Department of Physiology and Molecular Sciences; School of Pharmacy; Hoshi University; Shinagawa-ku Tokyo Japan
| |
Collapse
|
36
|
Young HL, Rowling EJ, Bugatti M, Giurisato E, Luheshi N, Arozarena I, Acosta JC, Kamarashev J, Frederick DT, Cooper ZA, Reuben A, Gil J, Flaherty KT, Wargo JA, Vermi W, Smith MP, Wellbrock C, Hurlstone A. An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. J Exp Med 2017; 214:1691-1710. [PMID: 28450382 PMCID: PMC5460994 DOI: 10.1084/jem.20160855] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathway antagonists induce profound clinical responses in advanced cutaneous melanoma, but complete remissions are frustrated by the development of acquired resistance. Before resistance emerges, adaptive responses establish a mutation-independent drug tolerance. Antagonizing these adaptive responses could improve drug effects, thereby thwarting the emergence of acquired resistance. In this study, we reveal that inflammatory niches consisting of tumor-associated macrophages and fibroblasts contribute to treatment tolerance through a cytokine-signaling network that involves macrophage-derived IL-1β and fibroblast-derived CXCR2 ligands. Fibroblasts require IL-1β to produce CXCR2 ligands, and loss of host IL-1R signaling in vivo reduces melanoma growth. In tumors from patients on treatment, signaling from inflammatory niches is amplified in the presence of MAPK inhibitors. Signaling from inflammatory niches counteracts combined BRAF/MEK (MAPK/extracellular signal-regulated kinase kinase) inhibitor treatment, and consequently, inhibiting IL-1R or CXCR2 signaling in vivo enhanced the efficacy of MAPK inhibitors. We conclude that melanoma inflammatory niches adapt to and confer drug tolerance toward BRAF and MEK inhibitors early during treatment.
Collapse
Affiliation(s)
- Helen L Young
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Emily J Rowling
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, 25123 Brescia, Italy
| | - Emanuele Giurisato
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Nadia Luheshi
- Division of Oncology, MedImmune Ltd, Cambridge CB21 6GH, England, UK
| | - Imanol Arozarena
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Juan-Carlos Acosta
- Edinburgh Cancer Research Centre, Medical Research Council Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XR, Scotland, UK
| | - Jivko Kamarashev
- Department of Dermatology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Dennie T Frederick
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Zachary A Cooper
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Alexandre Reuben
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jesus Gil
- Medical Research Council London Institute of Medical Sciences, London W12 0NN, England, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, England, UK
| | - Keith T Flaherty
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Jennifer A Wargo
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, 25123 Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael P Smith
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Claudia Wellbrock
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| | - Adam Hurlstone
- Manchester Cancer Research Centre, Faculty of Biology, Medicine, and Health, School of Medical Sciences, Division of Molecular and Clinical Cancer Studies, The University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
37
|
Xu B, Li YL, Xu M, Yu CC, Lian MQ, Tang ZY, Li CX, Lin Y. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacol Sin 2017; 38:688-698. [PMID: 28260798 DOI: 10.1038/aps.2016.168] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Geniposide is an iridoid glycosides purified from the fruit of Gardenia jasminoides Ellis, which is known to have antiinflammatory, anti-oxidative and anti-tumor activities. The present study aimed to investigate the effects of geniposide on experimental rat colitis and to reveal the related mechanisms. Experimental rat colitis was induced by rectal administration of a TNBS solution. The rats were treated with geniposide (25, 50 mg·kg-1·d-1, ig) or with sulfasalazine (SASP, 100 mg·kg-1·d-1, ig) as positive control for 14 consecutive days. A Caco-2 cell monolayer exposed to lipopolysaccharides (LPS) was used as an epithelial barrier dysfunction model. Transepithelial electrical resistance (TER) was measured to evaluate intestinal barrier function. In rats with TNBS-induced colitis, administration of geniposide or SASP significantly increased the TNBS-decreased body weight and ameliorated TNBS-induced experimental colitis and related symptoms. Geniposide or SASP suppressed inflammatory cytokine (TNF-α, IL-1β, and IL-6) release and neutrophil infiltration (myeloperoxidase activity) in the colon. In Caco-2 cells, geniposide (25-100 μg/mL) ameliorated LPS-induced endothelial barrier dysfunction via dose-dependently increasing transepithelial electrical resistance (TER). The results from both in vivo and in vitro studies revealed that geniposide down-regulated NF-κB, COX-2, iNOS and MLCK protein expression, up-regulated the expression of tight junction proteins (occludin and ZO-1), and facilitated AMPK phosphorylation. Both AMPK siRNA transfection and AMPK overexpression abrogated the geniposide-reduced MLCK protein expression, suggesting that geniposide ameliorated barrier dysfunction via AMPK-mediated inhibition of the MLCK pathway. In conclusion, geniposide ameliorated TNBS-induced experimental rat colitis by both reducing inflammation and modulating the disrupted epithelial barrier function via activating the AMPK signaling pathway.
Collapse
|
38
|
Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 2017; 22:786-795. [PMID: 28111332 DOI: 10.1016/j.drudis.2017.01.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Organismal aging is a multifactorial process characterized by the onset of degenerative conditions and cancer. One of the key drivers of aging is cellular senescence, a state of irreversible growth arrest induced by many pro-tumorigenic stresses. Senescent cells accumulate late in life and at sites of age-related pathologies, where they contribute to disease onset and progression through complex cell and non-cell autonomous effects. Here, we summarize the mechanisms by which cellular senescence can promote aging, and we offer an extensive description of current potential pharmacological interventions for senescent cells, highlighting limitations and suggesting alternatives.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marco Demaria
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| |
Collapse
|
39
|
Morinda citrifolia (Noni) Fruit Juice Reduces Inflammatory Cytokines Expression and Contributes to the Maintenance of Intestinal Mucosal Integrity in DSS Experimental Colitis. Mediators Inflamm 2017; 2017:6567432. [PMID: 28194046 PMCID: PMC5282445 DOI: 10.1155/2017/6567432] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/09/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Morinda citrifolia L. (noni) has been shown to treat different disorders. However, data concerning its role in the treatment of intestinal inflammation still require clarification. In the current study, we investigated the effects of noni fruit juice (NFJ) in the treatment of C57BL/6 mice, which were continuously exposed to dextran sulfate sodium (DSS) for 9 consecutive days. NFJ consumption had no impact on the reduction of the clinical signs of the disease or on weight loss. Nonetheless, when a dilution of 1 : 10 was used, the intestinal architecture of the mice was preserved, accompanied by a reduction in the inflammatory infiltrate. Regardless of the concentration of NFJ, a decrease in both the activity of myeloperoxidase and the key inflammatory cytokines, TNF-α and IFN-γ, was also observed in the intestine. Furthermore, when NFJ was diluted 1 : 10 and 1 : 100, a reduction in the production of nitric oxide and IL-17 was detected in gut homogenates. Overall, the treatment with NFJ was effective in different aspects associated with disease progression and worsening. These results may point to noni fruit as an important source of anti-inflammatory molecules with a great potential to inhibit the progression of inflammatory diseases, such as inflammatory bowel disease.
Collapse
|
40
|
Kono Y, Kawano S, Takaki A, Shimomura Y, Onji M, Ishikawa H, Takahashi S, Horii J, Kobayashi S, Kawai D, Yamamoto K, Okada H. Oxidative stress controlling agents are effective for small intestinal injuries induced by non-steroidal anti-inflammatory drugs. J Gastroenterol Hepatol 2017; 32:136-145. [PMID: 27118323 DOI: 10.1111/jgh.13424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIM Video-capsule endoscopy (VCE) has shown that intestinal ulcers are common in non-steroidal anti-inflammatory drugs (NSAIDs) users, although the mechanisms and management have not been clearly defined. To explore the contribution of oxidative stress and potential of anti-oxidants for NSAIDs-induced intestinal ulcers, we assessed human serum oxidative stress balance and the effect of anti-oxidants using a mouse model. METHODS A total of 30 NSAIDs users (17 aspirin and 13 non-aspirin users) received VCE. Serum reactive oxygen metabolite (d-ROM) and antioxidative OXY-adsorbent test (OXY) were measured. The indomethacin (IND)-induced mouse intestinal ulcer model was used to assess the effect of anti-oxidants. Eight-week-old mice were divided into four groups; control diet and diet including IND (N group), IND and L-carnitine (NC group), and IND and vitamin E (NE group). RESULTS Serum OXY levels among non-aspirin users were lower in the mucosal injuries positive group than the negative group (P < 0.05). In the mouse models, the degree of mucosal injuries was lower in NC and NE than N (P < 0.01). Serum d-ROM levels were lower in NC and NE than N (P < 0.01), and OXY levels were higher in NC than N and NE (P < 0.01). The degeneration of intestinal mitochondria was mild in NC and NE. The serum KC/CXCL-1 level and hepatic expression of the anti-oxidant molecule Gpx4 were lower in NC than N. CONCLUSIONS Non-aspirin NSAID-induced intestinal ulcers are related to decreased anti-oxidative stress function. Anti-oxidants, especially L-carnitine, are good candidates for intestinal ulcers.
Collapse
Affiliation(s)
- Yoshiyasu Kono
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuyuki Shimomura
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Onji
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hisashi Ishikawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sakuma Takahashi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joichiro Horii
- Department of Gastroenterology, Fukuyama Medical Center, Fukuyama, Japan
| | - Sayo Kobayashi
- Department of Internal Medicine, Fukuyama City Hospital, Fukuyama, Japan
| | - Daisuke Kawai
- Department of Internal Medicine, Tsuyama Chuo Hospital, Tsuyama, Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
41
|
The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med 2016; 5:jcm5120118. [PMID: 27999328 PMCID: PMC5184791 DOI: 10.3390/jcm5120118] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are characterised by aberrant immunological responses leading to chronic inflammation without tissue regeneration. These two diseases are considered distinct entities, and there is some evidence that neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation. When these processes are not tightly regulated, they can trigger positive feedback amplification loops that promote neutrophil activation, leading to significant tissue damage and evolution toward chronic disease. Defective chemotaxis, as observed in Crohn’s disease, can also contribute to the disease through impaired microbe elimination. In addition, through NET production, neutrophils may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of neutrophils has been studied in different animal models of IBD for many years, their contribution to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve our understanding of their mode of action in these particular conditions in order to provide new therapeutic avenues for IBD.
Collapse
|
42
|
Clinical Association of Chemokine (C-X-C motif) Ligand 1 (CXCL1) with Interstitial Pneumonia with Autoimmune Features (IPAF). Sci Rep 2016; 6:38949. [PMID: 27958346 PMCID: PMC5154180 DOI: 10.1038/srep38949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/16/2016] [Indexed: 01/07/2023] Open
Abstract
The term “interstitial pneumonia with autoimmune features” (IPAF) has been recently proposed. We here investigate the clinical characteristics of IPAF and evaluate the clinical implications of CXCL1-CXCR2 axis in IPAF. An increased plasma level of CXCL1 was exhibited in IPAF compared to idiopathic interstitial pneumonia (IIP), chronic obstructive pulmonary disease (COPD), and healthy controls. Additionally, plasma CXCL1 levels were clinically associated with diffusing capacity of the lungs for carbon monoxide (DLCO), erythrocyte sedimentation rate (ESR), and involved parenchyma extension in IPAF. Furthermore, circulating CXCL1 levels were highest in IPAF patients with acute exacerbations. CXCR2, the chemokine receptor for CXCL1, was readily observed in inflammatory aggregates and endothelial cells in IPAF lungs, but was lower in IIP lungs and healthy lungs. Interestingly, increased CXCL1 concentrations in BALF paralleled neutrophil counts in IPAF. Overall, the plasma concentrations of CXCL1 indicated the disease activity and prognosis in IPAF. Thus, the CXCL1/CXCR2 axis appears to be involved in the progression of IPAF.
Collapse
|
43
|
Potential role for ET-2 acting through ETA receptors in experimental colitis in mice. Inflamm Res 2016; 66:141-155. [PMID: 27778057 DOI: 10.1007/s00011-016-1001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE AND DESIGN This study attempted to clarify the roles of endothelins and mechanisms associated with ETA/ETB receptors in mouse models of colitis. MATERIALS AND METHODS Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ETA receptor antagonist, 10 mg/kg), A-192621 (ETB receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. RESULTS Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1β, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ETA and ETB receptors mRNA were increased at 24, 48 and 72 h after colitis induction. CONCLUSIONS Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ETA receptors might be a potential target for inflammatory bowel diseases.
Collapse
|
44
|
Jeon EJ, Davaatseren M, Hwang JT, Park JH, Hur HJ, Lee AS, Sung MJ. Effect of Oral Administration of 3,3'-Diindolylmethane on Dextran Sodium Sulfate-Induced Acute Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7702-7709. [PMID: 27700072 DOI: 10.1021/acs.jafc.6b02604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In patients with inflammatory bowel disease (IBD), inflammation is induced and maintained by lymphangiogenesis and angiogenesis. 3,3'-Diindolylmethane (DIM) is a natural product formed in acidic conditions from indole-3-carbinol in cruciferous vegetables, and it is known for its chemotherapeutic activity. This study evaluated DIM's effects on angiogenesis, lymphangiogenesis, and inflammation in a mouse colitis model. Experimental colitis was induced in mice by administering 3% dextran sulfate sodium (DSS) via drinking water. DIM remarkably attenuated the clinical signs and histological characteristics in mice with DSS-induced colitis. DIM suppressed neutrophil infiltration and pro-inflammatory cytokines. Moreover, it significantly suppressed the expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor (VEGFR)-2, indicating that the mechanism may be related to the repression of pro-angiogenesis activity. DIM also remarkably suppressed the expression of VEGF-C, VEGF-D, VEGFR-3, and angiopoietin-2; thus, the mechanism may also be related to the suppression of lymphangiogenesis. Therefore, DIM is a possible treatment option for inflammation of the intestine and associated angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Eun-Joo Jeon
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Munkhtugs Davaatseren
- Department of Food Science and Technology, Chung-ang University , Ansung, Keongki, Republic of Korea
| | - Jin-Taek Hwang
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Ho Park
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| | - Haeng Jeon Hur
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Ae Sin Lee
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
| | - Mi Jeong Sung
- Research Division Emerging Innovative Technology, Korea Food Research Institute , Songnam, Keongki, Republic of Korea
- Food Biotechnology, University of Science and Technology , Daejeon, Republic of Korea
| |
Collapse
|
45
|
Swamydas M, Gao JL, Break TJ, Johnson MD, Jaeger M, Rodriguez CA, Lim JK, Green NM, Collar AL, Fischer BG, Lee CCR, Perfect JR, Alexander BD, Kullberg BJ, Netea MG, Murphy PM, Lionakis MS. CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci Transl Med 2016; 8:322ra10. [PMID: 26791948 DOI: 10.1126/scitranslmed.aac7718] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic Candida albicans infection causes high morbidity and mortality and is now the leading cause of nosocomial bloodstream infection in the United States. Neutropenia is a major risk factor for poor outcome in infected patients; however, the molecular factors that mediate neutrophil trafficking and effector function during infection are poorly defined. Using a mouse model of systemic candidiasis, we found that the neutrophil-selective CXC chemokine receptor Cxcr1 and its ligand, Cxcl5, are highly induced in the Candida-infected kidney, the target organ in the model. To investigate the role of Cxcr1 in antifungal host defense in vivo, we generated Cxcr1(-/-) mice and analyzed their immune response to Candida. Mice lacking Cxcr1 exhibited decreased survival with enhanced Candida growth in the kidney and renal failure. Increased susceptibility of Cxcr1(-/-) mice to systemic candidiasis was not due to impaired neutrophil trafficking from the blood into the infected kidney but was the result of defective killing of the fungus by neutrophils that exhibited a cell-intrinsic decrease in degranulation. In humans, the mutant CXCR1 allele CXCR1-T276 results in impaired neutrophil degranulation and fungal killing and was associated with increased risk of disseminated candidiasis in infected patients. Together, our data demonstrate a biological function for mouse Cxcr1 in vivo and indicate that CXCR1-dependent neutrophil effector function is a critical innate protective mechanism of fungal clearance and host survival in systemic candidiasis.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Timothy J Break
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | | | - Martin Jaeger
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6500HB, Netherlands
| | - Carlos A Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Nathaniel M Green
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amanda L Collar
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Brett G Fischer
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA. Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Chyi-Chia Richard Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - John R Perfect
- Duke University School of Medicine, Durham, NC 27708, USA
| | | | - Bart-Jan Kullberg
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6500HB, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6500HB, Netherlands
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Sales-Campos H, de Souza PR, Basso PJ, Nardini V, Silva A, Banquieri F, Alves VBF, Chica JEL, Nomizo A, Cardoso CRB. Amelioration of experimental colitis after short-term therapy with glucocorticoid and its relationship to the induction of different regulatory markers. Immunology 2016; 150:115-126. [PMID: 27618667 DOI: 10.1111/imm.12672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
The clinical benefits of short-term therapy with glucocorticoids (GC) in patients with inflammatory bowel disease (IBD) are widely known. However, the effects of this treatment towards the re-establishment of the regulatory network in IBD are not fully explored. We have evaluated the immunological effects of the abbreviated GC therapy in experimental colitis induced by 3% dextran sulphate sodium in C57BL/6 mice. Treatment with GC improved disease outcome, constrained circulating leucocytes and ameliorated intestinal inflammation. The control of the local inflammatory responses involved a reduction in the expression of interferon-γ and interleukin-1β, associated with augmented mRNA levels of peroxisome proliferator-activated receptors (α and γ) in intestine. Furthermore, there was a reduction of CD4+ T cells producing interferon-γ, together with an increased frequency of the putative regulatory population of T cells producing interleukin-10, in spleen. These systemic alterations were accompanied by a decrease in the proliferative potential of splenocytes of mice treated in vivo with GC. Notably, treatment with GC also led to an increase in the frequency of the regulatory markers GITR, CTLA-4, PD-1, CD73 and FoxP3, more prominently in spleen. Taken together, our results pointed to a role of GC in the control of leucocyte responsiveness and re-establishment of a regulatory system, which probably contributed to disease control and the restoration of immune balance. Finally, this is the first time that GC treatment was associated with the modulation of a broad number of regulatory markers in an experimental model of colitis.
Collapse
Affiliation(s)
- Helioswilton Sales-Campos
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia R de Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Paulo J Basso
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Viviani Nardini
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Angelica Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Banquieri
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa B F Alves
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Javier E L Chica
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cristina R B Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
47
|
Ferenczi S, Szegi K, Winkler Z, Barna T, Kovács KJ. Oligomannan Prebiotic Attenuates Immunological, Clinical and Behavioral Symptoms in Mouse Model of Inflammatory Bowel Disease. Sci Rep 2016; 6:34132. [PMID: 27658624 PMCID: PMC5034233 DOI: 10.1038/srep34132] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease shows increasing prevalence, however its pathomechanism and treatment is not fully resolved. Prebiotics are non-digestible carbohydrates which might provide an alternative to treat inflammatory conditions in the gut due to their positive effects either on the microbiome or through their direct effect on macrophages and mucosa. To test the protective effects of an oligomannan prebiotic, yeast cell wall mannooligosaccharide (MOS) was administered in dextran-sulphate-sodium (DSS)-induced mouse model of acute colitis. MOS reduced DSS-induced clinical- (weight loss, diarrhea) and histological scores (mucosal damage) as well as sickness-related anxiety. DSS treatment resulted in changes in colon microbiome with selective increase of Coliform bacteria. MOS administration attenuated colitis-related increase of Coliforms, normalized colonic muc2 expression and attenuated local expression of proinflammatory cytokines IL-1a, IL1b, IL6, KC, G-CSF and MCP1 as well as toll-like receptor TLR4 and NLRP3 inflammasome. Some of the protective effects of MOS were likely be mediated directly through local macrophages because MOS dose-dependently inhibited IL-1b and G-CSF induction following in vitro DSS challenge and IL1a, IL1b, G-SCF-, and IL6 increases after LPS treatment in mouse macrophage cell line RAW264.7. These results highlight oligomannan prebiotics as therapeutic functional food for testing in clinical trials.
Collapse
Affiliation(s)
- Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztián Szegi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Teréz Barna
- Department of Genetics and Applied Biochemistry, University of Debrecen, Debrecen, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
48
|
Javed H, Azimullah S, Haque ME, Ojha SK. Cannabinoid Type 2 (CB2) Receptors Activation Protects against Oxidative Stress and Neuroinflammation Associated Dopaminergic Neurodegeneration in Rotenone Model of Parkinson's Disease. Front Neurosci 2016; 10:321. [PMID: 27531971 PMCID: PMC4969295 DOI: 10.3389/fnins.2016.00321] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023] Open
Abstract
The cannabinoid type two receptors (CB2), an important component of the endocannabinoid system, have recently emerged as neuromodulators and therapeutic targets for neurodegenerative diseases including Parkinson's disease (PD). The downregulation of CB2 receptors has been reported in the brains of PD patients. Therefore, both the activation and the upregulation of the CB2 receptors are believed to protect against the neurodegenerative changes in PD. In the present study, we investigated the CB2 receptor-mediated neuroprotective effect of β-caryophyllene (BCP), a naturally occurring CB2 receptor agonist, in, a clinically relevant, rotenone (ROT)-induced animal model of PD. ROT (2.5 mg/kg BW) was injected intraperitoneally (i.p.) once daily for 4 weeks to induce PD in male Wistar rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers, following activation of glial cells (astrocytes and microglia). ROT also caused oxidative injury evidenced by the loss of antioxidant enzymes and increased nitrite levels, and induction of proinflammatory cytokines: IL-1β, IL-6 and TNF-α, as well as inflammatory mediators: NF-κB, COX-2, and iNOS. However, treatment with BCP attenuated induction of proinflammatory cytokines and inflammatory mediators in ROT-challenged rats. BCP supplementation also prevented depletion of glutathione concomitant to reduced lipid peroxidation and augmentation of antioxidant enzymes: SOD and catalase. The results were further supported by tyrosine hydroxylase immunohistochemistry, which illustrated the rescue of the DA neurons and fibers subsequent to reduced activation of glial cells. Interestingly, BCP supplementation demonstrated the potent therapeutic effects against ROT-induced neurodegeneration, which was evidenced by BCP-mediated CB2 receptor activation and the fact that, prior administration of the CB2 receptor antagonist AM630 diminished the beneficial effects of BCP. The present study suggests that BCP has the potential therapeutic efficacy to elicit significant neuroprotection by its anti-inflammatory and antioxidant activities mediated by activation of the CB2 receptors.
Collapse
Affiliation(s)
- Hayate Javed
- Departments of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - M Emdadul Haque
- Departments of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Al Ain, UAE
| |
Collapse
|
49
|
Jin Y, Yang J, Lin L, Lin Y, Zheng C. The Attenuation of Scutellariae radix Extract on Oxidative Stress for Colon Injury in Lipopolysaccharide-induced RAW264.7 Cell and 2,4,6-trinitrobenzene Sulfonic Acid-induced Ulcerative Colitis Rats. Pharmacogn Mag 2016; 12:153-9. [PMID: 27076753 PMCID: PMC4809171 DOI: 10.4103/0973-1296.177913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Oxidative stress (OS) has been regarded as one of the major pathogeneses of ulcerative colitis (UC) through damaging colon. It has been shown that Scutellariae radix (SR) extract has a beneficial effect for the prevention and treatment of UC. Objective: The aim of this study was to investigate whether SR had a potential capacity on oxidant damage for colon injury both in vivo and in vitro. Materials and Methods: The 2,4,6-trinitrobenzene sulfonic acid (TNBS) was used to induce UC rats model while 1 μg/ml lipopolysaccharide (LPS) was for RAW264.7 cell damage. Disease activity index (DAI) was determined to response the severity of colitis. The myeloperoxidase (MPO) activity in rat colon was also estimated. The 2,2’-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid assay was performed to evaluate the total antioxidant capacity of SR. Furthermore, the activity of glutathione peroxidase (GSH-PX), catalase (CAT), superoxide dismutase (SOD), and lipid peroxidation malondialdehyde (MDA) in cell supernatant and rat serum were detected by appropriate kits. In addition, an immunohistochemical assay was applied to examine transforming growth factor beta 1 (TGF-β1) protein expression in colon tissue. Results: The treatment with SR could significantly increase the activity of GSH-PX, CAT, and SOD associated with OS in LPS-induced RAW264.7 cell damage and TNBS-induced UC rats. However, the level of MDA was markedly reduced both in vitro and in vivo. Furthermore, SR significantly decreased DAI and reversed the increased MPO activity. Thus, SR could decrease the severity of acute TNBS-induced colitis in rats. Immunohistochemical assay showed that SR significantly downregulated TGF-β1 protein expression in colon tissue. Conclusion: Our data provided evidence to support this fact that SR attenuated OS in LPS-induced RAW264.7 cell and also in TNBS-induced UC rats. Thus, SR may be an interesting candidate drug for the management of UC. SUMMARY Scutellariae radix (SR) could significantly increase the activity of glutathione peroxidase, catalase, and superoxide dismutase associated with OS in lipopolysaccharide-induced RAW264.7 cell damage and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats The level of malondialdehyde was markedly reduced by SR both in vitro and in vivo SR could decrease the severity of acute TNBS-induced colitis in rats SR could significantly downregulate the expression of transforming growth factor beta 1 protein in colon tissue.
Abbreviations used: OS: Oxidative stress, UC: Ulcerative colitis, SR: Scutellariae radix, TNBS: 2,4,6-trinitrobenzene sulfonic acid, DAI: Disease activity index, MPO: Myeloperoxidase, GSH-PX: Glutathione peroxidase, CAT: Catalase, SOD: Superoxide dismutase, MDA: Malondialdehyde, TGF-β1: Transforming growth factor beta 1, OD: Optical density, ROS: Reactive oxygen species.
Collapse
Affiliation(s)
- Yu Jin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Tiexi District, Shenyang 110021, Liaoning, China
| |
Collapse
|
50
|
Németh T, Mócsai A, Lowell CA. Neutrophils in animal models of autoimmune disease. Semin Immunol 2016; 28:174-86. [PMID: 27067180 DOI: 10.1016/j.smim.2016.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/21/2023]
Abstract
Neutrophils have traditionally been thought to play only a peripheral role in the genesis of many autoimmune and inflammatory diseases. However, recent studies in a variety of animal models suggest that these cells are central to the initiation and propagation of autoimmunity. The use of mouse models, which allow either deletion of neutrophils or the targeting of specific neutrophil functions, has revealed the many complex ways these cells contribute to autoimmune/inflammatory processes. This includes generation of self antigens through the process of NETosis, regulation of T-cell and dendritic cell activation, production of cytokines such as BAFF that stimulate self-reactive B-cells, as well as indirect effects on epithelial cell stability. In comparing the many different autoimmune models in which neutrophils have been examined, a number of common underlying themes emerge - such as a role for neutrophils in stimulating vascular permeability in arthritis, encephalitis and colitis. The use of animal models has also stimulated the development of new therapeutics that target neutrophil functions, such as NETosis, that may prove beneficial in human disease. This review will summarize neutrophil contributions in a number of murine autoimmune/inflammatory disease models.
Collapse
Affiliation(s)
- Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|