1
|
Shi X, Zhang J, Zhao H, Li H, Zhu J, Xiong H. Differential tissue and cellular distribution of chemokine C-C motif ligand 2 in grey/white matters of healthy and simian immunodeficiency virus infected monkey. Brain Res Bull 2025; 223:111291. [PMID: 40054539 DOI: 10.1016/j.brainresbull.2025.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Previous studies have shown that CCL2 concentration is higher in cerebrospinal fluid than in plasma of health and human immunodeficiency virus (HIV) infected individuals, suggesting an extra source of CCL2 in brain. Brain cellular CCL2 has been broadly studied in cultured cells and its in-vivo cellular distribution has been investigated in rodent experimental autoimmune encephalomyelitis model. However, its cellular distribution in grey and white matter (GM, WM) remains elusive. We explored this issue using healthy and simian immunodeficiency virus (SIV) infected monkeys and found: 1) Neurons were a major source of CCL2-like immunoreactivity (CCL2-ir) in normal GM, and corpus callosum (CC) ependyma showed high density of CCL2-ir. 2) Upon SIV infection, CCL2-ir was strikingly raised in GM neurons, and in CC ependyma. 3) Brain vascular-perivascular cells were a large source of CCL2-ir in normal GM and WM, which was relatively larger in CC WM than in GM. 4) Vascular-perivascular CCL2-ir proportional areas were significantly enhanced by SIV infection in both GM and CC WM. 5) Microglia seemed not to express CCL2 in healthy brain. Microglia-marker and CCL2-ir co-labeled cells were significantly increased by SIV infection. 6) A vast of macrophage-like cells were situated along infected CC ependyma, suggesting a large number of monocytes be crossing ependyma, which may be related to establishment of viral reservoir. In conclusion, our study provides valuable insights into the cellular sources and alterations of CCL2 in the monkey brain under normal and SIV-infected conditions, which may promote better understanding of CCL2 in related neurological processes.
Collapse
Affiliation(s)
- Xue Shi
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingdong Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huangying Zhao
- Division of Pharmaceutical Science, University of Cincinnati College of Pharmacy, Cincinnati, OH 45267, USA
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Molecular Biological Targeted Therapies of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Huangui Xiong
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
2
|
Rubin LH, Shirk EN, Pohlenz L, Romero H, Roti E, Dastgheyb RM, Santiuste I, Coughlin JM, Brown TT, Clements JE, Veenhuis RT. Intact HIV Reservoir in Monocytes Is Associated With Cognitive Function in Virally Suppressed Women With HIV. J Infect Dis 2025; 231:165-174. [PMID: 39293028 DOI: 10.1093/infdis/jiae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Monocytes are susceptible to human immunodeficiency virus (HIV) infection, form HIV reservoirs, and contribute to central nervous system complications (eg, cognitive impairment) in virally suppressed women with HIV (vsWWH). However, it remains unknown if the quality and/or quantity of the monocyte reservoir contributes to cognition in vsWWH. METHODS Sixty-two vsWWH (mean age = 56.1 years, SD = 7.1; 93% Black, non-Hispanic; all HIV RNA <250 copies/mL) completed a cognitive test battery, blood draw, and whole-blood immunophenotyping. Monocytes and CD4 T cells were isolated from a subset of 53 participants and the HIV reservoir was assessed using cell-specific intact proviral DNA assays (IPDA). Demographically adjusted z-scores were calculated for each outcome using data from participants without HIV in the Women's Interagency HIV Study. Cognitive outcomes of interest included domain-specific and global z-scores. RESULTS Thirty-Eight percent of vsWWH had detectable intact HIV genomes in monocytes (median = 21.5 copies/million). Higher levels of intact HIV genomes per million monocytes were associated with poorer verbal memory (delayed recall, r = 0.55, P = .01; recognition, r = 0.46, P = .04), fine motor skills (r = 0.50, P = .03), and global function (r = 0.47, P = .04). Higher levels of intact HIV genomes in monocytes were associated with percent intermediate monocytes (r = 0.60, P = .008), and the ratio of intact per intermediate monocyte was associated with worse memory (r = -0.59, P = .008). There were no associations between CD4 reservoir and cognition. CONCLUSIONS The number of intact HIV genomes per million monocytes was related to poorer cognition and the percentage of intermediate monocytes. These findings suggest that the presence of HIV genomes in general do not relate to cognitive complications, but intact, and therefore potentially replication-competent HIV, may contribute to cognitive complications in vsWWH.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lily Pohlenz
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hayley Romero
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Roti
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raha M Dastgheyb
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isabel Santiuste
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Todd T Brown
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Janice E Clements
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebecca T Veenhuis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular and Comparative Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
LaRocque-de-Freitas IF, da Silva-Junior EB, Gemieski LP, da Silva Dias Lima B, Diniz-Lima I, de Carvalho Vivarini A, Lopes UG, Freire-de-Lima L, Morrot A, Previato JO, Mendonça-Previato L, Pinto-da-Silva LH, Freire-de-Lima CG, Decote-Ricardo D. Inhibition of Microbicidal Activity of Canine Macrophages DH82 Cell Line by Capsular Polysaccharides from Cryptococcus neoformans. J Fungi (Basel) 2024; 10:339. [PMID: 38786693 PMCID: PMC11122219 DOI: 10.3390/jof10050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cryptococcus neoformans is a lethal fungus that primarily affects the respiratory system and the central nervous system. One of the main virulence factors is the capsule, constituted by the polysaccharides glucuronoxylomannan (GXM) and glucuronoxylomanogalactan (GXMGal). Polysaccharides are immunomodulators. One of the target cell populations for modulation are macrophages, which are part of the first line of defense and important for innate and adaptive immunity. It has been reported that macrophages can be modulated to act as a "Trojan horse," taking phagocytosed yeasts to strategic sites or having their machinery activation compromised. The scarcity of information on canine cryptococcosis led us to assess whether the purified capsular polysaccharides from C. neoformans would be able to modulate the microbicidal action of macrophages. In the present study, we observed that the capsular polysaccharides, GXM, GXMGal, or capsule total did not induce apoptosis in the DH82 macrophage cell line. However, it was possible to demonstrate that the phagocytic activity was decreased after treatment with polysaccharides. In addition, recovered yeasts from macrophages treated with polysaccharides after phagocytosis could be cultured, showing that their viability was not altered. The polysaccharides led to a reduction in ROS production and the mRNA expression of IL-12 and IL-6. We observed that GXMGal inhibits MHC class II expression and GXM reduces ERK phosphorylation. In contrast, GXMGal and GXM were able to increase the PPAR-γ expression. Furthermore, our data suggest that capsular polysaccharides can reduce the microbicidal activity of canine macrophages DH82.
Collapse
Affiliation(s)
- Isabel F. LaRocque-de-Freitas
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-900, Brazil; (I.F.L.-d.-F.); (L.P.G.); (B.d.S.D.L.); (L.H.P.-d.-S.)
| | - Elias Barbosa da Silva-Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (E.B.d.S.-J.); (I.D.-L.); (U.G.L.); (L.F.-d.-L.); (J.O.P.); (L.M.-P.)
| | - Leticia Paixão Gemieski
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-900, Brazil; (I.F.L.-d.-F.); (L.P.G.); (B.d.S.D.L.); (L.H.P.-d.-S.)
| | - Beatriz da Silva Dias Lima
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-900, Brazil; (I.F.L.-d.-F.); (L.P.G.); (B.d.S.D.L.); (L.H.P.-d.-S.)
| | - Israel Diniz-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (E.B.d.S.-J.); (I.D.-L.); (U.G.L.); (L.F.-d.-L.); (J.O.P.); (L.M.-P.)
| | | | - Ulisses G. Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (E.B.d.S.-J.); (I.D.-L.); (U.G.L.); (L.F.-d.-L.); (J.O.P.); (L.M.-P.)
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (E.B.d.S.-J.); (I.D.-L.); (U.G.L.); (L.F.-d.-L.); (J.O.P.); (L.M.-P.)
| | - Alexandre Morrot
- Instituto Oswaldo, FIOCRUZ, Rio de Janeiro 21045-900, Brazil;
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-900, Brazil
| | - José Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (E.B.d.S.-J.); (I.D.-L.); (U.G.L.); (L.F.-d.-L.); (J.O.P.); (L.M.-P.)
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (E.B.d.S.-J.); (I.D.-L.); (U.G.L.); (L.F.-d.-L.); (J.O.P.); (L.M.-P.)
| | - Lucia Helena Pinto-da-Silva
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-900, Brazil; (I.F.L.-d.-F.); (L.P.G.); (B.d.S.D.L.); (L.H.P.-d.-S.)
| | - Celio G. Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (E.B.d.S.-J.); (I.D.-L.); (U.G.L.); (L.F.-d.-L.); (J.O.P.); (L.M.-P.)
| | - Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-900, Brazil; (I.F.L.-d.-F.); (L.P.G.); (B.d.S.D.L.); (L.H.P.-d.-S.)
| |
Collapse
|
4
|
White KS, Walker JA, Wang J, Autissier P, Miller AD, Abuelezan NN, Burrack R, Li Q, Kim WK, Williams KC. Simian immunodeficiency virus-infected rhesus macaques with AIDS co-develop cardiovascular pathology and encephalitis. Front Immunol 2023; 14:1240946. [PMID: 37965349 PMCID: PMC10641955 DOI: 10.3389/fimmu.2023.1240946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Despite effective antiretroviral therapy, HIV co-morbidities remain where central nervous system (CNS) neurocognitive disorders and cardiovascular disease (CVD)-pathology that are linked with myeloid activation are most prevalent. Comorbidities such as neurocogntive dysfunction and cardiovascular disease (CVD) remain prevalent among people living with HIV. We sought to investigate if cardiac pathology (inflammation, fibrosis, cardiomyocyte damage) and CNS pathology (encephalitis) develop together during simian immunodeficiency virus (SIV) infection and if their co-development is linked with monocyte/macrophage activation. We used a cohort of SIV-infected rhesus macaques with rapid AIDS and demonstrated that SIV encephalitis (SIVE) and CVD pathology occur together more frequently than SIVE or CVD pathology alone. Their co-development correlated more strongly with activated myeloid cells, increased numbers of CD14+CD16+ monocytes, plasma CD163 and interleukin-18 (IL-18) than did SIVE or CVD pathology alone, or no pathology. Animals with both SIVE and CVD pathology had greater numbers of cardiac macrophages and increased collagen and monocyte/macrophage accumulation, which were better correlates of CVD-pathology than SIV-RNA. Animals with SIVE alone had higher levels of activated macrophage biomarkers and cardiac macrophage accumulation than SIVnoE animals. These observations were confirmed in HIV infected individuals with HIV encephalitis (HIVE) that had greater numbers of cardiac macrophages and fibrosis than HIV-infected controls without HIVE. These results underscore the notion that CNS and CVD pathologies frequently occur together in HIV and SIV infection, and demonstrate an unmet need for adjunctive therapies targeting macrophages.
Collapse
Affiliation(s)
- Kevin S. White
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Joshua A. Walker
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - John Wang
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Patrick Autissier
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Physiology, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Nadia N. Abuelezan
- Connel School of Nursing, Boston College, Chestnut Hill, MA, United States
| | - Rachel Burrack
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | | |
Collapse
|
5
|
Leibrand CR, Paris JJ, Jones AM, Ohene-Nyako M, Rademeyer KM, Nass SR, Kim WK, Knapp PE, Hauser KF, McRae M. Independent actions by HIV-1 Tat and morphine to increase recruitment of monocyte-derived macrophages into the brain in a region-specific manner. Neurosci Lett 2022; 788:136852. [PMID: 36028004 PMCID: PMC9845733 DOI: 10.1016/j.neulet.2022.136852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
6
|
Wallis ZK, Williams KC. Monocytes in HIV and SIV Infection and Aging: Implications for Inflamm-Aging and Accelerated Aging. Viruses 2022; 14:409. [PMID: 35216002 PMCID: PMC8880456 DOI: 10.3390/v14020409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Before the antiretroviral therapy (ART) era, people living with HIV (PLWH) experienced complications due to AIDS more so than aging. With ART and the extended lifespan of PLWH, HIV comorbidities also include aging-most likely due to accelerated aging-as well as a cardiovascular, neurocognitive disorders, lung and kidney disease, and malignancies. The broad evidence suggests that HIV with ART is associated with accentuated aging, and that the age-related comorbidities occur earlier, due in part to chronic immune activation, co-infections, and possibly the effects of ART alone. Normally the immune system undergoes alterations of lymphocyte and monocyte populations with aging, that include diminished naïve T- and B-lymphocyte numbers, a reliance on memory lymphocytes, and a skewed production of myeloid cells leading to age-related inflammation, termed "inflamm-aging". Specifically, absolute numbers and relative proportions of monocytes and monocyte subpopulations are skewed with age along with myeloid mitochondrial dysfunction, resulting in increased accumulation of reactive oxygen species (ROS). Additionally, an increase in biomarkers of myeloid activation (IL-6, sCD14, and sCD163) occurs with chronic HIV infection and with age, and may contribute to immunosenescence. Chronic HIV infection accelerates aging; meanwhile, ART treatment may slow age-related acceleration, but is not sufficient to stop aging or age-related comorbidities. Overall, a better understanding of the mechanisms behind accentuated aging with HIV and the effects of myeloid activation and turnover is needed for future therapies.
Collapse
|
7
|
Phuna ZX, Madhavan P. A CLOSER LOOK AT THE MYCOBIOME IN ALZHEIMER'S DISEASE: FUNGAL SPECIES, PATHOGENESIS AND TRANSMISSION. Eur J Neurosci 2022; 55:1291-1321. [DOI: 10.1111/ejn.15599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| |
Collapse
|
8
|
Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021; 13:2137. [PMID: 34959418 PMCID: PMC8708625 DOI: 10.3390/pharmaceutics13122137] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is associated with a wide range of diseases characterised by oxidant-mediated disturbances of various signalling pathways and cellular damage. The only effective strategy for the prevention of cellular damage is to limit the production of oxidants and support their efficient removal. The implication of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cellular redox status has spurred new interest in the use of its natural modulators (e.g., curcumin, resveratrol). Unfortunately, most natural Nrf2 modulators are poorly soluble and show extensive pre-systemic metabolism, low oral bioavailability, and rapid elimination, which necessitates formulation strategies to circumvent these limitations. This paper provides a brief introduction on the cellular and molecular mechanisms involved in Nrf2 modulation and an overview of commonly studied formulations for the improvement of oral bioavailability and in vivo pharmacokinetics of Nrf2 modulators. Some formulations that have also been studied in vivo are discussed, including solid dispersions, self-microemulsifying drug delivery systems, and nanotechnology approaches, such as polymeric and solid lipid nanoparticles, nanocrystals, and micelles. Lastly, brief considerations of nano drug delivery systems for the delivery of Nrf2 modulators to the brain, are provided. The literature reviewed shows that the formulations discussed can provide various improvements to the bioavailability and pharmacokinetics of natural Nrf2 modulators. This has been demonstrated in animal models and clinical studies, thereby increasing the potential for the translation of natural Nrf2 modulators into clinical practice.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Matej Sova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Julijana Kristl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
9
|
Ganguli S, Chavali PL. Intrauterine Viral Infections: Impact of Inflammation on Fetal Neurodevelopment. Front Neurosci 2021; 15:771557. [PMID: 34858132 PMCID: PMC8631423 DOI: 10.3389/fnins.2021.771557] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Intrauterine viral infections during pregnancy by pathogens such as Zika virus, Cytomegalovirus, Rubella and Herpes Simplex virus can lead to prenatal as well as postnatal neurodevelopmental disorders. Although maternal viral infections are common during pregnancy, viruses rarely penetrate the trophoblast. When they do cross, viruses can cause adverse congenital health conditions for the fetus. In this context, maternal inflammatory responses to these neurotropic pathogens play a significant role in negatively affecting neurodevelopment. For instance, intrauterine inflammation poses an increased risk of neurodevelopmental disorders such as microcephaly, schizophrenia, autism spectrum disorder, cerebral palsy and epilepsy. Severe inflammatory responses have been linked to stillbirths, preterm births, abortions and microcephaly. In this review, we discuss the mechanistic basis of how immune system shapes the landscape of the brain and how different neurotropic viral pathogens evoke inflammatory responses. Finally, we list the consequences of neuroinflammation on fetal brain development and discuss directions for future research and intervention strategies.
Collapse
Affiliation(s)
- Sourav Ganguli
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| | - Pavithra L Chavali
- CSIR-Center for Cellular and Molecular Biology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcCSIR), Ghaziabad, India
| |
Collapse
|
10
|
Borrajo A, Spuch C, Penedo MA, Olivares JM, Agís-Balboa RC. Important role of microglia in HIV-1 associated neurocognitive disorders and the molecular pathways implicated in its pathogenesis. Ann Med 2021; 53:43-69. [PMID: 32841065 PMCID: PMC7877929 DOI: 10.1080/07853890.2020.1814962] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The development of effective combined anti-retroviral therapy (cART) led to a significant reduction in the death rate associated with human immunodeficiency virus type 1 (HIV-1) infection. However, recent studies indicate that considerably more than 50% of all HIV-1 infected patients develop HIV-1-associated neurocognitive disorder (HAND). Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS), and so, are also likely to contribute to the neurotoxicity observed in HAND. The activation of microglia induces the release of pro-inflammatory markers and altered secretion of cytokines, chemokines, secondary messengers, and reactive oxygen species (ROS) which activate signalling pathways that initiate neuroinflammation. In turn, ROS and inflammation also play critical roles in HAND. However, more efforts are required to understand the physiology of microglia and the processes involved in their activation in order to better understand the how HIV-1-infected microglia are involved in the development of HAND. In this review, we summarize the current state of knowledge about the involvement of oxidative stress mechanisms and role of HIV-induced ROS in the development of HAND. We also examine the academic literature regarding crucial HIV-1 pathogenicity factors implicated in neurotoxicity and inflammation in order to identify molecular pathways that could serve as potential therapeutic targets for treatment of this disease. KEY MESSAGES Neuroinflammation and excitotoxicity mechanisms are crucial in the pathogenesis of HAND. CNS infiltration by HIV-1 and immune cells through the blood brain barrier is a key process involved in the pathogenicity of HAND. Factors including calcium dysregulation and autophagy are the main challenges involved in HAND.
Collapse
Affiliation(s)
- A. Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Roma, Italy
| | - C. Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - M. A. Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - J. M. Olivares
- Department of Psychiatry, Área Sanitaria de Vigo, Vigo, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - R. C. Agís-Balboa
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
11
|
Groppa SA, Ciolac D, Duarte C, Garcia C, Gasnaș D, Leahu P, Efremova D, Gasnaș A, Bălănuță T, Mîrzac D, Movila A. Molecular Mechanisms of SARS-CoV-2/COVID-19 Pathogenicity on the Central Nervous System: Bridging Experimental Probes to Clinical Evidence and Therapeutic Interventions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:1-27. [PMID: 34735712 DOI: 10.1007/5584_2021_675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has dramatically impacted the global healthcare systems, constantly challenging both research and clinical practice. Although it was initially believed that the SARS-CoV-2 infection is limited merely to the respiratory system, emerging evidence indicates that COVID-19 affects multiple other systems including the central nervous system (CNS). Furthermore, most of the published clinical studies indicate that the confirmed CNS inflammatory manifestations in COVID-19 patients are meningitis, encephalitis, acute necrotizing encephalopathy, acute transverse myelitis, and acute disseminated encephalomyelitis. In addition, the neuroinflammation along with accelerated neurosenescence and susceptible genetic signatures in COVID-19 patients might prime the CNS to neurodegeneration and precipitate the occurrence of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Thus, this review provides a critical evaluation and interpretive analysis of existing published preclinical as well as clinical studies on the key molecular mechanisms modulating neuroinflammation and neurodegeneration induced by the SARS-CoV-2. In addition, the essential age- and gender-dependent impacts of SARS-CoV-2 on the CNS of COVID-19 patients are also discussed.
Collapse
Affiliation(s)
- Stanislav A Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Dumitru Ciolac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Daniela Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Pavel Leahu
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Efremova
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Gasnaș
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Tatiana Bălănuță
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova.,Laboratory of Cerebrovascular Diseases and Epilepsy, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Daniela Mîrzac
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA. .,Institute of Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
12
|
Jha NK, Ojha S, Jha SK, Dureja H, Singh SK, Shukla SD, Chellappan DK, Gupta G, Bhardwaj S, Kumar N, Jeyaraman M, Jain R, Muthu S, Kar R, Kumar D, Goswami VK, Ruokolainen J, Kesari KK, Singh SK, Dua K. Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations. J Mol Neurosci 2021; 71:2192-2209. [PMID: 33464535 PMCID: PMC7814864 DOI: 10.1007/s12031-020-01767-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an issue of global significance that has taken the lives of many across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for its pathogenesis. The pulmonary manifestations of COVID-19 have been well described in the literature. Initially, it was thought to be limited to the respiratory system; however, we now recognize that COVID-19 also affects several other organs, including the nervous system. Two similar human coronaviruses (CoV) that cause severe acute respiratory syndrome (SARS-CoV-1) and Middle East respiratory syndrome (MERS-CoV) are also known to cause disease in the nervous system. The neurological manifestations of SARS-CoV-2 infection are growing rapidly, as evidenced by several reports. There are several mechanisms responsible for such manifestations in the nervous system. For instance, post-infectious immune-mediated processes, direct virus infection of the central nervous system (CNS), and virus-induced hyperinflammatory and hypercoagulable states are commonly involved. Guillain-Barré syndrome (GBS) and its variants, dysfunction of taste and smell, and muscle injury are numerous examples of COVID-19 PNS (peripheral nervous system) disease. Likewise, hemorrhagic and ischemic stroke, encephalitis, meningitis, encephalopathy acute disseminated encephalomyelitis, endothelialitis, and venous sinus thrombosis are some instances of COVID-19 CNS disease. Due to multifactorial and complicated pathogenic mechanisms, COVID-19 poses a large-scale threat to the whole nervous system. A complete understanding of SARS-CoV-2 neurological impairments is still lacking, but our knowledge base is rapidly expanding. Therefore, we anticipate that this comprehensive review will provide valuable insights and facilitate the work of neuroscientists in unfolding different neurological dimensions of COVID-19 and other CoV associated abnormalities.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, UP, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, UAE
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW, 2305, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Shanu Bhardwaj
- Department of Biotechnology, HIMT, CCS University, Greater Noida, UP, India
| | - Neeraj Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, UP, 201310, Greater Noida, India
| | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, UP, 201310, Greater Noida, India
| | - Sathish Muthu
- Research Associate, Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat, 380015, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India
| | - Vineet Kumar Goswami
- Department of Biological Sciences, School of Basic and Applied Sciences, G.D. Goenka University, G.D. Goenka Education City Sohna Gurugram Road, Haryana- 122103, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076, Espoo, Finland
| | - Sandeep Kumar Singh
- Centre of Biomedical Research, SGPGI Campus, Lucknow, 226014, UP, India
- Indian Scientific Education and Technology Foundation, Lucknow, 226002, UP, India
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW, 2305, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Post box no. 9, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
13
|
Niu F, Liao K, Hu G, Moidunny S, Roy S, Buch S. HIV Tat-Mediated Induction of Monocyte Transmigration Across the Blood-Brain Barrier: Role of Chemokine Receptor CXCR3. Front Cell Dev Biol 2021; 9:724970. [PMID: 34527676 PMCID: PMC8435688 DOI: 10.3389/fcell.2021.724970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
HIV trans-activator of transcription (Tat), one of the cytotoxic proteins secreted from HIV-infected cells, is also known to facilitate chemokine-mediated transmigration of monocytes into the brain leading, in turn, to neuroinflammation and thereby contributing to the development of HIV-associated neurocognitive disorders (HAND). The mechanism(s) underlying HIV Tat-mediated enhancement of monocyte transmigration, however, remain largely unknown. CXC chemokine receptor 3 (CXCR3) that is expressed by the peripheral monocytes is known to play a role in the monocyte influx and accumulation. In the present study, we demonstrate for the first time that exposure of human monocytes to HIV Tat protein resulted in upregulated expression of CXCR3 leading, in turn, to increased monocyte transmigration across the blood–brain barrier (BBB) both in the in vitro and in vivo model systems. This process involved activation of toll-like receptor 4 (TLR4), with downstream phosphorylation and activation of TANK-binding kinase 1 (TBK1), and subsequent phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3), ultimately leading to enhanced expression of CXCR3 in human monocytes. These findings imply a novel molecular mechanism underlying HIV Tat-mediated increase of monocyte transmigration across the BBB, while also implicating a novel role of CXCR3-dependent monocyte transmigration in HIV Tat-mediated neuroinflammation.
Collapse
Affiliation(s)
- Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.,Division of Clinical Research and Evaluative Sciences, Department of Medicine, Creighton University, Omaha, NE, United States
| | - Ke Liao
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shamsudheen Moidunny
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
14
|
Dong SXM, Vizeacoumar FS, Bhanumathy KK, Alli N, Gonzalez-Lopez C, Gajanayaka N, Caballero R, Ali H, Freywald A, Cassol E, Angel JB, Vizeacoumar FJ, Kumar A. Identification of novel genes involved in apoptosis of HIV-infected macrophages using unbiased genome-wide screening. BMC Infect Dis 2021; 21:655. [PMID: 34233649 PMCID: PMC8261936 DOI: 10.1186/s12879-021-06346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/15/2021] [Indexed: 12/01/2022] Open
Abstract
Background Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. Methods We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student’s t-test from at least four independent experiments. Results We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. Conclusions We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06346-7.
Collapse
Affiliation(s)
- Simon X M Dong
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nezeka Alli
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Niranjala Gajanayaka
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ramon Caballero
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hamza Ali
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Jonathan B Angel
- Department of Medicine, the Ottawa Health Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Franco J Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. .,Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK, Canada.
| | - Ashok Kumar
- Apoptosis Research Center, Children's Hospital of Eastern Ontario, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Aghayari Sheikh Neshin S, Shahjouei S, Koza E, Friedenberg I, Khodadadi F, Sabra M, Kobeissy F, Ansari S, Tsivgoulis G, Li J, Abedi V, Wolk DM, Zand R. Stroke in SARS-CoV-2 Infection: A Pictorial Overview of the Pathoetiology. Front Cardiovasc Med 2021; 8:649922. [PMID: 33855053 PMCID: PMC8039152 DOI: 10.3389/fcvm.2021.649922] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Since the early days of the pandemic, there have been several reports of cerebrovascular complications during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Numerous studies proposed a role for SARS-CoV-2 in igniting stroke. In this review, we focused on the pathoetiology of stroke among the infected patients. We pictured the results of the SARS-CoV-2 invasion to the central nervous system (CNS) via neuronal and hematogenous routes, in addition to viral infection in peripheral tissues with extensive crosstalk with the CNS. SARS-CoV-2 infection results in pro-inflammatory cytokine and chemokine release and activation of the immune system, COVID-19-associated coagulopathy, endotheliitis and vasculitis, hypoxia, imbalance in the renin-angiotensin system, and cardiovascular complications that all may lead to the incidence of stroke. Critically ill patients, those with pre-existing comorbidities and patients taking certain medications, such as drugs with elevated risk for arrhythmia or thrombophilia, are more susceptible to a stroke after SARS-CoV-2 infection. By providing a pictorial narrative review, we illustrated these associations in detail to broaden the scope of our understanding of stroke in SARS-CoV-2-infected patients. We also discussed the role of antiplatelets and anticoagulants for stroke prevention and the need for a personalized approach among patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Shima Shahjouei
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, United States
| | - Eric Koza
- Geisinger Commonwealth School of Medicine, Scranton, PA, United States
| | - Isabel Friedenberg
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | | | - Mirna Sabra
- Neurosciences Research Center (NRC), Lebanese University/Medical School, Beirut, Lebanon
| | - Firas Kobeissy
- Program of Neurotrauma, Neuroproteomics and Biomarker Research (NNBR), University of Florida, Gainesville, FL, United States
| | - Saeed Ansari
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, United States
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Jiang Li
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, United States.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States
| | - Donna M Wolk
- Molecular and Microbial Diagnostics and Development, Diagnostic Medicine Institute, Laboratory Medicine, Geisinger Health System, Danville, PA, United States
| | - Ramin Zand
- Neurology Department, Neuroscience Institute, Geisinger Health System, Danville, PA, United States
| |
Collapse
|
16
|
Lionetti V, Bollini S, Coppini R, Gerbino A, Ghigo A, Iaccarino G, Madonna R, Mangiacapra F, Miragoli M, Moccia F, Munaron L, Pagliaro P, Parenti A, Pasqua T, Penna C, Quaini F, Rocca C, Samaja M, Sartiani L, Soda T, Tocchetti CG, Angelone T. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacol Res 2021; 168:105581. [PMID: 33781873 PMCID: PMC7997688 DOI: 10.1016/j.phrs.2021.105581] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; UOSVD Anesthesia and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Raffaele Coppini
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Andrea Gerbino
- Department of Bioscience, Biotechnology and Biopharmaceuticals, University of Bari, Bari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabio Mangiacapra
- Unit of Cardiovascular Science, Campus Bio-Medico University, Rome, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy.
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Pasquale Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Astrid Parenti
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Teresa Pasqua
- Department of Health Science, University of Magna Graecia, Catanzaro, Italy
| | - Claudia Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - Michele Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - Laura Sartiani
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlo Gabriele Tocchetti
- Interdepartmental Center of Clinical and Translational Research, Federico II University, Naples, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
17
|
Ahmed W, Khan A, Sundar WH, Naseem H, Chen W, Feng J, Durrani S, Chen L. Neurological diseases caused by coronavirus infection of the respiratory airways. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infections of the central nervous system (CNS) infections are critical problems for public health. They are caused by several different organisms, including the respiratory coronaviruses (CoVs). CoVs usually infect the upper respiratory tract causing the common cold. However, in infants, and in elderly and immunocompromised persons, they can also affect the lower respiratory tract causing pneumonia and various syndromes of respiratory distress. CoVs also have neuroinvasive capabilities because they can spread from the respiratory tract to the CNS. Once infection begins in the CNS cells, it can cause various CNS problems such as status epilepticus, encephalitis, and long‐term neurological disease. This neuroinvasive properties of CoVs may damage the CNS as a result of misdirected host immune response, which could be associated with autoimmunity in susceptible individuals (virus‐induced neuro‐immunopathology) or associated with viral replication directly causing damage to the CNS cells (virus‐induced neuropathology). In December 2019, a new disease named COVID‐19 emerged which is caused by CoVs. The significant clinical symptoms of COVID‐19 are related to the respiratory system, but they can also affect the CNS, causing acute cerebrovascular and intracranial infections. We describe the possible invasion routes of coronavirus in this review article, and look for the most recent findings associated with the neurological complications in the recently published literature.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, Guangdong, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Adeel Khan
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, Jiangsu, China
| | - Wish Hal Sundar
- Department of Medicine, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Humaira Naseem
- Department of General Surgery, Allied Hospital Faisalabad, Punjab, Pakistan
| | - Wanghao Chen
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, Guangdong, China
- School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Samran Durrani
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, Guangdong, China
| |
Collapse
|
18
|
Reza-Zaldívar EE, Hernández-Sapiéns MA, Minjarez B, Gómez-Pinedo U, Márquez-Aguirre AL, Mateos-Díaz JC, Matias-Guiu J, Canales-Aguirre AA. Infection Mechanism of SARS-COV-2 and Its Implication on the Nervous System. Front Immunol 2021; 11:621735. [PMID: 33584720 PMCID: PMC7878381 DOI: 10.3389/fimmu.2020.621735] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
In late December 2019, multiple atypical pneumonia cases resulted in severe acute respiratory syndrome caused by a pathogen identified as a novel coronavirus SARS-CoV-2. The most common coronavirus disease 2019 (COVID-19) symptoms are pneumonia, fever, dry cough, and fatigue. However, some neurological complications following SARS-CoV-2 infection include confusion, cerebrovascular diseases, ataxia, hypogeusia, hyposmia, neuralgia, and seizures. Indeed, a growing literature demonstrates that neurotropism is a common feature of coronaviruses; therefore, the infection mechanisms already described in other coronaviruses may also be applicable for SARS-CoV-2. Understanding the underlying pathogenetic mechanisms in the nervous system infection and the neurological involvement is essential to assess possible long-term neurological alteration of COVID-19. Here, we provide an overview of associated literature regarding possible routes of COVID-19 neuroinvasion, such as the trans-synapse-connected route in the olfactory pathway and peripheral nerve terminals and its neurological implications in the central nervous system.
Collapse
Affiliation(s)
- Edwin Estefan Reza-Zaldívar
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Benito Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Mexico
| | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense, Madrid, Spain
| | - Ana Laura Márquez-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Juan Carlos Mateos-Díaz
- Biotecnología Industrial, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Jorge Matias-Guiu
- Laboratory of Neurobiology, Department of Neurology, Institute of Neurosciences, San Carlos Institute for Health Research, Universidad Complutense, Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Unidad de Biotecnología Médica y Farmaceútica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| |
Collapse
|
19
|
Lou JJ, Movassaghi M, Gordy D, Olson MG, Zhang T, Khurana MS, Chen Z, Perez-Rosendahl M, Thammachantha S, Singer EJ, Magaki SD, Vinters HV, Yong WH. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. FREE NEUROPATHOLOGY 2021; 2:2. [PMID: 33554218 PMCID: PMC7861505 DOI: 10.17879/freeneuropathology-2021-2993] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is emerging as the greatest public health crisis in the early 21stcentury. Its causative agent, Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is an enveloped single stranded positive-sense ribonucleic acid virus that enters cells via the angiotensin converting enzyme 2 receptor or several other receptors. While COVID-19 primarily affects the respiratory system, other organs including the brain can be involved. In Western clinical studies, relatively mild neurological dysfunction such as anosmia and dysgeusia is frequent (~70-84%) while severe neurologic disorders such as stroke (~1-6%) and meningoencephalitis are less common. It is unclear how much SARS-CoV-2 infection contributes to the incidence of stroke given co-morbidities in the affected patient population. Rarely, clinically-defined cases of acute disseminated encephalomyelitis, Guillain-Barré syndrome and acute necrotizing encephalopathy have been reported in COVID-19 patients. Common neuropathological findings in the 184 patients reviewed include microglial activation (42.9%) with microglial nodules in a subset (33.3%), lymphoid inflammation (37.5%), acute hypoxic-ischemic changes (29.9%), astrogliosis (27.7%), acute/subacute brain infarcts (21.2%), spontaneous hemorrhage (15.8%), and microthrombi (15.2%). In our institutional cases, we also note occasional anterior pituitary infarcts. COVID-19 coagulopathy, sepsis, and acute respiratory distress likely contribute to a number of these findings. When present, central nervous system lymphoid inflammation is often minimal to mild, is detected best by immunohistochemistry and, in one study, indistinguishable from control sepsis cases. Some cases evince microglial nodules or neuronophagy, strongly supporting viral meningoencephalitis, with a proclivity for involvement of the medulla oblongata. The virus is detectable by reverse transcriptase polymerase chain reaction, immunohistochemistry, or electron microscopy in human cerebrum, cerebellum, cranial nerves, olfactory bulb, as well as in the olfactory epithelium; neurons and endothelium can also be infected. Review of the extant cases has limitations including selection bias and limited clinical information in some cases. Much remains to be learned about the effects of direct viral infection of brain cells and whether SARS-CoV-2 persists long-term contributing to chronic symptomatology.
Collapse
Affiliation(s)
- Jerry J. Lou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
- Department of Pathology and Laboratory Medicine, University of California - Irvine School of Medicine, USA
| | - Mehrnaz Movassaghi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
| | - Dominique Gordy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
| | - Madeline G. Olson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
| | - Ting Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
| | - Maya S. Khurana
- Department of Pathology and Laboratory Medicine, University of California - Irvine School of Medicine, USA
| | - Zesheng Chen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
| | - Mari Perez-Rosendahl
- Department of Pathology and Laboratory Medicine, University of California - Irvine School of Medicine, USA
| | | | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine at UCLA, USA
| | - Shino D. Magaki
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, USA
- Department of Pathology and Laboratory Medicine, University of California - Irvine School of Medicine, USA
| |
Collapse
|
20
|
Levine A, Sacktor N, Becker JT. Studying the neuropsychological sequelae of SARS-CoV-2: lessons learned from 35 years of neuroHIV research. J Neurovirol 2020; 26:809-823. [PMID: 32880873 PMCID: PMC7471564 DOI: 10.1007/s13365-020-00897-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 01/14/2023]
Abstract
The virology of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the human immune response to the virus are under vigorous investigation. There are now several reports describing neurological symptoms in individuals who develop coronavirus disease 2019 (COVID-19), the syndrome associated with SARS-CoV-2 infection. The prevalence, incidence, and clinical course of these symptoms will become clearer in the coming months and years through epidemiological studies. However, the long-term neurological and cognitive consequence of SARS-CoV-2 infection will remain conjectural for some time and will likely require the creation of cohort studies that include uninfected individuals. Considering the early evidence for neurological involvement in COVID-19 it may prove helpful to compare SARS-CoV-2 with another endemic and neurovirulent virus, human immunodeficiency virus-1 (HIV-1), when designing such cohort studies and when making predictions about neuropsychological outcomes. In this paper, similarities and differences between SARS-CoV-2 and HIV-1 are reviewed, including routes of neuroinvasion, putative mechanisms of neurovirulence, and factors involved in possible long-term neuropsychological sequelae. Application of the knowledge gained from over three decades of neuroHIV research is discussed, with a focus on alerting researchers and clinicians to the challenges in determining the cause of neurocognitive deficits among long-term survivors.
Collapse
Affiliation(s)
- Andrew Levine
- Department of Neurology David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Ned Sacktor
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James T Becker
- Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
21
|
Hu J, Jolkkonen J, Zhao C. Neurotropism of SARS-CoV-2 and its neuropathological alterations: Similarities with other coronaviruses. Neurosci Biobehav Rev 2020; 119:184-193. [PMID: 33091416 PMCID: PMC7571477 DOI: 10.1016/j.neubiorev.2020.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
A novel coronavirus (SARS-CoV-2) emerged from Wuhan, China, and spread quickly around the world. In addition to fever, cough and shortness of breath, it was confirmed that the patients also have manifestations towards the central nervous system (CNS), especially those critically ill ones. In this review, we will discuss how SARS-CoV-2 gain access to the CNS and the possible consequences. Both SARS-CoV-2 and SARS-CoV-1 in 2002 share the same receptor angiotensin-converting enzyme 2 (ACE2), which can be found in the brain and mediate the disease process. Both direct attack of SARS-CoV-2 and the abnormal immune response in the CNS would contribute to the disease. Also, there is a relationship between SARS-CoV-2 and the occurrence of acute cerebrovascular diseases.
Collapse
Affiliation(s)
- Jingman Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, PR China
| | - Jukka Jolkkonen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Yliopistonranta 1C (PO Box 1627), 70211, Kuopio, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1C (PO Box 1627), 70211, Kuopio, Finland
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, PR China; Stroke Center, The First Affiliated Hospital of China Medical University, Shenyang, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
22
|
Alam SB, Willows S, Kulka M, Sandhu JK. Severe acute respiratory syndrome coronavirus 2 may be an underappreciated pathogen of the central nervous system. Eur J Neurol 2020; 27:2348-2360. [PMID: 32668062 PMCID: PMC7405269 DOI: 10.1111/ene.14442] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a highly contagious respiratory disease referred to as COVID-19. However, emerging evidence indicates that a small but growing number of COVID-19 patients also manifest neurological symptoms, suggesting that SARS-CoV-2 may infect the nervous system under some circumstances. SARS-CoV-2 primarily enters the body through the epithelial lining of the respiratory and gastrointestinal tracts, but under certain conditions this pleiotropic virus may also infect peripheral nerves and gain entry into the central nervous system (CNS). The brain is shielded by various anatomical and physiological barriers, most notably the blood-brain barrier (BBB) which functions to prevent harmful substances, including pathogens and pro-inflammatory mediators, from entering the brain. The BBB is composed of highly specialized endothelial cells, pericytes, mast cells and astrocytes that form the neurovascular unit, which regulates BBB permeability and maintains the integrity of the CNS. In this review, potential routes of viral entry and the possible mechanisms utilized by SARS-CoV-2 to penetrate the CNS, either by disrupting the BBB or infecting the peripheral nerves and using the neuronal network to initiate neuroinflammation, are briefly discussed. Furthermore, the long-term effects of SARS-CoV-2 infection on the brain and in the progression of neurodegenerative diseases known to be associated with other human coronaviruses are considered. Although the mechanisms of SARS-CoV-2 entry into the CNS and neurovirulence are currently unknown, the potential pathways described here might pave the way for future research in this area and enable the development of better therapeutic strategies.
Collapse
Affiliation(s)
- S. B. Alam
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - S. Willows
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - M. Kulka
- Nanotechnology Research CentreNational Research Council CanadaEdmontonAlbertaCanada
- Department of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | - J. K. Sandhu
- Human Health Therapeutics Research CentreNational Research Council CanadaOttawaOntarioCanada
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
23
|
Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol 2020; 77:1018-1027. [PMID: 32469387 PMCID: PMC7484225 DOI: 10.1001/jamaneurol.2020.2065] [Citation(s) in RCA: 647] [Impact Index Per Article: 129.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019, causing human coronavirus disease 2019 (COVID-19), which has now spread into a worldwide pandemic. The pulmonary manifestations of COVID-19 have been well described in the literature. Two similar human coronaviruses that cause Middle East respiratory syndrome (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV-1) are known to cause disease in the central and peripheral nervous systems. Emerging evidence suggests COVID-19 has neurologic consequences as well. Observations This review serves to summarize available information regarding coronaviruses in the nervous system, identify the potential tissue targets and routes of entry of SARS-CoV-2 into the central nervous system, and describe the range of clinical neurological complications that have been reported thus far in COVID-19 and their potential pathogenesis. Viral neuroinvasion may be achieved by several routes, including transsynaptic transfer across infected neurons, entry via the olfactory nerve, infection of vascular endothelium, or leukocyte migration across the blood-brain barrier. The most common neurologic complaints in COVID-19 are anosmia, ageusia, and headache, but other diseases, such as stroke, impairment of consciousness, seizure, and encephalopathy, have also been reported. Conclusions and Relevance Recognition and understanding of the range of neurological disorders associated with COVID-19 may lead to improved clinical outcomes and better treatment algorithms. Further neuropathological studies will be crucial to understanding the pathogenesis of the disease in the central nervous system, and longitudinal neurologic and cognitive assessment of individuals after recovery from COVID-19 will be crucial to understand the natural history of COVID-19 in the central nervous system and monitor for any long-term neurologic sequelae.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Lindsay S McAlpine
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Tova Gardin
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Shelli Farhadian
- Division of Infectious Disease, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Division of Neurological Infections and Global Neurology, Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Deena E Kuruvilla
- Division of Headache and Facial Pain, Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Serena Spudich
- Division of Neurological Infections and Global Neurology, Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 697] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
25
|
Yadav A, Kossenkov AV, Knecht VR, Showe LC, Ratcliffe SJ, Montaner LJ, Tebas P, Collman RG. Evidence for Persistent Monocyte and Immune Dysregulation After Prolonged Viral Suppression Despite Normalization of Monocyte Subsets, sCD14 and sCD163 in HIV-Infected Individuals. Pathog Immun 2019; 4:324-362. [PMID: 31893252 PMCID: PMC6930814 DOI: 10.20411/pai.v4i2.336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND People living with HIV on antiretroviral therapy (HIV/ART) experience excess non-AIDS comorbidities, and also remain at increased risk for certain infections and viral malignancies. Monocytes/macrophages are central to many of these comorbidities, and elevated plasma cytokines and immune activation during untreated infection are often incompletely reversed by ART and are also associated with comorbidities. METHODS We investigated monocyte surface markers, gene expression, and plasma cytokines in 11 HIV-infected older individuals (median 53 years) who started therapy with low CD4 counts (median 129 cells/µl), with elevated hsCRP (≥ 2mg/L) despite long-term ART (median 7.4 years), along with matched controls. RESULTS Frequency of monocyte subsets (based on CD14/CD16/CD163), were not different from controls, but surface expression of CD163 was increased (P = 0.021) while PD1 was decreased (P = 0.013) along with a trend for higher tissue factor (P = 0.096). As a group, HIV/ART participants had elevated plasma CCL2 (MCP-1; P = 0.0001), CXCL9 (MIG; P = 0.04), and sIL2R (P = 0.015), which were correlated, while sCD14 was not elevated. Principal component analysis of soluble markers revealed that 6/11 HIV/ART participants clustered with controls, while 5 formed a distinct group, driven by IL-10, CCL11, CXCL10, CCL2, CXCL9, and sIL2R. These individuals were significantly older than those clustering with controls. Transcriptomic analysis revealed multiple genes linked to immune functions including inflammation, immune cell development, and cell-cell signaling that were downregulated in HIV/ART monocytes and distinct from patterns in untreated subjects. CONCLUSIONS Long-term ART-treated individuals normalize monocyte subsets but exhibit immune dysregulation involving both aberrant inflammation and monocyte dysfunction, as well as inter-individual heterogeneity, suggesting complex mechanisms linking monocytes and HIV/ART comorbidities.
Collapse
Affiliation(s)
- Anjana Yadav
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | | | - Vincent R Knecht
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | | | - Sarah J Ratcliffe
- Department of Biostatistics and Epidemiology; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | | | - Pablo Tebas
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| | - Ronald G Collman
- Department of Medicine; University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania
| |
Collapse
|
26
|
Zhang J, Fox H, Xiong H. Severer nodular lesion in white matter than in gray matter in simian immunodeficiency virus-infected monkey, but not closely correlated with viral infection. J Biomed Res 2019; 34:292-300. [PMID: 32525497 PMCID: PMC7386408 DOI: 10.7555/jbr.33.20180047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Immune cell accumulation and white matter anomaly are common features of HIV (human immunodeficiency virus) -infected patients in combination antiretroviral therapy (cART) era. Neuroimaging tests on cART treated patients displayed prominent diffuse white matter lesions. Notably, immune cell nodular lesion (NL) was a conspicuous type of pathological change in HIV/SIV (simian immunodeficiency virus) infected brain before cART. Therefore, we used SIV infected brain to investigate the distribution of those NLs in gray and white matters. We found a significant higher number of NLs in white matter than that in gray matter. However, virus infection correlated with macrophage NLs but not with microglia NLs, especially in white matter. In addition, NLs interrupted white matter integrity more severely, since even tiny nodules could disconnect nerve fibers in white matter tracts. In the gray matter with dense myelinated axons, NLs obviously encroached those fibers; in the area of few myelinated axons, small nodules well co-localized with extracellular matrix between neurons.
Collapse
Affiliation(s)
- Jingdong Zhang
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Howard Fox
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huangui Xiong
- Department of Pharmacology and Experiment Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Abstract
Viral infection in the brain can be acute or chronic, with the responses often producing foci of increasingly cytotoxic inflammation. This can lead to effects beyond the central nervous system (CNS). To stimulate discussion, this commentary addresses four questions: What drives the development of human immunodeficiency virus (HIV)-associated neurocognitive disorders, does the phenotype of macrophages in the CNS spur development of HIV encephalitis (HIVE), does continual activation of astrocytes drive the development of HIV-associated neurocognitive disorders/subclinical disease, and neuroinflammation: friend or foe? A unifying theory that connects each question is the issue of continued activation of glial cells, even in the apparent absence of simian immunodeficiency virus/HIV in the CNS. As the CNS innate immune system is distinct from the rest of the body, it is likely there could be a number of activation profiles not observed elsewhere.
Collapse
Affiliation(s)
- Elizabeth C. Delery
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane Program in Biomedical Sciences, Tulane Medical School, New Orleans, Louisiana
- Department of Microbiology and Immunology, Tulane Medical School, New Orleans, Louisiana
| | - Andrew G. MacLean
- Tulane National Primate Research Center, Covington, Louisiana
- Tulane Program in Biomedical Sciences, Tulane Medical School, New Orleans, Louisiana
- Department of Microbiology and Immunology, Tulane Medical School, New Orleans, Louisiana
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana
- Center for Aging, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
28
|
Ratto-Kim S, Schuetz A, Sithinamsuwan P, Barber J, Hutchings N, Lerdlum S, Fletcher JLK, Phuang-Ngern Y, Chuenarom W, Tipsuk S, Pothisri M, Jadwattanakul T, Jirajariyavej S, Sajjaweerawan C, Akapirat S, Chalermchai T, Suttichom D, Kaewboon B, Prueksakaew P, Karnsomlap P, Clifford D, Paul RH, de Souza MS, Kim JH, Ananworanich J, Valcour V. Characterization of Cellular Immune Responses in Thai Individuals With and Without HIV-Associated Neurocognitive Disorders. AIDS Res Hum Retroviruses 2018; 34:685-689. [PMID: 29737194 DOI: 10.1089/aid.2017.0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
HIV-associated neurocognitive disorder (HAND) remains a challenge despite antiretroviral therapy (ART), and has been linked to monocyte/macrophage (M/M) migration to the brain. Due to the potential impact of T cell effector mechanisms in eliminating activated/HIV-infected M/M, T cell activation may play a role in the development of HAND. We sought to investigate the relationship between cognition and both CD8+ T cell activation (HLA-DR+/CD38+) and HIV-specific CD8+ T cell responses at the time of HIV diagnosis and 12 months postinitiation of ART. CD8+ T cell activation was increased in HAND compared to cognitive normal (NL) individuals and correlated directly with plasma viral load and inversely with the cognitive status. In addition, Gag-specific cytolytic activity (CD107a/b+) was decreased in HAND compared with NL individuals and correlated with their neurological testing, suggesting a potential role of cytotoxic CD8+ T cells in the mechanism of HAND development.
Collapse
Affiliation(s)
- Silvia Ratto-Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Alexandra Schuetz
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Pasiri Sithinamsuwan
- Division of Neurology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - John Barber
- Clinical and Molecular Retrovirology Section/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nicholas Hutchings
- Columbia University College of Physicians and Surgeons, New York, New York
| | - Sukalaya Lerdlum
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Yuwadee Phuang-Ngern
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Weerawan Chuenarom
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Somporn Tipsuk
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Mantana Pothisri
- Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanate Jadwattanakul
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | | | - Chayada Sajjaweerawan
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | - Siriwat Akapirat
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | | | | | - Boot Kaewboon
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences–United States Component, Bangkok, Thailand
| | | | | | - David Clifford
- Department of Psychology, University of Missouri, St. Louis, Missouri
| | - Robert H. Paul
- Department of Psychology, University of Missouri, St. Louis, Missouri
| | | | | | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
- SEARCH, Thai Red Cross AIDS Research Center, Bangkok, Thailand
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, California
| | | |
Collapse
|
29
|
Abstract
Alphaviruses are transmitted to humans via bites of infected mosquitoes. Although alphaviruses have caused a wide range of outbreaks and crippling disease, the availability of licensed vaccines or antiviral therapies remains limited. Mosquito vectors such as Aedes and Culex are the main culprits in the transmission of alphaviruses. This review explores how mosquito saliva may promote alphavirus infection. Identifying the roles of mosquito-derived factors in alphavirus pathogenesis will generate novel tools to circumvent and control mosquito-borne alphavirus infections in humans.
Collapse
|
30
|
Affiliation(s)
- Felipe H. Santiago-Tirado
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Nowlin BT, Wang J, Schafer JL, Autissier P, Burdo TH, Williams KC. Monocyte subsets exhibit transcriptional plasticity and a shared response to interferon in SIV-infected rhesus macaques. J Leukoc Biol 2017; 103:141-155. [PMID: 29345061 DOI: 10.1002/jlb.4a0217-047r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/26/2017] [Accepted: 10/16/2017] [Indexed: 12/24/2022] Open
Abstract
The progression to AIDS is influenced by changes in the biology of heterogeneous monocyte subsets. Classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes may represent progressive stages of monocyte maturation or disparate myeloid lineages with different turnover rates and function. To investigate the relationship between monocyte subsets and the response to SIV infection, we performed microarray analysis of monocyte subsets in rhesus macaques at three time points: prior to SIV infection, 26 days postinfection, and necropsy with AIDS. Genes with a 2-fold change between monocyte subsets (2023 genes) or infection time points (424 genes) were selected. We identify 172 genes differentially expressed among monocyte subsets in both uninfected and SIV-infected animals. Classical monocytes express genes associated with inflammatory responses and cell proliferation. Nonclassical monocytes express genes associated with activation, immune effector functions, and cell cycle inhibition. The classical and intermediate subsets are most similar at all time points, and transcriptional similarity between intermediate and nonclassical monocytes increases with AIDS. Cytosolic sensors of nucleic acids, restriction factors, and IFN-stimulated genes are induced in all three subsets with AIDS. We conclude that SIV infection alters the transcriptional relationship between monocyte subsets and that the innate immune response to SIV infection is conserved across monocyte subsets.
Collapse
Affiliation(s)
- Brian T Nowlin
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - John Wang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Jamie L Schafer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Patrick Autissier
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| | - Kenneth C Williams
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
| |
Collapse
|
32
|
Effects of HIV-1 Tat and Methamphetamine on Blood-Brain Barrier Integrity and Function In Vitro. Antimicrob Agents Chemother 2017; 61:AAC.01307-17. [PMID: 28893794 DOI: 10.1128/aac.01307-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency (HIV) infection results in neurocognitive deficits in about one half of infected individuals. Despite systemic effectiveness, restricted antiretroviral penetration across the blood-brain barrier (BBB) is a major limitation in fighting central nervous system (CNS)-localized infection. Drug abuse exacerbates HIV-induced cognitive and pathological CNS changes. This study's purpose was to investigate the effects of the HIV-1 protein Tat and methamphetamine on factors affecting drug penetration across an in vitro BBB model. Factors affecting paracellular and transcellular flux in the presence of Tat and methamphetamine were examined. Transendothelial electrical resistance, ZO-1 expression, and lucifer yellow (a paracellular tracer) flux were aspects of paracellular processes that were examined. Additionally, effects on P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP-1) mRNA (via quantitative PCR [qPCR]) and protein (via immunoblotting) expression were measured; Pgp and MRP-1 are drug efflux proteins. Transporter function was examined after exposure of Tat with or without methamphetamine using the P-gp substrate rhodamine 123 and also using the dual P-gp/MRP-1 substrate and protease inhibitor atazanavir. Tat and methamphetamine elicit complex changes affecting transcellular and paracellular transport processes. Neither Tat nor methamphetamine significantly altered P-gp expression. However, Tat plus methamphetamine exposure significantly increased rhodamine 123 accumulation within brain endothelial cells, suggesting that treatment inhibited or impaired P-gp function. Intracellular accumulation of atazanavir was not significantly altered after Tat or methamphetamine exposure. Atazanavir accumulation was, however, significantly increased by simultaneous inhibition of P-gp and MRP. Collectively, our investigations indicate that Tat and methamphetamine alter aspects of BBB integrity without affecting net flux of paracellular compounds. Tat and methamphetamine may also affect several aspects of transcellular transport.
Collapse
|
33
|
Singh VB, Singh MV, Piekna-Przybylska D, Gorantla S, Poluektova LY, Maggirwar SB. Sonic Hedgehog mimetic prevents leukocyte infiltration into the CNS during acute HIV infection. Sci Rep 2017; 7:9578. [PMID: 28852071 PMCID: PMC5575104 DOI: 10.1038/s41598-017-10241-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 11/24/2022] Open
Abstract
Infiltration of infected leukocytes culminates in establishment of a brain niche for Human Immunodeficiency Virus (HIV) during acute phase of infection, initiating an ongoing cascade of persistent viral replication and inflammation, that causes irreversible neuronal injury and HIV associated neurocognitive disease (HAND). In this study, humanized mice were treated with Smoothened Agonist (SAG), a Sonic Hedgehog (Shh) mimetic in order to fortify blood brain barrier (BBB) and dampen leukocyte extravasation into CNS during AHI. Results indicate that SAG treatment reduced viral burden in the CNS immediately after HIV transmission, but also conferred extended neuroprotection via increased BBB integrity (elevated levels of tight-junction protein, Claudin 5, and reduced S100B levels in periphery). These mice also showed healthier neurons with thick, uniform dendrites and reduced numbers of activated astrocytes. Additional in vitro experiments suggested SAG treatment was not associated with the establishment or reversal of latency in the target cells. Altogether, these findings validate neuroprotective role of Shh signaling and highlight the therapeutic potential of Shh mimetics against CNS complications associated with HIV infection. Further our results strongly demonstrate that pharmacological interventions to reduce leukocyte mobilization during early HIV infection, can provide prolonged neuroprotection, which might significantly delay the onset of HAND.
Collapse
Affiliation(s)
- Vir B Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, NY, 14642, USA.
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, NY, 14642, USA
| | - Dorota Piekna-Przybylska
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, NY, 14642, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, NY, 14642, USA
| |
Collapse
|
34
|
Leibrand CR, Paris JJ, Ghandour MS, Knapp PE, Kim WK, Hauser KF, McRae M. HIV-1 Tat disrupts blood-brain barrier integrity and increases phagocytic perivascular macrophages and microglia in the dorsal striatum of transgenic mice. Neurosci Lett 2017; 640:136-143. [PMID: 28057474 DOI: 10.1016/j.neulet.2016.12.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/19/2016] [Accepted: 12/31/2016] [Indexed: 12/01/2022]
Abstract
HIV-1 infection results in blood-brain barrier (BBB) disruption, which acts as a rate-limiting step for HIV-1 entry into the CNS and for subsequent neuroinflammatory/neurotoxic actions. One mechanism by which HIV may destabilize the BBB involves actions of the HIV-1 regulatory protein, trans-activator of transcription (Tat). We utilized a conditional, Tat-expressing transgenic murine model to examine the influence of Tat1-86 expression on BBB integrity and to assess the relative numbers of phagocytic perivascular macrophages and microglia within the CNS in vivo. The effects of Tat exposure on sodium-fluorescein (Na-F; 0.376kDa), horseradish peroxidase (HRP; 44kDa), and Texas Red-labeled dextran (70kDa) leakage into the brain were assessed in Tat-exposed (Tat+) and control (Tat-) mice. Exposure to HIV-1 Tat significantly increased both Na-F and HRP, but not the larger sized Texas Red-labeled dextran, confirming BBB breakdown and also suggesting the breach was limited to molecules <70kDa. Additionally, at 5 d after Tat induction, Alexa Fluor® 488-labeled dextran was bilaterally infused into the lateral ventricles 5 d before the termination of the experiment. Within the caudate/putamen, Tat induction increased the proportion of dextran-labeled Iba-1+ phagocytic perivascular macrophages (∼5-fold) and microglia (∼3-fold) compared to Tat- mice. These data suggest that HIV-1 Tat exposure is sufficient to destabilize BBB integrity and to increase the presence of activated, phagocytic, perivascular macrophages and microglia in an in vivo model of neuroAIDS.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jason J Paris
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA
| | - M Said Ghandour
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Medical College of Virginia (MCV) Campus, Richmond, VA 23298, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
35
|
Corley MJ, Dye C, D'Antoni ML, Byron MM, Yo KLA, Lum-Jones A, Nakamoto B, Valcour V, SahBandar I, Shikuma CM, Ndhlovu LC, Maunakea AK. Comparative DNA Methylation Profiling Reveals an Immunoepigenetic Signature of HIV-related Cognitive Impairment. Sci Rep 2016; 6:33310. [PMID: 27629381 PMCID: PMC5024304 DOI: 10.1038/srep33310] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/24/2016] [Indexed: 11/20/2022] Open
Abstract
Monocytes/macrophages contribute to the neuropathogenesis of HIV-related cognitive impairment (CI); however, considerable gaps in our understanding of the precise mechanisms driving this relationship remain. Furthermore, whether a distinct biological profile associated with HIV-related CI resides in immune cell populations remains unknown. Here, we profiled DNA methylomes and transcriptomes of monocytes derived from HIV-infected individuals with and without CI using genome-wide DNA methylation and gene expression profiling. We identified 1,032 CI-associated differentially methylated loci in monocytes. These loci related to gene networks linked to the central nervous system (CNS) and interactions with HIV. Most (70.6%) of these loci exhibited higher DNA methylation states in the CI group and were preferentially distributed over gene bodies and intergenic regions of the genome. CI-associated DNA methylation states at 12 CpG sites associated with neuropsychological testing performance scores. CI-associated DNA methylation also associated with gene expression differences including CNS genes CSRNP1 (P = 0.017), DISC1 (P = 0.012), and NR4A2 (P = 0.005); and a gene known to relate to HIV viremia, THBS1 (P = 0.003). This discovery cohort data unveils cell type-specific DNA methylation patterns related to HIV-associated CI and provide an immunoepigenetic DNA methylation “signature” potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against CI.
Collapse
Affiliation(s)
- Michael J Corley
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Christian Dye
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle L D'Antoni
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA
| | - Mary Margaret Byron
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA
| | - Kaahukane Leite-Ah Yo
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| | - Beau Nakamoto
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB, Honolulu, HI 96815, USA
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Ivo SahBandar
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA
| | - Cecilia M Shikuma
- Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB, Honolulu, HI 96815, USA
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB325C, Honolulu, HI 96813, USA.,Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB, Honolulu, HI 96815, USA
| | - Alika K Maunakea
- Department of Native Hawaiian Health, John A. Burns School of Medicine, Suite 1016B, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
36
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
37
|
The meningeal lymphatic system: a route for HIV brain migration? J Neurovirol 2015; 22:275-81. [PMID: 26572785 DOI: 10.1007/s13365-015-0399-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/08/2023]
Abstract
Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.
Collapse
|
38
|
Kim WK, McGary CM, Holder GE, Filipowicz AR, Kim MM, Beydoun HA, Cai Y, Liu X, Sugimoto C, Kuroda MJ. Increased Expression of CD169 on Blood Monocytes and Its Regulation by Virus and CD8 T Cells in Macaque Models of HIV Infection and AIDS. AIDS Res Hum Retroviruses 2015; 31:696-706. [PMID: 25891017 DOI: 10.1089/aid.2015.0003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased expression of CD169 on monocytes has been reported in HIV-1-infected humans. Using rhesus macaque models of HIV infection, we sought to investigate whether simian immunodeficiency virus (SIV) infection upregulates CD169 expression on monocytes/macrophages. We also sought to determine whether CD8 T cells and plasma viral load directly impact the expression of CD169 on monocytes during SIV infection. We longitudinally assessed monocyte expression of CD169 during the course of SIV infection by flow cytometry, and examined the expression of CD169 on macrophages by immunohistochemistry in the spleen and lymph nodes of uninfected and infected macaques. CD169 expression on monocytes was substantially upregulated as early as 4 days during the hyperacute phase and peaked by 5-15 days after infection. After a transient decrease following the peak, its expression continued to increase during progression to AIDS. Monocyte CD169 expression was directly associated with plasma viral loads. To determine the contribution of CD8(+) T lymphocytes and virus to the control of monocyte CD169 expression, we used experimental CD8(+) lymphocyte depletion and antiretroviral therapy (ART) in SIV-infected macaques. Rapid depletion of CD8 T cells during acute infection of rhesus macaques induced an abrupt increase in CD169 expression. Importantly, levels of CD169 expression plummeted following initiation of ART and rebounded upon cessation of therapy. Taken together, our data reveal independent roles for virus and CD8(+) T lymphocytes in controlling monocyte CD169 expression, which may be an important link in further investigating the host response to viral infection.
Collapse
Affiliation(s)
- Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Christopher M. McGary
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Gerard E. Holder
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Adam R. Filipowicz
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Michael M. Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Hind A. Beydoun
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, Virginia
| | - Yanhui Cai
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Xianhong Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana
| | - Chie Sugimoto
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| | - Marcelo J. Kuroda
- Division of Immunology, Tulane National Primate Research Center, Covington, Louisiana
| |
Collapse
|
39
|
Soluble CD163 and monocyte populations in response to antiretroviral therapy and in relationship with neuropsychological testing among HIV-infected children. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30501-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Carvallo L, Lopez L, Che FY, Lim J, Eugenin EA, Williams DW, Nieves E, Calderon TM, Madrid-Aliste C, Fiser A, Weiss L, Angeletti RH, Berman JW. Buprenorphine decreases the CCL2-mediated chemotactic response of monocytes. THE JOURNAL OF IMMUNOLOGY 2015; 194:3246-58. [PMID: 25716997 DOI: 10.4049/jimmunol.1302647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite successful combined antiretroviral therapy, ∼ 60% of HIV-infected people exhibit HIV-associated neurocognitive disorders (HAND). CCL2 is elevated in the CNS of infected people with HAND and mediates monocyte influx into the CNS, which is critical in neuroAIDS. Many HIV-infected opiate abusers have increased neuroinflammation that may augment HAND. Buprenorphine is used to treat opiate addiction. However, there are few studies that examine its impact on HIV neuropathogenesis. We show that buprenorphine reduces the chemotactic phenotype of monocytes. Buprenorphine decreases the formation of membrane projections in response to CCL2. It also decreases CCL2-induced chemotaxis and mediates a delay in reinsertion of the CCL2 receptor, CCR2, into the cell membrane after CCL2-mediated receptor internalization, suggesting a mechanism of action of buprenorphine. Signaling pathways in CCL2-induced migration include increased phosphorylation of p38 MAPK and of the junctional protein JAM-A. We show that buprenorphine decreases these phosphorylations in CCL2-treated monocytes. Using DAMGO, CTAP, and Nor-BNI, we demonstrate that the effect of buprenorphine on CCL2 signaling is opioid receptor mediated. To identify additional potential mechanisms by which buprenorphine inhibits CCL2-induced monocyte migration, we performed proteomic analyses to characterize additional proteins in monocytes whose phosphorylation after CCL2 treatment was inhibited by buprenorphine. Leukosialin and S100A9 were identified and had not been shown previously to be involved in monocyte migration. We propose that buprenorphine limits CCL2-mediated monocyte transmigration into the CNS, thereby reducing neuroinflammation characteristic of HAND. Our findings underscore the use of buprenorphine as a therapeutic for neuroinflammation as well as for addiction.
Collapse
Affiliation(s)
- Loreto Carvallo
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Lillie Lopez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Fa-Yun Che
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jihyeon Lim
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A Eugenin
- Public Health Research Institute, Newark, NJ 07103; Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ 07103
| | - Dionna W Williams
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Edward Nieves
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Carlos Madrid-Aliste
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Louis Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ruth Hogue Angeletti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
41
|
Ragin AB, Wu Y, Gao Y, Keating S, Du H, Sammet C, Kettering CS, Epstein LG. Brain alterations within the first 100 days of HIV infection. Ann Clin Transl Neurol 2014; 2:12-21. [PMID: 25642430 PMCID: PMC4301670 DOI: 10.1002/acn3.136] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
Objective Brain involvement is a serious complication of HIV infection. The earliest changes in the brain, which represents an anatomic site for viral persistence, are largely unknown. Methods This investigation used quantitative Magnetic Resonance methodologies, including high resolution and diffusion tensor (DTI) imaging, to evaluate the brain in 15 HIV and 20 seronegative subjects. All HIV subjects were antibody nonreactive with assay-estimated infection duration of less than 100 days. Results Brain volumetric analysis revealed reduced parenchyma with enlargement of the third ventricle and brainstem. DTI quantified loss of white matter integrity in the corpus callosum and diffusion alterations in caudate. Cognitive differences were indicated in psychomotor speed and visual recall. There were no differences between antiretroviral-initiated and naïve HIV subgroups. Interpretation These findings, quantified within 100 days of infection, shed light on the earliest brain changes in HIV infection. Onset of neural injury may date to initial viral invasion and the transient early period of unchecked viremia and marked immunosuppression of the seroconversion period.
Collapse
Affiliation(s)
- Ann B Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Ying Wu
- Center for Advanced Imaging, NorthShore University Hospital Evanston, Illinois
| | - Yi Gao
- Department of Statistics, Northwestern University Evanston, Illinois
| | - Sheila Keating
- Blood Systems Research Institute San Francisco, California
| | - Hongyan Du
- Clinical & Research Informatics, NorthShore University Hospital Evanston, Illinois
| | - Christina Sammet
- Department of Radiology, Feinberg School of Medicine, Northwestern University Chicago, Illinois ; Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois
| | - Casey S Kettering
- Department of Radiology, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| | - Leon G Epstein
- Department of Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago Chicago, Illinois ; Department of Pediatrics & Neurology, Feinberg School of Medicine, Northwestern University Chicago, Illinois
| |
Collapse
|
42
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
43
|
Abstract
Monocytes and macrophages play critical roles in HIV transmission, viral spread early in infection, and as a reservoir of virus throughout infection. There has been a recent resurgence of interest in the biology of monocyte subsets and macrophages and their role in HIV pathogenesis, partly fuelled by efforts to understand difficulties in achieving HIV eradication. This article examines the importance of monocyte subsets and tissue macrophages in HIV pathogenesis. Additionally, we will review the role of monocytes and macrophages in the development of serious non-AIDS events including cardiovascular disease and neurocognitive impairment, their significance in viral persistence, and how these cells represent an important obstacle to achieving HIV eradication.
Collapse
|
44
|
Nemeth CL, Bekhbat M, Neigh GN. Neural effects of inflammation, cardiovascular disease, and HIV: Parallel, perpendicular, or progressive? Neuroscience 2014; 302:165-73. [PMID: 25239371 DOI: 10.1016/j.neuroscience.2014.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
The pervasive reach of the inflammatory system is evidenced by its involvement in numerous disease states. Cardiovascular disease, marked by high levels of circulating inflammatory mediators, affects an estimated 83.6 million Americans. Similarly, human immunodeficiency virus (HIV) produces a paradoxical state of generalized immune activity despite widespread immunosuppression, and affects 35 million people worldwide. Patients living with HIV (PLWH) suffer from inflammatory conditions, including cardiovascular disease (CVD), at a rate exceeding the general population. In this combined disease state, immune mechanisms that are common to both CVD and HIV may interact to generate a progressive condition that contributes to the exacerbated pathogenesis of the other to the net effect of damage to the brain. In this review, we will outline inflammatory cell mediators that promote cardiovascular risk factors and disease initiation and detail how HIV-related proteins may accelerate this process. Finally, we examine the extent to which these comorbid conditions act as parallel, perpendicular, or progressive sequela of events to generate a neurodegenerative environment, and consider potential strategies that can be implemented to reduce the burden of CVD and inflammation in PLWH.
Collapse
Affiliation(s)
- C L Nemeth
- Department of Physiology, Emory University, 615 Michael Street, Atlanta, GA 30322, United States
| | - M Bekhbat
- Department of Physiology, Emory University, 615 Michael Street, Atlanta, GA 30322, United States
| | - G N Neigh
- Department of Physiology, Emory University, 615 Michael Street, Atlanta, GA 30322, United States; Department of Psychiatry, Emory University, 615 Michael Street, Atlanta, GA 30322, United States.
| |
Collapse
|
45
|
Strickland SL, Rife BD, Lamers SL, Nolan DJ, Veras NMC, Prosperi MCF, Burdo TH, Autissier P, Nowlin B, Goodenow MM, Suchard MA, Williams KC, Salemi M. Spatiotemporal dynamics of simian immunodeficiency virus brain infection in CD8+ lymphocyte-depleted rhesus macaques with neuroAIDS. J Gen Virol 2014; 95:2784-2795. [PMID: 25205684 DOI: 10.1099/vir.0.070318-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite the success of combined antiretroviral therapy in controlling viral replication in human immunodeficiency virus (HIV)-infected individuals, HIV-associated neurocognitive disorders, commonly referred to as neuroAIDS, remain a frequent and poorly understood complication. Infection of CD8(+) lymphocyte-depleted rhesus macaques with the SIVmac251 viral swarm is a well-established rapid disease model of neuroAIDS that has provided critical insight into HIV-1-associated neurocognitive disorder onset and progression. However, no studies so far have characterized in depth the relationship between intra-host viral evolution and pathogenesis in this model. Simian immunodeficiency virus (SIV) env gp120 sequences were obtained from six infected animals. Sequences were sampled longitudinally from several lymphoid and non-lymphoid tissues, including individual lobes within the brain at necropsy, for four macaques; two animals were sacrificed at 21 days post-infection (p.i.) to evaluate early viral seeding of the brain. Bayesian phylodynamic and phylogeographic analyses of the sequence data were used to ascertain viral population dynamics and gene flow between peripheral and brain tissues, respectively. A steady increase in viral effective population size, with a peak occurring at ~50-80 days p.i., was observed across all longitudinally monitored macaques. Phylogeographic analysis indicated continual viral seeding of the brain from several peripheral tissues throughout infection, with the last migration event before terminal illness occurring in all macaques from cells within the bone marrow. The results strongly supported the role of infected bone marrow cells in HIV/SIV neuropathogenesis. In addition, our work demonstrated the applicability of Bayesian phylogeography to intra-host studies in order to assess the interplay between viral evolution and pathogenesis.
Collapse
Affiliation(s)
- Samantha L Strickland
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Brittany D Rife
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | | - David J Nolan
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Nazle M C Veras
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Mattia C F Prosperi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Tricia H Burdo
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | | | - Brian Nowlin
- Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Maureen M Goodenow
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Marc A Suchard
- Departments of Biomathematics, Biostatistics and Human Genetics, University of California (UCLA), Los Angeles, CA, USA
| | | | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
46
|
Do T, Murphy G, Earl LA, Del Prete GQ, Grandinetti G, Li GH, Estes JD, Rao P, Trubey CM, Thomas J, Spector J, Bliss D, Nath A, Lifson JD, Subramaniam S. Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission. J Virol 2014; 88:10327-39. [PMID: 24965444 PMCID: PMC4178837 DOI: 10.1128/jvi.00788-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/12/2014] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED HIV transmission efficiency is greatly increased when viruses are transmitted at virological synapses formed between infected and uninfected cells. We have previously shown that virological synapses formed between HIV-pulsed mature dendritic cells (DCs) and uninfected T cells contain interdigitated membrane surfaces, with T cell filopodia extending toward virions sequestered deep inside invaginations formed on the DC membrane. To explore membrane structural changes relevant to HIV transmission across other types of intercellular conjugates, we used a combination of light and focused ion beam scanning electron microscopy (FIB-SEM) to determine the three-dimensional (3D) architectures of contact regions between HIV-1-infected CD4(+) T cells and either uninfected human CD4(+) T cells or human fetal astrocytes. We present evidence that in each case, membrane extensions that originate from the uninfected cells, either as membrane sheets or filopodial bridges, are present and may be involved in HIV transmission from infected to uninfected cells. We show that individual virions are distributed along the length of astrocyte filopodia, suggesting that virus transfer to the astrocytes is mediated, at least in part, by processes originating from the astrocyte itself. Mechanisms that selectively disrupt the polarization and formation of such membrane extensions could thus represent a possible target for reducing viral spread. IMPORTANCE Our findings lead to new insights into unique aspects of HIV transmission in the brain and at T cell-T cell synapses, which are thought to be a predominant mode of rapid HIV transmission early in the infection process.
Collapse
Affiliation(s)
- Thao Do
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gavin Murphy
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lesley A Earl
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Giovanna Grandinetti
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guan-Han Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - James Thomas
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Jeffrey Spector
- National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Donald Bliss
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Coelho C, Bocca AL, Casadevall A. The tools for virulence of Cryptococcus neoformans. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:1-41. [PMID: 24581388 DOI: 10.1016/b978-0-12-800261-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes almost half a million deaths each year. It is believed that most humans are infected with C. neoformans, possibly in a form that survives through latency in the lung and can reactivate to cause disease if the host becomes immunosuppressed. C. neoformans has a remarkably sophisticated intracellular survival capacities yet it is a free-living fungus with no requirement for mammalian virulence whatsoever. In this review, we discuss the tools that C. neoformans possesses to achieve survival, latency and virulence within its host. Some of these tools are mechanisms to withstand starvation and others aim to protect against microbicidal molecules produced by the immune system. Furthermore, we discuss how these tools were acquired through evolutionary pressures and perhaps accidental stochastic events, all of which combined to produce an organism with an unusual and unique intracellular pathogenic strategy.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, New York, USA; Centre for Neuroscience and Cell Biology of Coimbra, Institute of Microbiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Anamelia Lorenzetti Bocca
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, New York, USA.
| |
Collapse
|
48
|
Adhikari R, Thapa S. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 807:75-96. [PMID: 24619619 PMCID: PMC7121612 DOI: 10.1007/978-81-322-1777-0_6] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.
Collapse
Affiliation(s)
| | - Santosh Thapa
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
49
|
Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine 2014; 9:795-811. [PMID: 24550672 PMCID: PMC3926460 DOI: 10.2147/ijn.s52236] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The protective properties of the blood–brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain’s vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual’s age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.
Collapse
Affiliation(s)
- Renad Alyautdin
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor, Malaysia
| | - Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia (NDUM), Kuala Lumpur, Malaysia
| | - Mohd Ismail Nafeeza
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh, Selangor, Malaysia
| | | | - Dmitry Kuznetsov
- Department of Medicinal Nanobiotechnologies, N. I. Pirogoff Russian State Medical University, Moscow, Russia
| |
Collapse
|
50
|
Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:219-38. [PMID: 24050625 DOI: 10.1146/annurev-pathol-012513-104653] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461;
| | | | | |
Collapse
|