1
|
Girik V, van Ek L, Dentand Quadri I, Azam M, Cruz Cobo M, Mandavit M, Riezman I, Riezman H, Gavin AC, Nunes-Hasler P. Development of Genetically Encoded Fluorescent KSR1-Based Probes to Track Ceramides during Phagocytosis. Int J Mol Sci 2024; 25:2996. [PMID: 38474242 DOI: 10.3390/ijms25052996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.
Collapse
Affiliation(s)
- Vladimir Girik
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Larissa van Ek
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Dentand Quadri
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Maral Azam
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - María Cruz Cobo
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Marion Mandavit
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Anne-Claude Gavin
- Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Department of Biochemistry, NCCR Chemical Biology, Faculty of Science, University of Geneva, 1211 Geneva, Switzerland
| | - Paula Nunes-Hasler
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
2
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
3
|
Temming AR, Tammes Buirs M, Bentlage AEH, Treffers LW, Feringa H, de Taeye SW, Kuijpers TW, Nagelkerke SQ, Brasser G, Mok JY, van Esch WJE, van den Berg TK, Rispens T, van der Schoot CE, Vidarsson G. C-Reactive Protein Enhances IgG-Mediated Cellular Destruction Through IgG-Fc Receptors in vitro. Front Immunol 2021; 12:594773. [PMID: 33790888 PMCID: PMC8006934 DOI: 10.3389/fimmu.2021.594773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody-mediated blood disorders ensue after auto- or alloimmunization against blood cell antigens, resulting in cytopenia. Although the mechanisms of cell destruction are the same as in immunotherapies targeting tumor cells, many factors are still unknown. Antibody titers, for example, often do not strictly correlate with clinical outcome. Previously, we found C-reactive protein (CRP) levels to be elevated in thrombocytopenic patients, correlating with thrombocyte counts, and bleeding severity. Functionally, CRP amplified antibody-mediated phagocytosis of thrombocytes by phagocytes. To investigate whether CRP is a general enhancer of IgG-mediated target cell destruction, we extensively studied the effect of CRP on in vitro IgG-Fc receptor (FcγR)-mediated cell destruction: through respiratory burst, phagocytosis, and cellular cytotoxicity by a variety of effector cells. We now demonstrate that CRP also enhances IgG-mediated effector functions toward opsonized erythrocytes, in particular by activated neutrophils. We performed a first-of-a-kind profiling of CRP binding to all human FcγRs and IgA-Fc receptor I (FcαRI) using a surface plasmon resonance array. CRP bound these receptors with relative affinities of FcγRIa = FcγRIIa/b = FcγRIIIa > FcγRIIIb = FcαRI. Furthermore, FcγR blocking (in particular FcγRIa) abrogated CRP's ability to amplify IgG-mediated neutrophil effector functions toward opsonized erythrocytes. Finally, we observed that CRP also amplified killing of breast-cancer tumor cell line SKBR3 by neutrophils through anti-Her2 (trastuzumab). Altogether, we provide for the first time evidence for the involvement of specific CRP-FcγR interactions in the exacerbation of in vitro IgG-mediated cellular destruction; a trait that should be further evaluated as potential therapeutic target e.g., for tumor eradication.
Collapse
Affiliation(s)
- A. Robin Temming
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias Tammes Buirs
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E. H. Bentlage
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Louise W. Treffers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hannah Feringa
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W. de Taeye
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W. Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Sietse Q. Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam University Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Giso Brasser
- Sanquin Reagents, Sanquin, Amsterdam, Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, Sanquin, Amsterdam, Netherlands
| | | | - Timo K. van den Berg
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - C. Ellen van der Schoot
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Recent advances of electrochemical and optical biosensors for detection of C-reactive protein as a major inflammatory biomarker. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105287] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Pilling D, Gomer RH. The Development of Serum Amyloid P as a Possible Therapeutic. Front Immunol 2018; 9:2328. [PMID: 30459752 PMCID: PMC6232687 DOI: 10.3389/fimmu.2018.02328] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023] Open
Abstract
Pentraxins such as serum amyloid P (SAP; also known as PTX2) regulate several aspects of the innate immune system. SAP inhibits the differentiation of monocyte-derived fibroblast-like cells called fibrocytes, promotes the formation of immuno-regulatory macrophages, and inhibits neutrophil adhesion to extracellular matrix proteins. In this minireview, we describe how these effects of SAP have led to its possible use as a therapeutic, and how modulating SAP effects might be used for other therapeutics. Fibrosing diseases such as pulmonary fibrosis, cardiac fibrosis, liver fibrosis, and renal fibrosis are associated with 30-45% of deaths in the US. Fibrosis involves both fibrocyte differentiation and profibrotic macrophage differentiation, and possibly because SAP inhibits both of these processes, in 9 different animal models, SAP inhibited fibrosis. In Phase 1B and Phase 2 clinical trials, SAP injections reduced the decline in lung function in pulmonary fibrosis patients, and in a small Phase 2 trial SAP injections reduced fibrosis in myelofibrosis patients. Acute respiratory distress syndrome/ acute lung injury (ARDS/ALI) involves the accumulation of neutrophils in the lungs, and possibly because SAP inhibits neutrophil adhesion, SAP injections reduced the severity of ARDS in an animal model. Conversely, depleting SAP is a potential therapeutic for amyloidosis, topically removing SAP from wound fluid speeds wound healing in animal models, and blocking SAP binding to one of its receptors makes cultured macrophages more aggressive toward tuberculosis bacteria. These results suggest that modulating pentraxin signaling might be useful for a variety of diseases.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review. SENSORS 2017; 17:s17122952. [PMID: 29257113 PMCID: PMC5750823 DOI: 10.3390/s17122952] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring.
Collapse
|
7
|
Olevianingrum M, Yulistiani Y, Saharso D, Zairina N. C-REACTIVE PROTEIN (CRP) AS A SUPPORTING MARKER OF ANTIBIOTIC EFFECTIVENESS ON CENTRAL NERVOUS SYSTEM (CNS) INFECTIONS. FOLIA MEDICA INDONESIANA 2016. [DOI: 10.20473/fmi.v51i3.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infection of the central nervous system in pediatric patients have a high mortality as well as acute and chronic neurological sequelae. Signs of the disease are unclear, so cerebrospinal fluid (CSF) test is used as a gold standard for diagnosis, but the investigation has faced many obtacles. Empiric antibiotic therapy is the key factor in reducing morbidity and mortality. Microbiological culture result is obtained within 5-7 days. The effectiveness of empirical antibiotic use is questionable. Therefore, other investigations are conducted to determine the effectiveness of antibiotics by using one marker, the CRP. This study was to analyze CRP level in supporting antibiotic therapy effectiveness in pediatric patients with central nervous system (CNS) infections. A prospective cohort study was conducted to determine the relationship of CRP with other parameters, including clinical, microbiological and laboratory, in pediatric patients with central nervous system infections. Patients meeting blood samples criteria were taken before (H0), the third day (H3) and the fifth day (H5) after antibiotics administration. This study involved 10 patients with central nervous system infections (meningoencephalitis, encephalitis and encephalitis with cerebral edema). Six patients were male, with ages less than a year. Antibiotic treatment effectiveness was associated with improved condition of the patients' CRP level. It was 3.558 ±3.196 before (H0), 3.878±2.813 on the third day (H3) and 3.891±2.204 on the fifth day (H5) after antibiotic administration. Leukocyte levels were 13.680±1.660 before (H0), 17.832±7.213 on the third day (H5), and 10.546±3.671 on the fifth day (H5) after antibiotic administration. Pearson's correlation test analysis performed on CRP and WBC parameters showed H0 p=0.981, CRP and WBC H3 p=0.621, while CRP and WBC H5 obtained significance p=0.644. There was no significant correlation observed between CRP and WBC parameters before and after antibiotic administration. In conclusion, there was no correlation of CRP levels with clinical, laboratory and micobiological parameters in patients with central nervous system infections.
Collapse
|
8
|
Sato A, Nakashima H, Kinoshita M, Nakashima M, Ogawa Y, Shono S, Ikarashi M, Seki S. The effect of synthetic C-reactive protein on the in vitro immune response of human PBMCs stimulated with bacterial reagents. Inflammation 2014; 36:781-92. [PMID: 23407995 PMCID: PMC3708291 DOI: 10.1007/s10753-013-9604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthetic C-reactive protein (CRP) rescues mice from lethal endotoxin shock or bacterial infection by suppressing tumor necrosis factor (TNF-α), but in turn, enhances Kupffer cell phagocytic activity. We herein assessed the influence of CRP in human peripheral blood mononuclear cells (PBMCs). When human PBMCs were stimulated in vitro with penicillin-treated Streptococcus pyogenes, bacterial DNA motifs and lipopolysaccharide with or without synthetic CRP, CRP suppressed the production of TNF-α and IL-12, but not that of IFN-γ. This was also the case for the in vitro Shwartzman reaction induced in PBMCs. CRP also decreased high-mobility group box 1 production from macrophages, which is crucial in the later phase of endotoxin/septic shock. However, CRP upregulated the perforin expression by CD56+ NK cells and increased their antitumor cytotoxicity. CRP may thus be a potent immunomodulatory factor in the human immune system, suggesting its therapeutic potential for use against human septic shock.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Immunology and microbiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Du Clos TW. Pentraxins: structure, function, and role in inflammation. ISRN INFLAMMATION 2013; 2013:379040. [PMID: 24167754 PMCID: PMC3791837 DOI: 10.1155/2013/379040] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022]
Abstract
The pentraxins are an ancient family of proteins with a unique architecture found as far back in evolution as the Horseshoe crab. In humans the two members of this family are C-reactive protein and serum amyloid P. Pentraxins are defined by their sequence homology, their pentameric structure and their calcium-dependent binding to their ligands. Pentraxins function as soluble pattern recognition molecules and one of the earliest and most important roles for these proteins is host defense primarily against pathogenic bacteria. They function as opsonins for pathogens through activation of the complement pathway and through binding to Fc gamma receptors. Pentraxins also recognize membrane phospholipids and nuclear components exposed on or released by damaged cells. CRP has a specific interaction with small nuclear ribonucleoproteins whereas SAP is a major recognition molecule for DNA, two nuclear autoantigens. Studies in autoimmune and inflammatory disease models suggest that pentraxins interact with macrophage Fc receptors to regulate the inflammatory response. Because CRP is a strong acute phase reactant it is widely used as a marker of inflammation and infection.
Collapse
Affiliation(s)
- Terry W. Du Clos
- The Department of Veterans Affairs Medical Center, Research Service 151, 1501 San Pedro SE, Albuquerque, NM 87108, USA
- Department of Internal Medicine, The University of New Mexico School of Medicine, Albuquerque, NM 87108, USA
| |
Collapse
|
10
|
Role of polymorphisms of toll-like receptor (TLR) 4, TLR9, toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A genes in malaria susceptibility and severity in Burundian children. Malar J 2012; 11:196. [PMID: 22691414 PMCID: PMC3411399 DOI: 10.1186/1475-2875-11-196] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/12/2012] [Indexed: 01/17/2023] Open
Abstract
Background Malaria caused by Plasmodium falciparum is one of the leading causes of human morbidity and mortality from infectious diseases, predominantly in tropical and sub-tropical countries. As genetic variations in the toll-like receptors (TLRs)-signalling pathway have been associated with either susceptibility or resistance to several infectious and inflammatory diseases, the supposition is that single nucleotide polymorphisms (SNPs) of TLR2, TLR4, TLR9, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A could modulate malaria susceptibility and severity. Methods This study was planned to make a further contribution to solving the problem of the real role of the most common polymorphisms of TLR4, TLR9, TIRAP and FCGR2A genes in modulating the risk of malaria and disease severity in children from Burundi, Central Africa. All the paediatric patients aged six months to 10 years admitted to the hospital of Kiremba, Burundi, between February 2011 and September 2011, for fever and suspicion of acute malaria were screened for malaria parasitaemia by light microscopy of thick and thin blood smears. In children with malaria and in uninfected controls enrolled during the study period in the same hospital, blood samples were obtained on filter paper and TLR4 Asp299Gly rs4986790, TLR9 G1174A rs352139, T-1486 C rs187084 TLR9 T-1237 C rs5743836, TIRAP Ser180Leu rs8177374 and the FCGR2A His131Arg rs1801274 polymorphisms were studied using an ABI PRISM 7900 HT Fast Real-time instrument. Results A total of 602 patients and 337 controls were enrolled. Among the malaria cases, 553 (91.9 %) were considered as suffering from uncomplicated and 49 (8.1 %) from severe malaria. TLR9 T1237C rs5743836CC was associated with an increased risk of developing malaria (p = 0.03), although it was found with the same frequency in uncomplicated and severe malaria cases. No other differences were found in all alleles studied and in genotype frequencies between malaria cases and uninfected controls as well as between uncomplicated and severe malaria cases. Conclusions TLR9 T1237C seems to condition susceptibility to malaria in Burundian children but not its severity, whereas none of the assessed SNPs of TLR4, TIRAP and FCGR2A seem to influence susceptibility to malaria and disease severity in this population.
Collapse
|
11
|
Bisoendial RJ, Boekholdt SM, Vergeer M, Stroes ESG, Kastelein JJP. C-reactive protein is a mediator of cardiovascular disease. Eur Heart J 2010; 31:2087-91. [DOI: 10.1093/eurheartj/ehq238] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
12
|
Nogami Y, Kinoshita M, Takase B, Inatsu A, Ishihara M, Seki S, Maehara T. Cardiac dysfunction induced by experimental myocardial infarction impairs the host defense response to bacterial infection in mice because of reduced phagocytosis of Kupffer cells. J Thorac Cardiovasc Surg 2010; 140:624-32, 632.e1-3. [PMID: 20138636 DOI: 10.1016/j.jtcvs.2009.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 10/05/2009] [Accepted: 11/02/2009] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study was undertaken to investigate the effects of cardiac dysfunction induced by experimental myocardial infarction on the host defense response to bacterial infection and the role of Kupffer cells in mediating this response. METHODS Myocardial infarction was induced in C57BL/6 mice by ligation of the left anterior descending coronary artery. Mice were challenged with Escherichia coli intravenously 1, 5, and 14 days after myocardial infarction or sham operation. Thereafter, the cytokine production and the function of their Kupffer cells were assessed. RESULTS Mice with myocardial infarction showed remarkable cardiac dysfunction and had a significantly lower survival than sham mice after bacterial challenge at 5 days after surgery; bacterial challenge at 1 or 14 days after surgery resulted in no difference in survival between myocardial infarction and sham mice. The phagocytic activity of Kupffer cells, assessed by fluorescein isothiocyanate microspheres, remarkably decreased in mice with myocardial infarction 5 days after surgery. Serum peaks of tumor necrosis factor and interferon-gamma after bacterial challenge were also suppressed in mice with myocardial infarction at 5 days. Production of these cytokines and immunoglobulin-M from liver mononuclear cells was also impaired in mice with myocardial infarction. Enhancement of the phagocytic activity of Kupffer cells by C-reactive protein significantly improved survival after infection in mice with myocardial infarction, although neither interleukin-18 nor immunoglobulin-M treatment improved survival. CONCLUSIONS Cardiac dysfunction induced by myocardial infarction renders mice susceptible to bacterial infection and increases mortality because of a reduced ability of Kupffer cells to clear infectious bacteria. C-reactive protein-enhanced phagocytic activity of Kupffer cells may improve the poor prognosis after bacterial infection in mice with myocardial infarction.
Collapse
Affiliation(s)
- Yashiro Nogami
- Department of Surgery, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Inatsu A, Kinoshita M, Nakashima H, Shimizu J, Saitoh D, Tamai S, Seki S. Novel mechanism of C-reactive protein for enhancing mouse liver innate immunity. Hepatology 2009; 49:2044-54. [PMID: 19444871 DOI: 10.1002/hep.22888] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Although C-reactive protein (CRP) is a representative acute-phase protein produced by hepatocytes, the role of CRP in liver innate immunity remains unclear. Using C57BL/6 mice, the present study investigated how CRP affects the functions of liver macrophages, Kupffer cells, and natural killer / natural killer T (NK/NKT) cells under various conditions, including Escherichia coli infection, septic shock, and multiorgan dysfunction induced by interleukin (IL)-12/lipopolysaccharide (LPS) (generalized Shwartzman reaction [GSR]), and LPS-induced lethal hepatitis in Propionibacterium acnes-primed mice. When mice were challenged with a lethal dose of E. coli, synthetic CRP peptide decreased the mortality without decreasing serum tumor necrosis factor (TNF), presumably by enhancing the phagocytic activity of Kupffer cells. Synthetic CRP greatly decreased the production of TNF and reactive oxygen species from Kupffer cells and thereby rescued mice after lethal LPS challenge. CRP also decreased the mortality from GSR and lethal hepatitis by inhibiting TNF production from Kupffer cells, especially phagocytosing Kupffer cells. However, interferon-gamma production from NK/NKT cells was generally not so affected. CRP reportedly binds to FcgammaRI and FcgammaRII, and the injection of anti-FcgammaRII/III Ab into mice abrogated TNF production from, but increased the phagocytic activity of, Kupffer cells. Furthermore, CRP pretreatment restored the decreased phagocytic activity of Kupffer cells in burn-injured mice and decreased TNF production by Kupffer cells and thereby inhibited mortality after sublethal E. coli infection. If CRP was injected into mice at 1 hour after lethal E. coli challenge, it slightly but significantly increased the survival rate. CONCLUSION CRP thus enhances the phagocytosis of Kupffer cells but decreases their TNF production in a complex manner in which the pathway by way of FcgammaRII may be involved.
Collapse
Affiliation(s)
- Akihito Inatsu
- Department of Laboratory Medicine, National Defense Medical College Hospital, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Tron K, Manolov DE, Röcker C, Kächele M, Torzewski J, Nienhaus GU. C-reactive protein specifically binds to Fcgamma receptor type I on a macrophage-like cell line. Eur J Immunol 2008; 38:1414-22. [PMID: 18412163 DOI: 10.1002/eji.200738002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C-reactive protein (CRP) is a prototype acute-phase protein that may be intimately involved in human disease. Its cellular receptors are still under debate; the main candidates are FcR for immunoglobulin G, as CRP was shown to bind specifically to FcgammaRI and FcgammaRIIa. Using ultrasensitive confocal live-cell imaging, we have studied CRP binding to FcgammaR naturally expressed in the plasma membranes of cells from a human leukemia cell line (Mono Mac 6). These macrophage-like cells express high levels of FcgammaRI and FcgammaRII. They were shown to bind fluorescently labeled CRP with micromolar affinity, KD = (6.6 +/- 1.5) microM. CRP binding could be inhibited by pre-incubation with human but not mouse IgG and was thus FcgammaR-specific. Blocking of FcgammaRI by an FcgammaRI-specific antibody abolished CRP binding essentially completely, whereas application of antibodies against FcgammaRII did not have a noticeable effect. In fluorescence images of Mono Mac 6 cells, the intensity patterns of bound CRP were correlated with those of FcgammaRI, but not FcgammaRII. These results provide clear evidence of specific interactions between CRP and FcgammaR (predominantly FcgammaRI) naturally expressed on macrophage-like cells.
Collapse
Affiliation(s)
- Kyrylo Tron
- Institute of Biophysics, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Ho KJ, Owens CD, Longo T, Sui XX, Ifantides C, Conte MS. C-reactive protein and vein graft disease: evidence for a direct effect on smooth muscle cell phenotype via modulation of PDGF receptor-beta. Am J Physiol Heart Circ Physiol 2008; 295:H1132-H1140. [PMID: 18621860 DOI: 10.1152/ajpheart.00079.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasma C-reactive protein (CRP) concentration is a biomarker of systemic atherosclerosis and may also be associated with vein graft disease. It remains unclear whether CRP is also an important modulator of biological events in the vessel wall. We hypothesized that CRP influences vein graft healing by stimulating smooth muscle cells (SMCs) to undergo a phenotypic switch. Distribution of CRP was examined by immunohistochemistry in prebypass human saphenous veins (HSVs, n = 21) and failing vein grafts (n = 18, 25-4,400 days postoperatively). Quiescent HSV SMCs were stimulated with human CRP (5-50 microg/ml). SMC migration was assessed in modified Boyden chambers with platelet-derived growth factor (PDGF)-BB (5-10 ng/ml) as the chemoattractant. SMC viability and proliferation were assessed by trypan blue exclusion and reduction of Alamar Blue substrate, respectively. Expression of PDGF ligand and receptor (PDGFR) genes was examined at RNA and protein levels after 24-72 h of CRP exposure. CRP staining was present in 13 of 18 diseased vein grafts, where it localized to the deep media and adventitia, but it was minimally detectable in most prebypass veins. SMCs pretreated with CRP demonstrated a dose-dependent increase in migration to PDGF-BB (P = 0.02), which was inhibited by a PDGF-neutralizing antibody. SMCs treated with CRP showed a dose-dependent increase in PDGFRbeta expression and phosphorylation after 24-48 h. Exogenous CRP had no effect on SMC viability or proliferation. These data suggest that CRP is detectable within the wall of most diseased vein grafts, where it may exert local effects. Clinically relevant levels of CRP can stimulate SMC migration by a mechanism that may involve upregulation and activation of PDGFRbeta.
Collapse
Affiliation(s)
- Karen J Ho
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
16
|
Nasr A, Elghazali G, Giha H, Troye-Blomberg M, Berzins K. Interethnic differences in carriage of haemoglobin AS and Fcgamma receptor IIa (CD32) genotypes in children living in eastern Sudan. Acta Trop 2008; 105:191-195. [PMID: 18022136 DOI: 10.1016/j.actatropica.2007.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/22/2022]
Abstract
Fulani and Masaleit, two sympatric ethnic groups in eastern Sudan, are characterized by marked differences in susceptibility to Plasmodium falciparum malaria. It has been suggested that sickle cell trait carriage may protect from the most severe forms of malaria. Previously, we have shown that FcgammaRIIa polymorphism is associated with the outcome of malaria disease. The present study aimed at determining whether the two tribes differ in the frequency of FcgammaRIIa and Hb AS genotypes. For this, genotyping of FcgammaRIIa and Hb AS in 70 Fulani and 70 Masaleit age- and sex-matched subjects was conducted. The frequency of FcgammaRIIa H/H131 genotype was higher in the Fulani as compared to the Masaleit group (40.0% versus 14.3%; adjusted odd ratio [OR]=3.05, 95% confidence interval [CI]=1.19-7.82 and P=0.02), while the R/R131 genotype was significantly higher in the Masaleit group (14.3% for Fulani versus 45.0% for Masaleit; adjusted OR=0.26, 95% CI=0.11-0.64 and P<0.01). With regard to FcgammaRIIa allele frequencies, there were significant differences between the Fulani and Masaleit ethnic groups. Thus, the H131 allele was more frequent than the R131 among Fulani children (0.63 versus 0.37, OR=3.23, 95% CI=1.93-5.45 and P<0.001). The frequency of the Hb AS genotype was lower in the Fulani compared to the Masaleit group (15.7% versus 30.0%, respectively, adjusted OR=0.02, CI=0.01-0.18 and P<0.01). These data suggest that FcgammaRIIa and Hb AS polymorphisms may contribute to the clinical outcome of malaria. We conclude that the H/H131 genotype and H131 allele rather than Hb AS genotype (sickle cell trait patients) appear to associate with the Fulani ethnic group.
Collapse
Affiliation(s)
- Amre Nasr
- Department of Immunology, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 16, SE-10 691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
17
|
The acute-phase reactant C-reactive protein binds to phosphorylcholine-expressing Neisseria meningitidis and increases uptake by human phagocytes. Infect Immun 2008; 76:1298-304. [PMID: 18195032 DOI: 10.1128/iai.00741-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is a global cause of meningitis and septicemia. Immunity to N. meningitidis involves both innate and specific mechanisms with killing by serum bactericidal activity and phagocytic cells. C-reactive protein (CRP) is an acute-phase serum protein that has been shown to help protect the host from several bacterial pathogens, which it recognizes by binding to phosphorylcholine (PC) on their surfaces. Pathogenic Neisseria species can exhibit phase-variable PC modification on type 1 and 2 pili. We have shown that CRP can bind to piliated meningococci in a classical calcium-dependent manner. The binding of CRP to the meningococcus was concentration dependent, of low affinity, and specific for PC. CRP appears to act as an opsonin for N. meningitidis, as CRP-opsonized bacteria showed increased uptake by human macrophages and neutrophils. Further investigation into the downstream effects of CRP-bound N. meningitidis may lead us to a better understanding of meningococcal infection and help direct more effective therapeutic interventions.
Collapse
|
18
|
Bisoendial RJ, Kastelein JJP, Stroes ESG. C-reactive protein and atherogenesis: from fatty streak to clinical event. Atherosclerosis 2007; 195:e10-8. [PMID: 17669411 DOI: 10.1016/j.atherosclerosis.2007.04.053] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/03/2007] [Accepted: 04/30/2007] [Indexed: 01/19/2023]
Abstract
In recent years, it has become increasingly clear that arterial inflammation represents a key feature determining the course of atherogenesis. The consecutive stages in the evolution of atherosclerotic lesions are respectively, plaque buildup and growth, and destabilization, predisposing to plaque rupture and intravascular thrombosis. This chain of events leading from lesion formation to clinical events has been carefully elucidated during the last three decades. C-reactive protein (CRP) has been directly implicated in the pathogenesis of atherosclerosis. In the present review, we will focus on a potentially causal role of CRP during the various stages of atherogenesis.
Collapse
Affiliation(s)
- Radjesh J Bisoendial
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
19
|
Forthal DN, Gilbert PB, Landucci G, Phan T. Recombinant gp120 vaccine-induced antibodies inhibit clinical strains of HIV-1 in the presence of Fc receptor-bearing effector cells and correlate inversely with HIV infection rate. THE JOURNAL OF IMMUNOLOGY 2007; 178:6596-603. [PMID: 17475891 DOI: 10.4049/jimmunol.178.10.6596] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nonneutralizing Abs may play a role in protecting animals and humans from lentiviral infections. We explored the Ab-dependent, cell-mediated virus inhibition (ADCVI) Ab response to recombinant gp120 (rgp120) vaccination in sera from 530 participants in the Vax 004 trial. Serum ADCVI activity was measured against a clinical R5 strain of HIV-1 using peripheral blood mononuclear effector cells from healthy donors. The level of vaccine-induced ADCVI activity correlated inversely with the rate of acquiring HIV infection following vaccination, such that for every 10% increase in ADCVI activity, there was a 6.3% decrease in the hazard rate of infection (p=0.019). Some vaccinated individuals also mounted an ADCVI response against two other clinical R5 strains of HIV-1. However, ADCVI activity correlated poorly with neutralizing or CD4-gp120-blocking Ab activity measured against laboratory strains. Finally, the degree to which the ADCVI Ab response predicted the rate of infection was influenced by polymorphisms at the FcgammaRIIa and FcgammaRIIIa gene loci. These data indicate that rgp120 vaccination can elicit Abs with antiviral activity against clinical strains of HIV-1. However, such activity requires the presence of FcR-bearing effector cells. Our results provide further evidence that ADCVI may play a role in preventing HIV infection.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Antibodies, Blocking/biosynthesis
- Antibodies, Blocking/metabolism
- Antibodies, Blocking/physiology
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antigens, CD/genetics
- HIV Antibodies/biosynthesis
- HIV Antibodies/metabolism
- HIV Antibodies/physiology
- HIV Envelope Protein gp120/administration & dosage
- HIV Envelope Protein gp120/immunology
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/growth & development
- HIV-1/immunology
- Humans
- Immunity, Cellular/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/virology
- Male
- Neutralization Tests
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Receptors, IgG/genetics
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
20
|
Sjöwall C, Wetterö J. Pathogenic implications for autoantibodies against C-reactive protein and other acute phase proteins. Clin Chim Acta 2007; 378:13-23. [PMID: 17239838 DOI: 10.1016/j.cca.2006.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 11/29/2006] [Accepted: 12/05/2006] [Indexed: 12/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic rheumatic disease characterized clinically by multiorgan involvement and serologically by the occurrence of antinuclear antibodies. SLE patients may present with multiple autoantibodies to cytoplasmic and cell surface antigens as well as to circulating plasma proteins. Another feature of SLE is that serum levels of C-reactive protein (CRP) often remain low despite high disease activity and despite high levels of other acute phase proteins and interleukin-6, i.e. the main CRP inducing cytokine. Apart from its important role as a laboratory marker of inflammation, CRP attracts increasing interest due to its many intriguing biological functions, one of which is a role as an opsonin contributing to the elimination of apoptotic cell debris, e.g. nucleosomes, thereby preventing immunization against autoantigens. Recently, autoantibodies against CRP and other acute phase proteins have been reported in certain rheumatic conditions, including SLE. Although the presence of anti-CRP autoantibodies does not explain the failed CRP response in SLE, antibodies directed against acute phase proteins have several implications of pathogenetic interest. This paper thus highlights the biological and clinical aspects of native and monomeric CRP and anti-CRP, as well as autoantibodies against mannose-binding lectin, serum amyloid A and serum amyloid P component.
Collapse
Affiliation(s)
- Christopher Sjöwall
- Division of Rheumatology/Autoimmunity and Immune Regulation Unit (AIR), Department of Molecular and Clinical Medicine, Linköping University, SE-581 85 Linköping, Sweden.
| | | |
Collapse
|
21
|
Röcker C, Manolov DE, Kuzmenkina EV, Tron K, Slatosch H, Torzewski J, Nienhaus GU. Affinity of C-reactive protein toward FcgammaRI is strongly enhanced by the gamma-chain. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:755-63. [PMID: 17255341 PMCID: PMC1851879 DOI: 10.2353/ajpath.2007.060734] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2006] [Indexed: 12/30/2022]
Abstract
C-reactive protein (CRP), the prototype human acute phase protein, is widely regarded as a key player in cardiovascular disease, but the identity of its cellular receptor is still under debate. By using ultrasensitive confocal imaging analysis, we have studied CRP binding to transfected COS-7 cells expressing the high-affinity IgG receptor FcgammaRI. Here we show that CRP binds to FcgammaRI on intact cells, with a kd of 10+/-3 micromol/L. Transfection of COS-7 cells with a plasmid coding for both FcgammaRI and its functional counterpart, the gamma-chain, markedly increases CRP affinity to FcgammaRI, resulting in a kd of 0.35+/-0.10 micromol/L. The affinity increase results from an approximately 30-fold enhanced association rate coefficient. The pronounced enhancement of affinity by the gamma-chain suggests its crucial involvement in the CRP receptor interaction, possibly by mediating interactions between the transmembrane moieties of the receptors. Dissociation of CRP from the cell surfaces cannot be detected throughout the time course of several hours and is thus extremely slow. Considering the pentameric structure of CRP, this result indicates that multivalent binding and receptor clustering are crucially involved in the interaction of CRP with nucleated cells.
Collapse
Affiliation(s)
- Carlheinz Röcker
- University of Ulm, Department of Biophysics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Mold C, Du Clos TW. C-Reactive Protein Increases Cytokine Responses toStreptococcus pneumoniaethrough Interactions with Fcγ Receptors. THE JOURNAL OF IMMUNOLOGY 2006; 176:7598-604. [PMID: 16751406 DOI: 10.4049/jimmunol.176.12.7598] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pneumoniae is the most common organism responsible for community acquired pneumonia and meningitis. In pneumococcal pneumonia, a strong local inflammatory cytokine response reduces the frequency of bacteremia and increases survival. The initiation of this cytokine response by innate recognition of bacterial cell wall components through TLR has been described, but the role of soluble innate mediators has received limited attention. C-reactive protein (CRP) is an acute phase protein that binds phosphocholine residues on S. pneumoniae cell walls. CRP interacts with phagocytic cells through FcgammaRI and FcgammaRII and activates the classical complement pathway. CRP is protective in mouse pneumococcal bacteremia by increasing complement-dependent clearance and killing of bacteria. We studied the cytokine response of PBMC stimulated with CRP-opsonized S. pneumoniae to determine the effect of CRP interaction with FcgammaR. CRP dramatically increased the production of TNF-alpha and IL-1beta in response to S. pneumoniae. These increases were blocked by phosphocholine, which inhibits CRP binding to S. pneumoniae, by inhibitors of FcgammaR signaling, and by mAb to FcgammaRI and FcgammaRII. A mutated rCRP with decreased FcgammaR binding had a decreased ability to stimulate TNF-alpha release, compared with wild-type CRP. Individuals who were homozygous for the R-131 allele of FcgammaRIIA, which has a higher affinity for CRP, showed higher responses to CRP-opsonized bacteria than did individuals homozygous for the H-131 allele, further implicating this receptor. The results indicate that CRP recognition of S. pneumoniae and binding to FcgammaR may enhance the early protective cytokine response to infection.
Collapse
MESH Headings
- Alleles
- Androstadienes/pharmacology
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/pharmacology
- C-Reactive Protein/genetics
- C-Reactive Protein/metabolism
- C-Reactive Protein/physiology
- Cells, Cultured
- Cytokines/biosynthesis
- Humans
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/biosynthesis
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/microbiology
- Ligands
- Mutagenesis, Site-Directed
- Opsonin Proteins/metabolism
- Polymorphism, Genetic
- Protein Binding
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Stilbenes/pharmacology
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/metabolism
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation/immunology
- Wortmannin
Collapse
Affiliation(s)
- Carolyn Mold
- Veterans Affairs Medical Center, Albuquerque, NM 87108, USA.
| | | |
Collapse
|
23
|
Pilling D, Tucker NM, Gomer RH. Aggregated IgG inhibits the differentiation of human fibrocytes. J Leukoc Biol 2006; 79:1242-51. [PMID: 16543402 PMCID: PMC4482138 DOI: 10.1189/jlb.0805456] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fibrocytes are fibroblast-like cells, which appear to participate in wound healing and are present in pathological lesions associated with asthma, pulmonary fibrosis, and scleroderma. Fibrocytes differentiate from CD14+ peripheral blood monocytes, and the presence of serum delays this process dramatically. We previously purified the factor in serum, which inhibits fibrocyte differentiation, and identified it as serum amyloid P (SAP). As SAP binds to Fc receptors for immunoglobulin G (IgG; Fc gammaRs), Fc gammaR activation may be an inhibitory signal for fibrocyte differentiation. Fc gammaR are activated by aggregated IgG, and we find aggregated but not monomeric, human IgG inhibits human fibrocyte differentiation. Monoclonal antibodies that bind to Fc gammaRI (CD64) or Fc gammaRII (CD32) also inhibit fibrocyte differentiation. Aggregated IgG lacking Fc domains or aggregated IgA, IgE, or IgM do not inhibit fibrocyte differentiation. Incubation of monocytes with SAP or aggregated IgG inhibited fibrocyte differentiation. Using inhibitors of protein kinase enzymes, we show that Syk- and Src-related tyrosine kinases participate in the inhibition of fibrocyte differentiation. These observations suggest that fibrocyte differentiation can occur in situations where SAP and aggregated IgG levels are low, such as the resolution phase of inflammation.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005-1892, USA.
| | | | | |
Collapse
|
24
|
Abstract
Abs (antibodies) are complex glycoproteins that play a crucial role in protective immunity to malaria, but their effectiveness in mediating resistance can be enhanced by genetically engineered modifications that improve on nature. These Abs also aid investigation of immune mechanisms operating to control the disease and are valuable tools in developing neutralization assays for vaccine design. This review explores how this might be achieved.
Collapse
Affiliation(s)
- Jianguo Shi
- Institute of Genetics, School of Biology, University of Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
25
|
Manley PN, Ancsin JB, Kisilevsky R. Rapid recycling of cholesterol: the joint biologic role of C-reactive protein and serum amyloid A. Med Hypotheses 2005; 66:784-92. [PMID: 16337748 DOI: 10.1016/j.mehy.2005.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
Proteins that are highly conserved throughout evolution are presumed to have critical roles in the survival of the species. The two major acute phase proteins, C-reactive protein (CRP) and serum amyloid A (SAA) increase up to 1000-fold during inflammation. Both proteins have been highly conserved phylogenetically for at least the last 500 million years. Thus far the physiologic role and the evolutionary significance of each remains uncertain and their potential interactions have been totally ignored despite a vast and accelerating scientific literature on the involvement of each in human disease. CRP is known to bind to phosphocholine in dead eukaryote and some live bacterial cell walls suggesting that CRP facilitates the phagocytosis of fragmented or intact dead cells and/or enhances host bacterial defenses. SAA has recently been shown to increase the rate of export of cholesterol of phagocytosed cell membranes from macrophages fourfold. We postulate that their combined physiological role is to facilitate the rapid endogenous recycling of cell membrane cholesterol and phospholipids during acute inflammation. CRP promotes efficient phagocytosis of dying cells by macrophages; SAA enhances the export of their free cholesterol/phospholipid for reuse in the membranes of the hundreds of billions of new cells required daily during acute inflammation and repair. The evolutionary conservation of these proteins in species from the horseshoe crab and echinoderms to humans suggests that the rapid endogenous recycling of cholesterol and phospholipids during the highly vulnerable period of acute inflammation is critical for their continual survival.
Collapse
Affiliation(s)
- P N Manley
- Department of Pathology and Molecular Medicine, Queen's University, Richardson Laboratory, Kingston, Ont., Canada K7L 3N6.
| | | | | |
Collapse
|
26
|
Marnell L, Mold C, Du Clos TW. C-reactive protein: Ligands, receptors and role in inflammation. Clin Immunol 2005; 117:104-11. [PMID: 16214080 DOI: 10.1016/j.clim.2005.08.004] [Citation(s) in RCA: 443] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/16/2005] [Indexed: 12/27/2022]
Abstract
C-reactive protein (CRP) is the prototypical acute phase serum protein, rising rapidly in response to inflammation. CRP binds to phosphocholine (PC) and related molecules on microorganisms and plays an important role in host defense. However, a more important role may be the binding of CRP to PC in damaged membranes. CRP increases clearance of apoptotic cells, binds to nuclear antigens and by masking autoantigens from the immune system or enhancing their clearance, CRP may prevent autoimmunity. CRP binds to both the stimulatory receptors, FcgammaRI and FcgammaRIIa, increasing phagocytosis and the release of inflammatory cytokines; and to the inhibitory receptor, FcgammaRIIb, blocking activating signals. We have shown that, in two animal models of systemic lupus erythematosus (SLE), the (NZB x NZW)F1 mouse and the MRL/lpr mouse, a single injection of CRP before onset of proteinuria delayed disease development and late treatment reversed proteinuria. Thus, in these models, CRP plays an anti-inflammatory role.
Collapse
Affiliation(s)
- Lorraine Marnell
- Department of Internal Medicine, The University of New Mexico School of Medicine, NM 87131, USA
| | | | | |
Collapse
|
27
|
Bang R, Marnell L, Mold C, Stein MP, Clos KTD, Chivington-Buck C, Clos TWD. Analysis of binding sites in human C-reactive protein for Fc{gamma}RI, Fc{gamma}RIIA, and C1q by site-directed mutagenesis. J Biol Chem 2005; 280:25095-102. [PMID: 15878871 DOI: 10.1074/jbc.m504782200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human C-reactive protein (CRP) is a classical, acute phase serum protein synthesized by the liver in response to infection, inflammation, or trauma. CRP binds to microbial antigens and damaged cells, opsonizes particles for phagocytosis and regulates the inflammatory response by the induction of cytokine synthesis. These activities of CRP depend on its ability to activate complement and to bind to Fcgamma receptors (FcgammaR). The goal of this study was to elucidate amino acid residues important for the interaction of CRP with human FcgammaRI (CD64) and FcgammaRIIa (CD32). Several mutations of the CRP structure were studied based on the published crystal structure of CRP. Mutant and wild-type recombinant CRP molecules were expressed in the baculovirus system and their interactions with FcgammaR and C1q were determined. A previous study by our laboratory identified an amino acid position, Leu(176), critical for CRP binding to FcgammaRI and work by others (Agrawal, A., Shrive, A. K., Greenhough, T. J., and Volanakis, J. E. (2001) J. Immunol. 166, 3998-4004) determined several residues important for C1q binding. The amino acid residues important to CRP binding to FcgammaRIIa were previously unknown. This study newly identifies residues Thr(173) and Asn(186) as important for the binding of CRP to FcgammaRIIa and FcgammaRI. Lys(114), like Leu(176), was implicated in binding to FcgammaRI, but not FcgammaRIIa. Single mutations at amino acid positions Lys(114), Asp(169), Thr(173), Tyr(175), and Leu(176) affected C1q binding to CRP. These results further identify amino acids involved in the binding sites on CRP for FcgammaRI, FcgammaRIIa, and C1q and indicate that these sites are overlapping.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Baculoviridae/genetics
- Binding Sites
- COS Cells
- Cell Line
- Complement C1q/chemistry
- Complement C1q/genetics
- Crystallography, X-Ray
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Humans
- Immunoglobulin G/chemistry
- Insecta
- K562 Cells
- Leucine/chemistry
- Lysine/chemistry
- Models, Molecular
- Mutagenesis
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Receptors, IgG/chemistry
- Receptors, IgG/genetics
- Receptors, Immunologic/chemistry
- Recombinant Fusion Proteins/chemistry
- Recombinant Proteins/chemistry
- Transfection
Collapse
Affiliation(s)
- Ranhy Bang
- Department of Veterans Affairs Medical Center and the University of New Mexico, School of Medicine, Albuquerque, New Mexico 87108, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Rodríguez JA, Bodman-Smith KB, Raynes JG. Neutrophil responses to CRP are not dependent on polymorphism of human FcgammaRIIA (R131H). Clin Exp Immunol 2004; 138:271-7. [PMID: 15498037 PMCID: PMC1809209 DOI: 10.1111/j.1365-2249.2004.02603.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
IgG2a mediated in vitro phagocytosis is less effective for individuals homozygous for Fcgamma RIIaR131 allele and such individuals are also more susceptible to certain infections. It has been reported that CRP binds to Fcgamma RIIaR131 but not Fcgamma RIIaH131 and since Fcgamma RIIa is also a major Fc receptor on neutrophils it would be expected that normal healthy donors who did not have at least one copy of Fcgamma RIIaR131 would not respond to CRP. We examined responses reported to be dependent on FcgammaRIIa but no difference between groups was observed in CRP mediated phagocytosis of S. pneumoniae, reactive oxygen production, or IL-8 synthesis. This suggests that either neutrophil receptors other than Fcgamma RIIa are responsible for CRP mediated responses or differences in CRP binding to the forms of Fcgamma RIIa are comparatively minor.
Collapse
Affiliation(s)
- J A Rodríguez
- Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW C-reactive protein (CRP) is consistently associated with cardiovascular disease in prospective and cross-sectional clinical and epidemiological studies. Inflammation is an important mechanism in cardiovascular disease, and the plasma level of CRP is considered to reflect the inflammatory condition of the patient and/or the vessel wall. In addition, there are also a number of indications for a causal role of CRP in cardiovascular disease. RECENT FINDINGS A number of new publications show potential causal effects of CRP on cardiovascular disease, and evidence from human-CRP transgenic animals also indicates a causal contribution of CRP to cardiovascular disease. On the other hand, a new large prospective study and an updated meta-analysis indicate that the contribution of CRP to cardiovascular disease is less impressive than reported earlier (odds ratio, 1.58; 95% confidence interval, 1.48-1.68). SUMMARY We review here the most recent evidence on mechanisms by which CRP is involved as a causal factor in the precipitation of cardiovascular disease. Evidence for such a role is accumulating.
Collapse
Affiliation(s)
- Moniek Pm de Maat
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | |
Collapse
|