1
|
Wang Y, Dowling SD, Rodriguez V, Maciuch J, Mayer M, Therron T, Shaw TN, Gurra MG, Shah CL, Makinde HKM, Ginhoux F, Voehringer D, Harrington CA, Lawrence T, Grainger JR, Cuda CM, Winter DR, Perlman HR. Comprehensive analysis of myeloid reporter mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639159. [PMID: 40060446 PMCID: PMC11888320 DOI: 10.1101/2025.02.24.639159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Macrophages are a pivotal cell type within the synovial lining and sub-lining of the joint, playing a crucial role in maintaining homeostasis of synovium. Although fate-mapping techniques have been employed to differentiate synovial macrophages from other synovial myeloid cells, no comprehensive study has yet been conducted within the mouse synovial macrophage compartment. In this study, we present, for the first time, lineage tracing results from 18 myeloid-specific fate-mapping models in mouse peripheral blood (PB) and synovial tissue. The identification of synovial macrophages and monocyte-lineage cells through flow cytometry was further validated using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) datasets. These findings provide a valuable methodological tool for researchers to select appropriate models for studying the function of synovial myeloid cells and serve as a reference for investigations in other tissue types.
Collapse
Affiliation(s)
- Yidan Wang
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Samuel D Dowling
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
- Northwestern University, Feinberg School of Medicine. Department of Pediatrics, Division of Rheumatology. Chicago, IL 60611, USA
| | - Vanessa Rodriguez
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Jessica Maciuch
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Meghan Mayer
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Tyler Therron
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Miranda G Gurra
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Caroline L Shah
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Hadijat-Kubura M Makinde
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR). 8A Biomedical Grove IMMUNOS Bldg, Level 3, SINGAPORE 138648
| | - David Voehringer
- University Hospital Erlangen, Department of Infection Biology and Friedrich-Alexander University Erlangen-Nuremberg (FAU). Wasserturmstrasse 3-5, 91054 Erlangen, Germany
| | - Cole A Harrington
- The Ohio State University Wexner Medical Center, Department of Neurology, The Neuroscience Research Institute, College of Medicine, Columbus, OH, USA
| | - Toby Lawrence
- King's College London, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, London, UK
| | - John R Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester; Manchester, UK
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| | - Deborah R Winter
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
- Center for Human Immunobiology (CHI), Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Harris R Perlman
- Northwestern University, Feinberg School of Medicine. Department of Medicine, Division of Rheumatology. Chicago, IL 60611, USA
| |
Collapse
|
2
|
Gobbo D, Kirchhoff F. Animal-based approaches to understanding neuroglia physiology in vitro and in vivo. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:229-263. [PMID: 40122627 DOI: 10.1016/b978-0-443-19104-6.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter describes the pivotal role of animal models for unraveling the physiology of neuroglial cells in the central nervous system (CNS). The two rodent species Mus musculus (mice) and Rattus norvegicus (rats) have been indispensable in scientific research due to their remarkable resemblance to humans anatomically, physiologically, and genetically. Their ease of maintenance, short gestation times, and rapid development make them ideal candidates for studying the physiology of astrocytes, oligodendrocyte-lineage cells, and microglia. Moreover, their genetic similarity to humans facilitates the investigation of molecular mechanisms governing neural physiology. Mice are largely the predominant model of neuroglial research, owing to advanced genetic manipulation techniques, whereas rats remain invaluable for applications requiring larger CNS structures for surgical manipulations. Next to rodents, other animal models, namely, Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly), will be discussed to emphasize their critical role in advancing our understanding of glial physiology. Each animal model provides distinct advantages and disadvantages. By combining the strengths of each of them, researchers can gain comprehensive insights into glial function across species, ultimately promoting the understanding of glial physiology in the human CNS and driving the development of novel therapeutic interventions for CNS disorders.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany; Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany.
| |
Collapse
|
3
|
Petit M, Weber-Delacroix E, Lanthiez F, Barthélémy S, Guillou N, Firpion M, Bonduelle O, Hume DA, Combadière C, Boissonnas A. Visualizing the spatial organization of monocytes, interstitial macrophages, and tissue-specific macrophages in situ. Cell Rep 2024; 43:114847. [PMID: 39395172 DOI: 10.1016/j.celrep.2024.114847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/03/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
Tissue-resident mononuclear phagocytes (MPs) are an abundant cell population whose localization in situ reflects their identity. To enable assessment of their heterogeneity, we developed the red/green/blue (RGB)-Mac mouse based upon combinations of Cx3cr1 and Csf1r reporter transgenes, providing a complete visualization of their spatial organization in situ. 3D-multi-photon imaging for spatial mapping and spectral cytometry employing the three markers in combination distinguished tissue-associated monocytes, tissue-specific macrophages, and three subsets of connective-tissue-associated MPs, including CCR2+ monocyte-derived cell, CX3CR1+, and FOLR2+ interstitial subsets, associated with distinct sub-anatomic territories. These populations were selectively reduced by blockade of CSF1, CSF2, CCR2, and CX3CR1 and efficiently reconstitute their spatial distribution after transient myelo-ablation, suggesting an autonomous regulatory environment. Our findings emphasize the organization of the MP compartment at the sub-anatomic level under steady-state conditions, thereby providing a holistic understanding of their relative heterogeneity across different tissues.
Collapse
Affiliation(s)
- Maxime Petit
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eléonore Weber-Delacroix
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - François Lanthiez
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Sandrine Barthélémy
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Noëlline Guillou
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marina Firpion
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Christophe Combadière
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université ́, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
4
|
Bousso P, Grandjean CL. Immunomodulation under the lens of real-time in vivo imaging. Eur J Immunol 2023; 53:e2249921. [PMID: 37051691 DOI: 10.1002/eji.202249921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/14/2023]
Abstract
Modulation of cells and molecules of the immune system not only represents a major opportunity to treat a variety of diseases including infections, cancer, autoimmune, and inflammatory disorders but could also help understand the intricacies of immune responses. A detailed mechanistic understanding of how a specific immune intervention may provide clinical benefit is essential for the rational design of efficient immunomodulators. Visualizing the impact of immunomodulation in real-time and in vivo has emerged as an important approach to achieve this goal. In this review, we aim to illustrate how multiphoton intravital imaging has helped clarify the mode of action of immunomodulatory strategies such as antibodies or cell therapies. We also discuss how optogenetics combined with imaging will further help manipulate and precisely understand immunomodulatory pathways. Combined with other single-cell technologies, in vivo dynamic imaging has therefore a major potential for guiding preclinical development of immunomodulatory drugs.
Collapse
Affiliation(s)
- Philippe Bousso
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| | - Capucine L Grandjean
- Dynamics of Immune Responses Unit, Institut Pasteur, INSERM U1223, Université de Paris Cité, Paris, France
| |
Collapse
|
5
|
Kersten K, You R, Liang S, Tharp KM, Pollack J, Weaver VM, Krummel MF, Headley MB. Uptake of tumor-derived microparticles induces metabolic reprogramming of macrophages in the early metastatic lung. Cell Rep 2023; 42:112582. [PMID: 37261951 PMCID: PMC10592447 DOI: 10.1016/j.celrep.2023.112582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Pre-metastatic niche formation is a critical step during the metastatic spread of cancer. One way by which primary tumors prime host cells at future metastatic sites is through the shedding of tumor-derived microparticles as a consequence of vascular sheer flow. However, it remains unclear how the uptake of such particles by resident immune cells affects their phenotype and function. Here, we show that ingestion of tumor-derived microparticles by macrophages induces a rapid metabolic and phenotypic switch that is characterized by enhanced mitochondrial mass and function, increased oxidative phosphorylation, and upregulation of adhesion molecules, resulting in reduced motility in the early metastatic lung. This reprogramming event is dependent on signaling through the mTORC1, but not the mTORC2, pathway and is induced by uptake of tumor-derived microparticles. Together, these data support a mechanism by which uptake of tumor-derived microparticles induces reprogramming of macrophages to shape their fate and function in the early metastatic lung.
Collapse
Affiliation(s)
- Kelly Kersten
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ran You
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sophia Liang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joshua Pollack
- ImmunoX Initiative, University of California San Francisco, San Francisco, CA 94143, USA; Foundery Innovations, San Francisco, CA 94080, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California San Francisco, San Francisco, CA 94143, USA; Foundery Innovations, San Francisco, CA 94080, USA
| | - Mark B Headley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Abstract
Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.
Collapse
Affiliation(s)
| | - Jeffrey W Pollard
- MRC-Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
7
|
Rodriguez-Tirado C, Entenberg D, Li J, Qian BZ, Condeelis JS, Pollard JW. Interleukin 4 Controls the Pro-Tumoral Role of Macrophages in Mammary Cancer Pulmonary Metastasis in Mice. Cancers (Basel) 2022; 14:4336. [PMID: 36077870 PMCID: PMC9454655 DOI: 10.3390/cancers14174336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis is the systemic manifestation of cancer and the main cause of death from breast cancer. In mouse models of lung metastases, recruitment of classical monocytes from blood to the lung and their differentiation to metastasis-associated macrophages (MAMs) facilitate cancer cell extravasation, survival and growth. Ablation of MAMs or their monocytic progenitors inhibits metastasis. We hypothesized that factors controlling macrophage polarization modulate tumor cell extravasation in the lung. We evaluated whether signaling by Th1 or Th2 cytokines in macrophages affected transendothelial migration of tumor cells in vitro. Interferon gamma and LPS inhibited macrophage-dependent tumor cell extravasation while the Th2 cytokine interleukin-4 (IL4) enhanced this process. We demonstrated that IL4 receptor (IL4rα)-null mice developed fewer and smaller lung metastasis in E0771-LG mammary cancer models of this disease. Adoptive transfer of wild-type monocytes to IL4rα-deficient mice partially rescued this phenotype. IL4 signaling in macrophages controlled the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. Furthermore, IL4 signaling in macrophages regulated the transcript abundance of several other genes already causally associated with mammary cancer lung metastasis including Ccl2, Csf1, Ccr1, Hgf and Flt1. The central role of IL4 signaling in MAMs was confirmed by high-resolution intravital imaging of the lung in mice at the time of metastatic seeding, which showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages. This interaction with wild-type MAMs enhanced tumor cell survival and seeding, which was lost in the IL4rα mice. These data indicate that IL4 signaling in monocytes and macrophages is key during seeding and growth of breast metastasis in the lung, as it regulates pro-tumoral paracrine signaling between cancer cells and macrophages.
Collapse
Affiliation(s)
- Carolina Rodriguez-Tirado
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jiufeng Li
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Bin-Zhi Qian
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Medical Research Council Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John S. Condeelis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Jeffrey W. Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| |
Collapse
|
8
|
Du W, Adkisson C, Ye X, Duran CL, Chellakkan Selvanesan B, Gravekamp C, Oktay MH, McAuliffe JC, Condeelis JS, Panarelli NC, Norgard RJ, Sela Y, Stanger BZ, Entenberg D. SWIP-a stabilized window for intravital imaging of the murine pancreas. Open Biol 2022; 12:210273. [PMID: 35702996 PMCID: PMC9198798 DOI: 10.1098/rsob.210273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/17/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are grave illnesses with high levels of morbidity and mortality. Intravital imaging (IVI) is a powerful technique for visualizing physiological processes in both health and disease. However, the application of IVI to the murine pancreas presents significant challenges, as it is a deep, compliant, visceral organ that is difficult to access, easily damaged and susceptible to motion artefacts. Existing imaging windows for stabilizing the pancreas during IVI have unfortunately shown poor stability for time-lapsed imaging on the minutes to hours scale, or are unable to accommodate both the healthy and tumour-bearing pancreata. To address these issues, we developed an improved stabilized window for intravital imaging of the pancreas (SWIP), which can be applied to not only the healthy pancreas but also to solid tumours like PDAC. Here, we validate the SWIP and use it to visualize a variety of processes for the first time, including (1) single-cell dynamics within the healthy pancreas, (2) transformation from healthy pancreas to acute pancreatitis induced by cerulein, and (3) the physiology of PDAC in both autochthonous and orthotopically injected models. SWIP can not only improve the imaging stability but also expand the application of IVI in both benign and malignant pancreas diseases.
Collapse
Affiliation(s)
- Wei Du
- Breast Center, Peking University People's Hospital, Beijing, People's Republic of China
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Christian Adkisson
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Xianjun Ye
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Camille L. Duran
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Benson Chellakkan Selvanesan
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Maja H. Oktay
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - John C. McAuliffe
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - John S. Condeelis
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Cell Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Nicole C. Panarelli
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Robert J. Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yogev Sela
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Entenberg
- Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
9
|
Laviron M, Petit M, Weber-Delacroix E, Combes AJ, Arkal AR, Barthélémy S, Courau T, Hume DA, Combadière C, Krummel MF, Boissonnas A. Tumor-associated macrophage heterogeneity is driven by tissue territories in breast cancer. Cell Rep 2022; 39:110865. [PMID: 35613577 DOI: 10.1016/j.celrep.2022.110865] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 02/08/2023] Open
Abstract
Tissue-resident macrophages adapt to local signals within tissues to acquire specific functions. Neoplasia transforms the tissue, raising the question as to how the environmental perturbations contribute to tumor-associated macrophage (TAM) identity and functions. Combining single-cell RNA sequencing (scRNA-seq) with spatial localization of distinct TAM subsets by imaging, we discover that TAM transcriptomic programs follow two main differentiation paths according to their localization in the stroma or in the neoplastic epithelium of the mammary duct. Furthermore, this diversity is exclusively detected in a spontaneous tumor model and tracks the different tissue territories as well as the type of tumor lesion. These TAM subsets harbor distinct capacity to activate CD8+ T cells and phagocyte tumor cells, supporting that specific tumor regions, rather than defined activation states, are the major drivers of TAM plasticity and heterogeneity. The distinctions created here provide a framework to design cancer treatment targeting specific TAM niches.
Collapse
Affiliation(s)
- Marie Laviron
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013 Paris, France
| | - Maxime Petit
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013 Paris, France
| | - Eléonore Weber-Delacroix
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013 Paris, France
| | - Alexis J Combes
- Department of Pathology, ImmunoX Initiative, UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arjun Rao Arkal
- Department of Pathology, ImmunoX Initiative, UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sandrine Barthélémy
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013 Paris, France
| | - Tristan Courau
- Department of Pathology, ImmunoX Initiative, UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD 4101, Australia
| | - Christophe Combadière
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013 Paris, France
| | - Matthew F Krummel
- Department of Pathology, ImmunoX Initiative, UCSF Immunoprofiler Initiative, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexandre Boissonnas
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013 Paris, France.
| |
Collapse
|
10
|
Bhattacharyya A, Torre P, Yadav P, Boostanpour K, Chen TY, Tsukui T, Sheppard D, Muramatsu R, Seed RI, Nishimura SL, Jung JB, Tang XZ, Allen CDC, Bhattacharya M. Macrophage Cx43 Is Necessary for Fibroblast Cytosolic Calcium and Lung Fibrosis After Injury. Front Immunol 2022; 13:880887. [PMID: 35634278 PMCID: PMC9134074 DOI: 10.3389/fimmu.2022.880887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
Macrophages are paracrine signalers that regulate tissular responses to injury through interactions with parenchymal cells. Connexin hemichannels have recently been shown to mediate efflux of ATP by macrophages, with resulting cytosolic calcium responses in adjacent cells. Here we report that lung macrophages with deletion of connexin 43 (MacΔCx43) had decreased ATP efflux into the extracellular space and induced a decreased cytosolic calcium response in co-cultured fibroblasts compared to WT macrophages. Furthermore, MacΔCx43 mice had decreased lung fibrosis after bleomycin-induced injury. Interrogating single cell data for human and mouse, we found that P2rx4 was the most highly expressed ATP receptor and calcium channel in lung fibroblasts and that its expression was increased in the setting of fibrosis. Fibroblast-specific deletion of P2rx4 in mice decreased lung fibrosis and collagen expression in lung fibroblasts in the bleomycin model. Taken together, these studies reveal a Cx43-dependent profibrotic effect of lung macrophages and support development of fibroblast P2rx4 as a therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Aritra Bhattacharyya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Paola Torre
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Preeti Yadav
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kaveh Boostanpour
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Tian Y. Chen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Tatsuya Tsukui
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Robert I. Seed
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen L. Nishimura
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - James B. Jung
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Xin-Zi Tang
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher D. C. Allen
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, United States
| | - Mallar Bhattacharya
- Division of Pulmonary, Critical Care, Allergy, and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Selvanesan BC, Chandra D, Quispe-Tintaya W, Jahangir A, Patel A, Meena K, Alves Da Silva RA, Friedman M, Gabor L, Khouri O, Libutti SK, Yuan Z, Li J, Siddiqui S, Beck A, Tesfa L, Koba W, Chuy J, McAuliffe JC, Jafari R, Entenberg D, Wang Y, Condeelis J, DesMarais V, Balachandran V, Zhang X, Lin K, Gravekamp C. Listeria delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice. Sci Transl Med 2022; 14:eabc1600. [PMID: 35320003 PMCID: PMC9031812 DOI: 10.1126/scitranslmed.abc1600] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease. Tumors are poorly immunogenic and immunosuppressive, preventing T cell activation in the tumor microenvironment. Here, we present a microbial-based immunotherapeutic treatment for selective delivery of an immunogenic tetanus toxoid protein (TT856-1313) into PDAC tumor cells by attenuated Listeria monocytogenes. This treatment reactivated preexisting TT-specific memory T cells to kill infected tumor cells in mice. Treatment of KrasG12D,p53R172H, Pdx1-Cre (KPC) mice with Listeria-TT resulted in TT accumulation inside tumor cells, attraction of TT-specific memory CD4 T cells to the tumor microenvironment, and production of perforin and granzyme B in tumors. Low doses of gemcitabine (GEM) increased immune effects of Listeria-TT, turning immunologically cold into hot tumors in mice. In vivo depletion of T cells from Listeria-TT + GEM-treated mice demonstrated a CD4 T cell-mediated reduction in tumor burden. CD4 T cells from TT-vaccinated mice were able to kill TT-expressing Panc-02 tumor cells in vitro. In addition, peritumoral lymph node-like structures were observed in close contact with pancreatic tumors in KPC mice treated with Listeria-TT or Listeria-TT + GEM. These structures displayed CD4 and CD8 T cells producing perforin and granzyme B. Whereas CD4 T cells efficiently infiltrated the KPC tumors, CD8 T cells did not. Listeria-TT + GEM treatment of KPC mice with advanced PDAC reduced tumor burden by 80% and metastases by 87% after treatment and increased survival by 40% compared to nontreated mice. These results suggest that Listeria-delivered recall antigens could be an alternative to neoantigen-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Benson Chellakkan Selvanesan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Dinesh Chandra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Wilber Quispe-Tintaya
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Arthee Jahangir
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ankur Patel
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Kiran Meena
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Rodrigo Alberto Alves Da Silva
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Madeline Friedman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Lisa Gabor
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Division of Gynecologic Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, 1695 Eastchester Road, Bronx, NY 10461, USA
| | - Olivia Khouri
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Division of Gynecologic Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, 1695 Eastchester Road, Bronx, NY 10461, USA
| | - Steven K. Libutti
- Rutgers University, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08854, USA
| | - Ziqiang Yuan
- Rutgers University, Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08854, USA
| | - Jenny Li
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah Siddiqui
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Amanda Beck
- Department of Pathology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Room 158, Bronx, NY 10461, USA
| | - Lydia Tesfa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Chanin Building, Room 309, Bronx, NY 10461, USA
| | - Wade Koba
- Department of Radiology, Albert Einstein College of Medicine, MRRC, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jennifer Chuy
- Department of Medical Oncology, Montefiore/Einstein Center for Cancer Care, 1695 Eastchester Road, 2nd Floor, Bronx, NY 10461, USA
| | - John C. McAuliffe
- Department of Surgery, Montefiore Medical Center, 1521 Jarrett Place, 2nd Floor, Bronx, NY 10461, USA
| | - Rojin Jafari
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Vera DesMarais
- Department of Anatomy and Structural Biology, Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave, Room F641, Bronx, NY 10461, USA
| | - Vinod Balachandran
- Departments of Hepatopancreatobiliary Service and Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Michael F. Price Center, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Ken Lin
- Division of Gynecologic Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, 1695 Eastchester Road, Bronx, NY 10461, USA
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Corresponding author.
| |
Collapse
|
12
|
Sehgal A, Irvine KM, Hume DA. Functions of macrophage colony-stimulating factor (CSF1) in development, homeostasis, and tissue repair. Semin Immunol 2021; 54:101509. [PMID: 34742624 DOI: 10.1016/j.smim.2021.101509] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Macrophage colony-stimulating factor (CSF1) is the primary growth factor required for the control of monocyte and macrophage differentiation, survival, proliferation and renewal. Although the cDNAs encoding multiple isoforms of human CSF1 were cloned in the 1980s, and recombinant proteins were available for testing in humans, CSF1 has not yet found substantial clinical application. Here we present an overview of CSF1 biology, including evolution, regulation and functions of cell surface and secreted isoforms. CSF1 is widely-expressed, primarily by cells of mesenchymal lineages, in all mouse tissues. Cell-specific deletion of a floxed Csf1 allele in mice indicates that local CSF1 production contributes to the maintenance of tissue-specific macrophage populations but is not saturating. CSF1 in the circulation is controlled primarily by receptor-mediated clearance by macrophages in liver and spleen. Administration of recombinant CSF1 to humans or animals leads to monocytosis and expansion of tissue macrophage populations and growth of the liver and spleen. In a wide variety of tissue injury models, CSF1 administration promotes monocyte infiltration, clearance of damaged cells and repair. We suggest that CSF1 has therapeutic potential in regenerative medicine.
Collapse
Affiliation(s)
- Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Mata E, Tarancon R, Guerrero C, Moreo E, Moreau F, Uranga S, Gomez AB, Marinova D, Domenech M, Gonzalez-Camacho F, Monzon M, Badiola J, Dominguez-Andres J, Yuste J, Anel A, Peixoto A, Martin C, Aguilo N. Pulmonary BCG induces lung-resident macrophage activation and confers long-term protection against tuberculosis. Sci Immunol 2021; 6:eabc2934. [PMID: 34559551 DOI: 10.1126/sciimmunol.abc2934] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Elena Mata
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Tarancon
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Guerrero
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Moreo
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Flavie Moreau
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belen Gomez
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Dessislava Marinova
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Domenech
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Gonzalez-Camacho
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monzon
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | - Jorge Dominguez-Andres
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Jose Yuste
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Anel
- Grupo Apoptosis, Inmunidad y Cáncer, IIS Aragón, Dpto. Bioquímica y Biología Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Peixoto
- Research Centre for Encephalopathies and Transmissible Emerging Diseases, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martin
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Paseo, Isabel la Católica 1-3, 50009 Zaragoza, Spain
| | - Nacho Aguilo
- Grupo de Genética de Micobacterias, IIS Aragón, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain.,CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Ákos Z, Dunipace L, Stathopoulos A. NaNuTrap: a technique for in vivo cell nucleus labelling using nanobodies. Development 2021; 148:dev199822. [PMID: 34328170 PMCID: PMC10656463 DOI: 10.1242/dev.199822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
In vivo cell labelling is challenging in fast developmental processes because many cell types differentiate more quickly than the maturation time of fluorescent proteins, making visualization of these tissues impossible with standard techniques. Here, we present a nanobody-based method, Nanobody Nuclear Trap (NaNuTrap), which works with the existing Gal4/UAS system in Drosophila and allows for early in vivo cell nuclei labelling independently of the maturation time of the fluorescent protein. This restores the utility of fluorescent proteins that have longer maturation times, such as those used in two-photon imaging, for live imaging of fast or very early developmental processes. We also present a more general application of this system, whereby NaNuTrap can convert cytoplasmic GFP expressed in any existing transgenic fly line into a nuclear label. This nuclear re-localization of the fluorescent signal can improve the utility of the GFP label, e.g. in cell counting, as well as resulting in a general increase in intensity of the live fluorescent signal. We demonstrate these capabilities of NaNuTrap by effectively tracking subsets of cells during the fast movements associated with gastrulation.
Collapse
Affiliation(s)
- Zsuzsa Ákos
- California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Leslie Dunipace
- California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Zhang Y, Cui D. Evolving Models and Tools for Microglial Studies in the Central Nervous System. Neurosci Bull 2021; 37:1218-1233. [PMID: 34106404 PMCID: PMC8353053 DOI: 10.1007/s12264-021-00706-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/27/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia play multiple roles in such processes as brain development, homeostasis, and pathology. Due to their diverse mechanisms of functions, the complex sub-classifications, and the large differences between different species, especially compared with humans, very different or even opposite conclusions can be drawn from studies with different research models. The choice of appropriate research models and the associated tools are thus key ingredients of studies on microglia. Mice are the most commonly used animal models. In this review, we summarize in vitro and in vivo models of mouse and human-derived microglial research models, including microglial cell lines, primary microglia, induced microglia-like cells, transgenic mice, human-mouse chimeric models, and microglial replacement models. We also summarize recent developments in novel single-cell and in vivo imaging technologies. We hope our review can serve as an efficient reference for the future study of microglia.
Collapse
Affiliation(s)
- Yang Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, 201108, China.
| |
Collapse
|
16
|
Das Gupta K, Shakespear MR, Curson JEB, Murthy AMV, Iyer A, Hodson MP, Ramnath D, Tillu VA, von Pein JB, Reid RC, Tunny K, Hohenhaus DM, Moradi SV, Kelly GM, Kobayashi T, Gunter JH, Stevenson AJ, Xu W, Luo L, Jones A, Johnston WA, Blumenthal A, Alexandrov K, Collins BM, Stow JL, Fairlie DP, Sweet MJ. Class IIa Histone Deacetylases Drive Toll-like Receptor-Inducible Glycolysis and Macrophage Inflammatory Responses via Pyruvate Kinase M2. Cell Rep 2021; 30:2712-2728.e8. [PMID: 32101747 DOI: 10.1016/j.celrep.2020.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 09/30/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases (HDACs) drive innate immune cell-mediated inflammation. Here we identify class IIa HDACs as key molecular links between Toll-like receptor (TLR)-inducible aerobic glycolysis and macrophage inflammatory responses. A proteomic screen identified the glycolytic enzyme pyruvate kinase M isoform 2 (Pkm2) as a partner of proinflammatory Hdac7 in murine macrophages. Myeloid-specific Hdac7 overexpression in transgenic mice amplifies lipopolysaccharide (LPS)-inducible lactate and promotes a glycolysis-associated inflammatory signature. Conversely, pharmacological or genetic targeting of Hdac7 and other class IIa HDACs attenuates LPS-inducible glycolysis and accompanying inflammatory responses in macrophages. We show that an Hdac7-Pkm2 complex acts as an immunometabolism signaling hub, whereby Pkm2 deacetylation at lysine 433 licenses its proinflammatory functions. Disrupting this complex suppresses inflammatory responses in vitro and in vivo. Class IIa HDACs are thus pivotal intermediates connecting TLR-inducible glycolysis to inflammation via Pkm2.
Collapse
Affiliation(s)
- Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Melanie R Shakespear
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ambika M V Murthy
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark P Hodson
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia; Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia; Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Divya Ramnath
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Vikas A Tillu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kathryn Tunny
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel M Hohenhaus
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shayli Varasteh Moradi
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4000, Australia
| | - Gregory M Kelly
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Takumi Kobayashi
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer H Gunter
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology (QUT), Brisbane, Queensland 4102, Australia
| | - Alexander J Stevenson
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weijun Xu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alun Jones
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wayne A Johnston
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4000, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, Centre for Tropical Crops and Biocommodities, Queensland University of Technology (QUT), Gardens Point Campus, Brisbane, Queensland 4000, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, IMB, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland 4072, Australia; IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
17
|
Boissonnas A, Louboutin F, Laviron M, Loyher PL, Reboussin E, Barthelemy S, Réaux-Le Goazigo A, Lobsiger CS, Combadière B, Mélik Parsadaniantz S, Combadière C. Imaging resident and recruited macrophage contribution to Wallerian degeneration. J Exp Med 2021; 217:151939. [PMID: 32648893 PMCID: PMC7596821 DOI: 10.1084/jem.20200471] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Wallerian degeneration (WD) is a process of autonomous distal degeneration of axons upon injury. Macrophages (MPs) of the peripheral nervous system (PNS) are the main cellular agent controlling this process. Some evidence suggests that resident PNS-MPs along with MPs of hematogenous origin may be involved, but whether these two subsets exert distinct functions is unknown. Combining MP-designed fluorescent reporter mice and coherent anti–Stokes Raman scattering (CARS) imaging of the sciatic nerve, we deciphered the spatiotemporal choreography of resident and recently recruited MPs after injury and unveiled distinct functions of these subsets, with recruited MPs being responsible for efficient myelin stripping and clearance and resident MPs being involved in axonal regrowth. This work provides clues to tackle selectively cellular processes involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexandre Boissonnas
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Floriane Louboutin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Marie Laviron
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Pierre-Louis Loyher
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elodie Reboussin
- Department Therapeutique, Institut de la Vision, INSERM UMR S 968, CNRS UMR 7210, Sorbonne Université, Paris, France
| | - Sandrine Barthelemy
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Annabelle Réaux-Le Goazigo
- Department Therapeutique, Institut de la Vision, INSERM UMR S 968, CNRS UMR 7210, Sorbonne Université, Paris, France
| | - Christian S Lobsiger
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Béhazine Combadière
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Stéphane Mélik Parsadaniantz
- Department Therapeutique, Institut de la Vision, INSERM UMR S 968, CNRS UMR 7210, Sorbonne Université, Paris, France
| | - Christophe Combadière
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| |
Collapse
|
18
|
Shanja-Grabarz X, Coste A, Entenberg D, Di Cristofano A. Real-time, high-resolution imaging of tumor cells in genetically engineered and orthotopic models of thyroid cancer. Endocr Relat Cancer 2020; 27:529-539. [PMID: 32698130 PMCID: PMC7450603 DOI: 10.1530/erc-20-0295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
Genetically engineered and orthotopic xenograft mouse models have been instrumental for increasing our understanding of thyroid cancer progression and for the development of novel therapeutic approaches in a setting that is more physiologically relevant than the classical subcutaneous flank implants. However, the anatomical location of the thyroid gland precludes a non-invasive analysis at the cellular level of the interactions between tumor cells and the surrounding microenvironment and does not allow a real-time evaluation of the response of tumor cells to drug treatments. As a consequence, such studies have generally only relied on endpoint approaches, limiting the amount and depth of the information that could be gathered. Here we describe the development of an innovative approach to imaging specific aspects of thyroid cancer biology, based on the implantation of a permanent, minimally invasive optical window that allows high-resolution, multi-day, intravital imaging of the behavior and cellular dynamics of thyroid tumors in the mouse. We show that this technology allows visualization of fluorescently tagged tumor cells both in immunocompetent, genetically engineered mouse models of anaplastic thyroid cancer (ATC) and in immunocompromised mice carrying orthotopic implanted human or mouse ATC cells. Furthermore, the use of recipient mice in which endothelial cells and macrophages are fluorescently labeled allows the detection of the spatial and functional relationship between tumor cells and their microenvironment. Finally, we show that ATC cells expressing a fluorescent biosensor for caspase 3 activity can be effectively utilized to evaluate, in real-time, the efficacy and kinetics of action of novel small molecule therapeutics. This novel approach to intravital imaging of thyroid cancer represents a platform that will allow, for the first time, the longitudinal, in situ analysis of tumor cell responses to therapy and of their interaction with the microenvironment.
Collapse
Affiliation(s)
- Xhesika Shanja-Grabarz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| |
Collapse
|
19
|
Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K, Beppler C, Nam D, Serwas NK, Binnewies M, Krummel MF. Visualizing Synaptic Transfer of Tumor Antigens among Dendritic Cells. Cancer Cell 2020; 37:786-799.e5. [PMID: 32516589 PMCID: PMC7671443 DOI: 10.1016/j.ccell.2020.05.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/07/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Generation of tumor-infiltrating lymphocytes begins when tumor antigens reach the lymph node (LN) to stimulate T cells, yet we know little of how tumor material is disseminated among the large variety of antigen-presenting dendritic cell (DC) subsets in the LN. Here, we demonstrate that tumor proteins are carried to the LN within discrete vesicles inside DCs and are then transferred among DC subsets. A synapse is formed between interacting DCs and vesicle transfer takes place in the absence of free exosomes. DCs -containing vesicles can uniquely activate T cells, whereas DCs lacking them do not. Understanding this restricted sharing of tumor identity provides substantial room for engineering better anti-tumor immunity.
Collapse
Affiliation(s)
- Megan K Ruhland
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Edward W Roberts
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - En Cai
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Adriana M Mujal
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kyle Marchuk
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Biological Imaging Development CoLab, University of California, San Francisco, CA 94143, USA
| | - Casey Beppler
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - David Nam
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nina K Serwas
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mikhail Binnewies
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Baudesson de Chanville C, Chousterman BG, Hamon P, Laviron M, Guillou N, Loyher PL, Meghraoui-Kheddar A, Barthelemy S, Deterre P, Boissonnas A, Combadière C. Sepsis Triggers a Late Expansion of Functionally Impaired Tissue-Vascular Inflammatory Monocytes During Clinical Recovery. Front Immunol 2020; 11:675. [PMID: 32425929 PMCID: PMC7212400 DOI: 10.3389/fimmu.2020.00675] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Sepsis is characterized by a systemic inflammation that can cause an immune dysfunction, for which the underlying mechanisms are unclear. We investigated the impact of cecal ligature and puncture (CLP)-mediated polymicrobial sepsis on monocyte (Mo) mobilization and functions. Our results show that CLP led to two consecutive phases of Mo deployment. The first one occurred within the first 3 days after the induction of the peritonitis, while the second phase was of a larger amplitude and extended up to a month after apparent clinical recovery. The latter was associated with the expansion of Mo in the tissue reservoirs (bone marrow and spleen), their release in the blood and their accumulation in the vasculature of peripheral non-lymphoid tissues. It occurred even after antibiotic treatment but relied on inflammatory-dependent pathways and inversely correlated with increased susceptibility and severity to a secondary infection. The intravascular lung Mo displayed limited activation capacity, impaired phagocytic functions and failed to transfer efficient protection against a secondary infection into monocytopenic CCR2-deficient mice. In conclusion, our work unveiled key dysfunctions of intravascular inflammatory Mo during the recovery phase of sepsis and provided new insights to improve patient protection against secondary infections.
Collapse
Affiliation(s)
| | - Benjamin Glenn Chousterman
- Inserm UMRS 1160, Département d'Anesthésie-Réanimation, Hôpitaux Universitaires Lariboisière-Saint-Louis, Paris, France
| | - Pauline Hamon
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Marie Laviron
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Noelline Guillou
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Pierre Louis Loyher
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Aida Meghraoui-Kheddar
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Sandrine Barthelemy
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Philippe Deterre
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| |
Collapse
|
21
|
Trus E, Basta S, Gee K. Who's in charge here? Macrophage colony stimulating factor and granulocyte macrophage colony stimulating factor: Competing factors in macrophage polarization. Cytokine 2019; 127:154939. [PMID: 31786501 DOI: 10.1016/j.cyto.2019.154939] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022]
Abstract
Macrophages make up a crucial aspect of the immune system, carrying out a variety of functions ranging from clearing cellular debris to their well-recognized roles as innate immune cells. These cells exist along a spectrum of phenotypes but can be generally divided into proinflammatory (M1) and anti-inflammatory (M2) groups, representing different states of polarization. Due to their diverse functions, macrophages are implicated in a variety of diseases such as atherosclerosis, lupus nephritis, or infection with HIV. Throughout their lifetime, macrophages can be influenced by a wide variety of signals that influence their polarization states, which can affect their function and influence their effects on disease progression. This review seeks to provide a summary of how GM-CSF and M-CSF influence macrophage activity during disease, and provide examples of in vitro research that indicate competition between the two cytokines in governing macrophage polarization. Gaining a greater understanding of the relationship between GM-CSF and M-CSF, along with how these cytokines fit into the larger context of diseases, will inform their use as treatments or targets for treatment in various diseases.
Collapse
Affiliation(s)
- Evan Trus
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
22
|
Karagiannis GS, Pastoriza JM, Borriello L, Jafari R, Coste A, Condeelis JS, Oktay MH, Entenberg D. Assessing Tumor Microenvironment of Metastasis Doorway-Mediated Vascular Permeability Associated with Cancer Cell Dissemination using Intravital Imaging and Fixed Tissue Analysis. J Vis Exp 2019:10.3791/59633. [PMID: 31305525 PMCID: PMC6784529 DOI: 10.3791/59633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The most common cause of cancer related mortality is metastasis, a process that requires dissemination of cancer cells from the primary tumor to secondary sites. Recently, we established that cancer cell dissemination in primary breast cancer and at metastatic sites in the lung occurs only at doorways called Tumor MicroEnvironment of Metastasis (TMEM). TMEM doorway number is prognostic for distant recurrence of metastatic disease in breast cancer patients. TMEM doorways are composed of a cancer cell which over-expresses the actin regulatory protein Mena in direct contact with a perivascular, proangiogenic macrophage which expresses high levels of TIE2 and VEGF, where both of these cells are tightly bound to a blood vessel endothelial cell. Cancer cells can intravasate through TMEM doorways due to transient vascular permeability orchestrated by the joint activity of the TMEM-associated macrophage and the TMEM-associated Mena-expressing cancer cell. In this manuscript, we describe two methods for assessment of TMEM-mediated transient vascular permeability: intravital imaging and fixed tissue immunofluorescence. Although both methods have their advantages and disadvantages, combining the two may provide the most complete analyses of TMEM-mediated vascular permeability as well as microenvironmental prerequisites for TMEM function. Since the metastatic process in breast cancer, and possibly other types of cancer, involves cancer cell dissemination via TMEM doorways, it is essential to employ well established methods for the analysis of the TMEM doorway activity. The two methods described here provide a comprehensive approach to the analysis of TMEM doorway activity, either in naïve or pharmacologically treated animals, which is of paramount importance for pre-clinical trials of agents that prevent cancer cell dissemination via TMEM.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine;
| | - Jessica M Pastoriza
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Department of Surgery, Montefiore Medical Center
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine
| | - Rojin Jafari
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Department of Surgery, Montefiore Medical Center
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine; Department of Surgery, Montefiore Medical Center;
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine; Department of Pathology, Montefiore Medical Center;
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine;
| |
Collapse
|
23
|
Laviron M, Combadière C, Boissonnas A. Tracking Monocytes and Macrophages in Tumors With Live Imaging. Front Immunol 2019; 10:1201. [PMID: 31214174 PMCID: PMC6555099 DOI: 10.3389/fimmu.2019.01201] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023] Open
Abstract
In most cancers, myeloid cells represent the major component of the immune microenvironment. Deciphering the impact of these cells on tumor growth and in response to various anti-tumor therapies is a key issue. Many studies have elucidated the role of tumor-associated monocytes and tumor-associated macrophages (TAM) in tumor development, angiogenesis, and therapeutic failure. In contrast, tumor dendritic cells (DC) are associated with tumor antigen uptake and T-cell priming. Myeloid subpopulations display differences in ontogeny, state of differentiation and distribution within the neoplastic tissue, making them difficult to study. The development of high-dimensional genomic and cytometric analyses has unveiled the large functional diversity of myeloid cells. Important fundamental insights on the biology of myeloid cells have also been provided by a boom in functional fluorescent imaging techniques, in particular for TAM. These approaches allow the tracking of cell behavior in native physiological environments, incorporating spatio-temporal dimensions in the study of their functional activity. Nevertheless, tracking myeloid cells within the TME remains a challenging process as many markers overlap between monocytes, macrophages, DC, and neutrophils. Therefore, perfect discrimination between myeloid subsets remains impossible to date. Herein we review the specific functions of myeloid cells in tumor development unveiled by image-based tracking, the limits of fluorescent reporters commonly used to accurately track specific myeloid cells, and novel combinations of myeloid-associated fluorescent reporters that better discriminate the relative contributions of these cells to tumor biology according to their origin and tissue localization.
Collapse
Affiliation(s)
- Marie Laviron
- Centre d'Immunologie et des Maladies Infectieuses CIMI, CNRS, Sorbonne Université, Inserm, Paris, France
| | - Christophe Combadière
- Centre d'Immunologie et des Maladies Infectieuses CIMI, CNRS, Sorbonne Université, Inserm, Paris, France
| | - Alexandre Boissonnas
- Centre d'Immunologie et des Maladies Infectieuses CIMI, CNRS, Sorbonne Université, Inserm, Paris, France
| |
Collapse
|
24
|
Mondini M, Loyher PL, Hamon P, Gerbé de Thoré M, Laviron M, Berthelot K, Clémenson C, Salomon BL, Combadière C, Deutsch E, Boissonnas A. CCR2-Dependent Recruitment of Tregs and Monocytes Following Radiotherapy Is Associated with TNFα-Mediated Resistance. Cancer Immunol Res 2019; 7:376-387. [PMID: 30696630 DOI: 10.1158/2326-6066.cir-18-0633] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 11/16/2022]
Abstract
Radiotherapy (RT) represents one of the main anticancer approaches for the treatment of solid tumors. Beyond the expected direct effects of RT on tumor cells, evidence supporting the importance of an immune response to RT is growing. The balance between RT-mediated immunogenic and tolerogenic activity is ill-defined and deserves more attention. Herein, a murine model of head and neck squamous cell carcinoma was used to demonstrate that RT upregulated CCL2 chemokine production in tumor cells, leading to a CCR2-dependent accumulation of tumor necrosis factor alpha (TNFα)-producing monocytes and CCR2+ regulatory T cells (Treg). This corecruitment was associated with a TNFα-dependent activation of Tregs, dampening the efficacy of RT. Our results highlight an unexpected cross-talk between innate and adaptive immune system components and indicate CCL2/CCR2 and TNFα as potential clinical candidates to counterbalance the radioprotective action of monocyte-derived cells and Tregs, paving the way for potent combined radioimmunotherapies.
Collapse
Affiliation(s)
- Michele Mondini
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France. .,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Pierre-Louis Loyher
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Pauline Hamon
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Marine Gerbé de Thoré
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marie Laviron
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Kevin Berthelot
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Céline Clémenson
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Benoit L Salomon
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Christophe Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif, France.,INSERM, U1030, Labex LERMIT, Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, DHU TORINO, Villejuif, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses Cimi-Paris, Paris, France.
| |
Collapse
|
25
|
Zhang Y, Ouyang J, Qie J, Zhang G, Liu L, Yang P. Optimization of the Gal4/UAS transgenic tools in zebrafish. Appl Microbiol Biotechnol 2019; 103:1789-1799. [PMID: 30613898 DOI: 10.1007/s00253-018-09591-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
The Gal4/UAS system provides a powerful tool to analyze the function of genes. The system has been employed extensively in zebrafish; however, cytotoxicity of Gal4 and methylation of UAS can hinder future applications of Gal4/UAS in zebrafish. In this study, we provide quantitative data on the cytotoxicity of Gal4-FF and KalTA4 in zebrafish embryos. A better balance between induction efficiency and toxicity was shown when the injection dosage was 20 pg for Gal4-FF and 30 pg for KalTA4. We tested the DNA methylation of UAS in different copies (3×, 5×, 7×, 9×, 11×, and 14×), and the results showed, for the first time, that the degree of UAS methylation increases with the increase in the copy number of UAS. We detected insertions of the Tol2-mediated transgene in the Gal4 line and found as many as three sites of insertion, on average; only about 20% of individuals contained single-site insertion in F1 generation. We suggested that the screening of Gal4 lines with single-site insertion is essential when Tol2-mediated Gal4 transgenic lines are created. Moreover, we designed a novel 5 × non-repetitive UAS (5 × nrUAS) to reduce the appeal of multicopy UAS as a target for methylation. Excitingly, the 5 × nrUAS is less prone to methylation compared to 5 × UAS. We hope the results will facilitate the future application of the Gal4/UAS system in zebrafish research.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China.
| | - Jiawei Ouyang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Jingrong Qie
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Gongyuan Zhang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Liangguo Liu
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| | - Pinhong Yang
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Changde, 415000, Hunan, People's Republic of China
| |
Collapse
|
26
|
Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E, Deng Z, Torstensson S, Bercovici N, Baudesson de Chanville C, Combadière B, Geissmann F, Savina A, Combadière C, Boissonnas A. Macrophages of distinct origins contribute to tumor development in the lung. J Exp Med 2018; 215:2536-2553. [PMID: 30201786 PMCID: PMC6170177 DOI: 10.1084/jem.20180534] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/02/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023] Open
Abstract
Tissue-resident macrophages can self-maintain without contribution of adult hematopoiesis. Herein we show that tissue-resident interstitial macrophages (Res-TAMs) in mouse lungs contribute to the pool of tumor-associated macrophages (TAMs) together with CCR2-dependent recruited macrophages (MoD-TAMs). Res-TAMs largely correlated with tumor cell growth in vivo, while MoD-TAMs accumulation was associated with enhanced tumor spreading. Both cell subsets were depleted after chemotherapy, but MoD-TAMs rapidly recovered and performed phagocytosis-mediated tumor clearance. Interestingly, anti-VEGF treatment combined with chemotherapy inhibited both Res and Mod-TAM reconstitution without affecting monocyte infiltration and improved its efficacy. Our results reveal that the developmental origin of TAMs dictates their relative distribution, function, and response to cancer therapies in lung tumors.
Collapse
Affiliation(s)
- Pierre-Louis Loyher
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France.,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pauline Hamon
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Marie Laviron
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Aïda Meghraoui-Kheddar
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Elena Goncalves
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Zihou Deng
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sara Torstensson
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Nadège Bercovici
- Inserm, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Béhazine Combadière
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ariel Savina
- Institut Roche, 30, Boulogne-Billancourt Cedex, France
| | - Christophe Combadière
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (Inserm, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CIMI, Paris, France
| |
Collapse
|
27
|
Gui P, Ben-Neji M, Belozertseva E, Dalenc F, Franchet C, Gilhodes J, Labrousse A, Bellard E, Golzio M, Poincloux R, Maridonneau-Parini I, Le Cabec V. The Protease-Dependent Mesenchymal Migration of Tumor-Associated Macrophages as a Target in Cancer Immunotherapy. Cancer Immunol Res 2018; 6:1337-1351. [DOI: 10.1158/2326-6066.cir-17-0746] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022]
|
28
|
Abstract
Airborne fungal pathogens, predominantly Aspergillus fumigatus, can cause severe respiratory tract diseases. Here we show that in environments, fungal spores can already be decorated with nanoparticles. Using representative controlled nanoparticle models, we demonstrate that various nanoparticles, but not microparticles, rapidly and stably associate with spores, without specific functionalization. Nanoparticle-spore complex formation was enhanced by small nanoparticle size rather than by material, charge, or "stealth" modifications and was concentration-dependently reduced by the formation of environmental or physiological biomolecule coronas. Assembly of nanoparticle-spore surface hybrid structures affected their pathobiology, including reduced sensitivity against defensins, uptake into phagocytes, lung cell toxicity, and TLR/cytokine-mediated inflammatory responses. Following infection of mice, nanoparticle-spore complexes were detectable in the lung and less efficiently eliminated by the pulmonary immune defense, thereby enhancing A. fumigatus infections in immunocompromised animals. Collectively, self-assembly of nanoparticle-fungal complexes affects their (patho)biological identity, which may impact human health and ecology.
Collapse
|
29
|
Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun 2018; 9:75. [PMID: 29311541 PMCID: PMC5758709 DOI: 10.1038/s41467-017-02492-2] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Tissue macrophages in many adult organs originate from yolk sac (YS) progenitors, which invade the developing embryo and persist by means of local self-renewal. However, the route and characteristics of YS macrophage trafficking during embryogenesis are incompletely understood. Here we show the early migration dynamics of YS-derived macrophage progenitors in vivo using fate mapping and intravital microscopy. From embryonic day 8.5 (E8.5) CX3CR1+ pre-macrophages are present in the mouse YS where they rapidly proliferate and gain access to the bloodstream to migrate towards the embryo. Trafficking of pre-macrophages and their progenitors from the YS to tissues peaks around E10.5, dramatically decreases towards E12.5 and is no longer evident from E14.5 onwards. Thus, YS progenitors use the vascular system during a restricted time window of embryogenesis to invade the growing fetus. These findings close an important gap in our understanding of the development of the innate immune system.
Collapse
|
30
|
Entenberg D, Voiculescu S, Guo P, Borriello L, Wang Y, Karagiannis GS, Jones J, Baccay F, Oktay M, Condeelis J. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat Methods 2017; 15:73-80. [PMID: 29176592 DOI: 10.1038/nmeth.4511] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Stable, high-resolution intravital imaging of the lung has become possible through the utilization of vacuum-stabilized imaging windows. However, this technique is extremely invasive and limited to only hours in duration. Here we describe a minimally invasive, permanently implantable window for high-resolution intravital imaging of the murine lung that allows the mouse to survive surgery, recover from anesthesia, and breathe independently. Compared to vacuum-stabilized windows, this window produces the same high-quality images without vacuum-induced artifacts; it is also less invasive, which allows imaging of the same lung tissue over a period of weeks. We further adapt the technique of microcartography for reliable relocalization of the same cells longitudinally. Using commonly employed experimental, as well as more clinically relevant, spontaneous metastasis models, we visualize all stages of metastatic seeding, including: tumor cell arrival; extravasation; growth and progression to micrometastases; as well as tumor microenvironment of metastasis function, the hallmark of hematogenous dissemination of tumor cells.
Collapse
Affiliation(s)
- David Entenberg
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx,New York, USA
| | - Sonia Voiculescu
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Peng Guo
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Analytical Imaging Facility, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Lucia Borriello
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Yarong Wang
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx,New York, USA
| | - George S Karagiannis
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx,New York, USA
| | - Joan Jones
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx,New York, USA.,Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Francis Baccay
- Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Maja Oktay
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx,New York, USA.,Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - John Condeelis
- Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx,New York, USA
| |
Collapse
|
31
|
Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ, Florido M, Beattie L, Walters SB, Tay SS, Lu B, Holz LE, Roediger B, Wong YC, Warren A, Ritchie W, McGuffog C, Weninger W, Le Couteur DG, Ginhoux F, Britton WJ, Heath WR, Saunders BM, McCaughan GW, Luciani F, MacDonald KPA, Ng LG, Bowen DG, Bertolino P. A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity 2017; 47:374-388.e6. [PMID: 28813662 DOI: 10.1016/j.immuni.2017.07.018] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 03/03/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022]
Abstract
The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.
Collapse
Affiliation(s)
- Frederic Sierro
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - Simone Rizzetto
- Systems Immunology, Viral Immunology Systems Program, the Kirby Institute, UNSW, Sydney, NSW, Australia
| | - Michelle Melino
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrew J Mitchell
- Department of Chemical & Biomolecular Engineering, Materials Characterization and Fabrication Platform, University of Melbourne, Melbourne, VIC, Australia
| | - Manuela Florido
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Shaun B Walters
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Szun Szun Tay
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Bo Lu
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia; Immunology Research Centre, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Ben Roediger
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Yik Chun Wong
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Alessandra Warren
- CERA and ANZAC Research Institute, Concord RG Hospital and University of Sydney, Sydney, NSW, Australia
| | - William Ritchie
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Claire McGuffog
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - David G Le Couteur
- CERA and ANZAC Research Institute, Concord RG Hospital and University of Sydney, Sydney, NSW, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - Warwick J Britton
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - William R Heath
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Bernadette M Saunders
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Fabio Luciani
- Systems Immunology, Viral Immunology Systems Program, the Kirby Institute, UNSW, Sydney, NSW, Australia
| | - Kelli P A MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - David G Bowen
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Patrick Bertolino
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
32
|
Entenberg D, Pastoriza JM, Oktay MH, Voiculescu S, Wang Y, Sosa MS, Aguirre-Ghiso J, Condeelis J. Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods 2017; 128:65-77. [PMID: 28911733 PMCID: PMC5659295 DOI: 10.1016/j.ymeth.2017.07.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/15/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
Pathologists rely on microscopy to diagnose disease states in tissues and organs. They utilize both high-resolution, high-magnification images to interpret the staining and morphology of individual cells, as well as low-magnification overviews to give context and location to these cells. Intravital imaging is a powerful technique for studying cells and tissues in their native, live environment and can yield sub-cellular resolution images similar to those used by pathologists. However, technical limitations prevent the straightforward acquisition of low-magnification images during intravital imaging, and they are hence not typically captured. The serial acquisition, mosaicking, and stitching together of many high-resolution, high-magnification fields of view is a technique that overcomes these limitations in fixed and ex vivo tissues. The technique however, has not to date been widely applied to intravital imaging as movements caused by the living animal induce image distortions that are difficult to compensate for computationally. To address this, we have developed techniques for the stabilization of numerous tissues, including extremely compliant tissues, that have traditionally been extremely difficult to image. We present a novel combination of these stabilization techniques with mosaicked and stitched intravital imaging, resulting in a process we call Large-Volume High-Resolution Intravital Imaging (LVHR-IVI). The techniques we present are validated and make large volume intravital imaging accessible to any lab with a multiphoton microscope.
Collapse
Affiliation(s)
- David Entenberg
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States.
| | - Jessica M Pastoriza
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H Oktay
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Sonia Voiculescu
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Yarong Wang
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maria Soledad Sosa
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julio Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John Condeelis
- Anatomy and Structural Biology, Integrated Imaging Program, Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
33
|
Abstract
Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.
Collapse
|
34
|
Suijkerbuijk SJE, van Rheenen J. From good to bad: Intravital imaging of the hijack of physiological processes by cancer cells. Dev Biol 2017; 428:328-337. [PMID: 28473106 DOI: 10.1016/j.ydbio.2017.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 12/23/2022]
Abstract
Homeostasis of tissues is tightly regulated at the cellular, tissue and organismal level. Interestingly, tumor cells have found ways to hijack many of these physiological processes at all the different levels. Here we review how intravital microscopy techniques have provided new insights into our understanding of tissue homeostasis and cancer progression. In addition, we highlight the different strategies that tumor cells have adopted to use these physiological processes for their own benefit. We describe how visualization of these dynamic processes in living mice has broadened to our view on cancer initiation and progression.
Collapse
Affiliation(s)
- Saskia J E Suijkerbuijk
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Jacco van Rheenen
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
35
|
Abstract
Multiphoton microscopy has revealed important insights into cellular behavior in vivo. However, its application in infectious settings often encounters technical, safety and regulatory limitations that prevent its wider use with highly virulent human pathogens. Herein, we present a method that renders multiphoton microscopy in vivo compatible with biosafety level 3 regulations and present an example of its application and potential to visualize a Mycobacterium tuberculosis infection of the mouse lung.
Collapse
|
36
|
CX3CR1-dependent endothelial margination modulates Ly6C high monocyte systemic deployment upon inflammation in mice. Blood 2016; 129:1296-1307. [PMID: 28011675 DOI: 10.1182/blood-2016-08-732164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
Two subsets of blood monocytes are commonly described in mice and humans: the classical inflammatory monocytes, which are rapidly mobilized upon inflammation in a CC-chemokine receptor 2-dependent manner, and the nonclassical blood resident monocyte subset that patrols the intraluminal side of the endothelium. Old reports suggest that blood monocytes are distributed into circulating and marginating pools, but no direct evidence of the latter has been obtained so far. Using a combination of in vivo real-time imaging and blood/tissue partitioning by intravascular staining of leukocytes, we showed that both inflammatory and resident monocytes are retained in the bone marrow vasculature, representing an important reservoir of marginated monocytes. Upon lipopolysaccharide or cecal ligation and puncture-induced peritonitis, these marginated cells are rapidly released and recruited to the peritoneum membrane lumen vasculature where they reside through CX3C-chemokine receptor 1 (CX3CR1)-dependent adherence. At a later time point, inflammatory monocytes infiltrate the spleen parenchyma but remain mainly intravascular in the vicinity of the lungs and the peritoneum. Our results show that this monocyte deployment is controlled by a CX3CR1-dependent balance between marginating and circulating monocytes and highlight that tissue infiltration is not a mandatory fate for inflammatory monocytes.
Collapse
|
37
|
Rodriguez-Tirado C, Kitamura T, Kato Y, Pollard JW, Condeelis JS, Entenberg D. Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. J Vis Exp 2016. [PMID: 27768066 DOI: 10.3791/54603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Metastasis to secondary sites such as the lung, liver and bone is a traumatic event with a mortality rate of approximately 90% 1. Of these sites, the lung is the most difficult to assess using intravital optical imaging due to its enclosed position within the body, delicate nature and vital role in sustaining proper physiology. While clinical modalities (positron emission tomography (PET), magnetic resonance imaging (MRI) and computed tomography (CT)) are capable of providing noninvasive images of this tissue, they lack the resolution necessary to visualize the earliest seeding events, with a single pixel consisting of nearly a thousand cells. Current models of metastatic lung seeding postulate that events just after a tumor cell's arrival are deterministic for survival and subsequent growth. This means that real-time intravital imaging tools with single cell resolution 2 are required in order to define the phenotypes of the seeding cells and test these models. While high resolution optical imaging of the lung has been performed using various ex vivo preparations, these experiments are typically single time-point assays and are susceptible to artifacts and possible erroneous conclusions due to the dramatically altered environment (temperature, profusion, cytokines, etc.) resulting from removal from the chest cavity and circulatory system 3. Recent work has shown that time-lapse intravital optical imaging of the intact lung is possible using a vacuum stabilized imaging window 2,4,5 however, typical imaging times have been limited to approximately 6 hr. Here we describe a protocol for performing long-term intravital time-lapse imaging of the lung utilizing such a window over a period of 12 hr. The time-lapse image sequences obtained using this method enable visualization and quantitation of cell-cell interactions, membrane dynamics and vascular perfusion in the lung. We further describe an image processing technique that gives an unprecedentedly clear view of the lung microvasculature.
Collapse
Affiliation(s)
| | - Takanori Kitamura
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh
| | - Yu Kato
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine; Department of Obstetrics/Gynecology and Woman's Health, Albert Einstein College of Medicine
| | - Jeffery W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine; Department of Obstetrics/Gynecology and Woman's Health, Albert Einstein College of Medicine; Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh
| | - John S Condeelis
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center Integrated Imaging Program, Albert Einstein College of Medicine
| | - David Entenberg
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center Integrated Imaging Program, Albert Einstein College of Medicine;
| |
Collapse
|
38
|
Pridans C, Davis GM, Sauter KA, Lisowski ZM, Corripio-Miyar Y, Raper A, Lefevre L, Young R, McCulloch ME, Lillico S, Milne E, Whitelaw B, Hume DA. A Csf1r-EGFP Transgene Provides a Novel Marker for Monocyte Subsets in Sheep. THE JOURNAL OF IMMUNOLOGY 2016; 197:2297-305. [PMID: 27521343 PMCID: PMC5009875 DOI: 10.4049/jimmunol.1502336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Expression of Csf1r in adults is restricted to cells of the macrophage lineage. Transgenic reporters based upon the Csf1r locus require inclusion of the highly conserved Fms-intronic regulatory element for expression. We have created Csf1r-EGFP transgenic sheep via lentiviral transgenesis of a construct containing elements of the mouse Fms-intronic regulatory element and Csf1r promoter. Committed bone marrow macrophage precursors and blood monocytes express EGFP in these animals. Sheep monocytes were divided into three populations, similar to classical, intermediate, and nonclassical monocytes in humans, based upon CD14 and CD16 expression. All expressed EGFP, with increased levels in the nonclassical subset. Because Csf1r expression coincides with the earliest commitment to the macrophage lineage, Csf1r-EGFP bone marrow provides a tool for studying the earliest events in myelopoiesis using the sheep as a model.
Collapse
Affiliation(s)
- Clare Pridans
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Gemma M Davis
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Kristin A Sauter
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Zofia M Lisowski
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | | | - Anna Raper
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Rachel Young
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Mary E McCulloch
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Simon Lillico
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - Elspeth Milne
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Bruce Whitelaw
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and
| |
Collapse
|
39
|
Harney AS, Wang Y, Condeelis JS, Entenberg D. Extended Time-lapse Intravital Imaging of Real-time Multicellular Dynamics in the Tumor Microenvironment. J Vis Exp 2016. [PMID: 27341448 DOI: 10.3791/54042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the tumor microenvironment, host stromal cells interact with tumor cells to promote tumor progression, angiogenesis, tumor cell dissemination and metastasis. Multicellular interactions in the tumor microenvironment can lead to transient events including directional tumor cell motility and vascular permeability. Quantification of tumor vascular permeability has frequently used end-point experiments to measure extravasation of vascular dyes. However, due to the transient nature of multicellular interactions and vascular permeability, the kinetics of these dynamic events cannot be discerned. By labeling cells and vasculature with injectable dyes or fluorescent proteins, high-resolution time-lapse intravital microscopy has allowed the direct, real-time visualization of transient events in the tumor microenvironment. Here we describe a method for using multiphoton microscopy to perform extended intravital imaging in live mice to directly visualize multicellular dynamics in the tumor microenvironment. This method details cellular labeling strategies, the surgical preparation of a mammary skin flap, the administration of injectable dyes or proteins by tail vein catheter and the acquisition of time-lapse images. The time-lapse sequences obtained from this method facilitate the visualization and quantitation of the kinetics of cellular events of motility and vascular permeability in the tumor microenvironment.
Collapse
Affiliation(s)
- Allison S Harney
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine; Department of Radiology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine;
| | - Yarong Wang
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine
| | - John S Condeelis
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine
| | - David Entenberg
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine; Integrated Imaging Program, Albert Einstein College of Medicine
| |
Collapse
|
40
|
McArdle S, Mikulski Z, Ley K. Live cell imaging to understand monocyte, macrophage, and dendritic cell function in atherosclerosis. J Exp Med 2016; 213:1117-31. [PMID: 27270892 PMCID: PMC4925021 DOI: 10.1084/jem.20151885] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
Ley et al. provide a review of the technology and accomplishments of dynamic imaging of myeloid cells in atherosclerosis. Intravital imaging is an invaluable tool for understanding the function of cells in healthy and diseased tissues. It provides a window into dynamic processes that cannot be studied by other techniques. This review will cover the benefits and limitations of various techniques for labeling and imaging myeloid cells, with a special focus on imaging cells in atherosclerotic arteries. Although intravital imaging is a powerful tool for understanding cell function, it alone does not provide a complete picture of the cell. Other techniques, such as flow cytometry and transcriptomics, must be combined with intravital imaging to fully understand a cell's phenotype, lineage, and function.
Collapse
Affiliation(s)
- Sara McArdle
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Zbigniew Mikulski
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| | - Klaus Ley
- Division of Inflammation Biology and Microscopy Core, La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
41
|
Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 2016; 531:513-7. [PMID: 26982733 DOI: 10.1038/nature16985] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
Abstract
Lung metastasis is the lethal determinant in many cancers and a number of lines of evidence point to monocytes and macrophages having key roles in its development. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed 'waves' of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding.
Collapse
|
42
|
Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, Oktay MH, Pollard JW, Jones JG, Condeelis JS. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov 2015; 5:932-43. [PMID: 26269515 PMCID: PMC4560669 DOI: 10.1158/2159-8290.cd-15-0012] [Citation(s) in RCA: 463] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/09/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Dissemination of tumor cells is an essential step in metastasis. Direct contact between a macrophage, mammalian-enabled (MENA)-overexpressing tumor cell, and endothelial cell [Tumor MicroEnvironment of Metastasis (TMEM)] correlates with metastasis in breast cancer patients. Here we show, using intravital high-resolution two-photon microscopy, that transient vascular permeability and tumor cell intravasation occur simultaneously and exclusively at TMEM. The hyperpermeable nature of tumor vasculature is described as spatially and temporally heterogeneous. Using real-time imaging, we observed that vascular permeability is transient, restricted to the TMEM, and required for tumor cell dissemination. VEGFA signaling from TIE2(hi) TMEM macrophages causes local loss of vascular junctions, transient vascular permeability, and tumor cell intravasation, demonstrating a role for the TMEM within the primary mammary tumor. These data provide insight into the mechanism of tumor cell intravasation and vascular permeability in breast cancer, explaining the value of TMEM density as a predictor of distant metastatic recurrence in patients. SIGNIFICANCE Tumor vasculature is abnormal with increased permeability. Here, we show that VEGFA signaling from TIE2(hi) TMEM macrophages results in local, transient vascular permeability and tumor cell intravasation. These data provide evidence for the mechanism underlying the association of TMEM with distant metastatic recurrence, offering a rationale for therapies targeting TMEM.
Collapse
Affiliation(s)
- Allison S Harney
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Department of Radiology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York.
| | - Esther N Arwert
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York. Tumour Cell Biology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York
| | - Bin-Zhi Qian
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York. Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, New York. MRC Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine, New York, New York
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York. Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, New York, New York. MRC Center for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Department of Pathology, Albert Einstein College of Medicine, New York, New York. Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, New York
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, New York. Integrated Imaging Program, Albert Einstein College of Medicine, New York, New York. Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, New York.
| |
Collapse
|
43
|
Entenberg D, Rodriguez-Tirado C, Kato Y, Kitamura T, Pollard JW, Condeelis J. In vivo subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. INTRAVITAL 2015; 4:e1086613. [PMID: 26855844 PMCID: PMC4737962 DOI: 10.1080/21659087.2015.1086613] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 10/25/2022]
Abstract
To better understand breast cancer metastatic cell seeding, we have employed multiphoton microscopy and a vacuum stabilized window which eliminates the need for complex registration software, video rate microscopy or specialized gating electronics to observe the initial steps of tumor cell seeding within the living, breathing lung. We observe that upon arrival to the lung, tumor cells are found exclusively in capillary vessels, completely fill their volume and display an initial high level of protrusive activity that dramatically reduces over time. Further, we observe a concomitant increase in positional stability during this same period. We employ several techniques accessible to most imaging labs for optimizing signal to noise and resolution which enable us to report the first direct observation, with subcellular resolution, of the arrival, proliferation, and motility of metastatic tumor cells within the lung.
Collapse
Affiliation(s)
- David Entenberg
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA
- Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine; Bronx, NY USA
- Integrated Imaging Program; Albert Einstein College of Medicine; Bronx, NY USA
| | - Carolina Rodriguez-Tirado
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
| | - Yu Kato
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
| | - Takanori Kitamura
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
- Medical Research Council Centre for Reproductive Health; Queen's Medical Research Institute; University of Edinburgh; Edinburgh, UK
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology and the Department of Obstetrics/Gynecology and Woman's Health; Albert Einstein College of Medicine; Bronx, NY, USA
- Medical Research Council Centre for Reproductive Health; Queen's Medical Research Institute; University of Edinburgh; Edinburgh, UK
| | - John Condeelis
- Department of Anatomy and Structural Biology; Albert Einstein College of Medicine; Bronx, NY USA
- Gruss Lipper Biophotonics Center; Albert Einstein College of Medicine; Bronx, NY USA
- Integrated Imaging Program; Albert Einstein College of Medicine; Bronx, NY USA
| |
Collapse
|
44
|
Rodero MP, Poupel L, Loyher PL, Hamon P, Licata F, Pessel C, Hume DA, Combadière C, Boissonnas A. Immune surveillance of the lung by migrating tissue monocytes. eLife 2015; 4:e07847. [PMID: 26167653 PMCID: PMC4521583 DOI: 10.7554/elife.07847] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022] Open
Abstract
Monocytes are phagocytic effector cells in the blood and precursors of resident and inflammatory tissue macrophages. The aim of the current study was to analyse and compare their contribution to innate immune surveillance of the lung in the steady state with macrophage and dendritic cells (DC). ECFP and EGFP transgenic reporters based upon Csf1r and Cx3cr1 distinguish monocytes from resident mononuclear phagocytes. We used these transgenes to study the migratory properties of monocytes and macrophages by functional imaging on explanted lungs. Migratory monocytes were found to be either patrolling within large vessels of the lung or locating at the interface between lung capillaries and alveoli. This spatial organisation gives to monocytes the property to capture fluorescent particles derived from both vascular and airway routes. We conclude that monocytes participate in steady-state surveillance of the lung, in a way that is complementary to resident macrophages and DC, without differentiating into macrophages. DOI:http://dx.doi.org/10.7554/eLife.07847.001 White blood cells form part of the immune system, which protects the body against infectious diseases and other harmful agents. Some of these cells, including ‘mononuclear phagocytes’, can reside within different tissues of the body, such as the lungs. Other less specialized cells, called monocytes, circulate in the bloodstream. It had long been thought that once these monocytes had taken up residence in a tissue, they could only develop into tissue-resident phagocytes. Several researchers, however, recently reported that monocytes can also reside within tissues without becoming more specialized. Nevertheless, it remained unclear what these cells did when they were in these tissues. Rodero, Poupel, Loyher et al. investigated the activities of tissue-resident monocytes found in the lungs of mice. First, mice were genetically engineered to produce fluorescent markers that meant that their monocytes could be easily distinguished from the mononuclear phagocytes in their lungs when viewed under a microscope. Rodero, Poupel, Loyher et al. then showed that the monocytes and the other mononuclear phagocytes localized to different regions of the lung. Further experiments showed that these two groups of cells also moved around the lungs in different ways. The tissue-resident monocytes surveyed both the blood vessels and airways, while the other tissue-resident mononuclear phagocytes only surveyed the airways. These findings show that lung-resident monocytes perform a different role to those found in the bloodstream. The findings also open the way to improving our understanding of what tissue-resident monocytes do in other organs, and in healthy or diseased animals. DOI:http://dx.doi.org/10.7554/eLife.07847.002
Collapse
Affiliation(s)
- Mathieu P Rodero
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| | - Lucie Poupel
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| | - Pierre-Louis Loyher
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| | - Pauline Hamon
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| | - Fabrice Licata
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| | - Charlotte Pessel
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| | - David A Hume
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, Midlothian, United Kingdom
| | - Christophe Combadière
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| | - Alexandre Boissonnas
- Centre d'Immunologie et des Maladies Infectieuses, University Pierre et Marie Curie, Sorbonne Universities, Paris, France
| |
Collapse
|
45
|
Chousterman BG, Boissonnas A, Poupel L, Baudesson de Chanville C, Adam J, Tabibzadeh N, Licata F, Lukaszewicz AC, Lombès A, Deterre P, Payen D, Combadière C. Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism. J Am Soc Nephrol 2015; 27:792-803. [PMID: 26160897 DOI: 10.1681/asn.2015010009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
Monocytes have a crucial role in both proinflammatory and anti-inflammatory phenomena occurring during sepsis. Monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2 and their cognate ligands. However, little is known about the roles of these cells and chemokines during the acute phase of inflammation in sepsis. Using intravital microscopy in a murine model of polymicrobial sepsis, we showed that inflammatory Ly6C(high) monocytes infiltrated kidneys, exhibited altered motility, and adhered strongly to the renal vascular wall in a chemokine receptor CX3CR1-dependent manner. Adoptive transfer of Cx3cr1-proficient monocyte-enriched bone marrow cells into septic Cx3cr1-depleted mice prevented kidney damage and promoted mouse survival. Modulation of CX3CR1 activation in septic mice controlled monocyte adhesion, regulated proinflammatory and anti-inflammatory cytokine expression, and was associated with the extent of kidney lesions such that the number of lesions decreased when CX3CR1 activity increased. Consistent with these results, the pro-adhesive I249 CX3CR1 allele in humans was associated with a lower incidence of AKI in patients with sepsis. These data show that inflammatory monocytes have a protective effect during sepsis via a CX3CR1-dependent adhesion mechanism. This receptor might be a new therapeutic target for kidney injury during sepsis.
Collapse
Affiliation(s)
- Benjamin G Chousterman
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France; Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| | - Lucie Poupel
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Camille Baudesson de Chanville
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Julien Adam
- Institut Gustave-Roussy, Université Paris-Sud Villejuif, France
| | - Nahid Tabibzadeh
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Service des Explorations Fonctionnelles and Institut National de la Santé et de la Recherche Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Tenon, Paris, France; and
| | - Fabrice Licata
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Anne-Claire Lukaszewicz
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Amélie Lombès
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Deterre
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Didier Payen
- Département d'Anesthésie-Réanimation-Service d'Aide Médicale Urgente (SMUR), Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM, U1160, Paris, France
| | - Christophe Combadière
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), University of Paris 06, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1135, Paris, France; Centre National de la Recherche Scientifique (CNRS), Paris, France;
| |
Collapse
|
46
|
Hume DA, Freeman TC. Transcriptomic analysis of mononuclear phagocyte differentiation and activation. Immunol Rev 2015; 262:74-84. [PMID: 25319328 DOI: 10.1111/imr.12211] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monocytes and macrophages differentiate from progenitor cells under the influence of colony-stimulating factors. Genome-scale data have enabled the identification of the sets of genes that are associated with specific functions and the mechanisms by which thousands of genes are regulated in response to pathogen challenge. In large datasets, it is possible to identify large sets of genes that are coregulated with the transcription factors that regulate them. They include macrophage-specific genes, interferon-responsive genes, early inflammatory genes, and those associated with endocytosis. Such analyses can also extract macrophage-associated signatures from large cancer tissue datasets. However, cluster analysis provides no support for a signature that distinguishes macrophages from antigen-presenting dendritic cells, nor the classification of macrophage activation states as classical versus alternative, or M1 versus M2. Although there has been a focus on a small subset of lineage-enriched transcription factors, such as PU.1, more than half of the transcription factors in the genome can be expressed in macrophage lineage cells under some state of activation, and they interact in a complex network. The network architecture is conserved across species, but many of the target genes evolve rapidly and differ between mouse and human. The data and publication deluge related to macrophage biology require the development of new analytical tools and ways of presenting information in an accessible form.
Collapse
Affiliation(s)
- David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | | |
Collapse
|
47
|
Hamon P, Rodero MP, Combadière C, Boissonnas A. Tracking mouse bone marrow monocytes in vivo. J Vis Exp 2015:e52476. [PMID: 25867540 DOI: 10.3791/52476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions.
Collapse
Affiliation(s)
- Pauline Hamon
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, U1135, CNRS, ERL 8255, Sorbonne Universités, UPMC Univ Paris 06, CR7
| | - Mathieu Paul Rodero
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, U1135, CNRS, ERL 8255, Sorbonne Universités, UPMC Univ Paris 06, CR7
| | - Christophe Combadière
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, U1135, CNRS, ERL 8255, Sorbonne Universités, UPMC Univ Paris 06, CR7
| | - Alexandre Boissonnas
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), INSERM, U1135, CNRS, ERL 8255, Sorbonne Universités, UPMC Univ Paris 06, CR7;
| |
Collapse
|
48
|
Nazareth L, Lineburg KE, Chuah MI, Tello Velasquez J, Chehrehasa F, St John JA, Ekberg JAK. Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J Comp Neurol 2015; 523:479-94. [PMID: 25312022 DOI: 10.1002/cne.23694] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/07/2022]
Abstract
During development of the primary olfactory system, axon targeting is inaccurate and axons inappropriately project within the target layer or overproject into the deeper layers of the olfactory bulb. As a consequence there is considerable apoptosis of primary olfactory neurons during embryonic and postnatal development and axons of the degraded neurons need to be removed. Olfactory ensheathing cells (OECs) are the glia of the primary olfactory nerve and are known to phagocytose axon debris in the adult and postnatal animal. However, it is unclear when phagocytosis by OECs first commences. We investigated the onset of phagocytosis by OECs in the developing mouse olfactory system by utilizing two transgenic reporter lines: OMP-ZsGreen mice which express bright green fluorescent protein in primary olfactory neurons, and S100β-DsRed mice which express red fluorescent protein in OECs. In crosses of these mice, the fate of the degraded axon debris is easily visualized. We found evidence of axon degradation at embryonic day (E)13.5. Phagocytosis of the primary olfactory axon debris by OECs was first detected at E14.5. Phagocytosis of axon debris continued into the postnatal animal during the period when there was extensive mistargeting of olfactory axons. Macrophages were often present in close proximity to OECs but they contributed only a minor role to clearing the axon debris, even after widespread degeneration of olfactory neurons by unilateral bulbectomy and methimazole treatment. These results demonstrate that from early in embryonic development OECs are the primary phagocytic cells of the primary olfactory nerve.
Collapse
Affiliation(s)
- Lynnmaria Nazareth
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, 4000, Queensland, Australia; Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Rodero MP, Licata F, Poupel L, Hamon P, Khosrotehrani K, Combadiere C, Boissonnas A. In vivo imaging reveals a pioneer wave of monocyte recruitment into mouse skin wounds. PLoS One 2014; 9:e108212. [PMID: 25272047 PMCID: PMC4182700 DOI: 10.1371/journal.pone.0108212] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/21/2014] [Indexed: 02/02/2023] Open
Abstract
The cells of the mononuclear phagocyte system are essential for the correct healing of adult skin wounds, but their specific functions remain ill-defined. The absence of granulation tissue immediately after skin injury makes it challenging to study the role of mononuclear phagocytes at the initiation of this inflammatory stage. To study their recruitment and migratory behavior within the wound bed, we developed a new model for real-time in vivo imaging of the wound, using transgenic mice that express green and cyan fluorescent proteins and specifically target monocytes. Within hours after the scalp injury, monocytes invaded the wound bed. The complete abrogation of this infiltration in monocyte-deficient CCR2−/− mice argues for the involvement of classical monocytes in this process. Monocyte infiltration unexpectedly occurred as early as neutrophil recruitment did and resulted from active release from the bloodstream toward the matrix through microhemorrhages rather than transendothelial migration. Monocytes randomly scouted around the wound bed, progressively slowed down, and stopped. Our approach identified and characterized a rapid and earlier than expected wave of monocyte infiltration and provides a novel framework for investigating the role of these cells during early stages of wound healing.
Collapse
Affiliation(s)
- Mathieu P. Rodero
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI), 91 Bd de l’hôpital, Paris, France
- INSERM, U1135, CIMI, 91 Bd de l’hôpital, Paris, France
- CNRS, ERL, CIMI, 91 Bd de l’hôpital, Paris, France
- * E-mail: (AB); (MPR)
| | - Fabrice Licata
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI), 91 Bd de l’hôpital, Paris, France
- INSERM, U1135, CIMI, 91 Bd de l’hôpital, Paris, France
- CNRS, ERL, CIMI, 91 Bd de l’hôpital, Paris, France
| | - Lucie Poupel
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI), 91 Bd de l’hôpital, Paris, France
- INSERM, U1135, CIMI, 91 Bd de l’hôpital, Paris, France
- CNRS, ERL, CIMI, 91 Bd de l’hôpital, Paris, France
| | - Pauline Hamon
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI), 91 Bd de l’hôpital, Paris, France
- INSERM, U1135, CIMI, 91 Bd de l’hôpital, Paris, France
- CNRS, ERL, CIMI, 91 Bd de l’hôpital, Paris, France
| | - Kiarash Khosrotehrani
- The University of Queensland, UQ Centre for Clinical Research, Brisbane, QLD, Australia
- The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Christophe Combadiere
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI), 91 Bd de l’hôpital, Paris, France
- INSERM, U1135, CIMI, 91 Bd de l’hôpital, Paris, France
- CNRS, ERL, CIMI, 91 Bd de l’hôpital, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI), 91 Bd de l’hôpital, Paris, France
- INSERM, U1135, CIMI, 91 Bd de l’hôpital, Paris, France
- CNRS, ERL, CIMI, 91 Bd de l’hôpital, Paris, France
- * E-mail: (AB); (MPR)
| |
Collapse
|
50
|
Sauter KA, Pridans C, Sehgal A, Bain CC, Scott C, Moffat L, Rojo R, Stutchfield BM, Davies CL, Donaldson DS, Renault K, McColl BW, Mowat AM, Serrels A, Frame MC, Mabbott NA, Hume DA. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS One 2014; 9:e105429. [PMID: 25137049 PMCID: PMC4138162 DOI: 10.1371/journal.pone.0105429] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 01/09/2023] Open
Abstract
The MacBlue transgenic mouse uses the Csf1r promoter and first intron to drive expression of gal4-VP16, which in turn drives a cointegrated gal4-responsive UAS-ECFP cassette. The Csf1r promoter region used contains a deletion of a 150 bp conserved region covering trophoblast and osteoclast-specific transcription start sites. In this study, we examined expression of the transgene in embryos and adult mice. In embryos, ECFP was expressed in the large majority of macrophages derived from the yolk sac, and as the liver became a major site of monocytopoiesis. In adults, ECFP was detected at high levels in both Ly6C+ and Ly6C- monocytes and distinguished them from Ly6C+, F4/80+, CSF1R+ immature myeloid cells in peripheral blood. ECFP was also detected in the large majority of microglia and Langerhans cells. However, expression was lost from the majority of tissue macrophages, including Kupffer cells in the liver and F4/80+ macrophages of the lung, kidney, spleen and intestine. The small numbers of positive cells isolated from the liver resembled blood monocytes. In the gut, ECFP+ cells were identified primarily as classical dendritic cells or blood monocytes in disaggregated cell preparations. Immunohistochemistry showed large numbers of ECFP+ cells in the Peyer's patch and isolated lymphoid follicles. The MacBlue transgene was used to investigate the effect of treatment with CSF1-Fc, a form of the growth factor with longer half-life and efficacy. CSF1-Fc massively expanded both the immature myeloid cell (ECFP-) and Ly6C+ monocyte populations, but had a smaller effect on Ly6C- monocytes. There were proportional increases in ECFP+ cells detected in lung and liver, consistent with monocyte infiltration, but no generation of ECFP+ Kupffer cells. In the gut, there was selective infiltration of large numbers of cells into the lamina propria and Peyer's patches. We discuss the use of the MacBlue transgene as a marker of monocyte/macrophage/dendritic cell differentiation.
Collapse
Affiliation(s)
- Kristin A. Sauter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Anuj Sehgal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Calum C. Bain
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Charlotte Scott
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lindsey Moffat
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Rocío Rojo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Ben M. Stutchfield
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Midlothian, Scotland, United Kingdom
| | - Claire L. Davies
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - David S. Donaldson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Kathleen Renault
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Barry W. McColl
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Alan M. Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Alan Serrels
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, Midlothian, Scotland, United Kingdom
| | - Margaret C. Frame
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, Midlothian, Scotland, United Kingdom
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| |
Collapse
|