1
|
Zhang Y, Duan J, Lin S, Wen J, Liao J. Single cell analysis of diverse immune cell in pneumococcal meningitis. Sci Rep 2025; 15:17795. [PMID: 40404806 PMCID: PMC12098772 DOI: 10.1038/s41598-025-02258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Streptococcus pneumoniae, a Gram-positive, human-specific commensal infectious pathogen, poses a significant global health threat, especially in children under five, often resulting in fatalities. The intricacies of the immune response in pneumococcal meningitis (PM) remain elusive, necessitating a meticulous examination of immune cell subsets at the single-cell resolution. In this study, we performed single-cell RNA sequencing of peripheral blood mononuclear cells from PM patients and healthy individuals. We found significant relative changes in the compositions of immune cell subset, with significant relative increases in platelets, neutrophils, and their precursors, alongside relative decreases in natural killer (NK) cells, T cell subtypes, and plasmacytoid dendritic cells in PM patients. Functional enrichment analyses revealed an up-regulation of neutrophils-related immune genes across multiple immune cell types, including platelets, myeloid cells and B cells, suggesting excessive neutrophil activation. However, a down-regulation of genes involved in antigen processing and presentation in myeloid cells and B cells in the PM group indicated a relative dampening of the adaptive immune response in the PM patients. This was further corroborated by the reduced proportions of plasmacytoid dendritic cells and T cells. Furthermore, genes involved in cytotoxity were down-regulated in both NK cells and T cells, alongside impaired T cell activation. Notably, distinct B cell subtypes, including unique naïve B cell clusters, demonstrated differentially expressed genes associated with both innate and adaptive immune responses. In conclusion, our study provides a comprehensive single-cell transcriptomic landscape of immune responses in PM. The identified cellular and molecular signatures offer potential targets for therapeutic intervention and provide a foundation for further investigation into the immunopathogenesis of pneumococcal meningitis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Jing Duan
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Sufang Lin
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, No. 7019 Yitian Road, Futian District, Shenzhen, China.
| |
Collapse
|
2
|
Wang Z, Jiao Y, Diao W, Shi T, Geng Q, Wen C, Xu J, Deng T, Li X, Zhao L, Gu J, Deng T, Xiao C. Neutrophils: a Central Point of Interaction Between Immune Cells and Nonimmune Cells in Rheumatoid Arthritis. Clin Rev Allergy Immunol 2025; 68:34. [PMID: 40148714 DOI: 10.1007/s12016-025-09044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease involving activation of the immune system and the infiltration of immune cells. As the first immune cells to reach the site of inflammation, neutrophils perform their biological functions by releasing many active substances and forming neutrophil extracellular traps (NETs). The overactivated neutrophils in patients with RA not only directly damage tissues but also, more importantly, interact with various other immune cells and broadly activate innate and adaptive immunity, leading to irreversible joint damage. However, owing to the pivotal role and complex influence of neutrophils in maintaining homoeostasis, the treatment of RA by targeting neutrophils is very difficult. Therefore, a comprehensive understanding of the interaction pathways between neutrophils and various other immune cells is crucial for the development of neutrophils as a new therapeutic target for RA. In this study, the important role of neutrophils in the pathogenesis of RA through their crosstalk with various other immune cells and nonimmune cells is highlighted. The potential of epigenetic modification of neutrophils for exploring the pathogenesis of RA and developing therapeutic approaches is also discussed. In addition, several models for studying cell‒cell interactions are summarized to support further studies of neutrophils in the context of RA.
Collapse
Affiliation(s)
- Zhaoran Wang
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yi Jiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenya Diao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tong Shi
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Qishun Geng
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chaoying Wen
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jiahe Xu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Tiantian Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100193, China
| | - Lu Zhao
- China-Japan Friendship Clinical Medical College, Capital Medical University, Beijing, 100029, China
| | - Jienan Gu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Cheng Xiao
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China.
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Zhu M, Jia R, Zhang X, Xu P. The success of the tumor immunotherapy: neutrophils from bench to beside. Front Immunol 2025; 16:1524038. [PMID: 39925807 PMCID: PMC11802522 DOI: 10.3389/fimmu.2025.1524038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025] Open
Abstract
The present immune therapy was focused on the immune checkpoint blockade or Chimeric Antigen Receptor T-Cell Immunotherapy (CART) transfer, but how to activate the innate immune system to antitumor still lags out. Neutrophils are the most abundant circulating leukocytes in human, and heterogeneous neutrophils have been increasingly recognized as important players in tumor progression. They play double "edge-sward" by either supporting or suppressing the tumor growth, including driving angiogenesis, extracellular matrix remodeling to promote tumor growth, participating in antitumor adaptive immunity, or killing tumor cells directly to inhibit the tumor growth. The complex role of neutrophils in various tumors depends on the tumor microenvironment (TME) they are located, and emerging evidence has suggested that neutrophils may determine the success of tumor immunotherapy in the context of the immune checkpoint blockade, innate immune training, or drug-loaded extracellular microvesicles therapy, which makes them become an exciting target for tumor immunotherapy, but still with challenges. Here, we summarize the latest insights on how to activate neutrophils in antitumor immunity and discuss the advances of neutrophil-targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Meng Zhu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ru Jia
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaojie Zhang
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingwei Xu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Yao J, Ji L, Wang G, Ding J. Effect of neutrophils on tumor immunity and immunotherapy resistance with underlying mechanisms. Cancer Commun (Lond) 2025; 45:15-42. [PMID: 39485719 PMCID: PMC11758154 DOI: 10.1002/cac2.12613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024] Open
Abstract
Neutrophils are key mediators of the immune response and play essential roles in the development of tumors and immune evasion. Emerging studies indicate that neutrophils also play a critical role in the immunotherapy resistance in cancer. In this review, firstly, we summarize the novel classification and phenotypes of neutrophils and describe the regulatory relationships between neutrophils and tumor metabolism, flora microecology, neuroendocrine and tumor therapy from a new perspective. Secondly, we review the mechanisms by which neutrophils affect drug resistance in tumor immunotherapy from the aspects of the immune microenvironment, tumor antigens, and epigenetics. Finally, we propose several promising strategies for overcoming tumor immunotherapy resistance by targeting neutrophils and provide new research ideas in this area.
Collapse
Affiliation(s)
- Jiali Yao
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Linlin Ji
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Guang Wang
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| | - Jin Ding
- Clinical Cancer InstituteCenter for Translational MedicineNaval Medical UniversityShanghaiChina
| |
Collapse
|
6
|
Balazs I, Horvath A, Heschl B, Khalil M, Enzinger C, Stadlbauer V, Seifert-Held T. Anti-CD20 treatment and neutrophil function in central nervous system demyelinating diseases. J Neuroimmunol 2023; 381:578136. [PMID: 37364519 DOI: 10.1016/j.jneuroim.2023.578136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION A contribution of neutrophil granulocytes to the pathogenesis of multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) is recognized. Anti-CD20 treatments applied in these diseases are associated with infectious complications and neutropenia. No data is available about functional characteristics of neutrophils obtained from patients with anti-CD20 treatments. METHODS In neutrophils isolated from 13 patients with anti-CD20 treatment (9 MS, 4 NMOSD), 11 patients without anti-CD20 treatment (9 MS, 2 NMOSD) and 5 healthy controls, we analyzed chemotaxis, production of reactive oxygen species (ROS), phagocytosis, and formation of neutrophil extracellular traps (NET) in vitro. RESULTS Chemotaxis and ROS production were found unchanged between patients with and without anti-CD20 treatment or between patients and healthy controls. We found a higher proportion of non-phagocytosing cells in patients without anti-CD20 treatment compared to patients with anti-CD20 treatment and healthy controls. As compared to healthy controls, a higher proportion of neutrophils from patients without anti-CD20 treatments underwent NET formation, either unstimulated or stimulated with phorbol 12-myristate 3-acetate for 3 h. In about half of patients with anti-CD20 treatment (n = 7), NET formation of unstimulated neutrophils occurred already within 20 min of incubation. This was not observed in patients without anti-CD20 treatment and healthy controls. CONCLUSION Anti-CD20 treatment in MS and NMOSD patients does not alter chemotaxis and ROS production of neutrophils in vitro but might restore their impaired phagocytosis in these diseases. Our study reveals a predisposition to early NET formation in vitro of neutrophils obtained from patients with anti-CD20 treatment. This may contribute to associated risks of neutropenia and infections.
Collapse
Affiliation(s)
- Irina Balazs
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Bettina Heschl
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria; Center for Biomarker Research in Medicine, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Thomas Seifert-Held
- Department of Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036 Graz, Austria; Department of Neurology, Hospital Murtal, Gaaler Strasse 10, 8720 Knittelfeld, Austria.
| |
Collapse
|
7
|
Nandiwada SL. Overview of human B-cell development and antibody deficiencies. J Immunol Methods 2023:113485. [PMID: 37150477 DOI: 10.1016/j.jim.2023.113485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
B cells are a key component of the humoral (antibody-mediated) immune response which is responsible for defense against a variety of pathogens. Here we provide an overview of the current understanding of B cell development and function and briefly describe inborn errors of immunity associated with B cell development defects which can manifest as immune deficiency, malignancy, autoimmunity, or allergy. The knowledge and application of B cell biology are essential for laboratory evaluation and clinical assessment of these B cell disorders.
Collapse
Affiliation(s)
- Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
8
|
Loos C, Coccia M, Didierlaurent AM, Essaghir A, Fallon JK, Lauffenburger D, Luedemann C, Michell A, van der Most R, Zhu AL, Alter G, Burny W. Systems serology-based comparison of antibody effector functions induced by adjuvanted vaccines to guide vaccine design. NPJ Vaccines 2023; 8:34. [PMID: 36890168 PMCID: PMC9992919 DOI: 10.1038/s41541-023-00613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023] Open
Abstract
The mechanisms by which antibodies confer protection vary across vaccines, ranging from simple neutralization to functions requiring innate immune recruitment via Fc-dependent mechanisms. The role of adjuvants in shaping the maturation of antibody-effector functions remains under investigated. Using systems serology, we compared adjuvants in licensed vaccines (AS01B/AS01E/AS03/AS04/Alum) combined with a model antigen. Antigen-naive adults received two adjuvanted immunizations followed by late revaccination with fractional-dosed non-adjuvanted antigen ( NCT00805389 ). A dichotomy in response quantities/qualities emerged post-dose 2 between AS01B/AS01E/AS03 and AS04/Alum, based on four features related to immunoglobulin titers or Fc-effector functions. AS01B/E and AS03 induced similar robust responses that were boosted upon revaccination, suggesting that memory B-cell programming by the adjuvanted vaccinations dictated responses post non-adjuvanted boost. AS04 and Alum induced weaker responses, that were dissimilar with enhanced functionalities for AS04. Distinct adjuvant classes can be leveraged to tune antibody-effector functions, where selective vaccine formulation using adjuvants with different immunological properties may direct antigen-specific antibody functions.
Collapse
Affiliation(s)
- Carolin Loos
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Arnaud M Didierlaurent
- GSK, Rixensart, Belgium.,Center of Vaccinology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | - Ashlin Michell
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Alex Lee Zhu
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Virology and Immunology Program, University of Duisburg-Essen, Essen, Germany
| | - Galit Alter
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | |
Collapse
|
9
|
Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep. Vet Sci 2022; 9:vetsci9120651. [PMID: 36548812 PMCID: PMC9785335 DOI: 10.3390/vetsci9120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
In Italy, dairy sheep farming represents a vital agro-industry sector, but it is still challenged by contagious agalactia (CA), which is endemic there, and vaccination is the most economical and sustainable tool for control. This study aimed to evaluate the combined Mycoplasma agalactiae (Ma)-Staphylococcus aureus (Sa) vaccine (Ma-Sa) against the Ma monovalent vaccine in ewes. Twelve primiparous Ma-free ewes were randomly grouped into three equal groups: first, the control group injected with placebo, second, the group vaccinated with the Ma monovalent vaccine, and third, the group vaccinated with Ma-Sa combined vaccine, with two S/C doses at 45-day intervals. The animals were examined for serological, hematological, and somatic cell count (SCC) changes for 17 successive weeks. A significant increase in anti-Ma antibody mean titers, leukocytes, and platelets was observed in the vaccinated animals, with the highest values in those who received the combined vaccine. Neutrophils were high only in the animals who received the combined vaccine. SCC was lower in the vaccinated animals during the first six weeks. This study concludes that the combined Ma-Sa vaccines enhance immune response and potentiate its efficacy against Ma. This improvement might be attributed to the sensitization/activation effect of S. aureus on platelets, which are recoded to act as a key regulator for the coordination of all components of the innate immune system. Even though this study included a small number of animals, its findings about the potentialities of this inactivated vaccine in the control of CA are strongly encouraging. Further confirmation might be needed through additional replicates and a challenge study is needed before proceeding with widespread use.
Collapse
|
10
|
Neutrophils recruited to immunization sites initiating vaccine-induced antibody responses by locally expressing BAFF. iScience 2022; 25:104453. [PMID: 35874922 PMCID: PMC9301880 DOI: 10.1016/j.isci.2022.104453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Neutrophils played a key role in the innate immune responses. Less is known about whether and how the neutrophils recruited in the immunization sites affecting the vaccine-induced antibody responses. In the process of evaluating the efficacy of an oil-in-water emulsion-formulated vaccine in mice, we found that neutrophils were rapidly and massively recruited to immunization sites but were barely detected in the draining lymph nodes. Interestingly, B cell-activating factor (BAFF) was abundantly expressed in the recruiting neutrophils at a very early stage. The initial neutrophil-derived BAFF firstly brought about the B cell responses in the local part, then subsequently in lymphoid organs. Activated B cells produced more BAFF through TLR9-IRF5 signaling pathway, thereby amplifying the vaccine-induced antibody responses. Suppressing BAFF in the neutrophils could weaken the B cell activation and reduce the antibody production. The data indicate that vaccines endow neutrophils with the potential to orchestrate antibody responses at immunization sites. Neutrophils at immunization sites influencing subsequent immune responses Neutrophil-driven BAFF at immunization sites assisting B cell responses to vaccines Activated B cells produce more BAFF through TLR9-IRF5 signaling pathway BAFF-producing neutrophils orchestrate antibody responses at immunization sites
Collapse
|
11
|
D'Amico E, Zanghì A, Parrinello NL, Romano A, Palumbo GA, Chisari CG, Toscano S, Raimondo FD, Zappia M, Patti F. Immunological Subsets Characterization in Newly Diagnosed Relapsing-Remitting Multiple Sclerosis. Front Immunol 2022; 13:819136. [PMID: 35273601 PMCID: PMC8902351 DOI: 10.3389/fimmu.2022.819136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Using flow cytometry, we characterized myeloid, B, and T cells in patients recently diagnosed with relapsing–remitting multiple sclerosis (RRMS) naive to disease-modifying therapies (DMTs). Methods This prospective case–control study was conducted in the tertiary MS center of Catania, Italy. Demographic/clinical data and peripheral bloods were collected from 52 naive patients recently diagnosed with RRMS and sex/age-matched healthy controls (HCs) in a 2:1 ratio. We performed flow cytometry on isolated peripheral blood mononuclear cells to assess immune cell subsets differences between RMMS patients and HCs. We explored the biomarker potential of cell subsets using receiver operating characteristic (ROC) curves and relative area under the curve (AUC) analyses. Results Monocytic myeloid-derived suppressor cells (Mo-MDSCs CD14+/HLADR−/low) and inflammatory monocytes (CD14+CD16+) displayed higher frequencies in RRMS patients when compared with HCs (p <.05). A lower percentage of B-unswitched memory cells was observed in RRMS patients when compared with HCs (p = .026). T cells had a higher frequency of T-helper CD4+ cells and their subset, CD4+CD161+, in RRMS patients when compared with HCs (p <.001). ROC analyses revealed an AUC >70% for Mo-MDSCs CD14+/HLADR−/low and inflammatory CD14+CD16+, T-helper CD3+CD4+, and T-helper CD4+CD161+. Conclusions Patients with a recent RRMS diagnosis and naive to DMTs, showed peculiar myeloid, B-, and T-cell immunophenotypes.
Collapse
Affiliation(s)
- Emanuele D'Amico
- Department "G.F. Ingrassia", University of Catania, Catania, Italy.,Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Aurora Zanghì
- Department "G.F. Ingrassia", University of Catania, Catania, Italy.,Medicine Department, Neurology Unit, Sant'Elia Hospital, Caltanisetta, Italy
| | | | - Alessandra Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | | | | | - Simona Toscano
- Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Mario Zappia
- Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Francesco Patti
- Department "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
12
|
Abstract
For the past decade, the role and importance of neutrophils in cancer is being increasingly appreciated. Research has focused on the ability of cancer-related neutrophils to either support tumor growth or interfere with it, showing diverse mechanisms through which the effects of neutrophils take place. In contrast to the historic view of neutrophils as terminally differentiated cells, mounting evidence has demonstrated that neutrophils are a plastic and diverse population of cells. These dynamic and plastic abilities allow them to perform varied and sometimes opposite functions simultaneously. In this review, we summarize and detail clinical and experimental evidence for, and underlying mechanisms of, the dual impact of neutrophils' functions, both supporting and inhibiting cancer development. We first discuss the effects of various basic functions of neutrophils, namely direct cytotoxicity, secretion of reactive oxygen species (ROS), nitric oxide (NO) and proteases, NETosis, autophagy and modulation of other immune cells, on tumor growth and metastatic progression. We then describe the clinical evidence for pro- vs anti-tumor functions of neutrophils in human cancer. We believe and show that the "net" impact of neutrophils in cancer is the sum of a complex balance between contradicting effects which occur simultaneously.
Collapse
|
13
|
Márquez-Coello M, Ruiz-Sánchez C, Martín-Aspas A, Fernández Gutiérrez Del Álamo C, Illanes-Álvarez F, Cuesta-Sancho S, Girón-González JA. Neutrophil Expression of T and B Immunomodulatory Molecules in HIV Infection. Front Immunol 2021; 12:670966. [PMID: 34975826 PMCID: PMC8718872 DOI: 10.3389/fimmu.2021.670966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023] Open
Abstract
ObjectiveEvaluate the expression of B and T cell immunomodulatory molecules in polymorphonuclear neutrophils (PMN) in HIV-infected patients.MethodsHIV load, bacterial translocation and neutrophils’ expression of T [programmed death ligand, interleukin-10+, arginase 1+] and B [BAFF, APRIL] molecules were analyzed in different cohorts and time points: a control group of 25 healthy individuals and two groups of HIV-infected patients. Group 1 of patients included 35 untreated patients, studied at baseline and after antiretroviral therapy (ART). Group 2 was composed of 25 patients with undetectable viral load after a median of 101 months of ART prior to inclusion in the study.ResultsCompared with the control group, group 1 patients showed increased bacterial translocation and their PMN had a significantly higher expression of T and B-cell immunomodulatory molecules, both at baseline and after 12 months of ART. Group 2 patients showed reduced bacterial translocation levels when compared with group 1 patients after 12 months of treatment. PMN expression of B-cell modulators was similar between group 2 patients and healthy controls, although the expression of T-cell modulators remained increased.ConclusionIn HIV-infected patients, the expression of B-cell stimulatory and T-cell suppressive molecules by neutrophils was increased at baseline and after a limited time of therapy. After a prolonged period of ART, only PMNs expression of T-cell immunosuppressive molecules remained elevated.
Collapse
Affiliation(s)
- Mercedes Márquez-Coello
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Cristina Ruiz-Sánchez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Andrés Martín-Aspas
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Clotilde Fernández Gutiérrez Del Álamo
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
- Servicio de Microbiología, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Francisco Illanes-Álvarez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Sara Cuesta-Sancho
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - José-Antonio Girón-González
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta del Mar, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
- *Correspondence: José-Antonio Girón-González,
| |
Collapse
|
14
|
Mun Y, Hwang JS, Shin YJ. Role of Neutrophils on the Ocular Surface. Int J Mol Sci 2021; 22:10386. [PMID: 34638724 PMCID: PMC8508808 DOI: 10.3390/ijms221910386] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
The ocular surface is a gateway that contacts the outside and receives stimulation from the outside. The corneal innate immune system is composed of many types of cells, including epithelial cells, fibroblasts, natural killer cells, macrophages, neutrophils, dendritic cells, mast cells, basophils, eosinophils, mucin, and lysozyme. Neutrophil infiltration and degranulation occur on the ocular surface. Degranulation, neutrophil extracellular traps formation, called NETosis, and autophagy in neutrophils are involved in the pathogenesis of ocular surface diseases. It is necessary to understand the role of neutrophils on the ocular surface. Furthermore, there is a need for research on therapeutic agents targeting neutrophils and neutrophil extracellular trap formation for ocular surface diseases.
Collapse
Affiliation(s)
- Yongseok Mun
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea; (Y.M.); (J.S.H.)
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Korea
| |
Collapse
|
15
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
16
|
Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol 2021; 14:815-827. [PMID: 33758367 PMCID: PMC7985581 DOI: 10.1038/s41385-021-00397-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023]
Abstract
Viral respiratory infections are a common cause of severe disease, especially in infants, people who are immunocompromised, and in the elderly. Neutrophils, an important innate immune cell, infiltrate the lungs rapidly after an inflammatory insult. The most well-characterized effector mechanisms by which neutrophils contribute to host defense are largely extracellular and the involvement of neutrophils in protection from numerous bacterial and fungal infections is well established. However, the role of neutrophils in responses to viruses, which replicate intracellularly, has been less studied. It remains unclear whether and, by which underlying immunological mechanisms, neutrophils contribute to viral control or confer protection against an intracellular pathogen. Furthermore, neutrophils need to be tightly regulated to avoid bystander damage to host tissues. This is especially relevant in the lung where damage to delicate alveolar structures can compromise gas exchange with life-threatening consequences. It is inherently less clear how neutrophils can contribute to host immunity to viruses without causing immunopathology and/or exacerbating disease severity. In this review, we summarize and discuss the current understanding of how neutrophils in the lung direct immune responses to viruses, control viral replication and spread, and cause pathology during respiratory viral infections.
Collapse
Affiliation(s)
- Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
17
|
Meng L, Tang Q, Zhao J, Wang Z, Wei L, Wei Q, Yin L, Luo S, Song J. S100A9 Derived From Myeloma Associated Myeloid Cells Promotes TNFSF13B/TNFRSF13B-Dependent Proliferation and Survival of Myeloma Cells. Front Oncol 2021; 11:691705. [PMID: 34150664 PMCID: PMC8210673 DOI: 10.3389/fonc.2021.691705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Multiple myeloma (MM) is a lethal hematological malignancy characterized by abundant myeloid cells in the microenvironment that fuel tumor progression. But the mechanism by which myeloid cells support myeloma cells has not been fully explored. We aimed to examine their effect on bone marrow cells of MM patients by scRNA-seq transcriptome analysis and reveal a high-resolution gene profile of myeloma cells and myeloma-associated myeloid cells. Based on correlation analysis of integrated scRNA-seq and bulk RNA-seq datasets from patients, we confirmed that myeloid-derived S100A9 was involved in TNFSF13B-dependent myeloma cell proliferation and survival. In the animal experiments, S100A9 was found to be critical for MM cell proliferation and survival via TNFSF13B production by myeloid cells, neutrophils, and macrophages. In-vitro analysis of patient primary myeloma cells further demonstrated that enhanced TNFSF13B signaling triggered the canonical NF-κB pathway to boost tumor cell proliferation. All these results suggest that myeloid-derived S100A9 is required for TNFSF13B/TNFRSF13B-dependent cell-fate specification, which provides fresh insights into MM progression.
Collapse
Affiliation(s)
- Lingzhang Meng
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Qiang Tang
- Department of Burn Plastic and Wound Repair Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zechen Wang
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Liuzhi Wei
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China.,College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Qiuju Wei
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China.,College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Lianfei Yin
- School of Imaging, Youjiang Medical University for Nationalities, Baise, China
| | - Shiguan Luo
- Department of Cardiovascular Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Song
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
18
|
Walkowski W, Bassett J, Bhalla M, Pfeifer BA, Ghanem ENB. Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines (Basel) 2021; 9:vaccines9060589. [PMID: 34199398 PMCID: PMC8230341 DOI: 10.3390/vaccines9060589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
This mini-review will cover recent trends in intranasal (IN) vaccine delivery as it relates to applications for respiratory tract diseases. The logic and rationale for IN vaccine delivery will be compared to methods and applications accompanying this particular administration route. In addition, we will focus extended discussion on the potential role of IN vaccination in the context of respiratory tract diseases, with a special emphasis on pneumococcal disease. Here, elements of this disease, including its prevalence and impact upon the elderly population, will be viewed from the standpoint of improving health outcomes through vaccine design and delivery technology and how IN administration can play a role in such efforts.
Collapse
Affiliation(s)
- William Walkowski
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Correspondence:
| |
Collapse
|
19
|
Harris DA, Subramaniam R, Brenner T, Tavakkoli A, Sheu EG. Weight and organ specific immune cell profiling of sleeve gastrectomy in mice. Metabolism 2021; 118:154729. [PMID: 33607195 DOI: 10.1016/j.metabol.2021.154729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Sleeve gastrectomy (SG) has profound, immediate weight-loss independent effects on obesity related diabetes (T2D). Our prior studies have shown that immunologic remodeling may play a part in this metabolic improvement. However, to date, little is known about how the major immune cell populations change following SG and whether these are weight loss dependent. METHODS Using mass cytometry with time of flight analysis (CyTOF), we broadly quantified the organ-specific immune cell repertoire induced by SG from splenic, jejunal, ileal, colonic, and hepatic lymphocyte fractions. Surgeries were performed in both diet-induced obese (DIO), insulin resistant mice and lean mice, which leads to sustained and non-sustained weight loss in SG animals compared to shams, respectively. Intergroup comparisons allow understanding of the relative contribution of diet, weight-loss, and surgery on immune profiling. Conserved immune changes represent surgery-specific, weight-independent, and diet-independent phenotypic changes. RESULTS Initial analysis by way of visualization of t-distributed stochastic neighbor embedding analysis revealed changes in the B cell compartment following SG in both DIO and lean mice compared to Sham animals. In depth, traditional gating showed a shift within the splenic B cell compartment toward innate-like phenotype. There was a 1.3-fold reduction in follicular B cells within DIO SG (14% absolute reduction; p = 0.009) and lean SG (15% absolute reduction; p = 0.031) animals with a significant increase in innate-like B cell subsets in DIO SG mice(2.2 to 4.3-fold increase; p < 0.05). There was a similar trend toward increased innate B cell subsets in lean SG mice. There was a concomitant increase in multiple circulating immunoglobulin classes in both models. Further, lean (p = 0.009) and DIO SG animals (p = 0.015) had a conserved 5.5-fold and 5.7-fold increase, respectively, in splenic neutrophils and tendency toward M2 macrophage polarization. CONCLUSIONS SG induces surgery-specific, weight-loss independent immune cells changes that have been previously linked to improved glucose metabolism. This immune phenotype may be a major contributor to post SG physiology. Characterizing the complex immune milieu following SG is an important step toward understanding the physiology of SG and the potential therapies therein.
Collapse
Affiliation(s)
- David A Harris
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 75 Francis Street, Boston, MA 02115, United States of America.
| | - Renuka Subramaniam
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 75 Francis Street, Boston, MA 02115, United States of America.
| | - Todd Brenner
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 75 Francis Street, Boston, MA 02115, United States of America
| | - Ali Tavakkoli
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 75 Francis Street, Boston, MA 02115, United States of America.
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 75 Francis Street, Boston, MA 02115, United States of America.
| |
Collapse
|
20
|
Papillion A, Ballesteros-Tato A. The Potential of Harnessing IL-2-Mediated Immunosuppression to Prevent Pathogenic B Cell Responses. Front Immunol 2021; 12:667342. [PMID: 33986755 PMCID: PMC8112607 DOI: 10.3389/fimmu.2021.667342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
Immunosuppressive drugs can partially control Antibody (Ab)-dependent pathology. However, these therapeutic regimens must be maintained for the patient's lifetime, which is often associated with severe side effects. As research advances, our understanding of the cellular and molecular mechanisms underlying the development and maintenance of auto-reactive B cell responses has significantly advanced. As a result, novel immunotherapies aimed to restore immune tolerance and prevent disease progression in autoimmune patients are underway. In this regard, encouraging results from clinical and preclinical studies demonstrate that subcutaneous administration of low-doses of recombinant Interleukin-2 (r-IL2) has potent immunosuppressive effects in patients with autoimmune pathologies. Although the exact mechanism by which IL-2 induces immunosuppression remains unclear, the clinical benefits of the current IL-2-based immunotherapies are attributed to its effect on bolstering T regulatory (Treg) cells, which are known to suppress overactive immune responses. In addition to Tregs, however, rIL-2 also directly prevent the T follicular helper cells (Tfh), T helper 17 cells (Th17), and Double Negative (DN) T cell responses, which play critical roles in the development of autoimmune disorders and have the ability to help pathogenic B cells. Here we discuss the broader effects of rIL-2 immunotherapy and the potential of combining rIL-2 with other cytokine-based therapies to more efficiently target Tfh cells, Th17, and DN T cells and subsequently inhibit auto-antibody (ab) production in autoimmune patients.
Collapse
Affiliation(s)
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
The dangers of déjà vu: memory B cells as the cells of origin of ABC-DLBCLs. Blood 2021; 136:2263-2274. [PMID: 32932517 DOI: 10.1182/blood.2020005857] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Activated B-cell (ABC)-diffuse large B-cell lymphomas (DLBCLs) are clinically aggressive and phenotypically complex malignancies, whose transformation mechanisms remain unclear. Partially differentiated antigen-secreting cells (plasmablasts) have long been regarded as cells-of-origin for these tumors, despite lack of definitive experimental evidence. Recent DLBCL reclassification based on mutational landscapes identified MCD/C5 tumors as specific ABC-DLBCLs with unfavorable clinical outcome, activating mutations in the signaling adaptors MYD88 and CD79B, and immune evasion through mutation of antigen-presenting genes. MCD/C5s manifest prominent extranodal dissemination and similarities with primary extranodal lymphomas (PENLs). In this regard, recent studies on TBL1XR1, a gene recurrently mutated in MCD/C5s and PENLs, suggest that aberrant memory B cells (MBs), and not plasmablasts, are the true cells-of-origin for these tumors. Moreover, transcriptional and phenotypic profiling suggests that MCD/C5s, as a class, represent bona fide MB tumors. Based on emerging findings we propose herein a generalized stepwise model for MCD/C5 and PENLs pathogenesis, whereby acquisition of founder mutations in activated B cells favors the development of aberrant MBs prone to avoid plasmacytic differentiation on recall and undergo systemic dissemination. Cyclic reactivation of these MBs through persistent antigen exposure favors their clonal expansion and accumulation of mutations, which further facilitate their activation. As a result, MB-like clonal precursors become trapped in an oscillatory state of semipermanent activation and phenotypic sway that facilitates ulterior transformation and accounts for the extranodal clinical presentation and biology of these tumors. In addition, we discuss diagnostic and therapeutic implications of a MB cell-of-origin for these lymphomas.
Collapse
|
22
|
Tchalla EYI, Bhalla M, Wohlfert EA, Bou Ghanem EN. Neutrophils Are Required During Immunization With the Pneumococcal Conjugate Vaccine for Protective Antibody Responses and Host Defense Against Infection. J Infect Dis 2021; 222:1363-1370. [PMID: 32391562 DOI: 10.1093/infdis/jiaa242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Neutrophils can shape adaptive immunity; however, their role in vaccine-induced protection against infections in vivo remains unclear. Here, we tested their role in the clinically relevant polysaccharide conjugate vaccine against Streptococcus pneumoniae (pneumococcus). We antibody depleted neutrophils during vaccination, allowed them to recover, and 4 weeks later challenged mice with pneumococci. We found that while isotype-treated vaccinated controls were protected against an otherwise lethal infection in naive mice, full protection was lost upon neutrophil depletion. Compared to vaccinated controls, neutrophil-depleted mice had higher lung bacterial burdens, increased incidence of bacteremia, and lower survival rates. Sera from neutrophil-depleted mice had less antipneumococcal IgG2c and IgG3, were less efficient at inducing opsonophagocytic killing of bacteria by neutrophils in vitro, and were worse at protecting naive mice against pneumococcal pneumonia. In summary, neutrophils are required during vaccination for optimal host protection, which has important implications for future vaccine design against pneumococci and other pathogens.
Collapse
Affiliation(s)
- Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Elizabeth A Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
23
|
Williams TL, Rada B, Tandon E, Gestal MC. "NETs and EETs, a Whole Web of Mess". Microorganisms 2020; 8:E1925. [PMID: 33291570 PMCID: PMC7761834 DOI: 10.3390/microorganisms8121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils and eosinophils are granulocytes that have very distinct functions. Neutrophils are first responders to external threats, and they use different mechanisms to control pathogens. Phagocytosis, reactive oxygen species, and neutrophil extracellular traps (NETs) are some of the mechanisms that neutrophils utilize to fight pathogens. Although there is some controversy as to whether NETs are in fact beneficial or detrimental to the host, it mainly depends on the biological context. NETs can contribute to disease pathogenesis in certain types of diseases, while they are also undeniably critical components of the innate immune response. On the contrary, the role of eosinophils during host immune responses remains to be better elucidated. Eosinophils play an important role during helminthic infections and allergic responses. Eosinophils can function as effector cells in viral respiratory infections, gut bacterial infections, and as modulators of immune responses by driving the balance between Th1 and Th2 responses. In particular, eosinophils have biological activities that appear to be quite similar to those of neutrophils. Both possess bactericidal activity, can activate proinflammatory responses, can modulate adaptive immune responses, can form extracellular traps, and can be beneficial or detrimental to the host according to the underlying pathology. In this review we compare these two cell types with a focus on highlighting their numerous similarities related to extracellular traps.
Collapse
Affiliation(s)
- Tyler L. Williams
- Department of Microbiology and Immunology, Louisiana State University (LSU), Health Science Center, Shreveport, LA 71103, USA; (T.L.W.); (E.T.)
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens, GA 30302, USA;
| | - Eshaan Tandon
- Department of Microbiology and Immunology, Louisiana State University (LSU), Health Science Center, Shreveport, LA 71103, USA; (T.L.W.); (E.T.)
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University (LSU), Health Science Center, Shreveport, LA 71103, USA; (T.L.W.); (E.T.)
| |
Collapse
|
24
|
Persistent Activation of Innate Immunity in Patients with Primary Antibody Deficiencies. J Immunol Res 2020; 2020:8317671. [PMID: 33274244 PMCID: PMC7695510 DOI: 10.1155/2020/8317671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/03/2022] Open
Abstract
Primary antibody deficiencies (PAD) represent a heterogeneous group of disorders, with common variable immunodeficiency being the most common with clinical significance. The main phenotypic defect resides in the inability of B cells to produce antibodies, and the cornerstone of therapy is immunoglobulin replacement treatment in order to fight infections. However, the management of the other inflammatory manifestations is inadequate, reinforcing the hypothesis that a complex genetic background affecting additional cell populations, such as polymorphonuclear cells (PMN) and monocytes, influences the expression of the clinical phenotype of the disease. In this study, we investigated by flow cytometry in different conditions (resting state, and after isolation and incubation, with and without stimuli) the expression pattern of several markers on PMN and monocytes, indicative of their maturation, capacity for chemotaxis, adhesion, opsonization, migration, and phagocytosis in 25 PAD patients, 12 healthy blood donors, and 4 septic patients. In this context, we also analyzed patients before and after the initiation of replacement treatment, as well as an untreated patient in different clinical conditions. Interestingly, we observed that PAD patients exhibit a chronic activation status of the innate immunity compartment, along with several differences in the expression of activation, maturation, and adhesion markers, with respect to different clinical conditions. Moreover, immunoglobulin replacement treatment had a favorable effect on PMN, as it was expressed by a more mature and less activated phenotype on basal state cells, and an enhanced activation capacity after LPS exposure. Thus, we conclude that PAD patients display a persistent innate immune cell activation, which is probably associated with the chronic inflammatory stress, usually observed in these disorders.
Collapse
|
25
|
Pre-weaning adaptation responses in piglets fed milk replacer with gradually increasing amounts of wheat. Br J Nutr 2020; 126:375-382. [PMID: 33106192 DOI: 10.1017/s0007114520004225] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyperprolific sows rear more piglets than they have teats, and to accommodate this, milk replacers are often offered as a supplement. Milk replacers are based on bovine milk, yet components of vegetable origin are often added. This may reduce growth, but could also accelerate maturational changes. Therefore, we investigated the effect of feeding piglets a milk replacer with gradually increasing levels of wheat flour on growth, gut enzyme activity and immune function compared with a diet based entirely on bovine milk. The hypothesis tested was that adding a starch component (wheat flour) induces maturation of the mucosa as measured by higher digestive activity and improved integrity and immunity of the small intestines (SI). To test this hypothesis, piglets were removed from the sow at day 3 and fed either a pure milk replacer diet (MILK) or from day 11 a milk replacer diet with increasing levels of wheat (WHEAT). The WHEAT piglets had an increased enzyme activity of maltase and sucrase in the proximal part of the SI compared with the MILK group. There were no differences in gut morphology, histopathology and gene expression between the groups. In conclusion, the pigs given a milk replacer with added wheat displayed immunological and gut mucosal enzyme maturational changes, indicatory of adaptation towards a vegetable-based diet. This was not associated with any clinical complications, and future studies are needed to show whether this could improve responses in the subsequent weaning process.
Collapse
|
26
|
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 108:377-396. [DOI: 10.1002/jlb.4mir0220-574rr] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México Mexico City Mexico
| |
Collapse
|
27
|
Rossi B, Constantin G, Zenaro E. The emerging role of neutrophils in neurodegeneration. Immunobiology 2020; 225:151865. [DOI: 10.1016/j.imbio.2019.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
|
28
|
Neutrophil activation causes tumor regression in Walker 256 tumor-bearing rats. Sci Rep 2019; 9:16524. [PMID: 31712726 PMCID: PMC6848483 DOI: 10.1038/s41598-019-52956-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
The role of neutrophils in cancer is still very contradictory. Several studies have demonstrated the cytotoxic capacity of neutrophils against different types of tumors, by releasing inflammatory cytokines, ROS and activating other immune cells. On the other hand, recent papers have claimed the protumorigenic action of neutrophils, mainly by changing their phenotype and producing cytokines that promote tumor growth. In this context, this study aimed to evaluate neutrophil action and function during tumor development. To do so, we used male Wistar rats inoculated with Walker 256 breast carcinoma. Tumor, circulating neutrophils and bone marrow were studied in the following time points after tumor inoculation: 12 h, 24 h, 48 h, 3 d, 5 d, 7 d, 10 d, and 14 d, in order to analyze neutrophil migration kinetics, circulating neutrophil phenotype and bone marrow response to the tumor growth. Herein, our results demonstrated that W256T was unable to trigger an intratumoral inflammatory response after 5 days of tumor development and consequently, from that point on, prevented neutrophil migration to its microenvironment. Also, the tumor changed circulating neutrophil phenotype by up-regulating inflammation-related genes. Even though circulating neutrophils were entirely able to respond to an inflammatory stimulus, they did not recognize and attack the tumor, allowing the tumor to grow without any immune interference. To promote the entry of neutrophils into the tumor microenvironment, LPS was injected intratumorally. Neutrophil migration and activation due to LPS injection resulted in complete tumor regression in all subjects. In conclusion, activating neutrophils, within the tumor, turned the carcinoma into a recognizable immune target and eliminated it.
Collapse
|
29
|
Extracellular annexin-A1 promotes myeloid/granulocytic differentiation of hematopoietic stem/progenitor cells via the Ca 2+/MAPK signalling transduction pathway. Cell Death Discov 2019; 5:135. [PMID: 31552142 PMCID: PMC6755131 DOI: 10.1038/s41420-019-0215-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022] Open
Abstract
Annexin A1 (AnxA1) modulates neutrophil life span and bone marrow/blood cell trafficking thorough activation of formyl-peptide receptors (FPRs). Here, we investigated the effect of exogenous AnxA1 on haematopoiesis in the mouse. Treatment of C57BL/6 mice with recombinant AnxA1 (rAnxA1) reduced the granulocyte–macrophage progenitor (GMP) population in the bone marrow, enhanced the number of mature granulocytes Gr-1+Mac-1+ in the bone marrow as well as peripheral granulocytic neutrophils and increased expression of mitotic cyclin B1 on hematopoietic stem cells (HSCs)/progenitor cells (Lin−Sca-1+c-Kit+: LSK). These effects were abolished by simultaneous treatment with Boc-2, an FPR pan-antagonist. In in vitro studies, rAnxA1 reduced both HSC (LSKCD90lowFLK-2−) and GMP populations while enhancing mature cells (Gr1+Mac1+). Moreover, rAnxA1 induced LSK cell proliferation (Ki67+), increasing the percentage of cells in the S/G2/M cell cycle phases and reducing Notch-1 expression. Simultaneous treatment with WRW4, a selective FPR2 antagonist, reversed the in vitro effects elicited by rAnxA1. Treatment of LSK cells with rAnxA1 led to phosphorylation of PCLγ2, PKC, RAS, MEK, and ERK1/2 with increased expression of NFAT2. In long-term bone marrow cultures, rAnxA1 did not alter the percentage of LSK cells but enhanced the Gr-1+Mac-1+ population; treatment with a PLC (U73122), but not with a PKC (GF109203), inhibitor reduced rAnxA1-induced phosphorylation of ERK1/2 and Elk1. Therefore, we identify here rAnxA1 as an inducer of HSC/progenitor cell differentiation, favouring differentiation of the myeloid/granulocytic lineage, via Ca2+/MAPK signalling transduction pathways.
Collapse
|
30
|
Voisin M, Nourshargh S. Neutrophil trafficking to lymphoid tissues: physiological and pathological implications. J Pathol 2019; 247:662-671. [PMID: 30584795 PMCID: PMC6492258 DOI: 10.1002/path.5227] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022]
Abstract
Recent advances have provided evidence for the involvement of neutrophils in both innate and adaptive immunity, robustly challenging the old dogma that neutrophils are short-lived prototypical innate immune cells solely involved in acute responses to microbes and exerting collateral tissue damage. There is now ample evidence showing that neutrophils can migrate into different compartments of the lymphoid system where they contribute to the orchestration of the activation and/or suppression of lymphocyte effector functions in homeostasis and during chronic inflammation, such as autoimmune disorders and cancer. In support of this notion, neutrophils can generate a wide range of cytokines and other mediators capable of regulating the survival, proliferation and functions of both T and B cells. In addition, neutrophils can directly engage with lymphocytes and promote antigen presentation. Furthermore, there is emerging evidence of the existence of distinct and diverse neutrophil phenotypes with immunomodulatory functions that characterise different pathological conditions, including chronic and autoimmune inflammatory conditions. The aim of this review is to discuss the mechanisms implicated in neutrophil trafficking into the lymphoid system and to provide an overview of the immuno-regulatory functions of neutrophils in health and disease in the context of adaptive immunity. Copyright © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mathieu‐Benoit Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of LondonLondonUK
| |
Collapse
|
31
|
Different Faces for Different Places: Heterogeneity of Neutrophil Phenotype and Function. J Immunol Res 2019; 2019:8016254. [PMID: 30944838 PMCID: PMC6421822 DOI: 10.1155/2019/8016254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/22/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
As the most abundant leukocytes in the circulation, neutrophils are committed to innate and adaptive immune effector function to protect the human body. They are capable of killing intruding microbes through various ways including phagocytosis, release of granules, and formation of extracellular traps. Recent research has revealed that neutrophils are heterogeneous in phenotype and function and can display outstanding plasticity in both homeostatic and disease states. The great flexibility and elasticity arm neutrophils with important regulatory and controlling functions in various disease states such as autoimmunity and inflammation as well as cancer. Hence, this review will focus on recent literature describing neutrophils' variable and diverse phenotypes and functions in different contexts.
Collapse
|
32
|
Blenman KRM, Wang J, Cowper S, Bosenberg M. Pathology of spontaneous and immunotherapy-induced tumor regression in a murine model of melanoma. Pigment Cell Melanoma Res 2019; 32:448-457. [PMID: 30702217 DOI: 10.1111/pcmr.12769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/22/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022]
Abstract
We evaluated the spontaneous and immunotherapy-induced histological changes in the tumor microenvironment of a mouse melanoma regression model consisting of immunocompetent C57BL/6J mice implanted with syngeneic YUMMER1.7 melanoma cells. We focused on tumor regression phenotypes and spatial relationships of melanoma cells with B cells and neutrophils since this was not previously described. We found common themes to the host response to cancer irrespective of the mode of tumor regression. In nonregression tumors, melanoma cells were epithelioid shaped and tightly packed. In regression tumors, melanoma cells were spindle shaped and discohesive. B cells including plasmablasts and plasma cells were numerous and were increased with immunotherapy. Neutrophils were in direct contact with dead or dying melanoma cells. Immunotherapy increased neutrophil counts and induced neutrophil extracellular traps (NETs)-like formations and geographic necrosis. Beyond tumor regression, the increase in the B cell and neutrophil response could play a role in immunotherapy-induced adverse reactions.
Collapse
Affiliation(s)
- Kim R M Blenman
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Jake Wang
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Shawn Cowper
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
33
|
Neutrophil-Derived MRP14 Supports Plasma Cell Commitment and Protects Myeloma Cells from Apoptosis. J Immunol Res 2019; 2019:9561350. [PMID: 30906792 PMCID: PMC6398035 DOI: 10.1155/2019/9561350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Neutrophils have recently been proposed as cells with high functional plasticity and are involved in the pathogenesis of infections, malignancy, and autoimmune diseases. However, less is known about the role of neutrophil in humoral response. In this study, we examined the importance of neutrophils and the neutrophil-derived DAMP protein, MRP14, in antibody production. Splenic neutrophils and MRP14 that are present in the splenic peri-MZ region have a close contact with MZ B cells and promote their differentiation into plasma cells. Using neutrophil-depleting mice and an MRP14-blocking compound, we showed that the presence of neutrophil and MRP14 is required for class switch, plasma cell maintenance, and antibody production in the spleen. We found that MRP14 could also be produced by neutrophils in the bone marrow and support the maintenance of bone marrow plasma cells. MRP14 binding could enhance the effect of the BAFF signal and protect primary multiple myeloma cells from doxorubicin-induced apoptosis. Our data demonstrate the effects of neutrophils on neighboring B cells and plasma cells, which provides new insights into the connection between neutrophil and humoral responses.
Collapse
|
34
|
Chaichana P, Jenjaroen K, Amornchai P, Chumseng S, Langla S, Rongkard P, Sumonwiriya M, Jeeyapant A, Chantratita N, Teparrukkul P, Limmathurotsakul D, Day NPJ, Wuthiekanun V, Dunachie SJ. Antibodies in Melioidosis: The Role of the Indirect Hemagglutination Assay in Evaluating Patients and Exposed Populations. Am J Trop Med Hyg 2018; 99:1378-1385. [PMID: 30298810 PMCID: PMC6283516 DOI: 10.4269/ajtmh.17-0998] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Melioidosis is a major neglected tropical disease with high mortality, caused by the Gram-negative bacterium Burkholderia pseudomallei (Bp). Microbiological culture remains the gold standard for diagnosis, but a simpler and more readily available test such as an antibody assay is highly desirable. In this study, we conducted a serological survey of blood donors (n = 1,060) and adult melioidosis patients (n = 200) in northeast Thailand to measure the antibody response to Bp using the indirect hemagglutination assay (IHA). We found that 38% of healthy adults (aged 17-59 years) have seropositivity (IHA titer ≥ 1:80). The seropositivity in healthy blood donors was associated with having a declared occupation of rice farmer and with residence in a nonurban area, but not with gender or age. In the melioidosis cohort, the seropositivity rate was higher in adult patients aged between 18 and 45 years (90%, 37/41) compared with those aged ≥ 45 years (68%, 108/159, P = 0.004). The seropositivity rate was significantly higher in people with diabetes (P = 0.008). Seropositivity was associated with decreased mortality on univariable analysis (P = 0.005), but not on multivariable analysis when adjusted for age, diabetes status, preexisting renal disease, and neutrophil count. This study confirms the presence of high background antibodies in an endemic region and demonstrates the limitations of using IHA during acute melioidosis in this population.
Collapse
Affiliation(s)
- Panjaporn Chaichana
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Suchintana Chumseng
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Patpong Rongkard
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Atthanee Jeeyapant
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prapit Teparrukkul
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Center for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Costa S, Bevilacqua D, Cassatella MA, Scapini P. Recent advances on the crosstalk between neutrophils and B or T lymphocytes. Immunology 2018; 156:23-32. [PMID: 30259972 DOI: 10.1111/imm.13005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
An increasing body of literature supports a role for neutrophils as players in the orchestration of adaptive immunity. During acute and chronic inflammatory conditions, neutrophils rapidly migrate not only to sites of inflammation, but also to draining lymph nodes and spleen, where they engage bidirectional interactions with B- and T-lymphocyte subsets. Accordingly, a relevant role of neutrophils in modulating B-cell responses under homeostatic conditions has recently emerged. Moreover, specialized immunoregulatory properties towards B or T cells acquired by distinct neutrophil populations, originating under pathological conditions, have been consistently described. In this article, we summarize the most recent data from human studies and murine models on the ability of neutrophils to modulate adaptive immune responses under physiological and pathological conditions and the mechanisms behind these processes.
Collapse
Affiliation(s)
- Sara Costa
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Dalila Bevilacqua
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| | - Patrizia Scapini
- Department of Medicine, Section of General Pathology, School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
36
|
Musich T, Rahman MA, Mohanram V, Miller-Novak L, Demberg T, Venzon DJ, Felber BK, Franchini G, Pavlakis GN, Robert-Guroff M. Neutrophil Vaccination Dynamics and Their Capacity To Mediate B Cell Help in Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 201:2287-2302. [PMID: 30217830 DOI: 10.4049/jimmunol.1800677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022]
Abstract
Neutrophils are the most abundant leukocyte and play a critical role in the initial response to an Ag. Recently, their ability to contribute to adaptive immunity has been highlighted. We evaluated the ability of neutrophils from blood to contribute to the adaptive immune response in a preclinical rhesus macaque SIV vaccine trial. Replication-competent adenovirus-SIV recombinants induced neutrophil activation, B cell help markers, and enhanced ability to generate reactive oxygen species. Boosting with SIV vaccines (adjuvant together with ALVAC or DNA plus envelope protein) elicited significant neutrophil responses. Serum cytokine and chemokine levels induced correlated with the frequency of neutrophil subsets expressing IL-21, myeloperoxidase, and CD64. Post-SIV infection, neutrophils exhibited dysfunction, both phenotypically and functionally. B cells from protected and infected macaques cocultured with autologous polymorphonuclear cells, consisting primarily of neutrophils, were activated, underwent class switching, and produced Abs. This B cell help was not aided by addition of IL-10 and was largely contact dependent. Numerous genes associated with inflammation, Ab production, and chemotaxis were upregulated in the cocultured B cells. We conclude that immune stimulation by vaccination or antigenic exposure imparts a greater ability of neutrophils to contribute to the adaptive immune response. Harnessing this granulocytic response has the potential to improve vaccine efficacy.
Collapse
Affiliation(s)
- Thomas Musich
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Mohammad Arif Rahman
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Venkatramanan Mohanram
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Leia Miller-Novak
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thorsten Demberg
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD 21702
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
37
|
Naranjo-Gomez M, Lambour J, Piechaczyk M, Pelegrin M. Neutrophils are essential for induction of vaccine-like effects by antiviral monoclonal antibody immunotherapies. JCI Insight 2018; 3:97339. [PMID: 29720574 DOI: 10.1172/jci.insight.97339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/05/2018] [Indexed: 12/23/2022] Open
Abstract
Using a mouse retroviral model, we have shown that mAb-based immunotherapy can induce life-long endogenous protective immunity (vaccine-like effects). This observation has potentially important consequences for treating life-threatening human viral infections. Here, we investigated the role of neutrophils in this effect. Neutrophils are innate immunity effector cells with well-established microbe-killing activities that are rapidly mobilized upon infection. They are also emerging as orchestrators of innate and adaptive immunities. However, their immunomodulatory activity during antiviral mAb immunotherapies has never been studied. Our data reveal that neutrophils have an essential role in immunotherapy-induced immune protection of infected mice. Unexpectedly, neutrophils have a limited effect in controlling viral propagation upon passive immunotherapy administration, which is mostly mediated by NK cells. Instead, neutrophils operate as essential inducers of a potent host humoral antiviral response. Thus, neutrophils play an unexpected key role in protective immunity induction by antiviral mAbs. Our work opens approaches to improve antiviral immunotherapies, as it suggests that preserving neutrophil functions and counts might be required for achieving mAb-induced protective immunity.
Collapse
|
38
|
Liang F, Lindgren G, Sandgren KJ, Thompson EA, Francica JR, Seubert A, De Gregorio E, Barnett S, O'Hagan DT, Sullivan NJ, Koup RA, Seder RA, Loré K. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci Transl Med 2018; 9:9/393/eaal2094. [PMID: 28592561 DOI: 10.1126/scitranslmed.aal2094] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine-induced adaptive immunity are largely unknown. We introduce a model to delineate the steps of how adjuvant-driven innate immune activation leads to priming of vaccine responses using rhesus macaques. Fluorescently labeled HIV-1 envelope glycoprotein (Env) was administered together with the conventional aluminum salt (alum) adjuvant. This was compared to Env given with alum with preabsorbed Toll-like receptor 7 (TLR7) ligand (alum-TLR7) or the emulsion MF59 because they show superiority over alum for qualitatively and quantitatively improved vaccine responses. All adjuvants induced rapid and robust immune cell infiltration to the injection site in the muscle. This resulted in substantial uptake of Env by neutrophils, monocytes, and myeloid and plasmacytoid dendritic cells (DCs) and migration exclusively to the vaccine-draining lymph nodes (LNs). Although less proficient than monocytes and DCs, neutrophils were capable of presenting Env to memory CD4+ T cells. MF59 and alum-TLR7 showed more pronounced cell activation and overall higher numbers of Env+ cells compared to alum. This resulted in priming of higher numbers of Env-specific CD4+ T cells in the vaccine-draining LNs, which directly correlated with increased T follicular helper cell differentiation and germinal center formation. Thus, strong innate immune activation promoting efficient vaccine antigen delivery to infiltrating antigen-presenting cells in draining LNs is an important mechanism by which superior adjuvants enhance vaccine responses.
Collapse
Affiliation(s)
- Frank Liang
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Lindgren
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kerrie J Sandgren
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth A Thompson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joseph R Francica
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karin Loré
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Abstract
Neutrophils are the most abundant leukocytes in the circulation, and have been regarded as first line of defense in the innate arm of the immune system. They capture and destroy invading microorganisms, through phagocytosis and intracellular degradation, release of granules, and formation of neutrophil extracellular traps after detecting pathogens. Neutrophils also participate as mediators of inflammation. The classical view for these leukocytes is that neutrophils constitute a homogenous population of terminally differentiated cells with a unique function. However, evidence accumulated in recent years, has revealed that neutrophils present a large phenotypic heterogeneity and functional versatility, which place neutrophils as important modulators of both inflammation and immune responses. Indeed, the roles played by neutrophils in homeostatic conditions as well as in pathological inflammation and immune processes are the focus of a renovated interest in neutrophil biology. In this review, I present the concept of neutrophil phenotypic and functional heterogeneity and describe several neutrophil subpopulations reported to date. I also discuss the role these subpopulations seem to play in homeostasis and disease.
Collapse
Affiliation(s)
- Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
40
|
Kim JH, Podstawka J, Lou Y, Li L, Lee EKS, Divangahi M, Petri B, Jirik FR, Kelly MM, Yipp BG. Aged polymorphonuclear leukocytes cause fibrotic interstitial lung disease in the absence of regulation by B cells. Nat Immunol 2018; 19:192-201. [PMID: 29335647 DOI: 10.1038/s41590-017-0030-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/07/2017] [Indexed: 12/27/2022]
Abstract
Pulmonary immunity requires tight regulation, as interstitial inflammation can compromise gas exchange and lead to respiratory failure. Here we found a greater number of aged CD11bhiL-selectinloCXCR4+ polymorphonuclear leukocytes (PMNs) in lung vasculature than in the peripheral circulation. Using pulmonary intravital microscopy, we observed lung PMNs physically interacting with B cells via β2 integrins; this initiated neutrophil apoptosis, which led to macrophage-mediated clearance. Genetic deletion of B cells led to the accumulation of aged PMNs in the lungs without systemic inflammation, which caused pathological fibrotic interstitial lung disease that was attenuated by the adoptive transfer of B cells or depletion of PMNs. Thus, the lungs are an intermediary niche in the PMN lifecycle wherein aged PMNs are regulated by B cells, which restrains their potential to cause pulmonary pathology.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John Podstawka
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lu Li
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Esther K S Lee
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill International TB Centre, McGill University Montreal, Montreal, QC, Canada
| | - Björn Petri
- Mouse Phenomics Resource Laboratory, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
41
|
Myeloid-derived suppressor cells modulate B-cell responses. Immunol Lett 2017; 188:108-115. [PMID: 28687234 DOI: 10.1016/j.imlet.2017.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches.
Collapse
|
42
|
Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, Sodré AL, Distler A, Xing L, Perez-Villarroel P, Wei S, Villagra A, Seto E, Sotomayor EM, Horna P, Pinilla-Ibarz J. Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol 2017; 102:475-486. [PMID: 28550123 DOI: 10.1189/jlb.1a0415-176rrr] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.
Collapse
Affiliation(s)
- Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jie Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Xianghong Chen
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Susan L Deng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alex N Achille
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Maritza Lienlaf
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hong Wei Wang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Fengdong Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andressa L Sodré
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison Distler
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Sheng Wei
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ed Seto
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eduardo M Sotomayor
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Pedro Horna
- Department of Hematopathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; and
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; .,Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
43
|
Postnikoff C, Gorbet M. The Effect of Closed-Eye Tear Film Conditions on Blood-Isolated Neutrophils, In Vitro. Ocul Immunol Inflamm 2017; 26:706-716. [PMID: 28323491 DOI: 10.1080/09273948.2017.1281423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Eyelid closure results in influx of neutrophils onto the ocular surface, which are non-responsive to inflammatory stimuli. This investigation examined whether incubation of blood-isolated neutrophils in closed-eye conditions induce a tear-film neutrophil phenotype. METHODS Blood-isolated neutrophils were incubated combining various conditions: hypoxia, corneal epithelial cells (HCEC), artificial tear solution (ATS). RESULTS A hypoxic environment induced no differential effect on membrane receptor expression. Incubation in the presence of HCEC resulted in membrane receptor upregulation and increase in caspase activation. CONCLUSIONS Hypoxia, corneal epithelial cell exposure, or artificial tear fluid are insufficient to replicate a tear-film neutrophil phenotype using blood-isolated neutrophils.
Collapse
Affiliation(s)
- Cameron Postnikoff
- a Systems Design Engineering , University of Waterloo , Waterloo , Ontario , Canada
| | - Maud Gorbet
- a Systems Design Engineering , University of Waterloo , Waterloo , Ontario , Canada.,b School of Optometry and Vision Science , University of Waterloo , Waterloo , Ontario , Canada
| |
Collapse
|
44
|
Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation. Sci Rep 2017; 7:44189. [PMID: 28287124 PMCID: PMC5347029 DOI: 10.1038/srep44189] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are recognised to play a pivotal role at the interface between innate and acquired immunities following their recruitment to inflamed tissues and lymphoid organs. While neutrophil trafficking through blood vessels has been extensively studied, the molecular mechanisms regulating their migration into the lymphatic system are still poorly understood. Here, we have analysed neutrophil-lymphatic vessel interactions in real time and in vivo using intravital confocal microscopy applied to inflamed cremaster muscles. We show that antigen sensitisation of the tissues induces a rapid but transient entry of tissue-infiltrated neutrophils into lymphatic vessels and subsequent crawling along the luminal side of the lymphatic endothelium. Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade we demonstrate that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling. Mechanistically, we show that TNFα primes directly the neutrophils to enter the lymphatic vessels in a strictly CCR7-dependent manner; and induces ICAM-1 up-regulation on lymphatic vessels, allowing neutrophils to crawl along the lumen of the lymphatic endothelium in an ICAM-1/MAC-1-dependent manner. Collectively, our findings demonstrate a new role for TNFα as a key regulator of neutrophil trafficking into and within lymphatic system in vivo.
Collapse
|
45
|
Casserly CS, Nantes JC, Whittaker Hawkins RF, Vallières L. Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmun Rev 2017; 16:294-307. [PMID: 28161558 DOI: 10.1016/j.autrev.2017.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
|
46
|
Scozzi D, Ibrahim M, Menna C, Krupnick AS, Kreisel D, Gelman AE. The Role of Neutrophils in Transplanted Organs. Am J Transplant 2017; 17:328-335. [PMID: 27344051 PMCID: PMC5183560 DOI: 10.1111/ajt.13940] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/01/2016] [Accepted: 06/18/2016] [Indexed: 01/25/2023]
Abstract
Neutrophils are often viewed as nonspecialized effector cells whose presence is a simple indicator of tissue inflammation. There is new evidence that neutrophils exist in subsets and have specialized effector functions that include extracellular trap generation and the stimulation of angiogenesis. The application of intravital imaging to transplanted organs has revealed novel requirements for neutrophil trafficking into graft tissue and has illuminated direct interactions between neutrophils and other leukocytes that promote alloimmunity. Paradoxically, retaining some neutrophilia may be important to induce or maintain tolerance. Neutrophils can stimulate anti-inflammatory signals in other phagocytes and release molecules that inhibit T cell activation. In this article, we will review the available evidence of how neutrophils regulate acute and chronic inflammation in transplanted organs and discuss the possibility of targeting these cells to promote tolerance.
Collapse
Affiliation(s)
- Davide Scozzi
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Mohsen Ibrahim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Medical - Surgical Science and Translational Medicine, Sapienza University of Rome, Italy
| | - Cecilia Menna
- Department of Medical - Surgical Science and Translational Medicine, Sapienza University of Rome, Italy
| | - Alexander S Krupnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
47
|
Mishalian I, Granot Z, Fridlender ZG. The diversity of circulating neutrophils in cancer. Immunobiology 2017; 222:82-88. [DOI: 10.1016/j.imbio.2016.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 01/17/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
|
48
|
Sousa SA, Morad M, Feliciano JR, Pita T, Nady S, El-Hennamy RE, Abdel-Rahman M, Cavaco J, Pereira L, Barreto C, Leitão JH. The Burkholderia cenocepacia OmpA-like protein BCAL2958: identification, characterization, and detection of anti-BCAL2958 antibodies in serum from B. cepacia complex-infected Cystic Fibrosis patients. AMB Express 2016; 6:41. [PMID: 27325348 PMCID: PMC4916078 DOI: 10.1186/s13568-016-0212-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/15/2022] Open
Abstract
Respiratory infections by bacteria of the Burkholderia cepacia complex (Bcc) remain an important cause of morbidity and mortality among cystic fibrosis patients, highlighting the need for novel therapeutic strategies. In the present work we have studied the B. cenocepacia protein BCAL2958, a member of the OmpA-like family of proteins, demonstrated as highly immunogenic in other pathogens and capable of eliciting strong host immune responses. The encoding gene was cloned and the protein, produced as a 6× His-tagged derivative, was used to produce polyclonal antibodies. Bioinformatics analyses led to the identification of sequences encoding proteins with a similarity higher than 96 % to BCAL2958 in all the publicly available Bcc genomes. Furthermore, using the antibody it was experimentally demonstrated that this protein is produced by all the 12 analyzed strains from 7 Bcc species. In addition, results are also presented showing the presence of anti-BCAL2958 antibodies in sera from cystic fibrosis patients with a clinical record of respiratory infection by Bcc, and the ability of the purified protein to in vitro stimulate neutrophils. The widespread production of the protein by Bcc members, together with its ability to stimulate the immune system and the detection of circulating antibodies in patients with a documented record of Bcc infection strongly suggest that the protein is a potential candidate for usage in preventive therapies of infections by Bcc.
Collapse
|
49
|
Parsa R, Lund H, Georgoudaki AM, Zhang XM, Ortlieb Guerreiro-Cacais A, Grommisch D, Warnecke A, Croxford AL, Jagodic M, Becher B, Karlsson MCI, Harris RA. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med 2016; 213:1537-53. [PMID: 27432941 PMCID: PMC4986521 DOI: 10.1084/jem.20150577] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/24/2016] [Indexed: 01/10/2023] Open
Abstract
Harris and collaborators show that neutropenia results in increased formation of plasma cells and elevated antibody production. Prolonged infections or adjuvant usage can trigger emergency granulopoiesis (EG), leading to dysregulation in neutrophil blood counts. However, the impact of EG on T and B cell function remains largely unknown. In this study, to address this question, we used a mouse model of neutropenia and studied immune activation after adjuvant administration. The initial neutropenic state fostered an environment of increased dendritic cell activation and T cell–derived IL-17 production. Interestingly, neutropenic lysozyme 2–diphtheria toxin A mice exhibited striking EG and amplified neutrophil recruitment to the lymph nodes (LNs) that was dependent on IL-17–induced prostaglandin activity. The recruited neutrophils secreted a B cell–activating factor that highly accelerated plasma cell generation and antigen-specific antibody production. Reduction of neutrophil functions via granulocyte colony-stimulating factor neutralization significantly diminished plasma cell formation, directly linking EG with the humoral immune response. We conclude that neutrophils are capable of directly regulating T cell–dependent B cell responses in the LN.
Collapse
Affiliation(s)
- Roham Parsa
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Harald Lund
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Anna-Maria Georgoudaki
- B Cell Biology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Xing-Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - André Ortlieb Guerreiro-Cacais
- Neuroimmunology, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - David Grommisch
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Andreas Warnecke
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Andrew L Croxford
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zürich, Switzerland
| | - Maja Jagodic
- Neuroimmunology, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zürich, Switzerland
| | - Mikael C I Karlsson
- B Cell Biology, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska Hospital at Solna, S-171 76 Stockholm, Sweden
| |
Collapse
|
50
|
Plasmacytoid dendritic cells and myeloid cells differently contribute to B-cell-activating factor belonging to the tumor necrosis factor superfamily overexpression during primary HIV infection. AIDS 2016; 30:365-76. [PMID: 26558721 DOI: 10.1097/qad.0000000000000965] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND After describing heightened levels of circulating B-cell-activating factor belonging to the tumor necrosis factor superfamily (BAFF) as well as changes in B-cell phenotype and functions during acute infection by simian immunodeficiency virus, we wanted to determine whether and by which cells BAFF was over-expressed in primary HIV-infected (PHI) patients. DESIGN AND METHODS We simultaneously examined circulating BAFF levels by ELISA and membrane-bound BAFF (mBAFF) expression by flow cytometry in peripheral blood mononuclear cells of healthy donors and PHI patients followed for 6 months. We also examined whether HIV-1 modifies BAFF expression or release in various myeloid cells and plasmacytoid dendritic cells (pDC) in vitro. RESULTS Circulating BAFF levels were transiently increased at enrolment. They positively correlated with CXCL10 levels and inversely with B-cell counts. Whereas mBAFF was expressed by most pDC and on a fraction of intermediate monocytes in healthy donors, the frequency of mBAFF cells significantly increased among nonclassical monocytes and CD1c dendritic cells but decreased among pDC in PHI patients. In contrast to myeloid cells, pDC never released BAFF upon stimulation. Their mBAFF expression was enhanced by HIV-1, independently of type I IFN. CONCLUSION Our findings reveal that the pattern of BAFF expression by myeloid cells and pDC is altered in PHI patients and constitutes a valuable marker of immune activation whose circulating levels correlate with CXCL10 levels. Due to their homing in different tissue areas, pDC and myeloid cells might target different B-cell subsets through their mBAFF expression or soluble BAFF release.
Collapse
|