1
|
Le PM, Pal-Ghosh S, Stepp MA, Menko AS. Shared Phenotypes of Immune Cells Recruited to the Cornea and the Surface of the Lens in Response to Formation of Corneal Erosions. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:960-981. [PMID: 39889825 PMCID: PMC12016862 DOI: 10.1016/j.ajpath.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Injuries to the cornea can lead to recurrent corneal erosions, compromising its barrier function and increasing the risk of infection. Vital as corneal integrity is to the eye's optical power and homeostasis, the immune response to corneal erosions remains poorly understood. It is also unknown whether there is coordinated immune activation between the cornea and other regions of the anterior segment to protect against microbial invasion and limit the spread of inflammation when corneal erosions occur. Herein, a corneal debridement wounding model was used to characterize the immune cell phenotypes populating the cornea in response to erosion formation, and whether and which immune cells are concurrently recruited to the surface of the lens was investigated. The formation of corneal erosions induced an influx of myeloid lineage phenotypes, both M2 macrophages associated with tissue healing and wound repair, and Ly6G+ Ly6C+ myeloperoxidase+ cells resembling neutrophils/polymorphonuclear-myeloid-derived suppressor cells (PMN-MDSCs), with few regulatory T cells, into the corneal stroma under erosion sites. This leukocyte migration into the cornea when erosions develop was paralleled by the recruitment of immune cells, predominantly neutrophils/PMN-MDSCs, to the anterior, cornea-facing lens capsule. Both cornea-infiltrating and lens capsule-associated neutrophil/PMN-MDSC-like immune cells produce the anti-inflammatory cytokine IL-10. These findings suggest a collaborative role for the lens capsule-associated immune cells in preventing infections, controlling inflammation, and maintaining homeostasis of the anterior segment during recurrent corneal erosions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Eruslanov E, Nefedova Y, Gabrilovich DI. The heterogeneity of neutrophils in cancer and its implication for therapeutic targeting. Nat Immunol 2025; 26:17-28. [PMID: 39747431 PMCID: PMC12055240 DOI: 10.1038/s41590-024-02029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Neutrophils have a pivotal role in safeguarding the host against pathogens and facilitating tissue remodeling. They possess a large array of tools essential for executing these functions. Neutrophils have a critical role in cancer, where they are largely associated with negative clinical outcome and resistance to therapy. However, the specific role of neutrophils in cancer is complex and controversial, owing to their high functional diversity and acute sensitivity to the microenvironment. In this Perspective, we discuss the accumulated evidence that suggests that the functional diversity of neutrophils can be ascribed to two principal functional states, each with distinct characteristics: classically activated neutrophils and pathologically activated immunosuppressive myeloid-derived suppressor cells. We discuss how the antimicrobial factors in neutrophils can contribute to tumor progression and the fundamental mechanisms that govern the pathologically activated myeloid-derived suppressor cells. These functional states play divergent roles in cancer and thus require separate consideration in therapeutic targeting.
Collapse
Affiliation(s)
- Evgeniy Eruslanov
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
3
|
Zhou L, Lin P, Deng G, Mo L, Hong C, Jiang Z, Zhu Y, Zhao Y, Qi Y, Hu T, Wu Q, Zhang J, Li Q, Yang Q. IRF4 regulates myeloid-derived suppressor cells expansion and function in Schistosoma japonicum-infected mice. Parasit Vectors 2024; 17:492. [PMID: 39609883 PMCID: PMC11605884 DOI: 10.1186/s13071-024-06543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Interferon regulatory factor 4 (IRF4) is a crucial member of the IRF family of transcription factors and is pivotal in orchestrating the body's defense against tumors and infections by modulating the differentiation and functionality of immune cells. The role of IRF4 in mice during Schistosoma japonicum infection, as well as the effects of IRF4 deficiency on myeloid-derived suppressor cells (MDSCs), remains inadequately understood. METHODS Hematoxylin and eosin staining was used to evaluate the pathological damage in different organs of mice following infection with S. japonicum. Flow cytometry was employed to study the effect of IRF4 on the proliferation and function of myeloid-derived suppressor cells (MDSCs) in S. japonicum-infected mice. RESULTS Knockout of IRF4 in myeloid cells significantly mitigated pathological damage to the liver and lungs in mice infected with S. japonicum. Knockout of IRF4 in myeloid cells also inhibited the expansion and functionality of MDSCs by downregulating programmed death ligand 2 (PD-L2) expression and interleukin-1 alpha (IL-1α) secretion in mice infected with S. japonicum. Mechanistic studies revealed that IRF4 deficiency inhibited the expansion and function of MDSCs and that this inhibition was mediated by the STAT3 and AKT signaling pathways. Also, IRF4 myeloid knockout promoted the expansion of T cells in S. japonicum-infected mice, but had no significant effect on B cell aggregation. CONCLUSIONS Overall, these findings highlight the importance of IRF4 in regulating MDSCs and their impact on tissue damage during S. japonicum infection, providing valuable insights into potential therapeutic targets for managing the pathological consequences of this parasitic infection.
Collapse
Affiliation(s)
- Lu Zhou
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, 511518, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Peibin Lin
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, 511518, China
| | - Guorong Deng
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lengshan Mo
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Cansheng Hong
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihan Jiang
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiqiang Zhu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Zhao
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yanwei Qi
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tengfei Hu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qianlian Wu
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Qingqing Li
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510130, China.
| | - Quan Yang
- Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, 511518, China.
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Mandula JK, Sierra-Mondragon RA, Jimenez RV, Chang D, Mohamed E, Chang S, Vazquez-Martinez JA, Cao Y, Anadon CM, Lee SB, Das S, Rocha-Munguba L, Pham VM, Li R, Tarhini AA, Furqan M, Dalton W, Churchman M, Moran-Segura CM, Nguyen J, Perez B, Kojetin DJ, Obermayer A, Yu X, Chen A, Shaw TI, Conejo-Garcia JR, Rodriguez PC. Jagged2 targeting in lung cancer activates anti-tumor immunity via Notch-induced functional reprogramming of tumor-associated macrophages. Immunity 2024; 57:1124-1140.e9. [PMID: 38636522 PMCID: PMC11096038 DOI: 10.1016/j.immuni.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Signaling through Notch receptors intrinsically regulates tumor cell development and growth. Here, we studied the role of the Notch ligand Jagged2 on immune evasion in non-small cell lung cancer (NSCLC). Higher expression of JAG2 in NSCLC negatively correlated with survival. In NSCLC pre-clinical models, deletion of Jag2, but not Jag1, in cancer cells attenuated tumor growth and activated protective anti-tumor T cell responses. Jag2-/- lung tumors exhibited higher frequencies of macrophages that expressed immunostimulatory mediators and triggered T cell-dependent anti-tumor immunity. Mechanistically, Jag2 ablation promoted Nr4a-mediated induction of Notch ligands DLL1/4 on cancer cells. DLL1/4-initiated Notch1/2 signaling in macrophages induced the expression of transcription factor IRF4 and macrophage immunostimulatory functionality. IRF4 expression was required for the anti-tumor effects of Jag2 deletion in lung tumors. Antibody targeting of Jagged2 inhibited tumor growth and activated IRF4-driven macrophage-mediated anti-tumor immunity. Thus, Jagged2 orchestrates immunosuppressive systems in NSCLC that can be overcome to incite macrophage-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Jay K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Rachel V Jimenez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Darwin Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eslam Mohamed
- California Northstate University, Elk Grove, CA 95757, USA
| | - Shiun Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Sae Bom Lee
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Satyajit Das
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Léo Rocha-Munguba
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Vincent M Pham
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ahmad A Tarhini
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Muhammad Furqan
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Carlos M Moran-Segura
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jonathan Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bradford Perez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Douglas J Kojetin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Timothy I Shaw
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Aebisher D, Woźnicki P, Bartusik-Aebisher D. Photodynamic Therapy and Adaptive Immunity Induced by Reactive Oxygen Species: Recent Reports. Cancers (Basel) 2024; 16:967. [PMID: 38473328 DOI: 10.3390/cancers16050967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer is one of the most significant causes of death worldwide. Despite the rapid development of modern forms of therapy, results are still unsatisfactory. The prognosis is further worsened by the ability of cancer cells to metastasize. Thus, more effective forms of therapy, such as photodynamic therapy, are constantly being developed. The photodynamic therapeutic regimen involves administering a photosensitizer that selectively accumulates in tumor cells or is present in tumor vasculature prior to irradiation with light at a wavelength corresponding to the photosensitizer absorbance, leading to the generation of reactive oxygen species. Reactive oxygen species are responsible for the direct and indirect destruction of cancer cells. Photodynamically induced local inflammation has been shown to have the ability to activate an adaptive immune system response resulting in the destruction of tumor lesions and the creation of an immune memory. This paper focuses on presenting the latest scientific reports on the specific immune response activated by photodynamic therapy. We present newly discovered mechanisms for the induction of the adaptive response by analyzing its various stages, and the possible difficulties in generating it. We also present the results of research over the past 10 years that have focused on improving the immunological efficacy of photodynamic therapy for improved cancer therapy.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| |
Collapse
|
7
|
Lee A, Lim J, Lim JS. Emerging roles of MITF as a crucial regulator of immunity. Exp Mol Med 2024; 56:311-318. [PMID: 38351314 PMCID: PMC10907664 DOI: 10.1038/s12276-024-01175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 02/19/2024] Open
Abstract
Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor (bHLH-Zip), has been identified as a melanocyte-specific transcription factor and plays a critical role in melanocyte survival, differentiation, function, proliferation and pigmentation. Although numerous studies have explained the roles of MITF in melanocytes and in melanoma development, the function of MITF in the hematopoietic or immune system-beyond its function in melanin-producing cells-is not yet fully understood. However, there is convincing and increasing evidence suggesting that MITF may play multiple important roles in immune-related cells. Therefore, this review is focused on recent advances in elucidating novel functions of MITF in cancer progression and immune responses to cancer. In particular, we highlight the role of MITF as a central modulator in the regulation of immune responses, as elucidated in recent studies.
Collapse
Affiliation(s)
- Aram Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
8
|
Li L, Chen L, Li Z, Huang S, Chen Y, Li Z, Chen W. FSCN1 promotes proliferation, invasion and glycolysis via the IRF4/AKT signaling pathway in oral squamous cell carcinoma. BMC Oral Health 2023; 23:519. [PMID: 37491232 PMCID: PMC10369755 DOI: 10.1186/s12903-023-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/30/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a disease with increasing incidence worldwide that leads to deformity and death. In OSCC, fascin actin-bundling protein 1 (FSCN1) is an oncogene involved in the tumorigenesis process. However, the functions and potential mechanisms of FSCN1 in the OSCC tumorigenesis process have not been reported thus far. METHODS We used qRT‒PCR to detect the expression of FSCN1 in 40 paired OSCC tumor tissues (tumor) and neighboring noncancerous tissues. The role of FSCN1 was also assessed in vitro through colony formation, CCK-8, and transwell assays. Moreover, glucose consumption was detected. Western blotting was used to confirm the interaction of FSCN1, IRF4 and AKT. RESULTS FSCN1 was remarkably overexpressed in OSCC tissues and cell lines compared to corresponding controls. In addition, colony formation, CCK-8, and transwell assays revealed a notable reduction in OSCC growth and invasion when FSCN1 was silenced. FSCN1 silencing remarkably suppressed OSCC glycolysis. Mechanistic studies showed that FSCN1 achieves its function partially by activating interferon regulatory factor 4 (IRF4) and the AKT pathway in OSCC. CONCLUSION In conclusion, our study investigated the functions and mechanisms of the FSCN1/IRF4/AKT pathway in OSCC progression. In OSCC, FSCN1 is likely to be a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Liang Li
- Department of Stomatology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Lihui Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhangwei Li
- Department of Stomatology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Shiqin Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yaoyao Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhiyong Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Chen Y, Xu Y, Zhao H, Zhou Y, Zhang J, Lei J, Wu L, Zhou M, Wang J, Yang S, Zhang X, Yan G, Li Y. Myeloid-derived suppressor cells deficient in cholesterol biosynthesis promote tumor immune evasion. Cancer Lett 2023; 564:216208. [PMID: 37150500 DOI: 10.1016/j.canlet.2023.216208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Cancer immunotherapy targeting myeloid-derived suppressor cells (MDSCs) is one of the most promising anticancer strategies. Metabolic reprogramming is vital for MDSC activation, however, the regulatory mechanisms of cholesterol metabolic reprogramming in MDSCs remains largely unexplored. Using the receptor-interacting protein kinase 3 (RIPK3)-deficient MDSC model, a previously established tumor-infiltrating MDSC-like model, we found that the cholesterol accumulation was significantly decreased in these cells. Moreover, the phosphorylated AKT-mTORC1 signaling was reduced, and downstream SREBP2-HMGCR-mediated cholesterol synthesis was blunted. Interestingly, cholesterol deficiency profoundly elevated the immunosuppressive activity of MDSCs. Mechanistically, cholesterol elimination induced nuclear accumulation of LXRβ, thereby promoting LXRβ-RXRα heterodimer binding of a novel composite element in the promoter of Arg1. Furthermore, itraconazole enhanced the immunosuppressive activity of MDSCs to boost tumor growth by suppressing the RIPK3-AKT-mTORC1 pathway and impeding cholesterol synthesis. Our findings demonstrate that RIPK3 deficiency leads to cholesterol abrogation in MDSCs, which facilitates tumor-infiltrating MDSC activation, and highlight the therapeutic potential of targeting cholesterol synthesis to overcome tumor immune evasion.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mingyue Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jingchun Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shuai Yang
- Department of Pathology, The 958th Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiao Zhang
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, Tibet Autonomous Region, 857000, China
| | - Guifang Yan
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China; Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
10
|
Lee A, Park H, Lim S, Lim J, Koh J, Jeon YK, Yang Y, Lee MS, Lim JS. Novel role of microphthalmia-associated transcription factor in modulating the differentiation and immunosuppressive functions of myeloid-derived suppressor cells. J Immunother Cancer 2023; 11:jitc-2022-005699. [PMID: 36627143 PMCID: PMC9835954 DOI: 10.1136/jitc-2022-005699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Microphthalmia-associated transcription factor (MITF) is a master regulator of melanogenesis and is mainly expressed in melanoma cells. MITF has also been reported to be expressed in non-pigmented cells, such as osteoclasts, mast cells, and B cells. However, the roles of MITF in immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSCs), remain unclear. Here, we investigated the role of MITF in the differentiation process of MDSCs during tumor development. METHODS In vitro-generated murine MDSCs and primary MDSCs from breast cancer-bearing mice or lung carcinoma-bearing mice were used to determine the expression level of MITF and the activity of MDSCs. Additionally, we investigated whether in vivo tumor growth can be differentially regulated by coinjection of MDSCs in which MITF expression is modulated by small molecules. Furthermore, the number of MITF+ monocytic (MO)-MDSCs was examined in human tumor tissues or tumor-free lymph nodes by immunohistochemistry (IHC). RESULTS The expression of MITF was strongly increased in MO-MDSCs from tumors of breast cancer-bearing mice compared with polymorphonuclear MDSCs. We found that MITF expression in MDSCs was markedly induced in the tumor microenvironment (TME) and related to the functional activity of MDSCs. MITF overexpression in myeloid cells increased the expression of MDSC activity markers and effectively inhibited T-cell proliferation compared with those of control MDSCs, whereas shRNA-mediated knockdown of MITF in myeloid cells altered the immunosuppressive function of MDSCs. Modulation of MITF expression by small molecules affected the differentiation and immunosuppressive function of MDSCs. While increased MITF expression in MDSCs promoted breast cancer progression and CD4+ or CD8+ T-cell dysfunction, decreased MITF expression in MDSCs suppressed tumor progression and enhanced T-cell activation. Furthermore, IHC staining of human tumor tissues revealed that MITF+ MO-MDSCs are more frequently observed in tumor tissues than in tumor-free draining lymph nodes obtained from patients with cancer. CONCLUSIONS Our results indicate that MITF regulates the differentiation and function of MDSCs and can be a novel therapeutic target for modulating MDSC activity in immunosuppressive s.
Collapse
Affiliation(s)
- Aram Lee
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Haesun Park
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Soyoung Lim
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Jihyun Lim
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Yang
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Myeong-Sok Lee
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| |
Collapse
|
11
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
12
|
microRNAs: Critical Players during Helminth Infections. Microorganisms 2022; 11:microorganisms11010061. [PMID: 36677353 PMCID: PMC9861972 DOI: 10.3390/microorganisms11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.
Collapse
|
13
|
Wei Y, Peng N, Deng C, Zhao F, Tian J, Tang Y, Yu S, Chen Y, Xue Y, Xiao F, Zhou Y, Li X, Zou H, Rui K, Lin X, Lu L. Aryl hydrocarbon receptor activation drives polymorphonuclear myeloid-derived suppressor cell response and efficiently attenuates experimental Sjögren's syndrome. Cell Mol Immunol 2022; 19:1361-1372. [PMID: 36369368 PMCID: PMC9709038 DOI: 10.1038/s41423-022-00943-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) comprise heterogeneous myeloid cell populations with immunosuppressive capacity that contribute to immune regulation and tolerance induction. We previously reported impaired MDSC function in patients with primary Sjögren's syndrome (pSS) and mice with experimental SS (ESS). However, the molecular mechanisms underlying MDSC dysfunction remain largely unclear. In this study, we first found that aryl hydrocarbon receptor (AhR) was highly expressed by human and murine polymorphonuclear MDSCs (PMN-MDSCs). Indole-3-propionic acid (IPA), a natural AhR ligand produced from dietary tryptophan, significantly promoted PMN-MDSC differentiation and suppressive function on CD4+ T cells. In contrast, feeding a tryptophan-free diet resulted in a decreased PMN-MDSC response, a phenotype that could be reversed by IPA supplementation. The functional importance of PMN-MDSCs was demonstrated in ESS mice by using a cell-depletion approach. Notably, AhR expression was reduced in PMN-MDSCs during ESS development, while AhR antagonism resulted in exacerbated ESS pathology and dysregulated T effector cells, which could be phenocopied by a tryptophan-free diet. Interferon regulatory factor 4 (IRF4), a repressive transcription factor, was upregulated in PMN-MDSCs during ESS progression. Chromatin immunoprecipitation analysis revealed that IRF4 could bind to the promoter region of AhR, while IRF4 deficiency markedly enhanced AhR-mediated PMN-MDSC responses. Furthermore, dietary supplementation with IPA markedly ameliorated salivary glandular pathology in ESS mice with restored MDSC immunosuppressive function. Together, our results identify a novel function of AhR in modulating the PMN-MDSC response and demonstrate the therapeutic potential of targeting AhR for the treatment of pSS.
Collapse
Grants
- This work was supported by Chongqing International Institute for Immunology (2020YJC10), National Natural Science Foundation of China (NSFC) (82071817, 81971542, 82171771), Hong Kong Research Grants Council General Research Fund (17113319, 27111820) and Theme-Based Research Scheme (T12-703/19R), Shenzhen Science and Technology Program (YCYJ20210324114602008) and the Centre for Oncology and Immunology under the Health@InnoHK Initiative by the Innovation and Technology Commission, Hong Kong, China.
- Research Grants Council, University Grants Committee (RGC, UGC)
Collapse
Affiliation(s)
- Yanxia Wei
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, Yichang, China
| | - Chong Deng
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Futao Zhao
- Department of Rheumatology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Tian
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Sulan Yu
- School of Chinese Medicine and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yacun Chen
- School of Chinese Medicine and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yingbo Zhou
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital and Institute of Medical Immunology, Jiangsu University, Zhenjiang, China.
| | - Xiang Lin
- School of Chinese Medicine and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
14
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
15
|
Lee YH, Kim H, Nam S, Chu JR, Kim JH, Lim JS, Kim SE, Sung MK. Protective Effects of High-Fat Diet against Murine Colitis in Association with Leptin Signaling and Gut Microbiome. Life (Basel) 2022; 12:life12070972. [PMID: 35888062 PMCID: PMC9323536 DOI: 10.3390/life12070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 04/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal-tract inflammation with dysregulated immune responses, which are partly attributable to dysbiosis. Given that diet plays a critical role in IBD pathogenesis and progression, we elucidated the effects of a high-fat diet (HFD) feeding on IBD development in relation to immune dysfunction and the gut microbiota. Five-week-old male C57BL/6J mice were fed either a normal diet (ND) or HFD for 14 weeks. The animals were further divided into ND, ND+ dextran sulfate sodium (DSS), HFD, and HFD+DSS treatment groups. The HFD+DSS mice exhibited lower body weight loss, lower disease activity index, longer colon length, and increased tight-junction protein expression and goblet-cell proportions compared with the ND+DSS mice. The T helper (h)1 and Th17 cell populations and pro-inflammatory cytokines involved in colitis pathogenesis were significantly more reduced in the HFD+DSS mice than in the ND+DSS mice. The HFD+DSS mice showed significantly increased serum leptin concentrations, colonic leptin receptor expression, enhanced anti-apoptotic AKT expression, and reduced pro-apoptotic MAPK and Bax expression compared with the ND+DSS mice, suggesting the involvement of the leptin-mediated pathway in intestinal epithelial cell apoptosis. The alterations in the gut-microbiota composition in the HFD+DSS group were the opposite of those in the ND+DSS group and rather similar to those of the ND group, indicating that the protective effects of HFD feeding against DSS-induced colitis are associated with changes in gut-microbiota composition. Overall, HFD feeding ameliorates DSS-induced colitis and colonic mucosal damage by reinforcing colonic barrier function and regulating immune responses in association with changes in gut-microbiota composition.
Collapse
Affiliation(s)
- Yun-Ha Lee
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Hyeyoon Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Sorim Nam
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Jae-Ryang Chu
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
| | - Jong-Seok Lim
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| |
Collapse
|
16
|
Interferon Regulatory Factor Family Genes: At the Crossroads between Immunity and Head and Neck Squamous Carcinoma. DISEASE MARKERS 2022; 2022:2561673. [PMID: 35664436 PMCID: PMC9162818 DOI: 10.1155/2022/2561673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Objective. This study is aimed at investigating the regulating mechanisms of the interferon regulatory factor (IRF) family genes in head and neck squamous cell carcinoma. Methods. Based on the HNSC data in the ‘The Cancer Genome Atlas (TCGA)’ database, the expression pattern of IRF family genes was investigated. The association of IRFs family genes and survival outcomes were analyzed by Kaplan–Meier plotter web portal. The relation of IRF genes and tumor stages was evaluated by using stage plots and based on GEPIA portal. 50 genes interacting with IRFs were identified using the NetworkAnalyst’s protein-protein interaction (PPI) network construction tool. The top 200 correlated genes with similar expression patterns in HNSC were obtained by the similar gene detection module of GEPIA. Furthermore, functional enrichment analysis was performed to determine the biological functions enriched by the interacting and correlated genes. The potential implication of IRFs in tumor immunity was investigated in terms of tumor-infiltrating immune cells, a pair of immune checkpoint genes (CD274 and PDCD1), and ESTIMATE-Stromal-Immune score. Results. The unpaired sample analysis shows that all of the IRF family genes were highly expressed in HNSC tumor samples compared to control samples. The survival analysis results showed that the overexpression of IRF1, IRF4, IRF5, IRF6, IRF8, and IRF9 was associated with better overall survival in HNSC, while the other IRFs genes (IRF2, IRF3. and IRF7) did not show prognostic values for overall survival outcome of HNSC. Four genes (STAT1, STAT2, FOXP3, and SPI1) were overlapping among 50 interacted genes in the PPI network and top 200 correlated genes identified by GEPIA. The 50 interacting genes in the PPI network and top 200 correlated genes were integrated into 246 genes. These 246 genes were found to be overrepresented in multiple KEGG pathways, e.g., Th17 cell differentiation, T cell receptor signaling pathway, cytokine-cytokine receptor interaction, natural killer (NK) cell-mediated cytotoxicity, FOXO signaling, PI3K-Akt signaling, and ErbB signaling. Most correlations between IRF gene members and TIICs were positive. The strongest positive correlation was identified between IRF8 and T cells (
,
). The majority of correlation between IRF family genes and ESTIMATE-Stromal-Immune score was found to be positive. The highest positive correlation was found to be between IRF8 and Immune score (
,
). Most correlations between IRFs and two immunoinhibitor genes (CD274 and PDCD1) were positive. IRF1 and PDCD1 were found to show the highest positive correlation (
,
). Conclusions. The current analysis showed IRFs were differentially expressed in HNSC, indicated significant prognostic values, were involved in tumor immunity-related signaling pathways, and significantly regulated tumor-infiltrating immune cells. IRF family genes could be potential therapeutic biomarkers in targeting tumor immunity of head and neck cancer.
Collapse
|
17
|
Zhang N, Gao X, Zhang W, Xiong J, Cao X, Fu ZF, Cui M. JEV Infection Induces M-MDSC Differentiation Into CD3 + Macrophages in the Brain. Front Immunol 2022; 13:838990. [PMID: 35529855 PMCID: PMC9068957 DOI: 10.3389/fimmu.2022.838990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
Japanese encephalitis virus (JEV) is one of the most important members of the flavivirus family. It is a typical zoonotic pathogen that has caused substantial social and economic losses worldwide. The relation between JEV-induced immunosuppression and inflammatory responses has not been thoroughly investigated. In this study, cells infiltrating the brain tissue of JEV-infected mice were mainly identified as monocytic myeloid-derived suppressor cells (M-MDSCs), which subsequently differentiated into CD3+ macrophages. Co-culture with T cells showed that both splenic M-MDSCs and brain infiltrated M-MDSCs isolated from JEV-infected mice inhibited T cell proliferation through ARG1 and iNOS. The splenectomy model revealed that JEV-induced M-MDSCs were mainly derived from bone marrow and migrated to the spleen and central nervous system (CNS). The results of the transcriptome analysis and IRF7-deficient mice indicated that the ZBP1-IRF7 signaling pathway stimulated by JEV RNA played a central role in the induction of M-MDSCs. M-MDSCs migrated into the CNS through the chemokine CCL2/N-CCL2 derived from astrocytes and brain infiltrated M-MDSCs differentiated into CD3+ macrophages through a mechanism mediated by M-CSF, IL-6 and IFN-γ in the brain microenvironment. These findings provide evidence for the mechanism that JEV regulates the differentiation of M-MDSCs and thereby exacerbates pathogenicity, which represents a potential therapeutic target for Japanese encephalitis (JE).
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiaochen Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Weijia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Junyao Xiong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, China,International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China,*Correspondence: Min Cui,
| |
Collapse
|
18
|
The downregulation of type I IFN signaling in G-MDSCs under tumor conditions promotes their development towards an immunosuppressive phenotype. Cell Death Dis 2022; 13:36. [PMID: 35013108 PMCID: PMC8748997 DOI: 10.1038/s41419-021-04487-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
Abstract
Tumors modify myeloid cell differentiation and induce an immunosuppressive microenvironment. Granulocytic myeloid-derived suppressor cells (G-MDSCs), the main subgroup of myeloid-derived suppressor cells (MDSCs), are immature myeloid cells (IMCs) with immunosuppressive activity and exist in tumor-bearing hosts. The reason why these cells diverge from a normal differentiation pathway and are shaped into immunosuppressive cells remains unclear. Here, we reported that the increase of granulocyte colony-stimulating factor (G-CSF) in mouse serum with tumor progression encouraged G-MDSCs to obtain immunosuppressive traits in peripheral blood through the PI3K-Akt/mTOR pathway. Importantly, we found that downregulation of type I interferon (IFN-I) signaling in G-MDSCs was a prerequisite for their immunosuppressive effects. Suppressor of cytokine signaling (SOCS1), the action of which is dependent on IFN-I signaling, inhibited the activation of the PI3K-Akt/mTOR pathway by directly interacting with Akt, indicating that the differentiation of immunosuppressive G-MDSCs involves a transition from immune activation to immune tolerance. Our study suggests that increasing IFN-I signaling in G-MDSCs may be a strategy for reprograming immunosuppressive myelopoiesis and slowing tumor progression.
Collapse
|
19
|
Shi H, Qin Y, Tian Y, Wang J, Wang Y, Wang Z, Lv J. Interleukin-1beta triggers the expansion of circulating granulocytic myeloid-derived suppressor cell subset dependent on Erk1/2 activation. Immunobiology 2021; 227:152165. [PMID: 34936966 DOI: 10.1016/j.imbio.2021.152165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation contributes to cancer development and progression. Although interleukin-1beta (IL-1β) has been observed to be associated with an general immune suppression of T cell response and the immunosuppression strongly correlates with accumulation of myeloid-derived suppressor cells (MDSCs), the relationship and mechanism between MDSCs expansion and IL-1β expression remain ambiguous. Here, we showed that the concentration of IL-1β was highly correlated with G-MDSC subset, rather than mo-MDSC subset. Recombinant IL-1β increased the percentage of G-MDSCs in the blood of tumor-bearing mice, and IL-1Ra attenuated the accumulation of G-MDSCs in the tumor-bearing mice. In addition, the IL-1β-overexpressing B16F10 cells induced higher level of G-MDSCs compared with wild-type B16F10 cells. Moreover, we found that the accumulation of G-MDSCs induced by IL-1β was dependent on the activation of extracellular signal-regulated kinases 1 and 2 (Erk1/2). Collectively, these findings show a novel role of IL-1β in G-MDSCs accumulation by activating Erk1/2, which suggests that IL-1β elimination or Erk1/2 signaling blockade could decrease G-MDSCs generation and thereby improve host immunosurveillance.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yufeng Tian
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jiaan Wang
- Department of Blood Transfusion, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Yan Wang
- Department of Medical Image, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Ziyi Wang
- Department of Anesthesiology, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
20
|
Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Curr Oncol 2021; 28:4756-4771. [PMID: 34898573 PMCID: PMC8628692 DOI: 10.3390/curroncol28060401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) and candidate pathway studies have identified low-penetrant genetic variants associated with cutaneous melanoma. We investigated the association of melanoma-risk variants with primary melanoma tumor prognostic characteristics and melanoma-specific survival. The Genes, Environment, and Melanoma Study enrolled 3285 European origin participants with incident invasive primary melanoma. For each of 47 melanoma-risk single nucleotide polymorphisms (SNPs), we used linear and logistic regression modeling to estimate, respectively, the per allele mean changes in log of Breslow thickness and odds ratios for presence of ulceration, mitoses, and tumor-infiltrating lymphocytes (TILs). We also used Cox proportional hazards regression modeling to estimate the per allele hazard ratios for melanoma-specific survival. Passing the false discovery threshold (p = 0.0026) were associations of IRF4 rs12203592 and CCND1 rs1485993 with log of Breslow thickness, and association of TERT rs2242652 with presence of mitoses. IRF4 rs12203592 also had nominal associations (p < 0.05) with presence of mitoses and melanoma-specific survival, as well as a borderline association (p = 0.07) with ulceration. CCND1 rs1485993 also had a borderline association with presence of mitoses (p = 0.06). MX2 rs45430 had nominal associations with log of Breslow thickness, presence of mitoses, and melanoma-specific survival. Our study indicates that further research investigating the associations of these genetic variants with underlying biologic pathways related to tumor progression is warranted.
Collapse
|
21
|
Huang KW, Tan CP, Reebye V, Chee CE, Zacharoulis D, Habib R, Blakey DC, Rossi JJ, Habib N, Sodergren MH. MTL-CEBPA Combined with Immunotherapy or RFA Enhances Immunological Anti-Tumor Response in Preclinical Models. Int J Mol Sci 2021; 22:9168. [PMID: 34502076 PMCID: PMC8431011 DOI: 10.3390/ijms22179168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
The transcription factor CEBPA is a master regulator of liver homeostasis, myeloid cell differentiation and is downregulated in several oncogenic diseases. MTL-CEBPA is a small activating RNA drug which upregulates gene expression of CEBPA for treatment of hepatocellular carcinoma (HCC). We investigate whether MTL-CEBPA has immune modulatory effects by combining MTL-CEBPA with an anti-PD-1 checkpoint inhibitor (CPI) and/or radiofrequency ablation (RFA) in two preclinical models. First, mice with two flanks of HCC tumors (BNL) were treated with combinations of RFA (right flank), anti-PD-1 or MTL-CEBPA. The reduction of the left flank tumors was most pronounced in the group treated with RFA+anti-PD1+MTL-CEBPA and 7/8 animals responded. This was the only group with a significant increase in CD8+ and CD49b+/CD45+ tumor infiltrating lymphocytes (TIL). Second, a combination of anti-PD-1+MTL-CEBPA was tested in a CT26 colon cancer model and this treatment significantly reduced tumor size, modulated the tumor immune microenvironment and increased TILs. These data suggest a clinical role for combination treatment with CPIs, RFA and MTL-CEBPA through synergistic priming of the immune tumor response, enabling RFA and CPIs to have a pronounced anti-tumor effect including activity in non-treated tumors in the case of RFA.
Collapse
Affiliation(s)
- Kai-Wen Huang
- Hepatitis Research Center, Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei 100, Taiwan
- Centre of Mini-Invasive Interventional Oncology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Choon Ping Tan
- MiNA Therapeutics Ltd., London W12 0BZ, UK; (C.P.T.); (V.R.); (R.H.); (D.C.B.)
| | - Vikash Reebye
- MiNA Therapeutics Ltd., London W12 0BZ, UK; (C.P.T.); (V.R.); (R.H.); (D.C.B.)
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
| | - Cheng Ean Chee
- Department of Haemato-Oncology, National University Cancer Institute, Singapore 119077, Singapore;
| | - Dimitris Zacharoulis
- Department of General Surgery, University Hospital of Larissa, 41110 Larissa, Greece;
| | - Robert Habib
- MiNA Therapeutics Ltd., London W12 0BZ, UK; (C.P.T.); (V.R.); (R.H.); (D.C.B.)
| | - David C. Blakey
- MiNA Therapeutics Ltd., London W12 0BZ, UK; (C.P.T.); (V.R.); (R.H.); (D.C.B.)
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Nagy Habib
- MiNA Therapeutics Ltd., London W12 0BZ, UK; (C.P.T.); (V.R.); (R.H.); (D.C.B.)
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
| | - Mikael H. Sodergren
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
| |
Collapse
|
22
|
Yang Q, Xie H, Li X, Feng Y, Xie S, Qu J, Xie A, Zhu Y, Zhou L, Yang J, Hu X, Wei H, Qiu H, Qin W, Huang J. Interferon Regulatory Factor 4 Regulates the Development of Polymorphonuclear Myeloid-Derived Suppressor Cells Through the Transcription of c-Myc in Cancer. Front Immunol 2021; 12:627072. [PMID: 33708218 PMCID: PMC7940347 DOI: 10.3389/fimmu.2021.627072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
The accumulation of myeloid-derived suppressor cells (MDSCs) is one of the major obstacles to achieve an appropriate anti-tumor immune response and successful tumor immunotherapy. MDSCs in tumor-bearing hosts are primarily polymorphonuclear (PMN-MDSCs). However, the mechanisms regulating the development of MDSCs remain poorly understood. In this report, we showed that interferon regulatory factor 4 (IRF4) plays a key role in the development of PMN-MDSCs, but not monocytic MDSCs. IRF4 deficiency caused a significant elevation of PMN-MDSCs and enhanced the suppressive activity of PMN-MDSCs, increasing tumor growth and metastasis in mice. Mechanistic studies showed that c-Myc was up-regulated by the IRF4 protein. Over-expression of c-Myc almost abrogated the effects of IRF4 deletion on PMN-MDSCs development. Importantly, the IRF4 expression level was negatively correlated with the PMN-MDSCs frequency and tumor development but positively correlated with c-Myc expression in clinical cancer patients. In summary, this study demonstrated that IRF4 represents a novel regulator of PMN-MDSCs development in cancer, which may have predictive value for tumor progression.
Collapse
Affiliation(s)
- Quan Yang
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Xie
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuanfa Feng
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shihao Xie
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiale Qu
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Anqi Xie
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yiqiang Zhu
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lu Zhou
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jinxue Yang
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohao Hu
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Haixia Wei
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huaina Qiu
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenjuan Qin
- Department of Radiation Oncology, Zhongshan Hospital Affiliated, Xiamen University, Xiamen, China
| | - Jun Huang
- The State Key Laboratory of Respiratory Disease, The First Affliated Hospital, Guangzhou Medical University, Guangzhou, China
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
23
|
Buchele V, Konein P, Vogler T, Kunert T, Enderle K, Khan H, Büttner-Herold M, Lehmann CHK, Amon L, Wirtz S, Dudziak D, Neurath MF, Neufert C, Hildner K. Th17 Cell-Mediated Colitis Is Positively Regulated by Interferon Regulatory Factor 4 in a T Cell- Extrinsic Manner. Front Immunol 2021; 11:590893. [PMID: 33584655 PMCID: PMC7879684 DOI: 10.3389/fimmu.2020.590893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by chronic, inflammatory gastrointestinal lesions and often require life-long treatment with immunosuppressants and repetitive surgical interventions. Despite progress in respect to the characterization of molecular mechanisms e.g. exerted by TNF-alpha, currently clinically approved therapeutics fail to provide long-term disease control for most patients. The transcription factor interferon regulatory factor 4 (IRF4) has been shown to play important developmental as well as functional roles within multiple immune cells. In the context of colitis, a T cell-intrinsic role of IRF4 in driving immune-mediated gut pathology is established. Here, we conversely addressed the impact of IRF4 inactivation in non-T cells on T cell driven colitis in vivo. Employing the CD4+CD25- naïve T cell transfer model, we found that T cells fail to elicit colitis in IRF4-deficient compared to IRF4-proficient Rag1-/- mice. Reduced colitis activity in the absence of IRF4 was accompanied by hampered T cell expansion both within the mesenteric lymph node (MLN) and colonic lamina propria (cLP). Furthermore, the influx of various myeloids, presumably inflammation-promoting cells was abrogated overall leading to a less disrupted intestinal barrier. Mechanistically, gene profiling experiments revealed a Th17 response dominated molecular expression signature in colon tissues of IRF4-proficient, colitic Rag1-/- but not in colitis-protected Rag1-/-Irf4-/- mice. Colitis mitigation in Rag1-/-Irf4-/- T cell recipients resulted in reduced frequencies and absolute numbers of IL-17a-producing T cell subsets in MLN and cLP possibly due to a regulation of conventional dendritic cell subset 2 (cDC2) known to impact Th17 differentiation. Together, extending the T cell-intrinsic role for IRF4 in the context of Th17 cell driven colitis, the provided data demonstrate a Th17-inducing and thereby colitis-promoting role of IRF4 through a T cell-extrinsic mechanism highlighting IRF4 as a putative molecular master switch among transcriptional regulators driving immune-mediated intestinal inflammation through both T cell-intrinsic and T cell-extrinsic mechanisms. Future studies need to further dissect IRF4 controlled pathways within distinct IRF4-expressing myeloid cell types, especially cDC2s, to elucidate the precise mechanisms accounting for hampered Th17 formation and, according to our data, the predominant mechanism of colitis protection in Rag1-/-Irf4-/- T cell receiving mice.
Collapse
Affiliation(s)
- Vera Buchele
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Patrick Konein
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Vogler
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Timo Kunert
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Karin Enderle
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hanif Khan
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Institute of Pathology, Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Christian H. K. Lehmann
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lukas Amon
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Diana Dudziak
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
24
|
Zhou H, Jiang M, Yuan H, Ni W, Tai G. Dual roles of myeloid-derived suppressor cells induced by Toll-like receptor signaling in cancer. Oncol Lett 2020; 21:149. [PMID: 33552267 PMCID: PMC7798029 DOI: 10.3892/ol.2020.12410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major components of the tumor microenvironment (TME), and are the main mediators of tumor-induced immunosuppression. Recent studies have reported that the survival, differentiation and immunosuppressive activity of MDSCs are affected by the Toll-like receptor (TLR) signaling pathway. However, the regulatory effect of TLR signaling on MDSCs remains controversial. TLR-induced MDSC can acquire different immunosuppressive activities to influence the immune response that can be either beneficial or detrimental to cancer immunotherapy. The present review summarizes the effects of TLR signals on the number, phenotype and inhibitory activity of MDSCs, and their role in cancer immunotherapy, which cannot be ignored if effective cancer immunotherapies are to be developed for the immunosuppression of the TME.
Collapse
Affiliation(s)
- Hongyue Zhou
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyu Jiang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
25
|
Statins induce skeletal muscle atrophy via GGPP depletion-dependent myostatin overexpression in skeletal muscle and brown adipose tissue. Cell Biol Toxicol 2020; 37:441-460. [PMID: 33034787 DOI: 10.1007/s10565-020-09558-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Myopathy is the major adverse effect of statins. However, the underlying mechanism of statin-induced skeletal muscle atrophy, one of statin-induced myopathy, remains to be elucidated. Myostatin is a negative regulator of skeletal muscle mass and functions. Whether myostatin is involved in statin-induced skeletal muscle atrophy remains unknown. In this study, we uncovered that simvastatin administration increased serum myostatin levels in mice. Inhibition of myostatin with follistatin, an antagonist of myostatin, improved simvastatin-induced skeletal muscle atrophy. Simvastatin induced myostatin expression not only in skeletal muscle but also in brown adipose tissue (BAT). Mechanistically, simvastatin inhibited the phosphorylation of forkhead box protein O1 (FOXO1) in C2C12 myotubes, promoting the nuclear translocation of FOXO1 and thereby stimulating the transcription of myostatin. In differentiated brown adipocytes, simvastatin promoted myostatin expression mainly by inhibiting the expression of interferon regulatory factor 4 (IRF4). Moreover, the stimulative effect of simvastatin on myostatin expression was blunted by geranylgeranyl diphosphate (GGPP) supplementation in both myotubes and brown adipocytes, suggesting that GGPP depletion was attributed to simvastatin-induced myostatin expression. Besides, the capacities of statins on stimulating myostatin expression were positively correlated with the lipophilicity of statins. Our findings provide new insights into statin-induced skeletal muscle atrophy. Graphical headlights 1. Simvastatin induces skeletal muscle atrophy via increasing serum myostatin levels in mice; 2. Simvastatin promotes myostatin expression in both skeletal muscle and brown adipose tissue through inhibiting GGPP production; 3. The stimulating effect of statins on myostatin expression is positively correlated with the lipophilicity of statins.
Collapse
|
26
|
Koelwyn GJ, Newman AAC, Afonso MS, van Solingen C, Corr EM, Brown EJ, Albers KB, Yamaguchi N, Narke D, Schlegel M, Sharma M, Shanley LC, Barrett TJ, Rahman K, Mezzano V, Fisher EA, Park DS, Newman JD, Quail DF, Nelson ER, Caan BJ, Jones LW, Moore KJ. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat Med 2020; 26:1452-1458. [PMID: 32661390 PMCID: PMC7789095 DOI: 10.1038/s41591-020-0964-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/02/2020] [Indexed: 02/08/2023]
Abstract
Disruption of systemic homeostasis by either chronic or acute stressors, such as obesity1 or surgery2, alters cancer pathogenesis. Patients with cancer, particularly those with breast cancer, can be at increased risk of cardiovascular disease due to treatment toxicity and changes in lifestyle behaviors3-5. While elevated risk and incidence of cardiovascular events in breast cancer is well established, whether such events impact cancer pathogenesis is not known. Here we show that myocardial infarction (MI) accelerates breast cancer outgrowth and cancer-specific mortality in mice and humans. In mouse models of breast cancer, MI epigenetically reprogrammed Ly6Chi monocytes in the bone marrow reservoir to an immunosuppressive phenotype that was maintained at the transcriptional level in monocytes in both the circulation and tumor. In parallel, MI increased circulating Ly6Chi monocyte levels and recruitment to tumors and depletion of these cells abrogated MI-induced tumor growth. Furthermore, patients with early-stage breast cancer who experienced cardiovascular events after cancer diagnosis had increased risk of recurrence and cancer-specific death. These preclinical and clinical results demonstrate that MI induces alterations in systemic homeostasis, triggering cross-disease communication that accelerates breast cancer.
Collapse
Affiliation(s)
- Graeme J Koelwyn
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Alexandra A C Newman
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Milessa S Afonso
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Coen van Solingen
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Emma M Corr
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Emily J Brown
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Kathleen B Albers
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Naoko Yamaguchi
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Deven Narke
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Martin Schlegel
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Monika Sharma
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Lianne C Shanley
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Tessa J Barrett
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Karishma Rahman
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Valeria Mezzano
- Division of Advanced Research Technologies, Experimental Pathology, New York University School of Medicine, New York, NY, USA
| | - Edward A Fisher
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - David S Park
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Newman
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA
- The Center for the Prevention of Cardiovascular Disease, New York University School of Medicine, New York, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana Champaign, Urbana, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Bette J Caan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Fujimura T, Aiba S. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers. Biomolecules 2020; 10:E1087. [PMID: 32707850 PMCID: PMC7464513 DOI: 10.3390/biom10081087] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from monocytes develop into functional, fully activated macrophages, and TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment. Since TAMs express PD1 to maintain the immunosuppressive M2 phenotype by PD1/PD-L1 signaling from tumor cells, and the blockade of PD1/PD-L1 signaling by anti-PD1 antibodies (Abs) activate and re-polarize TAMs into immunoreactive M1 phenotypes, TAMs represent a potential target for anti-PD1 Abs. The main population of TAMs comprises CD163+ M2 macrophages, and CD163+ TAMs release soluble (s)CD163 and several proinflammatory chemokines (CXCL5, CXCL10, CCL19, etc.) as a result of TAM activation to induce an immunosuppressive tumor microenvironment together with other immunosuppressive cells. Since direct blockade of PD1/PD-L1 signaling between tumor cells and tumor-infiltrating T cells (both effector T cells and Tregs) is mandatory for inducing an anti-immune response by anti-PD1 Abs, anti-PD1 Abs need to reach the tumor microenvironment to induce anti-immune responses in the tumor-bearing host. Taken together, TAM-related factors could offer a biomarker for anti-PD1 Ab-based immunotherapy. Understanding the crosstalk between TAMs and immunosuppressive cells is important for optimizing PD1 Ab-based immunotherapy.
Collapse
Affiliation(s)
- Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan;
| | | |
Collapse
|
28
|
Yang Y, Li C, Liu T, Dai X, Bazhin AV. Myeloid-Derived Suppressor Cells in Tumors: From Mechanisms to Antigen Specificity and Microenvironmental Regulation. Front Immunol 2020; 11:1371. [PMID: 32793192 PMCID: PMC7387650 DOI: 10.3389/fimmu.2020.01371] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Among the various immunological and non-immunological tumor-promoting activities of myeloid-derived suppressor cells (MDSCs), their immunosuppressive capacity remains a key hallmark. Effort in the past decade has provided us with a clearer view of the suppressive nature of MDSCs. More suppressive pathways have been identified, and their recognized targets have been expanded from T cells and natural killer (NK) cells to other immune cells. These novel mechanisms and targets afford MDSCs versatility in suppressing both innate and adaptive immunity. On the other hand, a better understanding of the regulation of their development and function has been unveiled. This intricate regulatory network, consisting of tumor cells, stromal cells, soluble mediators, and hostile physical conditions, reveals bi-directional crosstalk between MDSCs and the tumor microenvironment. In this article, we will review available information on how MDSCs exert their immunosuppressive function and how they are regulated in the tumor milieu. As MDSCs are a well-established obstacle to anti-tumor immunity, new insights in the potential synergistic combination of MDSC-targeted therapy and immunotherapy will be discussed.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Lab of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
29
|
Tian S, Song X, Wang Y, Wang X, Mou Y, Chen Q, Zhao H, Ma K, Wu Z, Yu H, Han X, Wang H, Wang S, Ji X, Zhang Y. Chinese herbal medicine Baoyuan Jiedu decoction inhibits the accumulation of myeloid derived suppressor cells in pre-metastatic niche of lung via TGF-β/CCL9 pathway. Biomed Pharmacother 2020; 129:110380. [PMID: 32554250 DOI: 10.1016/j.biopha.2020.110380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/24/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Baoyuan Jiedu (BYJD for short) decoction, a traditional Chinese medicine formula, is composed of Astragalus, Ginseng, Aconite root, Honeysuckle, Angelica, Licorice, which has the functions of nourishing qi and blood, enhancing immune function, improving quality of life and prolonging survival time of tumor patients. The present study aimed to investigate the effect and mechanism of BYJD decoction on reversing the pre-metastatic niche. We showed that BYJD decoction could prolong the survival time of 4T1 tumor-bearing mice. Moreover, we found that the BYJD decoction inhibited the formation of lung pre-metastatic niche and inhibited recruitment of myeloid derived suppressor cells (MDSCs) in the lung. Mechanistically, we showed that the proteins and genes expression of TGF-β, Smad2, Smad3, p-Smad2/3, Smad4, CCL9 in the TGF-β/CCL9 signaling pathway were suppressed by BYJD decoction. In line with the above findings, our results confirm that BYJD decoction inhibits the accumulation of MDSC in pre-metastatic niche of lung via TGF-β/CCL9 pathway.
Collapse
Affiliation(s)
- Sheng Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - XiaoTong Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - XiaoYan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - XiaoChun Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - XuMing Ji
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China.
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
30
|
Systemic but not MDSC-specific IRF4 deficiency promotes an immunosuppressed tumor microenvironment in a murine pancreatic cancer model. Cancer Immunol Immunother 2020; 69:2101-2112. [PMID: 32448983 PMCID: PMC7511276 DOI: 10.1007/s00262-020-02605-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma is characterized by a strong immunosuppressive network with a dense infiltration of myeloid cells including myeloid-derived suppressor cells (MDSC). Two distinct populations of MDSC have been defined: polymorphonuclear MDSC (PMN-MDSC) and monocytic MDSC (M-MDSC). Several factors influence the development and function of MDSC including the transcription factor interferon regulatory factor 4 (IRF4). Here, we show that IRF4 deficiency accelerates tumor growth and reduces survival, accompanied with a dense tumor infiltration with PMN-MDSC and reduced numbers of CD8+ T cells. As IRF4 has been described to modulate myeloid cell development and function, particularly of PMN-MDSC, we analyzed its role using MDSC-specific IRF4 knockout mice with the Ly6G or LysM knock-in allele expressing Cre recombinase and Irf4flox. In GM-CSF-driven bone marrow cultures, IRF4 deficiency increased the frequency of MDSC-like cells with a strong T cell suppressive capacity. Myeloid (LysM)-specific depletion of IRF4 led to increased tumor weight and a moderate splenic M-MDSC expansion in tumor-bearing mice. PMN cell (Ly6G)-specific depletion of IRF4, however, did not influence tumor progression or MDSC accumulation in vivo in accordance with our finding that IRF4 is not expressed in PMN-MDSC. This study demonstrates a critical role of IRF4 in the generation of an immunosuppressive tumor microenvironment in pancreatic cancer, which is independent of IRF4 expression in PMN-MDSC.
Collapse
|
31
|
Har-Noy M, Or R. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak. J Transl Med 2020; 18:196. [PMID: 32398026 PMCID: PMC7215129 DOI: 10.1186/s12967-020-02363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We present the rationale for a novel allo-priming approach to serve the elderly as a universal anti-virus vaccine, as well serving to remodel the aging immune system in order to reverse immunosenescence and inflammaging. This approach has the potential to protect the most vulnerable from disease and provide society an incalculable economic benefit. Allo-priming healthy elderly adults is proposed to provide universal protection from progression of any type of viral infection, including protection against progression of the current outbreak of COVID-19 infection, and any future variants of the causative SARS-CoV-2 virus or the next 'Disease X'. Allo-priming is an alternative approach for the COVID-19 pandemic that provides a back-up in case vaccination strategies to elicit neutralizing antibody protection fails or fails to protect the vulnerable elderly population. The allo-priming is performed using activated, intentionally mismatched, ex vivo differentiated and expanded living Th1-like cells (AlloStim®) derived from healthy donors currently in clinical use as an experimental cancer vaccine. Multiple intradermal injections of AlloStim® creates a dominate titer of allo-specific Th1/CTL memory cells in circulation, replacing the dominance of exhausted memory cells of the aged immune system. Upon viral encounter, by-stander activation of the allo-specific memory cells causes an immediate release of IFN-ϒ, leading to development of an "anti-viral state", by-stander activation of innate cellular effector cells and activation of cross-reactive allo-specific CTL. In this manner, the non-specific activation of allo-specific Th1/CTL initiates a cascade of spatial and temporal immune events which act to limit the early viral titer. The release of endogenous heat shock proteins (HSP) and DAMP from lysed viral-infected cells, in the context of IFN-ϒ, creates of conditions for in situ vaccination leading to viral-specific Th1/CTL immunity. These viral-specific Th1/CTL provide sterilizing immunity and memory for protection from disease recurrence, while increasing the pool of Th1/CTL in circulation capable of responding to the next viral encounter. CONCLUSION Allo-priming has potential to provide universal protection from viral disease and is a strategy to reverse immunosenescence and counter-regulate chronic inflammation (inflammaging). Allo-priming can be used as an adjuvant for anti-viral vaccines and as a counter-measure for unknown biological threats and bio-economic terrorism.
Collapse
Affiliation(s)
- Michael Har-Noy
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel. .,Immunovative Therapies, Ltd, Malcha Technology Park, B1/F1, 9695101, Jerusalem, Israel. .,Mirror Biologics, Inc., 4824 E Baseline Rd #113, Phoenix, AZ, USA.
| | - Reuven Or
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| |
Collapse
|
32
|
B-cell-specific IRF4 deletion accelerates chronic lymphocytic leukemia development by enhanced tumor immune evasion. Blood 2020; 134:1717-1729. [PMID: 31537531 DOI: 10.1182/blood.2019000973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogenous disease that is highly dependent on a cross talk of CLL cells with the microenvironment, in particular with T cells. T cells derived from CLL patients or murine CLL models are skewed to an antigen-experienced T-cell subset, indicating a certain degree of antitumor recognition, but they are also exhausted, preventing an effective antitumor immune response. Here we describe a novel mechanism of CLL tumor immune evasion that is independent of T-cell exhaustion, using B-cell-specific deletion of the transcription factor IRF4 (interferon regulatory factor 4) in Tcl-1 transgenic mice developing a murine CLL highly similar to the human disease. We show enhanced CLL disease progression in IRF4-deficient Tcl-1 tg mice, associated with a severe downregulation of genes involved in T-cell activation, including genes involved in antigen processing/presentation and T-cell costimulation, which massively reduced T-cell subset skewing and exhaustion. We found a strong analogy in the human disease, with inferior prognosis of CLL patients with low IRF4 expression in independent CLL patient cohorts, failed T-cell skewing to antigen-experienced subsets, decreased costimulation capacity, and downregulation of genes involved in T-cell activation. These results have therapeutic relevance because our findings on molecular mechanisms of immune privilege may be responsible for the failure of immune-therapeutic strategies in CLL and may lead to improved targeting in the future.
Collapse
|
33
|
Lim J, Lee A, Lee HG, Lim JS. Modulation of Immunosuppression by Oligonucleotide-Based Molecules and Small Molecules Targeting Myeloid-Derived Suppressor Cells. Biomol Ther (Seoul) 2020; 28:1-17. [PMID: 31431006 PMCID: PMC6939693 DOI: 10.4062/biomolther.2019.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exert suppressive function on the immune response. MDSCs expand in tumor-bearing hosts or in the tumor microenvironment and suppress T cell responses via various mechanisms, whereas a reduction in their activities has been observed in autoimmune diseases or infections. It has been reported that the symptoms of various diseases, including malignant tumors, can be alleviated by targeting MDSCs. Moreover, MDSCs can contribute to patient resistance to therapy using immune checkpoint inhibitors. In line with these therapeutic approaches, diverse oligonucleotide-based molecules and small molecules have been evaluated for their therapeutic efficacy in several disease models via the modulation of MDSC activity. In the current review, MDSC-targeting oligonucleotides and small molecules are briefly summarized, and we highlight the immunomodulatory effects on MDSCs in a variety of disease models and the application of MDSC-targeting molecules for immuno-oncologic therapy.
Collapse
Affiliation(s)
- Jihyun Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Aram Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hee Gu Lee
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea.,Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
34
|
Smith AM, Zhang CRC, Cristino AS, Grady JP, Fink JL, Moore AS. PTEN deletion drives acute myeloid leukemia resistance to MEK inhibitors. Oncotarget 2019; 10:5755-5767. [PMID: 31645898 PMCID: PMC6791388 DOI: 10.18632/oncotarget.27206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Kinases such as MEK are attractive targets for novel therapy in cancer, including acute myeloid leukaemia (AML). Acquired and inherent resistance to kinase inhibitors, however, is becoming an increasingly important challenge for the clinical success of such therapeutics, and often arises from mutations in the drug-binding domain of the target kinase. To identify possible causes of resistance to MEK inhibition, we generated a model of resistance by long-term treatment of AML cells with AZD6244 (selumetinib). Remarkably, resistance to MEK inhibition was due to acquired PTEN haploinsufficiency, rather than mutation of MEK. Resistance via this mechanism was confirmed using CRISPR/Cas9 technology targeting exon 5 of PTEN. While PTEN loss has been previously implicated in resistance to a number of other therapeutic agents, this is the first time that it has been shown directly and in AML.
Collapse
Affiliation(s)
- Amanda M Smith
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Christine R C Zhang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Alexandre S Cristino
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Griffith Institute for Drug Discovery, Brisbane Innovation Park, Nathan, Australia
| | - John P Grady
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Garvan Institute of Medical Research, Darlinghurst, Australia
| | - J Lynn Fink
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Oncology Services Group, Queensland Children's Hospital, South Brisbane, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
35
|
Abstract
The Interferon regulatory factors (IRFs) are a family of transcription factors that play pivotal roles in many aspects of the immune response, including immune cell development and differentiation and regulating responses to pathogens. Three family members, IRF3, IRF5, and IRF7, are critical to production of type I interferons downstream of pathogen recognition receptors that detect viral RNA and DNA. A fourth family member, IRF9, regulates interferon-driven gene expression. In addition, IRF4, IRF8, and IRF5 regulate myeloid cell development and phenotype, thus playing important roles in regulating inflammatory responses. Thus, understanding how their levels and activity is regulated is of critical importance given that perturbations in either can result in dysregulated immune responses and potential autoimmune disease. This review will focus the role of IRF family members in regulating type I IFN production and responses and myeloid cell development or differentiation, with particular emphasis on how regulation of their levels and activity by ubiquitination and microRNAs may impact autoimmune disease.
Collapse
Affiliation(s)
- Caroline A Jefferies
- Department of Medicine, Division of Rheumatology and Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
36
|
Geng J, Yuan Y, Jiao X, Wang R, Liu N, Chen H, Griffin N, Shan F. Novel modulation on myeloid-derived suppressor cells (MDSCs) by methionine encephalin (MENK). Int Immunopharmacol 2019; 68:193-203. [PMID: 30654309 DOI: 10.1016/j.intimp.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to identify the modulatory effect of MENK on MDSCs and to investigate the relationship between this modulation and the expression of opioid receptors. Our results showed that MENK could inhibit the proliferation of MDSCs from both marine bone marrow and spleen. MENK also could promote the expression of opioid receptors MOR and DOR. MENK suppressed the PMN-MDSCs generated from splenocyte while up-regulated M-MDSCs. The stimulation of MENK increased the production of IL-4 secreted by MDSCs from slpenocytes. Our currently data indicated that MENK could suppress the accumulation of MDSCs in tumor-bearing mice via binding to and up-regulating expressions of subunits of opioid receptors. Therefore, it is concluded that MENK, through triggering opioid receptors could exert inhibiting modulation on MDSCs.
Collapse
Affiliation(s)
- Jin Geng
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Ophthalmology, No. 1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Ye Yuan
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang 110016, China
| | - Xue Jiao
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Ruizhe Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Gynecology, No. 1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Ning Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China; Department of Gynecology Oncology, Shengjing Hospital, China Medical University, Shenyang 110016, China
| | - Hao Chen
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
37
|
Nam S, Lee A, Lim J, Lim JS. Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs). Biomol Ther (Seoul) 2019; 27:63-70. [PMID: 30521746 PMCID: PMC6319546 DOI: 10.4062/biomolther.2018.201] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate NF-κB signaling. Moreover, expression of PD-L1 and CD80 on PD-1+ MDSCs was higher than on PD-1− MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in PD-1+ MDSCs than in PD-1− MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that PD-1+ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.
Collapse
Affiliation(s)
- Sorim Nam
- Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Aram Lee
- Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jihyun Lim
- Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Seok Lim
- Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
38
|
Lee YK, Ju JM, Shon WJ, Oh S, Min CK, Kang MS, Shin DM, Choi EY. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw 2018; 18:e44. [PMID: 30619630 PMCID: PMC6312895 DOI: 10.4110/in.2018.18.e44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Graft-versus-host disease (GVHD), a life-threatening complication after bone marrow transplantation (BMT), is induced by activation of alloreactive donor T cells. Our previous study demonstrated that transplantation of myeloid differentiation factor 88 (MyD88)-deficient knockout (KO) bone marrow (BM) resulted in aggravation of GVHD. Here, to understand the cellular mechanism, we performed longitudinal in vivo imaging and flow cytometric analyses followed by transcriptome and functional examination of donor MyD88-KO BM progenies in GVHD hosts, using a major histocompatibility complex-matched but minor histocompatibility antigen-mismatched C57BL/6→BALB.B model. In GVHD hosts with MyD88-KO BMT, donor BM-derived CD11b+Gr-1+ cells were found to undergo cell death, a fate significantly different from the explosive expansion shown by the wild type (WT) counterparts, and also from the moderate expansion of the WT or MyD88-KO BM-derived cells in non-GVHD hosts. It was also revealed that MyD88-KO CD11b+Gr-1+ cells preferred differentiation into CD11c+ dendritic cells (DCs) to expansion as myeloid-derived suppressor cells in GVHD hosts or in high inflammatory in vitro conditions. These CD11c+ DCs comprised the majority of MyD88-KO CD11b+Gr-1+ apoptotic cells in GVHD hosts. Their ability to cross-present alloantigens of host origin contributed to the enhancement of T cell alloreactivity, causing GVHD aggravation and eventually death through the killing function of activated T cells. These results provide insights into the roles of MyD88 in myelopoiesis of donor BM and the protective effects in GVHD hosts, helpful information for development of a strategy to control GVHD.
Collapse
Affiliation(s)
- Young-Kwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ji-Min Ju
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woo-Jeong Shon
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul 08826, Korea
| | - Sehwa Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06951, Korea
| | - Myung-Soo Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul 08826, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
39
|
Lv Y, Cui M, Lv Z, Lu J, Zhang X, Zhao Z, Wang Y, Gao L, Tsuji NM, Yan H. Expression and significance of peripheral myeloid-derived suppressor cells in chronic hepatitis B patients. Clin Res Hepatol Gastroenterol 2018; 42:462-469. [PMID: 29753730 DOI: 10.1016/j.clinre.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/29/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) exert their suppressive effects on multiple immune response and contribute to the development of many diseases. However, limited data is available on the involvement of MDSCs in human chronic HBV infection. OBJECTIVE To investigate whether the progression of chronic HBV infection was associated with imbalance of MDSCs. METHODS The percentages of MDSCs, regulatory T (Treg), Th1 and Tc1 cells in the peripheral blood from chronic hepatitis B (CHB) patients and healthy controls (HC) were determined by flow cytometry. Plasma levels of IL-10, TGF-β and IFN-γ were measured using enzyme-linked immunosorbent assay. The potential association of the frequencies of MDSCs with clinical parameters was assessed. RESULTS The percentages of MDSCs and Treg cells were significantly higher in CHB patients than those in HC. The percentages of MDSCs were negatively correlated with Th1 cells. Increased plasma IL-10 level and decreased IFN-γ level were found in CHB patients compared with HC. Moreover, the frequencies of MDSCs and plasma IL-10 levels were positively correlated with serum HBV DNA loads, as well as liver function impairment. CONCLUSION The expanded peripheral MDSCs may contribute to poor viral clearance and disease progression during chronic HBV infection.
Collapse
Affiliation(s)
- Y Lv
- Clinical Research Center, Shijiazhuang Fifth Hospital, 42, Tanan Road, Shijiazhuang, Hebei 050021, China
| | - M Cui
- Department of Liver and Digestive Disease, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Z Lv
- Graduate College of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - J Lu
- Clinical Research Center, Shijiazhuang Fifth Hospital, 42, Tanan Road, Shijiazhuang, Hebei 050021, China
| | - X Zhang
- Graduate College of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Z Zhao
- Department of Liver and Digestive Disease, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Y Wang
- Department of Liver and Digestive Disease, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - L Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - N M Tsuji
- Biomedical Research Institude, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - H Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, 42, Tanan Road, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
40
|
Ostrand-Rosenberg S, Fenselau C. Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. THE JOURNAL OF IMMUNOLOGY 2018; 200:422-431. [PMID: 29311384 DOI: 10.4049/jimmunol.1701019] [Citation(s) in RCA: 386] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/24/2017] [Indexed: 12/19/2022]
Abstract
Myeloid-derived suppressor cells (MDSC) are a diverse population of immature myeloid cells that have potent immune-suppressive activity. Studies in both mice and humans have demonstrated that MDSC accumulate in most individuals with cancer, where they promote tumor progression, inhibit antitumor immunity, and are an obstacle to many cancer immunotherapies. As a result, there has been intense interest in understanding the mechanisms and in situ conditions that regulate and sustain MDSC, and the mechanisms MDSC use to promote tumor progression. This article reviews the characterization of MDSC and how they are distinguished from neutrophils, describes the suppressive mechanisms used by MDSC to mediate their effects, and explains the role of proinflammatory mediators and the tumor microenvironment in driving MDSC accumulation, suppressive potency, and survival.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250; and
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| |
Collapse
|
41
|
Bradley JH, Harrison A, Corey A, Gentry N, Gregg RK. Ebola virus secreted glycoprotein decreases the anti-viral immunity of macrophages in early inflammatory responses. Cell Immunol 2017; 324:24-32. [PMID: 29195741 PMCID: PMC7094302 DOI: 10.1016/j.cellimm.2017.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/20/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022]
Abstract
During Ebola virus (EBOV) infection, secreted glycoprotein (sGP) is found in large quantities in the serum of both patients and infected animal models. It is thought to serve as a decoy for anti-EBOV antibodies. Using an in vitro model incorporating treatment of non-infected human THP-1 macrophages with recombinant EBOV sGP, this study sought to examine the impact of sGP upon key macrophage functions. Macrophage polarization and phagocytic capacity of activated macrophages were found to be unaltered by sGP treatment. However, treatment with sGP inhibited macrophage production of the pro-inflammatory cytokines TNFα and IL-6 while the yield of anti-inflammatory cytokine, IL-10, remained intact. Interestingly, the migratory ability of macrophages was also diminished by sGP, potentially due to a decrease in expression of CD11b, a vital macrophage integrin. Thus, EBOV sGP may operate to diminish functional contributions of non-infected macrophages to increase the potential viral dissemination.
Collapse
Affiliation(s)
- Jillian H Bradley
- Division of Biomedical Sciences, Magnolia Research Center, Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine - Carolinas Campus, Spartanburg, SC 29303, United States
| | - Ametria Harrison
- Department of Biology, Chemistry and Physics, Converse College, Spartanburg, SC 29301, United States
| | - Ashley Corey
- Division of Biomedical Sciences, Magnolia Research Center, Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine - Carolinas Campus, Spartanburg, SC 29303, United States
| | - Nathan Gentry
- Division of Biomedical Sciences, Magnolia Research Center, Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine - Carolinas Campus, Spartanburg, SC 29303, United States
| | - Randal K Gregg
- Division of Biomedical Sciences, Magnolia Research Center, Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine - Carolinas Campus, Spartanburg, SC 29303, United States.
| |
Collapse
|
42
|
Tamadaho RSE, Hoerauf A, Layland LE. Immunomodulatory effects of myeloid-derived suppressor cells in diseases: Role in cancer and infections. Immunobiology 2017; 223:432-442. [PMID: 29246400 DOI: 10.1016/j.imbio.2017.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/05/2017] [Accepted: 07/02/2017] [Indexed: 01/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are heterogeneous cells capable of abrogating T and B cells responses and have been identified in numerous cancers. As with other regulatory cell populations, they aim to maintain balance between host-defence-associated inflammation and ensuing tissue pathology. MDSC accumulation and/or activation involve several growth factors and cytokines including Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) and Interleukin (IL)-6 and suppression has been linked to receptors such as IL-4Rα. Other immune pathways, such as Toll-like receptors (TLRs) have also been shown to interfere in MDSC activity adding to the complexity in clarifying their pathways. Monocytic- (Mo-MDSCs) and polymorphonuclear- (PMN-MDSCs) cells are two subsets of MDSCs that have been well characterized and have been shown to function through different mechanisms although both appear to require nitric oxide. In human and murine model settings, MDSCs have been shown to have inhibitory effects on T cell responses during bacterial, parasitic and viral pathologies and an increase of MDSC numbers has been associated with pathological conditions. Interestingly, the environment impacts on MDSC activity and regulatory T cells (Tregs), mast cells and a few cells that may help MDSC in order to regulate immune responses. Since the majority of pioneering data on MDSCs has stemmed from research on malignancies, this review will summarize MDSC biology and function in cancer and highlight current knowledge about these cells during infectious pathologies as well.
Collapse
Affiliation(s)
- Ruth S E Tamadaho
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
43
|
Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res 2016; 39:1548-1555. [DOI: 10.1007/s12272-016-0854-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/28/2016] [Indexed: 12/11/2022]
|