1
|
Alemu BK, Tommasi S, Hulin JA, Meyers J, Mangoni AA. Current knowledge on the mechanisms underpinning vasculogenic mimicry in triple negative breast cancer and the emerging role of nitric oxide. Biomed Pharmacother 2025; 186:118013. [PMID: 40147105 DOI: 10.1016/j.biopha.2025.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Vasculogenic mimicry (VM) is the process by which cancer cells form vascular-like channels to support their growth and dissemination. These channels lack endothelial cells and are instead lined by the tumour cells themselves. VM was first reported in uveal melanomas but has since been associated with other aggressive solid tumours, such as triple-negative breast cancer (TNBC). In TNBC patients, VM is associated with tumour aggressiveness, drug resistance, metastatic burden, and poor prognosis. The lack of effective targeted therapies for TNBC has stimulated research on the mechanisms underpinning VM in order to identify novel druggable targets. In recent years, studies have highlighted the role of nitric oxide (NO), the NO synthesis inhibitor, asymmetric dimethylarginine (ADMA), and dimethylarginine dimethylaminohydrolase 1 (DDAH1), the key enzyme responsible for ADMA metabolism, in regulating VM. Specifically, NO inhibition through downregulation of DDAH1 and consequent accumulation of ADMA appears to be a promising strategy to suppress VM in TNBC. This review discusses the current knowledge regarding the molecular pathways underpinning VM in TNBC, anti-VM therapies under investigation, and the emerging role of NO regulation in VM.
Collapse
Affiliation(s)
- Belete Kassa Alemu
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Injibara University, College of Medicine and Health Sciences, Department of Pharmacy, Injibara, Ethiopia
| | - Sara Tommasi
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Julie-Ann Hulin
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Jai Meyers
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Arduino A Mangoni
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| |
Collapse
|
2
|
Vanden Broecke E, Stammeleer L, Stock E, De Paepe E, Daminet S. Efficacy of Urine Asymmetric Dimethylarginine Concentration to Predict Azotemia in Hyperthyroid Cats After Radio-Iodine Treatment. J Vet Intern Med 2025; 39:e70096. [PMID: 40271736 PMCID: PMC12019304 DOI: 10.1111/jvim.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Hyperthyroidism can mask concurrent chronic kidney disease in cats, and no accurate biomarkers are available to predict which cats will develop renal azotemia after radioiodine (131I) treatment. HYPOTHESIS/OBJECTIVES To evaluate the potential of serum and urinary metabolites and metabolite ratios to predict post-131I renal azotemia in hyperthyroid cats. ANIMALS Hyperthyroid cats (n = 31), before and (3-12 months) after treatment with 131I at the Faculty of Veterinary Medicine (Ghent University, Belgium). METHODS Retrospective study. Optimized and validated feline extraction and analysis protocols were employed for metabolic profiling of urine and serum samples using ultra-high performance liquid chromatography-high-resolution mass spectrometry. A dual strategy of cross-validated univariate and penalized multivariate logistic regression was applied to determine predictivity (i.e., area under the curve [AUC], accuracy, sensitivity, and specificity) of individual biomarkers and panels. RESULTS All hyperthyroid cats were non-azotemic before 131I administration. After 131I treatment, 7 cats became persistently (≥ 2 timepoints) azotemic while 24 remained non-azotemic. Urinary asymmetric dimethylarginine (ADMA) was identified as a pivotal predictor of post-131I azotemia in both univariate and multivariate modeling. When employed as a standalone biomarker, an AUC of 0.851, accuracy of 0.903, sensitivity of 0.714, and specificity of 0.958 were achieved. While pre-treatment USG was significantly different (P = 0.002) between both groups, it did not show enhanced prediction over ADMA, nor in multivariate modeling. CONCLUSIONS AND CLINICAL IMPORTANCE Urinary ADMA can accurately predict post-131I azotemia in hyperthyroid cats becoming euthyroid after 131I treatment. These findings can aid clinicians in managing owner expectations and modify treatment plans.
Collapse
Affiliation(s)
- Ellen Vanden Broecke
- Small Animal DepartmentFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public HealthFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Lisa Stammeleer
- Small Animal DepartmentFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Emmelie Stock
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and NutritionFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Ellen De Paepe
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public HealthFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| | - Sylvie Daminet
- Small Animal DepartmentFaculty of Veterinary Medicine, Ghent UniversityMerelbekeBelgium
| |
Collapse
|
3
|
Xie W, Lai Z, Wang Q, Wang W, Wang J, Liu H, Liang Z, Dong Y. Metabolomics and machine learning approaches for diagnostic biomarkers screening in systemic light chain amyloidosis. Ann Hematol 2025; 104:1669-1678. [PMID: 40074840 PMCID: PMC12031920 DOI: 10.1007/s00277-025-06302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Delayed diagnosis of systemic light chain (AL) amyloidosis is common and associated with worse survival and early mortality. Current diagnosis still relies on invasive tissue biopsies, highlighting the need for sensitive, noninvasive biomarkers for early diagnosis. This study aims to identify promising biomarkers for the early diagnosis of AL amyloidosis. Peripheral venous blood samples from 70 newly diagnosed systemic AL amyloidosis patients, 48 newly diagnosed multiple myeloma (MM) patients, and 29 healthy controls (HCs) were analyzed using high-performance liquid chromatography-mass spectrometry. Metabolomic profiling revealed distinct metabolic differences between the AL group and the controls (HCs and MM). Machine learning further identified that phytosphingosine and asymmetric dimethylarginine were significantly up-regulated in the AL group compared with HCs group, with area under curve (AUC) values of 0.990 and 0.904, sensitivity and specificity of (97%, 100%) and (88%, 93%), respectively. Compared with MM group, phytosphingosine was also significantly up-regulated in the AL group, with an AUC value of 0.779, sensitivity and specificity of (62%, 88%). Pathway analysis showed significant changes in starch and sucrose metabolism pathway, as well as pentose and glucuronate interconversions pathway between the AL and the controls. Metabolomics combined with machine learning identified phytosphingosine as a promising biomarker for early diagnosis of AL amyloidosis. Two metabolic pathways (starch and sucrose metabolism, pentose and glucuronate interconversions) may reflect the key pathological processes involved in the development and progression of AL amyloidosis. Further confirmation studies are warranted to validate its value in this field.
Collapse
Affiliation(s)
- Weiwei Xie
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China
| | - Zhizhen Lai
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China
| | - Wenqiong Wang
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China
| | - Jin Wang
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China.
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, No. 7 Xi Shi Ku Street, Xi Cheng District, Beijing, 100034, China.
| |
Collapse
|
4
|
Ferreira P, Vaja R, Lopes-Pires M, Crescente M, Yu H, Nüsing R, Liu B, Zhou Y, Yaqoob M, Zhang A, Rickman M, Longhurst H, White WE, Knowles RB, Chan MV, Warner TD, Want E, Kirkby NS, Mitchell JA. Renal Function Underpins the Cyclooxygenase-2: Asymmetric Dimethylarginine Axis in Mouse and Man. Kidney Int Rep 2023; 8:1231-1238. [PMID: 37284684 PMCID: PMC10239776 DOI: 10.1016/j.ekir.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Through the production of prostacyclin, cyclooxygenase (COX)-2 protects the cardiorenal system. Asymmetric dimethylarginine (ADMA), is a biomarker of cardiovascular and renal disease. Here we determined the relationship between COX-2/prostacyclin, ADMA, and renal function in mouse and human models. Methods We used plasma from COX-2 or prostacyclin synthase knockout mice and from a unique individual lacking COX-derived prostaglandins (PGs) because of a loss of function mutation in cytosolic phospholipase A2 (cPLA2), before and after receiving a cPLA2-replete transplanted donor kidney. ADMA, arginine, and citrulline were measured using ultra-high performance liquid-chromatography tandem mass spectrometry. ADMA and arginine were also measured by enzyme-linked immunosorbent assay (ELISA). Renal function was assessed by measuring cystatin C by ELISA. ADMA and prostacyclin release from organotypic kidney slices were also measured by ELISA. Results Loss of COX-2 or prostacyclin synthase in mice increased plasma levels of ADMA, citrulline, arginine, and cystatin C. ADMA, citrulline, and arginine positively correlated with cystatin C. Plasma ADMA, citrulline, and cystatin C, but not arginine, were elevated in samples from the patient lacking COX/prostacyclin capacity compared to levels in healthy volunteers. Renal function, ADMA, and citrulline were returned toward normal range when the patient received a genetically normal kidney, capable of COX/prostacyclin activity; and cystatin C positively correlated with ADMA and citrulline. Levels of ADMA and prostacyclin in conditioned media of kidney slices were not altered in tissue from COX-2 knockout mice compared to wildtype controls. Conclusion In human and mouse models, where renal function is compromised because of loss of COX-2/PGI2 signaling, ADMA levels are increased.
Collapse
Affiliation(s)
- Plinio Ferreira
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Ricky Vaja
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Maria Lopes-Pires
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Marilena Crescente
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - He Yu
- Deparment of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Rolf Nüsing
- Clinical Pharmacology and Pharmacotherapy Department, Goethe University, Frankfurt, Germany
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Magdi Yaqoob
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Anran Zhang
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Matthew Rickman
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Hilary Longhurst
- Department of Medicine, University of Auckland, and Department of Immunology, Auckland City Hospital, Auckland, New Zealand
| | - William E. White
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Rebecca B. Knowles
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Melissa V. Chan
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Timothy D. Warner
- Blizard Institute, Barts, and The London School of Medicine and Dentistry, London, United Kingdom
| | - Elizabeth Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas S. Kirkby
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jane A. Mitchell
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|
5
|
Guo X, Xing Y, Jin W. Role of ADMA in the pathogenesis of microvascular complications in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1183586. [PMID: 37152974 PMCID: PMC10160678 DOI: 10.3389/fendo.2023.1183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic microangiopathy is a typical and severe problem in diabetics, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, and diabetic cardiomyopathy. Patients with type 2 diabetes and diabetic microvascular complications have significantly elevated levels of Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS). ADMA facilitates the occurrence and progression of microvascular complications in type 2 diabetes through its effects on endothelial cell function, oxidative stress damage, inflammation, and fibrosis. This paper reviews the association between ADMA and microvascular complications of diabetes and elucidates the underlying mechanisms by which ADMA contributes to these complications. It provides a new idea and method for the prevention and treatment of microvascular complications in type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Wei Jin
- *Correspondence: Yiqiao Xing, ; Wei Jin,
| |
Collapse
|
6
|
Akut Pankreas İltihabı Süresince Metillenmiş Arginin Rezidüleri ve İlişkili Amino Asitlerdeki Değişimler. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1118592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: The extent of the spread of inflammation determines the severity of acute pancreatitis (AP). Methylated arginine residues (MAR), a type of inflammatory mediator, reduce nitric oxide levels and cause vasoconstriction-induced endothelial damage. This study aimed to investigate MAR and related amino acids during acute pancreatic inflammation.
Material and Method: This prospective, quasi-experimental study was conducted with patients diagnosed with AP and an age-matched control group. The patient samples were taken during the diagnosis and recovery time, whereas during the study for the control group. Mainly, Asymmetric dimethylarginine (ADMA), Arginine (ARG), Citrulline (CIT), and related chemicals were studied via a mass spectrometer.
Results: A total of 30 patients with AP (mean age=53.3±17.8) and 30 controls (mean age=53.4±18.0) were included in the study. All patients were identified as non-severe (n=8) and severe (n=22). A decrease was detected in the patients' ADMA levels compared to the control group (p=0.01). MAR did not differ concerning disease severity (p > 0.05). However, MAR levels decreased higher in patients with diabetes or chronic kidney disease (CKD). Between the two samplings, the ARG level and ARG to ADMA ratio increased, while the MAR and CIT to ARG ratio decreased.
Conclusion: Our results showed that MAR levels decreased with AP recovery. The start of a decrease in the high-level blood MAR may indicate the healing of pancreatic inflammation. AP inflammation may be more destructive in patients with diabetes or CKD.
Collapse
|
7
|
Lee Y, Singh J, Scott SR, Ellis B, Zorlutuna P, Wang M. A Recombinant Dimethylarginine Dimethylaminohydrolase-1-Based Biotherapeutics to Pharmacologically Lower Asymmetric Dimethyl Arginine, thus Improving Postischemic Cardiac Function and Cardiomyocyte Mitochondrial Activity. Mol Pharmacol 2022; 101:226-235. [PMID: 35042831 PMCID: PMC11033929 DOI: 10.1124/molpharm.121.000394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
High serum levels of asymmetric dimethyl arginine (ADMA) are associated with cardiovascular disease and mortality. Pharmacological agents to specifically lower ADMA and their potential impact on cardiovascular complications are not known. In this study, we aimed to investigate the effect of specific lowering of ADMA on myocardial response to ischemia-reperfusion injury (I/R) and direct effects on cardiomyocyte function. Effects of recombinant dimethylarginine dimethylaminohydrolase (rDDAH)-1 on I/R injury were determined using isolated mouse heart preparation. Respiration capacity and mitochondrial reactive oxygen species (ROS) generation were determined on mouse cardiomyocytes. Our results show that lowering ADMA by rDDAH-1 treatment resulted in improved recovery of cardiac function and reduction in myocardial infarct size in mouse heart response to I/R injury (control 22.24 ±4.60% versus rDDAH-1 15.90 ±4.23%, P < 0.01). In mouse cardiomyocytes, rDDAH-1 treatment improved ADMA-induced dysregulation of respiration capacity and decreased mitochondrial ROS. Furthermore, in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes with impaired contractility under hypoxia and high ADMA, rDDAH-1 treatment improved recovery and beating frequency (P < 0.05). rDDAH-1 treatment selectively modified I/R-induced myocardial cytokine expression, resulting in reduction in proinflammatory cytokine IL-17A (P < 0.001) and increased expression of anti-inflammatory cytokines IL-10 and IL-13 (P < 0.01). Further in vitro studies showed that IL-17A was the predominant and common cytokine modulated by ADMA-DDAH pathway in heart, cardiomyocytes, and endothelial cells. These studies show that lowering ADMA by pharmacological treatment with rDDAH-1 reduced I/R injury, improved cardiac function, and ameliorated cardiomyocyte bioenergetics and beating activity. These effects may be attributable to ADMA lowering in cardiomyocytes and preservation of cardiomyocyte mitochondrial function. SIGNIFICANCE STATEMENT: The pathological role of asymmetric dimethyl arginine (ADMA) has been demonstrated by its association with cardiovascular disease and mortality. Currently, pharmacological drugs to specifically lower ADMA are not available. The present study provides the first evidence that lowering of ADMA by recombinant recombinant dimethylarginine dimethylaminohydrolase (rDDAH)-1 improved postischemic cardiac function and cardiomyocyte bioenergetics and beating activity. Our studies suggest that lowering of ADMA by pharmacologic treatment offers opportunity to develop new therapies for the treatment of cardiovascular and renal disease.
Collapse
Affiliation(s)
- Young Lee
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Jaipal Singh
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Susan R Scott
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Bradley Ellis
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Pinar Zorlutuna
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| | - Meijing Wang
- Indiana Center for Biomedical Innovation, Indianapolis, Indiana (Y.L., J.S.); Indiana University School of Medicine, Indianapolis, Indiana (J.S.); Department of Surgery, Indiana University, School of Medicine, Indianapolis, Indiana (S.R.S., M.W.); Bioengineering Graduate Program (B.E., P.Z.) and Aerospace and Mechanical Engineering Department (P.Z.), University of Notre Dame, Notre Dame, Indiana; and Vasculonics LLC, Indianapolis, Indiana (J.S.)
| |
Collapse
|
8
|
Fresno M, Gironès N. Myeloid-Derived Suppressor Cells in Trypanosoma cruzi Infection. Front Cell Infect Microbiol 2021; 11:737364. [PMID: 34513737 PMCID: PMC8430253 DOI: 10.3389/fcimb.2021.737364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature heterogeneous myeloid cells that expand in pathologic conditions as cancer, trauma, and infection. Although characterization of MDSCs is continuously revisited, the best feature is their suppressor activity. There are many markers for MDSC identification, it is distinctive that they express inducible nitric oxide synthase (iNOS) and arginase 1, which can mediate immune suppression. MDSCs can have a medullary origin as a result of emergency myelopoiesis, but also can have an extramedullary origin. Early studies on Trypanosoma cruzi infection showed severe immunosuppression, and several mechanisms involving parasite antigens and host cell mediators were described as inhibition of IL-2 and IL-2R. Another mechanism of immunosuppression involving tumor necrosis factor/interferon γ-dependent nitric oxide production by inducible nitric oxide synthase was also described. Moreover, other studies showed that nitric oxide was produced by CD11b+ Gr-1+ MDSCs in the spleen, and later iNOS and arginase 1 expressed in CD11b+Ly6C+Ly6Glo monocytic MDSC were found in spleen and heart of T. cruzi infected mice that suppressed T cell proliferation. Uncontrolled expansion of monocytic MDSCs leads to L-arginine depletion which hinders nitric oxide production leading to death. Supplement of L-arginine partially reverts L-arginine depletion and survival, suggesting that L-arginine could be administered along with anti-parasitical drugs. On the other hand, pharmacological inhibition of MDSCs leads to death in mice, suggesting that some expansion of MDSCs is needed for an efficient immune response. The role of signaling molecules mediating immune suppression as reactive oxygen species, reactive nitrogen species, as well as prostaglandin E2, characteristics of MDSCs, in T. cruzi infection is not fully understood. We review and discuss the role of these reactive species mediators produced by MDSCs. Finally, we discuss the latest results that link the SLAMF1 immune receptor with reactive oxygen species. Interaction of the parasite with the SLAMF1 modulates parasite virulence through myeloid cell infectivity and reactive oxygen species production. We discuss the possible strategies for targeting MDSCs and SLAMF1 receptor in acute Trypanosoma cruzi infection in mice, to evaluate a possible translational application in human acute infections.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Group 12, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Group 12, Madrid, Spain
| |
Collapse
|
9
|
Lara-Prado JI, Pazos-Pérez F, Méndez-Landa CE, Grajales-García DP, Feria-Ramírez JA, Salazar-González JJ, Cruz-Romero M, Treviño-Becerra A. Acute Kidney Injury and Organ Dysfunction: What Is the Role of Uremic Toxins? Toxins (Basel) 2021; 13:toxins13080551. [PMID: 34437422 PMCID: PMC8402563 DOI: 10.3390/toxins13080551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023] Open
Abstract
Acute kidney injury (AKI), defined as an abrupt increase in serum creatinine, a reduced urinary output, or both, is experiencing considerable evolution in terms of our understanding of the pathophysiological mechanisms and its impact on other organs. Oxidative stress and reactive oxygen species (ROS) are main contributors to organ dysfunction in AKI, but they are not alone. The precise mechanisms behind multi-organ dysfunction are not yet fully accounted for. The building up of uremic toxins specific to AKI might be a plausible explanation for these disturbances. However, controversies have arisen around their effects in organs other than the kidney, because animal models usually depict AKI as a kidney-specific injury. Meanwhile, humans present AKI frequently in association with multi-organ failure (MOF). Until now, medium-molecular-weight molecules, such as inflammatory cytokines, have been proven to play a role in endothelial and epithelial injury, leading to increased permeability and capillary leakage, mainly in pulmonary and intestinal tissues.
Collapse
Affiliation(s)
- Jesús Iván Lara-Prado
- Department of Nephrology, General Hospital No. 27, Mexican Social Security Institute, Mexico City 06900, Mexico; (J.I.L.-P.); (D.P.G.-G.)
| | - Fabiola Pazos-Pérez
- Department of Nephrology, Specialties Hospital, National Medical Center “21st Century”, Mexican Social Security Institute, Mexico City 06720, Mexico;
- Correspondence: ; Tel.: +52-55-2699-1941
| | - Carlos Enrique Méndez-Landa
- Department of Nephrology, General Hospital No. 48, Mexican Social Security Institute, Mexico City 02750, Mexico;
| | - Dulce Paola Grajales-García
- Department of Nephrology, General Hospital No. 27, Mexican Social Security Institute, Mexico City 06900, Mexico; (J.I.L.-P.); (D.P.G.-G.)
| | - José Alfredo Feria-Ramírez
- Department of Nephrology, General Hospital No. 29, Mexican Social Security Institute, Mexico City 07910, Mexico;
| | - Juan José Salazar-González
- Department of Nephrology, Regional Hospital No. 1, Mexican Social Security Institute, Mexico City 03100, Mexico;
| | - Mario Cruz-Romero
- Department of Nephrology, Specialties Hospital, National Medical Center “21st Century”, Mexican Social Security Institute, Mexico City 06720, Mexico;
| | | |
Collapse
|
10
|
Du Q, Gao J, Lu R, Jin Y, Zou Y, Yu C, Yan Y. Asymmetric dimethylarginine compartmental behavior during high-flux hemodialysis. Ren Fail 2020; 42:760-766. [PMID: 32727241 PMCID: PMC7470094 DOI: 10.1080/0886022x.2020.1797790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
AIM The accumulation of uremic toxins, such as asymmetric dimethylarginine (ADMA), has emerged as one of the major cardiovascular disease-related risk factors in patients with end-stage renal disease (ESRD). Based on the low molecular weight of ADMA, hemodialysis (HD) should theoretically effectively remove ADMA. In this study, we investigated the clearance behavior of ADMA during high-flux HD. METHODS Eight HD patients without residual renal function were included. Blood samples were collected at 0, 30, 60, 120 and 240 min after dialysis started, as well as 1 h and 48 h after dialysis. ADMA level was detected by HPLC-MS/MS. Herein, the ADMA level in blood cells and the ADMA protein binding rate were measured. Accordingly, the dialyzer extraction ratio was also determined. RESULTS The reduction ratio (RR) of ADMA (corrected for hemoconcentration) was significantly lower, at only 37.21 ± 6.44%, than that of urea and creatinine (p < .05). Interestingly, its clearance from plasma was precipitous early in dialysis and became slowly from 60 to 240 min. Additionally, a greater inlet erythrocyte than plasma concentration was found for ADMA. The dialyzer extraction ratio was comparable between ADMA and creatinine or urea (83 ± 5% for ADMA vs. 84 ± 3% and 88 ± 2% for creatinine and urea, respectively; both p>.05). Urea and creatinine had a slight rebound ratio of less than 10% at 1 h after the completion of HD. In contrast, considerable rebound of approximately 30% was detected in ADMA. CONCLUSION This study suggests that ADMA may present a multicompartmental distribution that cannot be representatively reflected by the urea kinetics model.
Collapse
Affiliation(s)
- Qiuna Du
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiayuan Gao
- Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Renhua Lu
- Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yun Jin
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanfang Zou
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yucheng Yan
- Department of Nephrology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Wali JA, Koay YC, Chami J, Wood C, Corcilius L, Payne RJ, Rodionov RN, Birkenfeld AL, Samocha-Bonet D, Simpson SJ, O'Sullivan JF. Nutritional and metabolic regulation of the metabolite dimethylguanidino valeric acid: an early marker of cardiometabolic disease. Am J Physiol Endocrinol Metab 2020; 319:E509-E518. [PMID: 32663097 PMCID: PMC7509244 DOI: 10.1152/ajpendo.00207.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Dimethylguanidino valeric acid (DMGV) is a marker of fatty liver disease, incident coronary artery disease, cardiovascular mortality, and incident diabetes. Recently, it was reported that circulating DMGV levels correlated positively with consumption of sugary beverages and negatively with intake of fruits and vegetables in three Swedish community-based cohorts. Here, we validate these results in the Framingham Heart Study Third Generation Cohort. Furthermore, in mice, diets rich in sucrose or fat significantly increased plasma DMGV concentrations. DMGV is the product of metabolism of asymmetric dimethylarginine (ADMA) by the hepatic enzyme AGXT2. ADMA can also be metabolized to citrulline by the cytoplasmic enzyme DDAH1. We report that a high-sucrose diet induced conversion of ADMA exclusively into DMGV (supporting the relationship with sugary beverage intake in humans), while a high-fat diet promoted conversion of ADMA to both DMGV and citrulline. On the contrary, replacing dietary native starch with high-fiber-resistant starch increased ADMA concentrations and induced its conversion to citrulline, without altering DMGV concentrations. In a cohort of obese nondiabetic adults, circulating DMGV concentrations increased and ADMA levels decreased in those with either liver or muscle insulin resistance. This was similar to changes in DMGV and ADMA concentrations found in mice fed a high-sucrose diet. Sucrose is a disaccharide of glucose and fructose. Compared with glucose, incubation of hepatocytes with fructose significantly increased DMGV production. Overall, we provide a comprehensive picture of the dietary determinants of DMGV levels and association with insulin resistance.
Collapse
Affiliation(s)
- Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yen Chin Koay
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jason Chami
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Courtney Wood
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Roman N Rodionov
- University Center for Vascular Medicine and Department of Medicine III-Section Angiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Tübingen, Tübingen, Germany
| | - Dorit Samocha-Bonet
- The Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - John F O'Sullivan
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medicine, The University of Sydney, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Guo Q, Xu J, Huang Z, Yao Q, Chen F, Liu H, Zhang Z, Lin J. ADMA mediates gastric cancer cell migration and invasion via Wnt/β-catenin signaling pathway. Clin Transl Oncol 2020; 23:325-334. [PMID: 32607811 PMCID: PMC7854427 DOI: 10.1007/s12094-020-02422-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
Objective To explore the role of ADMA in gastric cancer. Methods The specimens of 115 gastric cancer patients were analyzed by ELISA and survival analysis. Functional assays were used to assess the effects of ADMA on gastric cancer cells. Experiments were conducted to detect the signaling pathway induced by ADMA in GC. Results Gastric cancer patients with high ADMA levels had poor prognosis and low survival rate. Furthermore, high level of ADMA did not affect the proliferation while promoted the migration and invasion of gastric cancer cell. Moreover, ADMA enhanced the epithelial–mesenchymal transition (EMT). Importantly, ADMA positively regulated β-catenin expression in GC and promoted GC migration and invasion via Wnt/β-catenin pathway. Conclusions ADMA regulates gastric cancer cell migration and invasion via Wnt/β-catenin signaling pathway and which may be applied to clinical practice as a diagnostic and prognostic biomarker. Electronic supplementary material The online version of this article (10.1007/s12094-020-02422-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Q Guo
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - J Xu
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - Z Huang
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - Q Yao
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - F Chen
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - H Liu
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - Z Zhang
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China
| | - J Lin
- Department of Oncological Surgery, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshanbei Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
13
|
Łuczak A, Madej M, Kasprzyk A, Doroszko A. Role of the eNOS Uncoupling and the Nitric Oxide Metabolic Pathway in the Pathogenesis of Autoimmune Rheumatic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1417981. [PMID: 32351667 PMCID: PMC7174952 DOI: 10.1155/2020/1417981] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerosis and its clinical complications constitute the major healthcare problems of the world population. Due to the central role of endothelium throughout the atherosclerotic disease process, endothelial dysfunction is regarded as a common mechanism for various cardiovascular (CV) disorders. It is well established that patients with rheumatic autoimmune diseases are characterized by significantly increased prevalence of cardiovascular morbidity and mortality compared with the general population. The current European guidelines on cardiovascular disease (CVD) prevention in clinical practice recommend to use a 1,5-factor multiplier for CV risk in rheumatoid arthritis as well as in other autoimmune inflammatory diseases. However, mechanisms of accelerated atherosclerosis in these diseases, especially in the absence of traditional risk factors, still remain unclear. Oxidative stress plays the major role in the endothelial dysfunction and recently is strongly attributed to endothelial NO synthase dysfunction (eNOS uncoupling). Converted to a superoxide-producing enzyme, uncoupled eNOS not only leads to reduction of the nitric oxide (NO) generation but also potentiates the preexisting oxidative stress, which contributes significantly to atherogenesis. However, to date, there are no systemic analyses on the role of eNOS uncoupling in the excess CV mortality linked with autoimmune rheumatic diseases. The current review paper addresses this issue.
Collapse
Affiliation(s)
- Anna Łuczak
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Marta Madej
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Agata Kasprzyk
- Department of Rheumatology, Wroclaw Medical University, Poland
| | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, Poland
| |
Collapse
|
14
|
Holguin F, Grasemann H, Sharma S, Winnica D, Wasil K, Smith V, Cruse MH, Perez N, Coleman E, Scialla TJ, Que LG. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight 2019; 4:131733. [PMID: 31714895 DOI: 10.1172/jci.insight.131733] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDThe airways of obese asthmatics have been shown to be NO deficient, and this contributes to airway dysfunction and reduced response to inhaled corticosteroids. In cultured airway epithelial cells, L-citrulline, a precursor of L-arginine recycling and NO formation, has been shown to prevent asymmetric dimethyl arginine-mediated (ADMA-mediated) NO synthase (NOS2) uncoupling, restoring NO and reducing oxidative stress.METHODSIn a proof-of-concept, open-label pilot study in which participants were analyzed before and after treatment, we hypothesized that 15 g/d L-citrulline for 2 weeks would (a) increase the fractional excretion of NO (FeNO), (b) improve asthma control, and (c) improve lung function. To this end, we recruited obese (BMI >30) asthmatics on controller therapy, with a baseline FeNO of ≤30 ppb from the University of Colorado Medical Center and Duke University Health System.RESULTSA total of 41 subjects with an average FeNO of 17 ppb (95% CI, 15-19) and poorly controlled asthma (average asthma control questionnaire [ACQ] 1.5 [95% CI, 1.2-1.8]) completed the study. Compared with baseline, L-citrulline increased whereas ADMA and arginase concentration did not (values represent the mean Δ and 95% CI): plasma L-citrulline (190 μM, 84-297), plasma L-arginine (67 μM, 38-95), and plasma L-arginine/ADMA (ratio 117, 67-167). FeNO increased by 4.2 ppb (1.7-6.7 ppb); ACQ decreased by -0.46 (-0.67 to 0.27 points); the forced vital capacity and forced exhalation volume in 1 second, respectively, changed by 86 ml (10-161 ml) and 52 ml (-11 to 132 ml). In a secondary analysis, the greatest FEV1 increments occurred in those subjects with late-onset asthma (>12 years) (63 ml [95% CI, 1-137]), in females (80 ml [95% CI, 5-154]), with a greater change seen in late-onset females (100 ml, [95% CI, 2-177]). The changes in lung function or asthma control were not significantly associated with the changes before and after treatment in L-arginine/ADMA or FeNO.CONCLUSIONShort-term L-citrulline treatment improved asthma control and FeNO levels in obese asthmatics with low or normal FeNO. Larger FEV1 increments were observed in those with late-onset asthma and in females.TRIAL REGISTRATIONClinicalTrials.gov NCT01715844.FUNDINGNIH NHLBI R01 HL146542-01.
Collapse
Affiliation(s)
- Fernando Holguin
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Hartmut Grasemann
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunita Sharma
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Daniel Winnica
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Karen Wasil
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Vong Smith
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Margaret H Cruse
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Nancy Perez
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Erika Coleman
- Department of Medicine, University of Colorado Medical School, Aurora, Colorado, USA
| | - Timothy J Scialla
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Loretta G Que
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
15
|
Protein Arginine Methyltransferases in Cardiovascular and Neuronal Function. Mol Neurobiol 2019; 57:1716-1732. [PMID: 31823198 DOI: 10.1007/s12035-019-01850-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/01/2019] [Indexed: 12/16/2022]
Abstract
The methylation of arginine residues by protein arginine methyltransferases (PRMTs) is a type of post-translational modification which is important for numerous cellular processes, including mRNA splicing, DNA repair, signal transduction, protein interaction, and transport. PRMTs have been extensively associated with various pathologies, including cancer, inflammation, and immunity response. However, the role of PRMTs has not been well described in vascular and neurological function. Aberrant expression of PRMTs can alter its metabolic products, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA). Increased ADMA levels are recognized as an independent risk factor for cardiovascular disease and mortality. Recent studies have provided considerable advances in the development of small-molecule inhibitors of PRMTs to study their function under normal and pathological states. In this review, we aim to elucidate the particular roles of PRMTs in vascular and neuronal function as a potential target for cardiovascular and neurological diseases.
Collapse
|
16
|
Kistner S, Rist MJ, Krüger R, Döring M, Schlechtweg S, Bub A. High-Intensity Interval Training Decreases Resting Urinary Hypoxanthine Concentration in Young Active Men-A Metabolomic Approach. Metabolites 2019; 9:metabo9070137. [PMID: 31295919 PMCID: PMC6680906 DOI: 10.3390/metabo9070137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
High-intensity interval training (HIIT) is known to improve performance and skeletal muscle energy metabolism. However, whether the body’s adaptation to an exhausting short-term HIIT is reflected in the resting human metabolome has not been examined so far. Therefore, a randomized controlled intervention study was performed to investigate the effect of a ten-day HIIT on the resting urinary metabolome of young active men. Fasting spot urine was collected before (−1 day) and after (+1 day; +4 days) the training intervention and 65 urinary metabolites were identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Metabolite concentrations were normalized to urinary creatinine and subjected to univariate statistical analysis. One day after HIIT, no overall change in resting urinary metabolome, except a significant difference with decreasing means in urinary hypoxanthine concentration, was documented in the experimental group. As hypoxanthine is related to purine degradation, lower resting urinary hypoxanthine levels may indicate a training-induced adaptation in purine nucleotide metabolism.
Collapse
Affiliation(s)
- Sina Kistner
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| | - Manuela J Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Sascha Schlechtweg
- Department of Sport and Exercise Science, University of Stuttgart, 70174 Stuttgart, Germany
| | - Achim Bub
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| |
Collapse
|
17
|
Sirich TL, Chertow GM. Asymmetric dimethylarginine, erythropoietin resistance, and anemia in CKD. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S86. [PMID: 31576295 PMCID: PMC6685898 DOI: 10.21037/atm.2019.04.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Tammy L. Sirich
- Nephrology Section, VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Glenn M. Chertow
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
18
|
Patel L, Kilbride HS, Stevens PE, Eaglestone G, Knight S, L Carter J, Delaney MP, Farmer CK, Dalton N, Lamb EJ. Symmetric dimethylarginine is a stronger predictor of mortality risk than asymmetric dimethylarginine among older people with kidney disease. Ann Clin Biochem 2019; 56:367-374. [PMID: 30813746 DOI: 10.1177/0004563218822655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Circulating asymmetric dimethylarginine and symmetric dimethylarginine are increased in patients with kidney disease. Symmetric dimethylarginine is considered a good marker of glomerular filtration rate, while asymmetric dimethylarginine is a marker of cardiovascular risk. However, a link between symmetric dimethylarginine and all-cause mortality has been reported. In the present study, we evaluated both dimethylarginines as risk and glomerular filtration rate markers in a cohort of elderly white individuals, both with and without chronic kidney disease. METHODS Glomerular filtration rate was measured in 394 individuals aged >74 years using an iohexol clearance method. Plasma asymmetric dimethylarginine, symmetric dimethylarginine and iohexol were measured simultaneously using isotope dilution tandem mass spectrometry. RESULTS Plasma asymmetric dimethylarginine concentrations were increased ( P < 0.01) in people with glomerular filtration rate <60 mL/min/1.73 m2 compared with those with glomerular filtration rate ≥60 mL/min/1.73 m2, but did not differ ( P > 0.05) between those with glomerular filtration rate 30-59 mL/min/1.73 m2 and <30 mL/min/1.73 m2. Plasma symmetric dimethylarginine increased consistently across declining glomerular filtration rate categories ( P < 0.0001). Glomerular filtration rate had an independent effect on plasma asymmetric dimethylarginine concentration, while glomerular filtration rate, gender, body mass index and haemoglobin had independent effects on plasma symmetric dimethylarginine concentration. Participants were followed up for a median of 33 months. There were 65 deaths. High plasma asymmetric dimethylarginine ( P = 0.0412) and symmetric dimethylarginine ( P < 0.0001) concentrations were independently associated with reduced survival. CONCLUSIONS Among elderly white individuals with a range of kidney function, symmetric dimethylarginine was a better marker of glomerular filtration rate and a stronger predictor of outcome than asymmetric dimethylarginine. Future studies should further evaluate the role of symmetric dimethylarginine as a marker of outcome and assess its potential value as a marker of glomerular filtration rate.
Collapse
Affiliation(s)
- Liyona Patel
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | - Hannah S Kilbride
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | - Paul E Stevens
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | - Gillian Eaglestone
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | - Sarah Knight
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | - Joanne L Carter
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | - Michael P Delaney
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| | | | - Neil Dalton
- 2 The Wellchild Laboratory, Evelina London Children's Hospital, London, UK
| | - Edmund J Lamb
- 1 East Kent Hospitals University NHS Foundation Trust, Canterbury, Kent, UK
| |
Collapse
|
19
|
Biomarker Phenotype for Early Diagnosis and Triage of Sepsis to the Pediatric Intensive Care Unit. Sci Rep 2018; 8:16606. [PMID: 30413795 PMCID: PMC6226431 DOI: 10.1038/s41598-018-35000-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/28/2018] [Indexed: 12/29/2022] Open
Abstract
Early diagnosis and triage of sepsis improves outcomes. We aimed to identify biomarkers that may advance diagnosis and triage of pediatric sepsis. Serum and plasma samples were collected from young children (1–23 months old) with sepsis on presentation to the Pediatric Intensive Care Unit (PICU-sepsis, n = 46) or Pediatric Emergency Department (PED-sepsis, n = 58) and PED-non-sepsis patients (n = 19). Multivariate analysis was applied to distinguish between patient groups. Results were compared to our results for older children (2–17 years old). Common metabolites and protein-mediators were validated as potential biomarkers for a sepsis-triage model to differentiate PICU-sepsis from PED-sepsis in children age 1 month-17 years. Metabolomics in young children clearly separated the PICU-sepsis and PED-sepsis cohorts: sensitivity 0.71, specificity 0.93, and AUROC = 0.90 ± 0.03. Adding protein-mediators to the model did not improve performance. The seven metabolites common to the young and older children were used to create the sepsis-triage model. Validation of the sepsis-triage model resulted in sensitivity: 0.83 ± 0.02, specificity: 0.88 ± 0.05 and AUROC 0.93 ± 0.02. The metabolic-based biomarkers predicted which sepsis patients required care in a PICU versus those that could be safely cared for outside of a PICU. This has potential to inform appropriate triage of pediatric sepsis, particularly in EDs with less experience evaluating children.
Collapse
|
20
|
Ramachandran S, Loganathan S, Cheeran V, Charles S, Munuswamy-Ramanujan G, Ramasamy M, Raj V, Mala K. Forskolin attenuates doxorubicin-induced accumulation of asymmetric dimethylarginine and s-adenosylhomocysteine via methyltransferase activity in leukemic monocytes. Leuk Res Rep 2018; 9:28-35. [PMID: 29892545 PMCID: PMC5993357 DOI: 10.1016/j.lrr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/15/2017] [Accepted: 02/09/2018] [Indexed: 10/25/2022] Open
Abstract
Doxorubicin (DOX) is an antitumor drug, associated with cardiomyopathy. Strategies to address DOX-cardiomyopathy are scarce. Here, we identify the effect of forskolin (FSK) on DOX-induced-asymmetric-dimethylarginine (ADMA) accumulation in monocytoid cells. DOX-challenge led to i) augmented cytotoxicity, reactive-oxygen-species (ROS) production and methyltransferase-enzyme-activity identified as ADMA and s-adenosylhomocysteine (SAH) accumulation (SAH-A). However, except cytotoxicity, other DOX effects were decreased by metformin and FSK. FSK, did not alter the DOX-induced cytotoxic effect, but, decreased SAH-A by >50% and a combination of three drugs restored physiological methyltransferase-enzyme-activity. Together, protective effect of FSK against DOX-induced SAH-A is associated with mitigated methyltransferase-activity, a one-of-a-kind report.
Collapse
Key Words
- ADMA, asymmetric dimethylarginine
- CT, chemotherapy
- CVD, cardiovascular disease
- Cancer
- Cardiovascular disease
- DDAH, dimethylarginine diaminohydrolase
- DOX, doxorubicin
- Endothelial dysfunction
- FSK, forskolin
- Forskolin
- HCY, homocysteine
- HTRF, homogenous time-resolved fluorescence
- L-arg, L-arginine
- L-cit, L-citrulline
- MET, metformin
- Metformin
- Methyltransferase
- NAD+, nicotinamide adenine dinucleotide
- OS, oxidative stress
- PRMT1, protein arginine methyltransferase1
- ROS, reactive oxygen species
- SAH, s-adenosylhomocysteine;
- SAH-A, SAH accumulation
- SAHH, s-adenosylhomocysteine hydrolase
- SAM, s-adenosylmethionine
- SIRT1, sirtuin1
- cAMP, cyclic AMP
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Sandhiya Ramachandran
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, India
| | - Swetha Loganathan
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, India
| | - Vinnie Cheeran
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur 603203, India
| | - Soniya Charles
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, India.,Medical College Hospital and Research Center, SRM University, Kattankulathur 603203, India
| | | | - Mohankumar Ramasamy
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur 603203, India
| | - Vijay Raj
- Medical College Hospital and Research Center, SRM University, Kattankulathur 603203, India
| | - Kanchana Mala
- Medical College Hospital and Research Center, SRM University, Kattankulathur 603203, India
| |
Collapse
|
21
|
Fresno M, Gironès N. Regulatory Lymphoid and Myeloid Cells Determine the Cardiac Immunopathogenesis of Trypanosoma cruzi Infection. Front Microbiol 2018; 9:351. [PMID: 29545782 PMCID: PMC5838393 DOI: 10.3389/fmicb.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023] Open
Abstract
Chagas disease is a multisystemic disorder caused by the protozoan parasite Trypanosoma cruzi, which affects ~8 million people in Latin America, killing 7,000 people annually. Chagas disease is one of the main causes of death in the endemic area and the leading cause of infectious myocarditis in the world. T. cruzi infection induces two phases, acute and chronic, where the infection is initially asymptomatic and the majority of patients will remain clinically indeterminate for life. However, over a period of 10–30 years, ~30% of infected individuals will develop irreversible, potentially fatal cardiac syndromes (chronic chagasic cardiomyopathy [CCC]), and/or dilatation of the gastro-intestinal tract (megacolon or megaesophagus). Myocarditis is the most serious and frequent manifestation of chronic Chagas heart disease and appears in about 30% of infected individuals several years after infection occurs. Myocarditis is characterized by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic phase is thought to be dependent on an immune-inflammatory reaction to a low-grade replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells are able to control infection. However, the role that infiltrating lymphoid and myeloid cells may play in experimental and natural Chagas disease pathogenesis has not been completely elucidated, and several reports indicate that it depends on the mouse genetic background and parasite strain and/or inoculum. Here, we review the role that T cell CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play in the immunopathogenesis of Chagas disease with special focus on myocarditis, by comparing results obtained with different experimental animal models.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
22
|
Al Temimi AHK, Pieters BJGE, Reddy YV, White PB, Mecinović J. Substrate scope for trimethyllysine hydroxylase catalysis. Chem Commun (Camb) 2018; 52:12849-12852. [PMID: 27730239 DOI: 10.1039/c6cc07845a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethyllysine hydroxylase (TMLH) is a non-haem Fe(ii) and 2-oxoglutarate dependent oxygenase that catalyses the C-3 hydroxylation of an unactivated C-H bond in l-trimethyllysine in the first step of carnitine biosynthesis. The examination of trimethyllysine analogues as substrates for human TMLH reveals that the enzyme does hydroxylate substrates other than natural l-trimethyllysine.
Collapse
Affiliation(s)
- Abbas H K Al Temimi
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Bas J G E Pieters
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Y Vijayendar Reddy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Jasmin Mecinović
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
23
|
L-arginine supplementation reduces mortality and improves disease outcome in mice infected with Trypanosoma cruzi. PLoS Negl Trop Dis 2018; 12:e0006179. [PMID: 29337988 PMCID: PMC5786330 DOI: 10.1371/journal.pntd.0006179] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/26/2018] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
Chagas disease caused by Trypanosoma cruzi is a neglected disease that affects about 7 million people in Latin America, recently emerging on other continents due to migration. As infection in mice is characterized by depletion of plasma L-arginine, the effect on infection outcome was tested in mice with or without L-arginine supplementation and treatment with 1400W, a specific inhibitor of inducible nitric oxide synthase (iNOS). We found that levels of L-arginine and citrulline were reduced in the heart and plasma of infected mice, whereas levels of asymmetric dimethylarginine, an endogenous iNOS inhibitor, were higher. Moreover, L-arginine supplementation decreased parasitemia and heart parasite burden, improving clinical score and survival. Nitric oxide production in heart tissue and plasma was increased by L-arginine supplementation, while pharmacological inhibition of iNOS yielded an increase in parasitemia and worse clinical score. Interestingly, electrocardiograms improved in mice supplemented with L-arginine, suggesting that it modulates infection and heart function and is thus a potential biomarker of pathology. More importantly, L-arginine may be useful for treating T. cruzi infection, either alone or in combination with other antiparasitic drugs. Trypanosoma cruzi is the causative agent of the neglected Chagas disease in humans. During infection in mice, depletion of plasma L-arginine is correlated with mortality. L-arginine is a semi-essential amino acid needed for cell proliferation, and is the substrate of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS), which is involved in the immune response against infections. Observed L-arginine depletion is likely caused by increased Arg-1 activity, but the effect on immune response are still unknown. Our hypothesis is that L-arginine depletion may block nitric oxide (NO) production by iNOS, which is needed for parasite killing. To test this hypothesis, mice were supplemented with and without L-arginine, and the differential effect of treatment with an iNOS inhibitor was determined. L-arginine supplement was beneficial to the mice, lowering mortality and improving disease outcome and heart function. The beneficial effect was associated with increased levels of NO, thus low levels of L-arginine and NO are considered candidate markers of pathology. Finally, as L-arginine is a common dietary supplement, it may be useful for treatment of Chagas patients, either alone or in combination with antiparasitic drugs.
Collapse
|
24
|
Milewski K, Bogacińska-Karaś M, Fręśko I, Hilgier W, Jaźwiec R, Albrecht J, Zielińska M. Ammonia Reduces Intracellular Asymmetric Dimethylarginine in Cultured Astrocytes Stimulating Its y⁺LAT2 Carrier-Mediated Loss. Int J Mol Sci 2017; 18:ijms18112308. [PMID: 29099056 PMCID: PMC5713277 DOI: 10.3390/ijms18112308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 01/24/2023] Open
Abstract
Previously we had shown that ammonia stimulates nitric oxide (NO) synthesis in astrocytes by increasing the uptake of the precursor amino acid, arginine via the heteromeric arginine/glutamine transporter y+LAT2. Ammonia also increases the concentration in the brain of the endogenous inhibitor of nitric oxide synthases (NOS), asymmetric dimethylarginine (ADMA), but distribution of ADMA surplus between the intraastrocytic and extracellular compartments of the brain has not been studied. Here we tested the hypothesis that ammonia modulates the distribution of ADMA and its analog symmetric dimethylarginine (SDMA) between the two compartments of the brain by competition with arginine for the y+LAT2 transporter. In extension of the hypothesis we analyzed the ADMA/Arg interaction in endothelial cells forming the blood-brain barrier. We measured by high-performance liquid chromatography (HPLC) and mass spectrometry (MS) technique the concentration of arginine, ADMA and SDMA in cultured cortical astrocytes and in a rat brain endothelial cell line (RBE-4) treated with ammonia and the effect of silencing the expression of a gene coding y+LAT2. We also tested the expression of ADMA metabolism enzymes: protein arginine methyltransferase (PRMT) and dimethylarginine dimethyl aminohydrolase (DDAH) and arginine uptake to astrocytes. Treatment for 48 h with 5 mM ammonia led to an almost 50% reduction of ADMA and SDMA concentration in both cell types, and the effect in astrocytes was substantially attenuated by silencing of the Slc7a6 gene. Moreover, the y+LAT2-dependent component of ammonia-evoked arginine uptake in astrocytes was reduced in the presence of ADMA in the medium. Our results suggest that increased ADMA efflux mediated by upregulated y+LAT2 may be a mechanism by which ammonia interferes with intra-astrocytic (and possibly intra-endothelial cell) ADMA content and subsequently, NO synthesis in both cell types.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Małgorzata Bogacińska-Karaś
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Inez Fręśko
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Wojciech Hilgier
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Radosław Jaźwiec
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
25
|
Zabek A, Paslawski R, Paslawska U, Wojtowicz W, Drozdz K, Polakof S, Podhorska M, Dziegiel P, Mlynarz P, Szuba A. The influence of different diets on metabolism and atherosclerosis processes-A porcine model: Blood serum, urine and tissues 1H NMR metabolomics targeted analysis. PLoS One 2017; 12:e0184798. [PMID: 28991897 PMCID: PMC5633143 DOI: 10.1371/journal.pone.0184798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
The global epidemic of cardiovascular diseases leads to increased morbidity and mortality caused mainly by myocardial infarction and stroke. Atherosclerosis is the major pathological process behind this epidemic. We designed a novel model of atherosclerosis in swine. Briefly, the first group (11 pigs) received normal pig feed (balanced diet group-BDG) for 12 months, the second group (9 pigs) was fed a Western high-calorie diet (unbalanced diet group-UDG) for 12 months, the third group (8 pigs) received a Western type high-calorie diet for 9 months later replaced by a normal diet for 3 months (regression group-RG). Clinical measurements included zoometric data, arterial blood pressure, heart rate and ultrasonographic evaluation of femoral arteries. Then, the animals were sacrificed and the blood serum, urine and skeletal muscle tissue were collected and 1H NMR based metabolomics studies with the application of fingerprinting PLS-DA and univariate analysis were done. Our results have shown that the molecular disturbances might overlap with other diseases such as onset of diabetes, sleep apnea and other obesity accompanied diseases. Moreover, we revealed that once initiated, molecular changes did not return to homeostatic equilibrium, at least for the duration of this experiment.
Collapse
Affiliation(s)
- Adam Zabek
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Robert Paslawski
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Department and Clinic of Internal and Occupational Diseases and Hypertension Wroclaw Medical University, Borowska, Wroclaw, Poland
| | - Urszula Paslawska
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Department of Internal Diseases with Clinic for Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida, Wroclaw, Poland
| | - Wojciech Wojtowicz
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Katarzyna Drozdz
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Division of Angiology, Wroclaw Medical University, Pasteura, Wroclaw, Poland
- 4th Military Hospital in Wrocław, Weigla, Wrocław, Poland
| | - Sergio Polakof
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, Clermont-Ferrand, France
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand, France
| | - Marzena Podhorska
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dziegiel
- Department of Histology and Embriology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Mlynarz
- Bioorganic Chemistry Group, Department of Chemistry, Wroclaw University of Technology, Wyb. Wspianskiego, Wroclaw, Poland
| | - Andrzej Szuba
- WROVASC—Regional Specialist Hospital in Wroclaw, Research and Development Centre, Kamienskiego, Wroclaw, Poland
- Division of Angiology, Wroclaw Medical University, Pasteura, Wroclaw, Poland
- 4th Military Hospital in Wrocław, Weigla, Wrocław, Poland
| |
Collapse
|
26
|
Bystrická Z, Laubertová L, Ďurfinová M, Paduchová Z. Methionine metabolism and multiple sclerosis. Biomarkers 2017; 22:747-754. [DOI: 10.1080/1354750x.2017.1334153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zuzana Bystrická
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Lucia Laubertová
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Monika Ďurfinová
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Paduchová
- Institute of Medical Chemistry, Biochemistry, and Clinical Chemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
27
|
Shin S, Thapa SK, Fung HL. Cellular interactions between L-arginine and asymmetric dimethylarginine: Transport and metabolism. PLoS One 2017; 12:e0178710. [PMID: 28562663 PMCID: PMC5451097 DOI: 10.1371/journal.pone.0178710] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/17/2017] [Indexed: 12/31/2022] Open
Abstract
This study was aimed to examine the effect of L-arginine (ARG) exposure on the disposition of asymmetric dimethylarginine (ADMA) in human endothelial cells. Although the role of ADMA as an inhibitor of endothelial nitric oxide synthase (eNOS) is well-recognized, cellular interactions between ARG and ADMA are not well-characterized. EA.hy926 human vascular endothelial cells were exposed to 15N4-ARG, and the concentrations of 15N4-ARG and ADMA in the cell lysate and incubation medium were determined by a liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) assay. Nitric oxide (NO) production was estimated by utilizing cumulative nitrite concentration via a fluorometric assay. Cells incubated with 15N4-ARG exhibited enhanced nitrite production as well as 15N4-ARG cellular uptake. These changes were accompanied by a decrease in cellular ADMA level and increase in extracellular ADMA level, indicating an efflux of endogenous ADMA from the cell. The time courses of ADMA efflux as well as nitrite accumulation in parallel with 15N4-ARG uptake were characterized. Following preincubation with 15N4-ARG and D7-ADMA, the efflux of cellular 15N4-ARG and D7-ADMA was significantly stimulated by high concentrations of ARG or ADMA in the incubation medium, demonstrating trans-stimulated cellular transport of these two amino acids. D7-ADMA metabolism was inhibited in the presence of added ARG. These results demonstrated that in addition to an interaction at the level of eNOS, ARG and ADMA may mutually influence their cellular availability via transport and metabolic interactions.
Collapse
Affiliation(s)
- Soyoung Shin
- Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Korea
- * E-mail:
| | - Subindra Kazi Thapa
- Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, Korea
| | - Ho-Leung Fung
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
28
|
DdaR (PA1196) Regulates Expression of Dimethylarginine Dimethylaminohydrolase for the Metabolism of Methylarginines in Pseudomonas aeruginosa PAO1. J Bacteriol 2017; 199:JB.00001-17. [PMID: 28167521 DOI: 10.1128/jb.00001-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/31/2017] [Indexed: 11/20/2022] Open
Abstract
Dimethylarginine dimethylaminohydrolases (DDAHs) catalyze the hydrolysis of methylarginines to yield l-citrulline and methylamines as products. DDAHs and their central roles in methylarginine metabolism have been characterized for eukaryotic cells. While DDAHs are known to exist in some bacteria, including Streptomyces coelicolor and Pseudomonas aeruginosa, the physiological importance and genetic regulation of bacterial DDAHs remain poorly understood. To provide some insight into bacterial methylarginine metabolism, this study focused on identifying the key elements or factors regulating DDAH expression in P. aeruginosa PAO1. First, results revealed that P. aeruginosa can utilize NG ,NG -dimethyl-l-arginine (ADMA) as a sole source of nitrogen but not carbon. Second, expression of the ddaH gene was observed to be induced in the presence of methylarginines, including NG -monomethyl-l-arginine (l-NMMA) and ADMA. Third, induction of the ddaH gene was shown to be achieved through a mechanism consisting of the putative enhancer-binding protein PA1196 and the alternative sigma factor RpoN. Both PA1196 and RpoN were essential for the expression of the ddaH gene in response to methylarginines. On the basis of the results of this study, PA1196 was given the name DdaR, for dimethylarginine dimethylaminohydrolase regulator. Interestingly, DdaR and its target ddaH gene are conserved only among P. aeruginosa strains, suggesting that this particular Pseudomonas species has evolved to utilize methylarginines from its environment.IMPORTANCE Methylated arginine residues are common constituents of eukaryotic proteins. During proteolysis, methylarginines are released in their free forms and become accessible nutrients for bacteria to utilize as growth substrates. In order to have a clearer and better understanding of this process, we explored methylarginine utilization in the metabolically versatile bacterium Pseudomonas aeruginosa PAO1. Our results show that the transcriptional regulator DdaR (PA1196) and the sigma factor RpoN positively regulate expression of dimethylarginine dimethylaminohydrolases (DDAHs) in response to exogenous methylarginines. DDAH is the central enzyme of methylarginine degradation, and its transcriptional regulation by DdaR-RpoN is expected to be conserved among P. aeruginosa strains.
Collapse
|
29
|
de la Barca JMC, Huang NT, Jiao H, Tessier L, Gadras C, Simard G, Natoli R, Tcherkez G, Reynier P, Valter K. Retinal metabolic events in preconditioning light stress as revealed by wide-spectrum targeted metabolomics. Metabolomics 2017; 13:22. [PMID: 28706468 PMCID: PMC5486622 DOI: 10.1007/s11306-016-1156-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/20/2016] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Light is the primary stimulus for vision, but may also cause damage to the retina. Pre-exposing the retina to sub-lethal amount of light (or preconditioning) improves chances for retinal cells to survive acute damaging light stress. OBJECTIVES This study aims at exploring the changes in retinal metabolome after mild light stress and identifying mechanisms that may be involved in preconditioning. METHODS Retinas from 12 rats exposed to mild light stress (1000 lux × for 12 h) and 12 controls were collected one and seven days after light stress (LS). One retina was used for targeted metabolomics analysis using the Biocrates p180 kit while the fellow retina was used for histological and immunohistochemistry analysis. RESULTS Immunohistochemistry confirmed that in this experiment, a mild LS with retinal immune response and minimal photoreceptor loss occurred. Compared to controls, LS induced an increased concentration in phosphatidylcholines. The concentration in some amino acids and biogenic amines, particularly those related to the nitric oxide pathway (like asymmetric dimethylarginine (ADMA), arginine and citrulline) also increased 1 day after LS. 7 days after LS, the concentration in two sphingomyelins and phenylethylamine was found to be higher. We further found that in controls, retina metabolome was different between males and females: male retinas had an increased concentration in tyrosine, acetyl-ornithine, phosphatidylcholines and (acyl)-carnitines. CONCLUSIONS Besides retinal sexual metabolic dimorphism, this study shows that preconditioning is mostly associated with re-organisation of lipid metabolism and changes in amino acid composition, likely reflecting the involvement of arginine-dependent NO signalling.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Nuan-Ting Huang
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Haihan Jiao
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
| | - Lydie Tessier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Cédric Gadras
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
- 0000 0001 2248 3363grid.7252.2INSERM U1063, Université d’Angers, 49933 Angers, France
| | - Riccardo Natoli
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| | - Guillaume Tcherkez
- 0000 0001 2180 7477grid.1001.0Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 2601 Australia
| | - Pascal Reynier
- 0000 0001 2248 3363grid.7252.2PREMMi/Pôle de Recherche et d’Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d’Angers, 49933 Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 4 rue Larrey, 49933 Angers cedex 9, France
| | - Krisztina Valter
- 0000 0001 2180 7477grid.1001.0Eccles Institute of Neuroscience, John Curtin School of Medical research, Australian National University, Canberra, ACT 2601 Australia
- 0000 0001 2180 7477grid.1001.0Medical School, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
30
|
Czarnecka A, Milewski K, Jaźwiec R, Zielińska M. Intracerebral Administration of S-Adenosylhomocysteine or S-Adenosylmethionine Attenuates the Increases in the Cortical Extracellular Levels of Dimethylarginines Without Affecting cGMP Level in Rats with Acute Liver Failure. Neurotox Res 2017; 31:99-108. [PMID: 27604291 PMCID: PMC5209417 DOI: 10.1007/s12640-016-9668-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
Abstract
Alterations in brain nitric oxide (NO)/cGMP synthesis contribute to the pathogenesis of hepatic encephalopathy (HE). An increased asymmetrically dimethylated derivative of L-arginine (ADMA), an endogenous inhibitor of NO synthases, was observed in plasma of HE patients and animal models. It is not clear whether changes in brain ADMA reflect its increased local synthesis therefore affecting NO/cGMP pathway, or are a consequence of its increased peripheral blood content. We measured extracellular concentration of ADMA and symmetrically dimethylated isoform (SDMA) in the prefrontal cortex of control and thioacetamide (TAA)-induced HE rats. A contribution of locally synthesized dimethylarginines (DMAs) in their extracellular level in the brain was studied after direct infusion of the inhibitor of DMAs synthesizing enzymes (PRMTs), S-adenosylhomocysteine (AdoHcy, 2 mM), or the methyl donor, S-adenosylmethionine (AdoMet, 2 mM), via a microdialysis probe. Next, we analyzed whether locally synthesized ADMA attains physiological significance by determination of extracellular cGMP. The expression of PRMT-1 was also examined. Concentration of ADMA and SDMA, detected by positive mode electrospray LC-DMS-MS/MS, was greatly enhanced in TAA rats and was decreased (by 30 %) after AdoHcy and AdoMet infusion. TAA-induced increase (by 40 %) in cGMP was unaffected after AdoHcy administration. The expression of PRMT-1 in TAA rat brain was unaltered. The results suggest that (i) the TAA-induced increase in extracellular DMAs may result from their effective synthesis in the brain, and (ii) the excess of extracellular ADMA does not translate into changes in the extracellular cGMP concentration and implicate a minor role in brain NO/cGMP pathway control.
Collapse
Affiliation(s)
- Anna Czarnecka
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
| | - Radosław Jaźwiec
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5A Pawińskiego Street, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
31
|
Di Pasqua LG, Berardo C, Rizzo V, Richelmi P, Croce AC, Vairetti M, Ferrigno A. MCD diet-induced steatohepatitis is associated with alterations in asymmetric dimethylarginine (ADMA) and its transporters. Mol Cell Biochem 2016; 419:147-55. [PMID: 27357826 DOI: 10.1007/s11010-016-2758-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Using an experimental model of NASH induced by a methionine-choline-deficient (MCD) diet, we investigated whether changes occur in serum and tissue levels of asymmetric dimethylarginine (ADMA). Male Wistar rats underwent NASH induced by 8-week feeding with an MCD diet. Serum and hepatic biopsies at 2, 4 and 8 weeks were taken, and serum enzymes, ADMA and nitrate/nitrite (NOx), were evaluated. Hepatic biopsies were used for mRNA and protein expression analysis of dimethylarginine dimethylaminohydrolase-1 (DDAH-1) and protein methyltransferases (PRMT-1), enzymes involved in ADMA metabolism and synthesis, respectively, and ADMA transporters (CAT-1, CAT-2A and CAT-2B). Lipid peroxides (TBARS), glutathione, ATP/ADP and DDAH activity were quantified. An increase in serum AST and ALT was detected in MCD animals. A time-dependent decrease in serum and tissue ADMA and increase in mRNA expression of DDAH-1 and PRMT-1 as well as higher rates of mRNA expression of CAT-1 and lower rates of CAT-2A and CAT-2B were found after 8-week MCD diet. An increase in serum NOx and no changes in protein expression in DDAH-1 and CAT-1 and higher content in CAT-2 and PRMT-1 were found at 8 weeks. Hepatic DDAH activity decreased with a concomitant increase in oxidative stress, as demonstrated by high TBARS levels and low glutathione content. In conclusion, a decrease in serum and tissue ADMA levels in the MCD rats was found associated with a reduction in DDAH activity due to the marked oxidative stress observed. Changes in ADMA levels and its transporters are innovative factors in the onset and progression of hepatic alterations correlated with MCD diet-induced NASH.
Collapse
Affiliation(s)
- Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Vittoria Rizzo
- Department of Molecular Medicine, Fondazione IRCCS Policlinico S. Matteo and University of Pavia, Pavia, Italy
| | - Plinio Richelmi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Anna Cleta Croce
- Histochemistry and Cytometry Unit, IGM-CNR, c/o Biotechnology and Biology Department, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy.
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| |
Collapse
|
32
|
Isik DU, Bas AY, Demirel N, Kavurt S, Aydemir O, Kavurt AV, Cetin I. Increased asymmetric dimethylarginine levels in severe transient tachypnea of the newborn. J Perinatol 2016; 36:459-62. [PMID: 26866680 DOI: 10.1038/jp.2016.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/23/2015] [Accepted: 01/15/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Nitric oxide (NO) is synthesized by NO synthase (NOS), and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NOS. We aimed to investigate l-arginine and ADMA levels in transient tachypnea of the newborn (TTN) and their relationship with systolic pulmonary artery pressure (PAP) and disease severity. STUDY DESIGN Infants born at ⩾35 weeks gestational age with clinical signs and chest X-ray findings consistent with TTN were enrolled; controls were recruited at the same time. l-arginine and ADMA levels were measured at 12 to 24 h (first samples) and at 48 to 72 h (second samples). Systolic PAP was evaluated on the second day. Patients were divided according to the duration of tachypnea and designated as group A (duration ⩽72 h) and group B (duration >72 h). RESULTS In the first samples, the ADMA levels were significantly higher in patients with TTN compared with controls (P<0.001). In the second samples, the ADMA levels were significantly higher in group B compared with that in group A (P=0.019). In group A patients, the second ADMA levels were significantly lower compared with that in the first samples (P<0.001), whereas the second ADMA levels remained unchanged compared with the first samples in group B. Systolic PAP values were significantly higher in group B compared with that in group A patients (P=0.033). CONCLUSION Increased ADMA concentration may reduce NO synthesis, leading to increased PAP and thus longer duration of tachypnea.
Collapse
Affiliation(s)
- D U Isik
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - A Y Bas
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - N Demirel
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - S Kavurt
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - O Aydemir
- Neonatal Intensive Care Unit, Department of Neonatology, Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| | - A V Kavurt
- Department of Pediatric Cardiology, Türkiye Yüksek İhtisas Education and Research Hospital, Ankara, Turkey
| | - I Cetin
- Department of Pediatric Cardiology, Ankara Children's Hematology Oncology Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
33
|
Inhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development. Molecules 2016; 21:molecules21050615. [PMID: 27187323 PMCID: PMC6273216 DOI: 10.3390/molecules21050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.
Collapse
|
34
|
Jing Z, Kuang L, Wang Y, He J, Sun Z, Liu N, Yang J. ADMA: a specific biomarker for pathologic progress in diabetic microvascular complications? Biomark Med 2016; 10:385-95. [PMID: 26974509 DOI: 10.2217/bmm-2015-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study highlights the role of glycated hemoglobin (HbA1c), asymmetric demethylargine (ADMA) and N-ϵ-(carboxymethyl)-lysine (CML) in different periods of progress in Type 2 diabetes, and identifies a pathomechanism-based biomarker that is linked not only to the metabolic progresses but also to the underlying angiopathic progresses. METHODS Peripheral blood samples from 100 healthy volunteers, 227 subjects with prediabetes, 173 subjects with Type 2 diabetes and 92 subjects with early diabetic microvascular complications were collected and analyzed for HbA1c, ADMA and CML. RESULTS Compared to HbA1c and CML, ADMA is the strongest independent predictor and a significantly discriminative receiver operating characteristics profile, clearly distinguishing those with early diabetic microvascular complications. CONCLUSIONS ADMA maybe serve as a pathomechanism-based biomarker, predicting the progression of microvascular complications.
Collapse
Affiliation(s)
- Zhiqiang Jing
- Department of Physical Health, China Pharmaceutical University, Nanjing 210009, China
| | - Liqing Kuang
- Center of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Yanping Wang
- Department & Institute of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jiajia He
- Department & Institute of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zilin Sun
- Department & Institute of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Naifeng Liu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.,Department & Institute of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jin Yang
- Center of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
35
|
Elevated Levels of Asymmetric Dimethylarginine (ADMA) in the Pericardial Fluid of Cardiac Patients Correlate with Cardiac Hypertrophy. PLoS One 2015; 10:e0135498. [PMID: 26313940 PMCID: PMC4551682 DOI: 10.1371/journal.pone.0135498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 07/22/2015] [Indexed: 12/19/2022] Open
Abstract
Background Pericardial fluid (PF) contains several biologically active substances, which may provide information regarding the cardiac conditions. Nitric oxide (NO) has been implicated in cardiac remodeling. We hypothesized that L-arginine (L-Arg) precursor of NO-synthase (NOS) and asymmetric dimethylarginine (ADMA), an inhibitor of NOS, are present in PF of cardiac patients and their altered levels may contribute to altered cardiac morphology. Methods L-Arg and ADMA concentrations in plasma and PF, and echocardiographic parameters of patients undergoing coronary artery bypass graft (CABG, n = 28) or valve replacement (VR, n = 25) were determined. Results We have found LV hypertrophy in 35.7% of CABG, and 80% of VR patients. In all groups, plasma and PF L-Arg levels were higher than that of ADMA. Plasma L-Arg level was higher in CABG than VR (75.7±4.6 μmol/L vs. 58.1±4.9 μmol/L, p = 0.011), whereas PF ADMA level was higher in VR than CABG (0.9±0.0 μmol/L vs. 0.7±0.0 μmol/L, p = 0.009). L-Arg/ADMA ratio was lower in the VR than CABG (VRplasma: 76.1±6.6 vs. CABGplasma: 125.4±10.7, p = 0.004; VRPF: 81.7±4.8 vs. CABGPF: 110.4±7.2, p = 0.009). There was a positive correlation between plasma L-Arg and ADMA in CABG (r = 0.539, p = 0.015); and plasma and PF L-Arg in CABG (r = 0.357, p = 0.031); and plasma and PF ADMA in VR (r = 0.529, p = 0.003); and PF L-Arg and ADMA in both CABG and VR (CABG: r = 0.468, p = 0.006; VR: r = 0.371, p = 0.034). The following echocardiographic parameters were higher in VR compared to CABG: interventricular septum (14.7±0.5 mm vs. 11.9±0.4 mm, p = 0.000); posterior wall thickness (12.6±0.3 mm vs. 11.5±0.2 mm, p = 0.000); left ventricular (LV) mass (318.6±23.5 g vs. 234.6±12.3 g, p = 0.007); right ventricular (RV) (33.9±0.9 cm2 vs. 29.7±0.7 cm2, p = 0.004); right atrial (18.6±1.0 cm2 vs. 15.4±0.6 cm2, p = 0.020); left atrial (19.8±1.0 cm2 vs. 16.9±0.6 cm2, p = 0.033) areas. There was a positive correlation between plasma ADMA and RV area (r = 0.453, p = 0.011); PF ADMA and end-diastolic (r = 0.434, p = 0.015) and systolic diameter of LV (r = 0.487, p = 0.007); and negative correlation between PF ADMA and LV ejection fraction (r = -0.445, p = 0.013) in VR. Conclusion We suggest that elevated levels of ADMA in the PF of patients indicate upregulated RAS and reduced bioavailability of NO, which can contribute to the development of cardiac hypertrophy and remodeling.
Collapse
|
36
|
The Arginine/ADMA Ratio Is Related to the Prevention of Atherosclerotic Plaques in Hypercholesterolemic Rabbits When Giving a Combined Therapy with Atorvastatine and Arginine. Int J Mol Sci 2015; 16:12230-42. [PMID: 26035753 PMCID: PMC4490441 DOI: 10.3390/ijms160612230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/17/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
Supplementation with arginine in combination with atorvastatin is more efficient in reducing the size of an atherosclerotic plaque than treatment with a statin or arginine alone in homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits. We evaluated the mechanism behind this feature by exploring the role of the arginine/asymmetric dimethylarginine (ADMA) ratio, which is the substrate and inhibitor of nitric oxide synthase (NOS) and thereby nitric oxide (NO), respectively. Methods: Rabbits were fed either an arginine diet (group A, n = 9), standard rabbit chow plus atorvastatin (group S, n = 8), standard rabbit chow plus an arginine diet with atorvastatin (group SA, n = 8) or standard rabbit chow (group C, n = 9) as control. Blood was sampled and the aorta was harvested for topographic and histological analysis. Plasma levels of arginine, ADMA, cholesterol and nitric oxide were determined and the arginine/ADMA ratio was calculated. Results: The decrease in ADMA levels over time was significantly correlated to fewer aortic lesions in the distal aorta and total aorta. The arginine/ADMA ratio was correlated to cholesterol levels and decrease in cholesterol levels over time in the SA group. A lower arginine/ADMA ratio was significantly correlated to lower NO levels in the S and C group. Discussion: A balance between arginine and ADMA is an important indicator in the prevention of the development of atherosclerotic plaques.
Collapse
|
37
|
Nitric Oxide Bioavailability in Obstructive Sleep Apnea: Interplay of Asymmetric Dimethylarginine and Free Radicals. SLEEP DISORDERS 2015; 2015:387801. [PMID: 26064689 PMCID: PMC4438195 DOI: 10.1155/2015/387801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 01/13/2023]
Abstract
Obstructive sleep apnea (OSA) occurs in 2% of middle-aged women and 4% of middle-aged men and is considered an independent risk factor for cerebrovascular and cardiovascular diseases. Nitric oxide (NO) is an important endothelium derived vasodilating substance that plays a critical role in maintaining vascular homeostasis. Low levels of NO are associated with impaired endothelial function. Asymmetric dimethylarginine (ADMA), an analogue of L-arginine, is a naturally occurring product of metabolism found in the human circulation. Elevated levels of ADMA inhibit NO synthesis while oxidative stress decreases its bioavailability, so impairing endothelial function and promoting atherosclerosis. Several clinical trials report increased oxidative stress and ADMA levels in patients with OSA. This review discusses the role of oxidative stress and increased ADMA levels in cardiovascular disease resulting from OSA.
Collapse
|
38
|
Eiselt J, Rajdl D, Racek J, Vostrý M, Rulcová K, Wirth J. Asymmetric dimethylarginine and progression of chronic kidney disease: a one-year follow-up study. Kidney Blood Press Res 2014; 39:50-7. [PMID: 24923294 DOI: 10.1159/000355776] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS Asymmetric dimethylarginine (ADMA) is a prognostic factor in patients with chronic kidney disease (CKD). However, the relationships among factors influencing the metabolism of ADMA and the CKD progression are not fully understood. METHODS Serum ADMA, and variables related to the metabolism of ADMA were measured in 181 non-dialysis patients (CKD stages 3-5) and in 46 controls. Patients were assessed at baseline, and 6 and 12 months after the initiation of the study. RESULTS Patients had increased baseline ADMA, advanced glycation end products (AGE), and advanced oxidation protein products (AOPP) compared with controls (P<0.001). In a total of 164 patients who completed a one-year study, the estimated GFR (eGFR) declined from 23.5 (17.7-36) mL/min/1.73m(2) to 21 (14.7-31.5) (P=0.018), AGE rose from 1.58 (1.38-1.90) μmol/L to 1.76 (1.52-2.21) (P<0.001), while ADMA, AOPP, tubular function, and proteinuria remained stable. In a multiple regression model (adjusted R(2) = 0.49, P<0.0001), the interaction of relatively higher baseline eGFR, i.e. > 25 mL/min/1.73m(2), with higher ADMA (P=0.02) and higher AOPP (P=0.04) predicted the severest decrease in eGFR per year. Other predictors of progression were higher baseline AGE (P<0.001), proteinuria (P=0.003), hypertension (P=0.01), and higher baseline eGFR (P=0.03). CONCLUSION Elevated ADMA and markers of oxidative stress were strong predictors of progression in patients with eGFR between 25-40 mL/min/1.73m(2) , i.e. at the borderline of CKD stages 3-4.
Collapse
Affiliation(s)
- Jaromír Eiselt
- Department of Internal Medicine I, Charles University, Medical School and Teaching Hospital Plzeň, Czech Republic
| | | | | | | | | | | |
Collapse
|
39
|
Watarai R, Suzuki K, Ichino N, Osakabe K, Sugimoto K, Yamada H, Hamajima T, Hamajima N, Inoue T. Association between serum levels of carotenoids and serum asymmetric dimethylarginine levels in Japanese subjects. J Epidemiol 2014; 24:250-7. [PMID: 24727752 PMCID: PMC4000773 DOI: 10.2188/jea.je20130137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of endothelium nitric oxide synthase (NOS). ADMA binds to a substrate-binding site of NOS and then inhibits nitric oxide production from vascular endothelial cells. Elevated ADMA levels are a risk factor for cardiovascular disease. Recently, it was reported that plasma ADMA levels were negatively correlated with vegetable and fruit consumption. The purpose of this study was to examine the association between serum levels of carotenoids and serum ADMA levels in Japanese subjects. Methods We conducted a cross-sectional study of 470 subjects (203 men and 267 women) who attended a health examination in August 2011. Serum levels of several carotenoids were separately measured by high-performance liquid chromatography. Serum ADMA levels were determined by using an enzyme-linked immunosorbent assay kit. Results In women, the multivariate-adjusted odds ratios (ORs) of elevated serum ADMA levels were significantly decreased in the highest tertile for β-cryptoxanthin (OR 0.47, 95% CI 0.23–0.95), α-carotene (OR 0.39, 95% CI 0.18–0.79), and β-carotene (OR 0.36, 95% CI 0.17–0.73) compared to the lowest tertile. In men, significantly decreased ORs were observed in the highest tertiles of serum zeaxanthin/lutein (OR 0.23, 95% CI 0.06–0.69) and α-carotene (OR 0.26, 95% CI 0.07–0.82), and in the middle and the highest tertiles of serum β-carotene (OR 0.27, 95% CI 0.09–0.74 and OR 0.20, 95% CI 0.03–0.88, respectively) when the tertile cutoff points of women were extrapolated to men. Conclusions Higher serum levels of carotenoids, such as α-carotene and β-carotene, may help to prevent elevated serum ADMA levels in Japanese subjects.
Collapse
Affiliation(s)
- Rika Watarai
- Clinical Laboratory Medicine, Fujita Health University Graduate School of Health Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sheen JM, Chen YC, Tain YL, Huang LT. Increased circulatory asymmetric dimethylarginine and multiple organ failure: bile duct ligation in rat as a model. Int J Mol Sci 2014; 15:3989-4006. [PMID: 24603538 PMCID: PMC3975379 DOI: 10.3390/ijms15033989] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/04/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023] Open
Abstract
Bile duct ligation (BDL)-treated rats exhibit cholestasis, increased systemic oxidative stress, and liver fibrosis, which ultimately lead to liver cirrhosis. Asymmetric dimethylarginine (ADMA) is a competitive inhibitor of nitric oxide synthase that can decrease the synthesis of nitric oxide. BDL rats have higher plasma and hepatic ADMA levels, which may be due to increased hepatic protein arginine methyltransferase-1 and decreased dimethylarginine dimethylaminohydrolase expression. BDL rats also exhibit renal and brain damage characterized by increased tissue ADMA concentrations. The increased plasma ADMA levels and multiple organ damages seen here are also observed following multiple organ failures associated with critical illness. This review discusses the dysregulation of ADMA in major organs in BDL rats and the role of increased ADMA in multiple organ damages.
Collapse
Affiliation(s)
- Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
41
|
Servillo L, Giovane A, Cautela D, Castaldo D, Balestrieri ML. Where does N(ε)-trimethyllysine for the carnitine biosynthesis in mammals come from? PLoS One 2014; 9:e84589. [PMID: 24454731 PMCID: PMC3890275 DOI: 10.1371/journal.pone.0084589] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/24/2013] [Indexed: 01/09/2023] Open
Abstract
Nε-trimethyllysine (TML) is a non-protein amino acid which takes part in the biosynthesis of carnitine. In mammals, the breakdown of endogenous proteins containing TML residues is recognized as starting point for the carnitine biosynthesis. Here, we document that one of the main sources of TML could be the vegetables which represent an important part of daily alimentation for most mammals. A HPLC-ESI-MS/MS method, which we previously developed for the analysis of NG-methylarginines, was utilized to quantitate TML in numerous vegetables. We report that TML, believed to be rather rare in plants as free amino acid, is, instead, ubiquitous in them and at not negligible levels. The occurrence of TML has been also confirmed in some vegetables by a HPLC method with fluorescence detection. Our results establish that TML can be introduced as free amino acid in conspicuous amounts from vegetables. The current opinion is that mammals utilize the breakdown of their endogenous proteins containing TML residues as starting point for carnitine biosynthesis. However, our finding raises the question of whether a tortuous and energy expensive route as the one of TML formation from the breakdown of endogenous proteins is really preferred when the substance is so easily available in vegetable foods. On the basis of this result, it must be taken into account that in mammals TML might be mainly introduced by diet. However, when the alimentary intake becomes insufficient, as during starvation, it might be supplied by endogenous protein breakdown.
Collapse
Affiliation(s)
- Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
- * E-mail:
| | - Alfonso Giovane
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA), Reggio Calabria, Italy
| | - Domenico Castaldo
- Dipartimento di Ingegneria Industriale e ProdAl scarl, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
42
|
Štikarová J, Suttnar J, Pimková K, Chrastinová-Mášová L, Čermák J, Dyr JE. Enhanced levels of asymmetric dimethylarginine in a serum of middle age patients with myelodysplastic syndrome. J Hematol Oncol 2013; 6:58. [PMID: 23958336 PMCID: PMC3765587 DOI: 10.1186/1756-8722-6-58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/17/2013] [Indexed: 12/30/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematological malignancies of unclear etiology where oxidative stress may contribute to the pathogenesis. Methylarginines, naturally occurring inhibitors of NO synthase, can increase superoxide generation from uncoupled NO synthase. We found significant increase in concentrations of asymmetric dimethylarginine (0.84 ± 0.32 μmol/L, p = 0.0022) and malondialdehyde (0.77 ± 0.11 μmol/L, p < 0.001) in sera of MDS patients vs controls (asymmetric dimethylarginine: 0.56 ± 0.16 μmol/L, malondialdehyde: 0.52 ± 0.07 μmol/L). On the contrary, nitrites concentrations were significantly decreased in MDS patients (1.71 ± 0.46 μmol/L, p = 0.0028) vs controls (2.16 ± 0.38 μmol/L). We suppose that the oxidative stress in MDS is enhanced due to methylated arginines influence on NO synthase activity impairment.
Collapse
|
43
|
Løland KH, Bleie Ø, Borgeraas H, Strand E, Ueland PM, Svardal A, Nordrehaug JE, Nygård O. The association between progression of atherosclerosis and the methylated amino acids asymmetric dimethylarginine and trimethyllysine. PLoS One 2013; 8:e64774. [PMID: 23734218 PMCID: PMC3666971 DOI: 10.1371/journal.pone.0064774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/17/2013] [Indexed: 12/21/2022] Open
Abstract
Objective We previously showed that treatment with folic acid (FA)/B12 was associated with more rapid progression of coronary artery disease (CAD). High doses of FA may induce methylation by increasing the availability of S-adenosyl-methionine (SAM). Asymmetric dimethylarginine (ADMA) and trimethyllysine (TML) are both produced through proteolytic release following post-translational SAM–dependent methylation of precursor amino acid. ADMA has previously been associated with CAD. We investigated if plasma levels of ADMA and TML were associated with progression of CAD as measured by quantitative coronary angiography (QCA). Methods 183 patients from the Western Norway B Vitamin Intervention Trial (WENBIT) undergoing percutaneous coronary intervention (PCI) were randomized to daily treatment with 0.8 mg FA/0.4 mg B12 with and without 40 mg B6, B6 alone or placebo. Coronary angiograms and plasma samples of ADMA and TML were obtained at both baseline and follow-up (median 10.5 months). The primary end-point was progression of CAD as measured by diameter stenosis (DS) evaluated by linear quantile mixed models. Results A total of 309 coronary lesions not treated with PCI were identified. At follow-up median (95% CI) DS increased by 18.35 (5.22–31.49) percentage points per µmol/L ADMA increase (p-value 0.006) and 2.47 (0.37–4.58) percentage points per µmol/L TML increase (p-value 0.021) in multivariate modeling. Treatment with FA/B12 (±B6) was not associated with ADMA or TML levels. Conclusion In patients with established CAD, baseline ADMA and TML was associated with angiographic progression of CAD. However, neither ADMA nor TML levels were altered by treatment with FA/B12 (±B6). Trial Registration Controlled-Trials.com NCT00354081
Collapse
Affiliation(s)
- Kjetil H. Løland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Øyvind Bleie
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Heidi Borgeraas
- Morbid Obesity Centre, Vestfold Hospital Trust, Tønsberg, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Per M. Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Asbjørn Svardal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan E. Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
44
|
Brenner T, Fleming TH, Spranz D, Schemmer P, Bruckner T, Uhle F, Martin EO, Weigand MA, Hofer S. Reactive metabolites and AGE-RAGE-mediated inflammation in patients following liver transplantation. Mediators Inflamm 2013; 2013:501430. [PMID: 23766560 PMCID: PMC3677670 DOI: 10.1155/2013/501430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/29/2013] [Indexed: 02/07/2023] Open
Abstract
Recent investigations have indicated that reactive metabolites and AGE-RAGE-mediated inflammation might play an important role in the pathogenesis of ischemia-reperfusion injury in liver transplantation. In this observational clinical study, 150 patients were enrolled following liver transplantation from deceased donors. The occurrence of short-term complications within 10 days of transplantation was documented. Blood samples were collected prior to transplantation, immediately after transplantation, and at consecutive time points, for a total of seven days after transplantation. Plasma levels of methylglyoxal were determined using HPLC, whereas plasma levels of L-arginine, asymmetric dimethylarginine, advanced glycation endproducts-carboxylmethyllysine, soluble receptor for advanced glycation endproducts, and total antioxidant capacity were measured by ELISA. Patients following liver transplantation were shown to suffer from increased RAGE-associated inflammation with an AGE load mainly dependent upon reactive carbonyl species-derived AGEs. In contrast, carboxylmethyllysine-derived AGEs were of a minor importance. As assessed by the ratio of L-arginine/asymmetric dimethylarginine, the bioavailability of nitric oxide was shown to be reduced in hepatic IRI, especially in those patients suffering from perfusion disorders following liver transplantation. For the early identification of patients at high risk of perfusion disorders, the implementation of asymmetric dimethylarginine measurements in routine diagnostics following liver transplantation from deceased donors should be taken into consideration.
Collapse
Affiliation(s)
- Thorsten Brenner
- Department of Anesthesiology, University of Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Protein Arginine Methyltransferases (PRMTs): promising targets for the treatment of pulmonary disorders. Int J Mol Sci 2012. [PMID: 23202904 PMCID: PMC3497278 DOI: 10.3390/ijms131012383] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Protein arginine methylation is a novel posttranslational modification that plays a pivotal role in a variety of intracellular events, such as signal transduction, protein-protein interaction and transcriptional regulation, either by the direct regulation of protein function or by metabolic products originating from protein arginine methylation that influence nitric oxide (NO)-dependent processes. A growing body of evidence suggests that both mechanisms are implicated in cardiovascular and pulmonary diseases. This review will present and discuss recent research on PRMTs and the methylation of non-histone proteins and its consequences for the pathogenesis of various lung disorders, including lung cancer, pulmonary fibrosis, pulmonary hypertension, chronic obstructive pulmonary disease and asthma. This article will also highlight novel directions for possible future investigations to evaluate the functional contribution of arginine methylation in lung homeostasis and disease.
Collapse
|
46
|
L-arginine and asymmetric dimethylarginine are early predictors for survival in septic patients with acute liver failure. Mediators Inflamm 2012; 2012:210454. [PMID: 22619480 PMCID: PMC3352626 DOI: 10.1155/2012/210454] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/27/2011] [Accepted: 02/13/2012] [Indexed: 12/20/2022] Open
Abstract
Dysfunctions of the L-arginine (L-arg)/nitric-oxide (NO) pathway are suspected to be important for the pathogenesis of multiple organ dysfunction syndrome (MODS) in septic shock. Therefore plasma concentrations of L-arg and asymmetric dimethylarginine (ADMA) were measured in 60 patients with septic shock, 30 surgical patients and 30 healthy volunteers using enzyme linked immunosorbent assay (ELISA) kits. Plasma samples from patients with septic shock were collected at sepsis onset, and 24 h, 4 d, 7 d, 14 d and 28 d later. Samples from surgical patients were collected prior to surgery, immediately after the end of the surgical procedure as well as 24 h later and from healthy volunteers once. In comparison to healthy volunteers and surgical patients, individuals with septic shock showed significantly increased levels of ADMA, as well as a decrease in the ratio of L-arg and ADMA at all timepoints. In septic patients with an acute liver failure (ALF), plasma levels of ADMA and L-arg were significantly increased in comparison to septic patients with an intact hepatic function. In summary it can be stated, that bioavailability of NO is reduced in septic shock. Moreover, measurements of ADMA and L-arg appear to be early predictors for survival in patients with sepsis-associated ALF.
Collapse
|
47
|
Nitric oxide manipulation: a therapeutic target for peripheral arterial disease? Cardiol Res Pract 2012; 2012:656247. [PMID: 22536531 PMCID: PMC3318888 DOI: 10.1155/2012/656247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 12/16/2011] [Indexed: 02/07/2023] Open
Abstract
Peripheral Arterial Disease (PAD) is a cause of significant morbidity and mortality in the Western world. Risk factor modification and endovascular and surgical revascularisation are the main treatment options at present. However, a significant number of patients still require major amputation. There is evidence that nitric oxide (NO) and its endogenous inhibitor asymmetric dimethylarginine (ADMA) play significant roles in the pathophysiology of PAD. This paper reviews experimental work implicating the ADMA-DDAH-NO pathway in PAD, focussing on both the vascular dysfunction and effects within the ischaemic muscle, and examines the potential of manipulating this pathway as a novel adjunct therapy in PAD.
Collapse
|
48
|
New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2011; 2012:967852. [PMID: 21912565 PMCID: PMC3170826 DOI: 10.1155/2012/967852] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023]
Abstract
Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered.
Collapse
|
49
|
|
50
|
Schepers E, Barreto DV, Liabeuf S, Glorieux G, Eloot S, Barreto FC, Massy Z, Vanholder R. Symmetric dimethylarginine as a proinflammatory agent in chronic kidney disease. Clin J Am Soc Nephrol 2011; 6:2374-83. [PMID: 21817129 DOI: 10.2215/cjn.01720211] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND & OBJECTIVES Chronic kidney disease (CKD) is characterized by chronic inflammation, considered a nontraditional risk factor for cardiovascular disease, the major cause of death in CKD. Symmetric dimethylarginine (SDMA) was recently demonstrated to induce reactive oxygen species in monocytes. The present study further investigates the inflammatory character of SDMA compared with its structural counterpart asymmetric dimethylarginine (ADMA). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In vitro, the effect of SDMA on intracellular monocytic expression of IL-6 and TNF-α was studied followed by an evaluation of nuclear factor (NF)-κB activation. Additionally, an association of SDMA with inflammatory parameters in consecutive stages of CKD was evaluated in vivo. RESULTS Monocytes incubated with SDMA showed increased IL-6 and TNF-α expression and a rise in active NF-κB. N-acetylcysteine abrogated both these effects. No significant effects were observed with ADMA. In vivo, 142 patients (67 ± 12 years) at different stages of CKD showed an inverse association between serum SDMA and ADMA and renal function. Correlations between SDMA and IL-6, TNF-α, and albumin were more significant than for ADMA, while multiple regression analysis only retained TNF-α at a high significance for SDMA (P < 0.0001). In receiver operating characteristic analysis for inflammation, defined as an IL-6 level above 2.97 pg/ml (median), the discriminative power of SDMA (area under the curve [AUC]: 0.69 ± 0.05) directly followed that of C-reactive protein (AUC: 0.82 ± 0.04) and albumin (AUC: 0.72 ± 0.05; for all, P < 0.0001) and preceded that of ADMA (P = 0.002). CONCLUSIONS The present study shows that SDMA is involved in the inflammatory process of CKD, activating NF-κB and resulting in enhanced expression of IL-6 and TNF-α, which is corroborated by the clinical data pointing to an in vivo association of SDMA with inflammatory markers in CKD at different stages.
Collapse
Affiliation(s)
- Eva Schepers
- Department of Internal Medicine, Nephrology Division, University Hospital Gent, De Pintelaan 185, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|