1
|
Kugler BA, Maurer A, Fu X, Franczak E, Ernst N, Schwartze K, Allen J, Li T, Crawford PA, Koch LG, Britton SL, Shankar K, Burgess SC, Thyfault JP. Aerobic Capacity and Exercise Mediate Protection Against Hepatic Steatosis via Enhanced Bile Acid Metabolism. FUNCTION 2025; 6:zqaf019. [PMID: 40194946 PMCID: PMC12086534 DOI: 10.1093/function/zqaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025] Open
Abstract
High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) or low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
- Division of Endocrinology and Clinical Pharmacology, Department of Internal Medicine, KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Adrianna Maurer
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Xiaorong Fu
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Edziu Franczak
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
- Division of Endocrinology and Clinical Pharmacology, Department of Internal Medicine, KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Nick Ernst
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kevin Schwartze
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Julie Allen
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Tiangang Li
- Department of Biochemistry and Physiology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, and Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, 43614, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kartik Shankar
- USDA Agricultural Research Service, Responsive Agricultural Food Systems Research Unit, College Station, TX, USA
| | - Shawn C Burgess
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John P Thyfault
- Departments of Cell Biology and Physiology, Kansas Medical Center, Kansas City, KS, 66160, USA
- Division of Endocrinology and Clinical Pharmacology, Department of Internal Medicine, KU Diabetes Institute, Kansas Medical Center, Kansas City, KS, 66106, USA
- Kansas Center for Metabolism and Obesity Research, Kansas Medical Center, Kansas City, KS, 66160, USA
- Kansas City VA Medical Center, Kansas City, 64128, MO
| |
Collapse
|
2
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Kugler BA, Maurer A, Fu X, Franczak E, Ernst N, Schwartze K, Allen J, Li T, Crawford PA, Koch LG, Britton SL, Burgess SC, Thyfault JP. Aerobic capacity and exercise mediate protection against hepatic steatosis via enhanced bile acid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619494. [PMID: 39484384 PMCID: PMC11526936 DOI: 10.1101/2024.10.21.619494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High cardiorespiratory fitness and exercise show evidence of altering bile acid (BA) metabolism and are known to protect or treat diet-induced hepatic steatosis, respectively. Here, we tested the hypothesis that high intrinsic aerobic capacity and exercise both increase hepatic BA synthesis measured by the incorporation of 2H2O. We also leveraged mice with inducible liver-specific deletion of Cyp7a1 (LCyp7a1KO), which encodes the rate-limiting enzyme for BA synthesis, to test if exercise-induced BA synthesis is critical for exercise to reduce hepatic steatosis. The synthesis of hepatic BA, cholesterol, and de novo lipogenesis was measured in rats bred for either high (HCR) vs. low (LCR) aerobic capacity consuming acute and chronic high-fat diets. HCR rats had increased synthesis of cholesterol and certain BA species in the liver compared to LCR rats. We also found that chronic exercise with voluntary wheel running (VWR) (4 weeks) increased newly synthesized BAs of specific species in male C57BL/6J mice compared to sedentary mice. Loss of Cyp7a1 resulted in fewer new BAs and increased liver triglycerides compared to controls after a 10-week high-fat diet. Additionally, exercise via VWR for 4 weeks effectively reduced hepatic triglycerides in the high-fat diet-fed control male and female mice as expected; however, exercise in LCyp7a1KO mice did not lower liver triglycerides in either sex. These results show that aerobic capacity and exercise increase hepatic BA metabolism, which may be critical for combatting hepatic steatosis.
Collapse
Affiliation(s)
- Benjamin A. Kugler
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
| | | | - Xiaorong Fu
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edziu Franczak
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
| | - Nick Ernst
- Departments of Cell Biology and Physiology
| | | | | | - Tiangang Li
- Department of Biochemistry and Physiology, and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - Lauren G. Koch
- Dept of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | | | - Shawn C. Burgess
- Center for Human Nutrition and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John P. Thyfault
- Departments of Cell Biology and Physiology
- Internal Medicine, Division of Endocrinology and Clinical Pharmacology and KU Diabetes Institute
- Kansas Center for Metabolism and Obesity Research, Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Ramachandra Rao S, Fliesler SJ. Bottlenecks in the Investigation of Retinal Sterol Homeostasis. Biomolecules 2024; 14:341. [PMID: 38540760 PMCID: PMC10968604 DOI: 10.3390/biom14030341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 01/16/2025] Open
Abstract
Sterol homeostasis in mammalian cells and tissues involves balancing three fundamental processes: de novo sterol biosynthesis; sterol import (e.g., from blood-borne lipoproteins); and sterol export. In complex tissues, composed of multiple different cell types (such as the retina), import and export also may involve intratissue, intercellular sterol exchange. Disruption of any of these processes can result in pathologies that impact the normal structure and function of the retina. Here, we provide a brief overview of what is known currently about sterol homeostasis in the vertebrate retina and offer a proposed path for future experimental work to further our understanding of these processes, with relevance to the development of novel therapeutic interventions for human diseases involving defective sterol homeostasis.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Department of Ophthalmology (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA;
| | - Steven J. Fliesler
- Department of Ophthalmology (Ross Eye Institute), Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
5
|
Osipenko S, Bashilov A, Vishnevskaya A, Rumiantseva L, Levashova A, Kovalenko A, Tupertsev B, Kireev A, Nikolaev E, Kostyukevich Y. Investigating the Metabolism of Plants Germinated in Heavy Water, D 2O, and H 218O-Enriched Media Using High-Resolution Mass Spectrometry. Int J Mol Sci 2023; 24:15396. [PMID: 37895078 PMCID: PMC10607710 DOI: 10.3390/ijms242015396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/29/2023] Open
Abstract
Mass spectrometry has been an essential technique for the investigation of the metabolic pathways of living organisms since its appearance at the beginning of the 20th century. Due to its capability to resolve isotopically labeled species, it can be applied together with stable isotope tracers to reveal the transformation of particular biologically relevant molecules. However, low-resolution techniques, which were used for decades, had limited capabilities for untargeted metabolomics, especially when a large number of compounds are labelled simultaneously. Such untargeted studies may provide new information about metabolism and can be performed with high-resolution mass spectrometry. Here, we demonstrate the capabilities of high-resolution mass spectrometry to obtain insights on the metabolism of a model plant, Lepidium sativum, germinated in D2O and H218O-enriched media. In particular, we demonstrated that in vivo labeling with heavy water helps to identify if a compound is being synthesized at a particular stage of germination or if it originates from seed content, and tandem mass spectrometry allows us to highlight the substructures with incorporated isotope labels. Additionally, we found in vivo labeling useful to distinguish between isomeric compounds with identical fragmentation patterns due to the differences in their formation rates that can be compared by the extent of heavy atom incorporation.
Collapse
Affiliation(s)
- Sergey Osipenko
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Anton Bashilov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University, 119991 Moscow, Russia
| | - Anna Vishnevskaya
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Lidiia Rumiantseva
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Anna Levashova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Anna Kovalenko
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Boris Tupertsev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Albert Kireev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Eugene Nikolaev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| | - Yury Kostyukevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia; (S.O.); (A.B.); (A.V.); (L.R.); (A.L.); (A.K.); (B.T.); (A.K.); (E.N.)
| |
Collapse
|
6
|
Astarita G, Kelly RS, Lasky-Su J. Metabolomics and lipidomics strategies in modern drug discovery and development. Drug Discov Today 2023; 28:103751. [PMID: 37640150 PMCID: PMC10543515 DOI: 10.1016/j.drudis.2023.103751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Metabolomics and lipidomics have an increasingly pivotal role in drug discovery and development. In the context of drug discovery, monitoring changes in the levels or composition of metabolites and lipids relative to genetic variations yields functional insights, bolstering human genetics and (meta)genomic methodologies. This approach also sheds light on potential novel targets for therapeutic intervention. In the context of drug development, metabolite and lipid biomarkers contribute to enhanced success rates, promising a transformative impact on precision medicine. In this review, we deviate from analytical chemist-focused perspectives, offering an overview tailored to drug discovery. We provide introductory insight into state-of-the-art mass spectrometry (MS)-based metabolomics and lipidomics techniques utilized in drug discovery and development, drawing from the collective expertise of our research teams. We comprehensively outline the application of metabolomics and lipidomics in advancing drug discovery and development, spanning fundamental research, target identification, mechanisms of action, and the exploration of biomarkers.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Georgetown University, Washington, DC, USA; Arkuda Therapeutics, Watertown, MA, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Salvador AF, Shyu CR, Parks EJ. Measurement of lipid flux to advance translational research: evolution of classic methods to the future of precision health. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1348-1353. [PMID: 36075949 PMCID: PMC9534914 DOI: 10.1038/s12276-022-00838-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023]
Abstract
Over the past 70 years, the study of lipid metabolism has led to important discoveries in identifying the underlying mechanisms of chronic diseases. Advances in the use of stable isotopes and mass spectrometry in humans have expanded our knowledge of target molecules that contribute to pathologies and lipid metabolic pathways. These advances have been leveraged within two research paths, leading to the ability (1) to quantitate lipid flux to understand the fundamentals of human physiology and pathology and (2) to perform untargeted analyses of human blood and tissues derived from a single timepoint to identify lipidomic patterns that predict disease. This review describes the physiological and analytical parameters that influence these measurements and how these issues will propel the coming together of the two fields of metabolic tracing and lipidomics. The potential of data science to advance these fields is also discussed. Future developments are needed to increase the precision of lipid measurements in human samples, leading to discoveries in how individuals vary in their production, storage, and use of lipids. New techniques are critical to support clinical strategies to prevent disease and to identify mechanisms by which treatments confer health benefits with the overall goal of reducing the burden of human disease. Personalized tracking of how lipid (fat) metabolism changes over time could lead to improvements in the diagnosis and treatment of several diseases. Elizabeth Parks and colleagues from the University of Missouri, Columbia, USA, discuss the ways in which researchers use stable isotope labeling to monitor the kinetics of fatty acids and other lipids in the body. Usually, lipid quantities are measured only at a single timepoint, however the tracking of lipid turnover over time provides further diagnostic information. Aided by new techniques such as high-throughput mass spectrometry and machine learning, researchers are now able to continuously map total lipid contents in individual patients. The transition of measurements of lipid flux from the research laboratory to the doctor’s office will likely play a role in a new era of precision medicine.
Collapse
Affiliation(s)
- Amadeo F Salvador
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA.,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.,Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Chi-Ren Shyu
- Department of Electrical Engineering and Computer Science, Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA
| | - Elizabeth J Parks
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA. .,Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
8
|
Hilkert A, Böhlke JK, Mroczkowski SJ, Fort KL, Aizikov K, Wang XT, Kopf SH, Neubauer C. Exploring the Potential of Electrospray-Orbitrap for Stable Isotope Analysis Using Nitrate as a Model. Anal Chem 2021; 93:9139-9148. [PMID: 34165950 DOI: 10.1021/acs.analchem.1c00944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Widely used isotope ratio mass spectrometers have limited capabilities to measure metabolites, drugs, or small polyatomic ions without the loss of structural isotopic information. A new approach has recently been introduced that uses electrospray ionization Orbitrap to measure multidimensional isotope signatures of intact polar compounds. Using nitrate as a model compound, this study aims to establish performance metrics for comparisons with conventional IRMS at the natural abundance level. We present a framework on how to convert isotopolog intensities to δ values that are commonly used in the isotope geochemistry community. The quantification of seven nitrate isotopologs provides multiple pathways for obtaining the primary N and O δ values including non-mass-dependent O isotope variations, as well as opportunities to explore nonrandom isotopic distributions (i.e., clumping effects) within molecular nitrate. Using automation and the adaptation of measurement principles that are specific to isotope ratio analysis, nitrate δ15NAIR, δ18OVSMOW, and δ17OVSMOW were measured with a long-term precision of 0.4‰ or better for isotopic reference materials and purified nitrate from environmental samples. In addition, we demonstrate promising results for unpurified environmental samples in liquid form. With these new developments, this study connects the two largely disparate mass spectrometry fields of bioanalytical MS and isotope ratio MS, thus providing a route to measure new isotopic signatures in diverse organic and inorganic solutes.
Collapse
Affiliation(s)
- Andreas Hilkert
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| | - John K Böhlke
- U.S. Geological Survey, Reston, Virginia 20192, United States
| | | | - Kyle L Fort
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| | - Konstantin Aizikov
- Thermo Fisher Scientific (Bremen), Hanna-Kunath Strasse 11, 28199 Bremen, Germany
| | - Xingchen T Wang
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309, United States.,Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80303, United States
| | - Cajetan Neubauer
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
9
|
Abstract
Cholesterol is a quantitatively and biologically significant constituent of all mammalian cell membrane, including those that comprise the retina. Retinal cholesterol homeostasis entails the interplay between de novo synthesis, uptake, intraretinal sterol transport, metabolism, and efflux. Defects in these complex processes are associated with several congenital and age-related disorders of the visual system. Herein, we provide an overview of the following topics: (a) cholesterol synthesis in the neural retina; (b) lipoprotein uptake and intraretinal sterol transport in the neural retina and the retinal pigment epithelium (RPE); (c) cholesterol efflux from the neural retina and the RPE; and (d) biology and pathobiology of defects in sterol synthesis and sterol oxidation in the neural retina and the RPE. We focus, in particular, on studies involving animal models of monogenic disorders pertinent to the above topics, as well as in vitro models using biochemical, metabolic, and omic approaches. We also identify current knowledge gaps and opportunities in the field that beg further research in this topic area.
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.
| |
Collapse
|
10
|
Downes DP, Zhong W, Zhang J, Chen B, Satapati S, Metzger D, Godinez G, Lao J, Sheth PR, McLaren DG, Talukdar S, Previs SF. Mapping Lipogenic Flux: A Gold LDI-MS Approach for Imaging Neutral Lipid Kinetics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2421-2425. [PMID: 32840373 DOI: 10.1021/jasms.0c00199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spatial characterization of triglyceride metabolism is an area of significant interest which can be enabled by mass spectrometry imaging via recent advances in neutral lipid laser desorption analytical approaches. Here, we extend recent advancements in gold-assisted neutral lipid imaging and demonstrate the potential to map lipid flux in rodents. We address here critical issues surrounding the analytical configuration and interpretation of the data for a group of select triglycerides. Specifically, we examined how the signal intensity and spatial resolution would impact the apparent isotope ratio in a given analyte (which is an important consideration when performing MS based kinetics studies of this kind) with attention given to molecular ions and not fragments. We evaluated the analytics by contrasting lipid flux in well characterized mouse models, including fed vs fed states and different dietary perturbations. In total, the experimental paradigm described here should enable studies of hepatic lipogenesis; presumably, this logic can be enhanced via the inclusion of ion mobility and/or fragmentation. Although this study was carried out in robust models of liver lipogenesis, we expect that the model system could be expanded to a variety of tissues where zonated (or heterogeneous) lipid synthesis may occur, including solid tumor metabolism.
Collapse
Affiliation(s)
- Daniel P Downes
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Wendy Zhong
- Merck & Co., Inc, 90 East Scott Avenue, Rahway, New Jersey 07065, United States
| | - Ji Zhang
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| | - Bingming Chen
- Merck & Co., Inc, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Santhosh Satapati
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| | - Daniel Metzger
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| | - Guillermo Godinez
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| | - Julie Lao
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| | - Payal R Sheth
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - David G McLaren
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Saswata Talukdar
- Merck & Co., Inc, 213 East Grand Avenue, South San Francisco, California 94080, United States
| | - Stephen F Previs
- Merck & Co., Inc, 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
11
|
Adsorption of cholesterol oxidase and entrapment of horseradish peroxidase in metal-organic frameworks for the colorimetric biosensing of cholesterol. Talanta 2019; 200:293-299. [DOI: 10.1016/j.talanta.2019.03.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/14/2019] [Indexed: 11/21/2022]
|
12
|
Daurio NA, Wang Y, Chen Y, Zhou H, Carballo-Jane E, Mane J, Rodriguez CG, Zafian P, Houghton A, Addona G, McLaren DG, Zhang R, Shyong BJ, Bateman K, Downes DP, Webb M, Kelley DE, Previs SF. Spatial and temporal studies of metabolic activity: contrasting biochemical kinetics in tissues and pathways during fasted and fed states. Am J Physiol Endocrinol Metab 2019; 316:E1105-E1117. [PMID: 30912961 DOI: 10.1152/ajpendo.00459.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health. Since food is typically consumed over limited (anabolic) periods, dietary components must be processed and stored to counterbalance the catabolic stress that occurs between meals. Herein, we contrast tissue- and pathway-specific metabolic activity in fasted and fed states. We demonstrate that knowledge of biochemical kinetics that is obtained from opposite ends of the energetic spectrum can allow mechanism-based differentiation of healthy and disease phenotypes. Rat models of type 1 and type 2 diabetes serve as case studies for probing spatial and temporal patterns of metabolic activity via [2H]water labeling. Experimental designs that capture integrative whole body metabolism, including meal-induced substrate partitioning, can support an array of research surrounding metabolic disease; the relative simplicity of the approach that is discussed here should enable routine applications in preclinical models.
Collapse
Affiliation(s)
- Natalie A Daurio
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Yichen Wang
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Ying Chen
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Haihong Zhou
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Ester Carballo-Jane
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Joel Mane
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Carlos G Rodriguez
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Peter Zafian
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Andrea Houghton
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - George Addona
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - David G McLaren
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Rena Zhang
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Bao Jen Shyong
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Kevin Bateman
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Daniel P Downes
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Maria Webb
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - David E Kelley
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| | - Stephen F Previs
- Merck Research Laboratories, Merck & Company, Incorporated, Kenilworth, New Jersey
| |
Collapse
|
13
|
Sommella E, Badolati N, Riccio G, Salviati E, Bottone S, Dentice M, Campiglia P, Tenore GC, Stornaiuolo M, Novellino E. A Boost in Mitochondrial Activity Underpins the Cholesterol-Lowering Effect of Annurca Apple Polyphenols on Hepatic Cells. Nutrients 2019; 11:E163. [PMID: 30646510 PMCID: PMC6356966 DOI: 10.3390/nu11010163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/21/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Reduction in cholesterol blood levels represents one of the therapeutic goals to achieve in order to reduce the occurrence of cardiovascular diseases. Commonly, this goal is attempted by promoting healthy lifestyle behaviors and low-fat diets. Recently, several nutraceuticals have been shown to possess cholesterol-lowering properties and are becoming common over the counter products. Among others, apple polyphenols efficiently lower total cholesterol levels in humans and impact overall lipid metabolism. Malus Pumila Miller cv Annurca is an apple native to Southern Italy presenting one of the highest content of procyanidin B2, a dimeric procyanidin. Tested in clinical trials, the oral consumption of an Annurca polyphenolic extract (AAE) exerted a cholesterol-lowering effect similar to the statins Atorvastatin and Simvastatin. Despite AAE activity, the analysis of the molecular mechanism behind its cholesterol-lowering effect is unclear. Using isotope labeling and high-resolution mass spectrometry approaches we here performed a metabolic profiling of in vitro cultured human hepatocytes treated with AAE to reveal its mechanism of action. The results show that AAE acts differently than statins. The extract reprograms hepatic cell metabolism and promotes mitochondrial respiration, lipolysis and fatty acid β-oxidation. Citrate and acetyl-CoA, both necessary for the production of cholesterol, are diverted to the Krebs Cycle by AAE, that, ultimately, lowers cholesterogenesis and fatty acid synthesis.
Collapse
Affiliation(s)
- Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, SA, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
14
|
Mahoney CE, Pirman D, Chubukov V, Sleger T, Hayes S, Fan ZP, Allen EL, Chen Y, Huang L, Liu M, Zhang Y, McDonald G, Narayanaswamy R, Choe S, Chen Y, Gross S, Cianchetta G, Padyana AK, Murray S, Liu W, Marks KM, Murtie J, Dorsch M, Jin S, Nagaraja N, Biller SA, Roddy T, Popovici-Muller J, Smolen GA. A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat Commun 2019; 10:96. [PMID: 30626880 PMCID: PMC6327044 DOI: 10.1038/s41467-018-07959-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Abstract
Aberrant metabolism of cancer cells is well appreciated, but the identification of cancer subsets with specific metabolic vulnerabilities remains challenging. We conducted a chemical biology screen and identified a subset of neuroendocrine tumors displaying a striking pattern of sensitivity to inhibition of the cholesterol biosynthetic pathway enzyme squalene epoxidase (SQLE). Using a variety of orthogonal approaches, we demonstrate that sensitivity to SQLE inhibition results not from cholesterol biosynthesis pathway inhibition, but rather surprisingly from the specific and toxic accumulation of the SQLE substrate, squalene. These findings highlight SQLE as a potential therapeutic target in a subset of neuroendocrine tumors, particularly small cell lung cancers.
Collapse
Affiliation(s)
| | - David Pirman
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Victor Chubukov
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Taryn Sleger
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Sebastian Hayes
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Zi Peng Fan
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Eric L Allen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Ying Chen
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Lingling Huang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Meina Liu
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | - Yingjia Zhang
- Shanghai ChemPartner Co. Ltd., 998 Halei Road, Pudong, 201203, Shanghai, China
| | | | | | - Sung Choe
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Yue Chen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Stefan Gross
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | | | - Anil K Padyana
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Stuart Murray
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Wei Liu
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Kevin M Marks
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Joshua Murtie
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Marion Dorsch
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Shengfang Jin
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | | | - Scott A Biller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Thomas Roddy
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
| | - Janeta Popovici-Muller
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA
- Decibel Therapeutics, 1325 Boylston Street, Suite 500, Boston, MA, 02215, USA
| | - Gromoslaw A Smolen
- Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, 02139, USA.
- Celsius Therapeutics, 215 First Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
15
|
Neubauer C, Sessions AL, Booth IR, Bowen BP, Kopf SH, Newman DK, Dalleska NF. Towards measuring growth rates of pathogens during infections by D 2 O-labeling lipidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2129-2140. [PMID: 30252972 DOI: 10.1002/rcm.8288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Microbial growth rate is an important physiological parameter that is challenging to measure in situ, partly because microbes grow slowly in many environments. Recently, it has been demonstrated that generation times of S. aureus in cystic fibrosis (CF) infections can be determined by D2 O-labeling of actively synthesized fatty acids. To improve species specificity and allow growth rate monitoring for a greater range of pathogens during the treatment of infections, it is desirable to accurately quantify trace incorporation of deuterium into phospholipids. METHODS Lipid extracts of D2 O-treated E. coli cultures were measured on liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) instruments equipped with time-of-flight (TOF) and orbitrap mass analyzers, and used for comparison with the analysis of fatty acids by isotope-ratio gas chromatography (GC)/MS. We then developed an approach to enable tracking of lipid labeling, by following the transition from stationary into exponential growth in pure cultures. Lastly, we applied D2 O-labeling lipidomics to clinical samples from CF patients with chronic lung infections. RESULTS Lipidomics facilitates deuterium quantification in lipids at levels that are useful for many labeling applications (>0.03 at% D). In the E. coli cultures, labeling dynamics of phospholipids depend largely on their acyl chains and between phospholipids we notice differences that are not obvious from absolute concentrations alone. For example, cyclopropyl-containing lipids reflect the regulation of cyclopropane fatty acid synthase, which is predominantly expressed at the beginning of stationary phase. The deuterium incorporation into a lipid that is specific for S. aureus in CF sputum indicates an average generation time of the pathogen on the order of one cell doubling per day. CONCLUSIONS This study demonstrates how trace level measurement of stable isotopes in intact lipids can be used to quantify lipid metabolism in pure cultures and provides guidelines that enable growth rate measurements in microbiome samples after incubation with a low percentage of D2 O.
Collapse
Affiliation(s)
- Cajetan Neubauer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, CA, 91125, USA
| | - Alex L Sessions
- Division of Geological and Planetary Sciences, California Institute of Technology, CA, 91125, USA
| | - Ian R Booth
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | | | - Sebastian H Kopf
- Department of Geological Sciences, University of Colorado, Boulder, CO, 80309, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, CA, 91125, USA
| | - Nathan F Dalleska
- Environmental Analysis Center, California Institute of Technology, CA, 91125, USA
| |
Collapse
|
16
|
Triebl A, Wenk MR. Analytical Considerations of Stable Isotope Labelling in Lipidomics. Biomolecules 2018; 8:biom8040151. [PMID: 30453585 PMCID: PMC6315579 DOI: 10.3390/biom8040151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022] Open
Abstract
Over the last two decades, lipids have come to be understood as far more than merely components of cellular membranes and forms of energy storage, and are now also being implicated to play important roles in a variety of diseases, with lipid biomarker research one of the most widespread applications of lipidomic techniques both in research and in clinical settings. Stable isotope labelling has become a staple technique in the analysis of small molecule metabolism and dynamics, as it is the only experimental setup by which biosynthesis, remodelling and degradation of biomolecules can be directly measured. Using state-of-the-art analytical technologies such as chromatography-coupled high resolution tandem mass spectrometry, the stable isotope label can be precisely localized and quantified within the biomolecules. The application of stable isotope labelling to lipidomics is however complicated by the diversity of lipids and the complexity of the necessary data analysis. This article discusses key experimental aspects of stable isotope labelling in the field of mass spectrometry-based lipidomics, summarizes current applications and provides an outlook on future developments and potential.
Collapse
Affiliation(s)
- Alexander Triebl
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117596, Singapore.
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore; Singapore 117596, Singapore.
| |
Collapse
|
17
|
Yoshida K, Kita Y, Tokuoka SM, Hamano F, Yamazaki M, Sakimura K, Kano M, Shimizu T. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB 1 cannabinoid receptor-deficient mice. FASEB J 2018; 33:2484-2497. [PMID: 30265576 DOI: 10.1096/fj.201801203r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excess energy intake causes obesity, which leads to insulin resistance and various other complications of metabolic syndrome, including diabetes, atherosclerosis, dyslipidemia, and nonalcoholic fatty liver disease. Although recent studies have depicted altered lipid metabolism as an underlying feature, the detailed mechanisms are still unclear. Here we describe a possible role in high-fat diet (HFD)-induced obesity for monoacylglycerol lipase (MGL), an enzyme that is also known to hydrolyze the endocannabinoid 2-arachidonoylglycerol in brain. MGL-deficient [MGL-knockout (KO)] mice fed a HFD gained less body weight than wild-type mice and were protected from insulin resistance and hepatic steatosis. Food intake and energy expenditure were not altered in MGL-KO mice, but blood triglyceride levels after oral olive oil gavage were suppressed, indicating a role for MGL in intestinal fat absorption. Experiments with cannabinoid receptor type 1 (CB1)/MGL double-KO mice revealed that these phenotypes may include mechanisms that are independent of CB1-receptor-mediated endocannabinoid functions. We also noted that MGL-KO mice had less preference for HFD over normal chow diet. Oral but not intraperitoneal lipid administration strongly suppressed the appetites of MGL-KO and CB1/MGL double-KO mice, but not of wild-type and CB1-KO mice. Appetite suppression was reversed by vagotomy, suggesting involvement of MGL in the gut-brain axis regulation of appetite. Our results provide mechanistic insights of MGL's role in diet-induced obesity, lipid metabolic disorder, and regulation of appetite.-Yoshida, K., Kita, Y., Tokuoka, S. M., Hamano, F., Yamazaki, M., Sakimura, K., Kano, M., Shimizu, T. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB1 cannabinoid receptor-deficient mice.
Collapse
Affiliation(s)
- Kenji Yoshida
- Department of Lipidomics, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kita
- Department of Lipidomics, The University of Tokyo, Tokyo, Japan.,Life Sciences Core Facility The University of Tokyo, Tokyo, Japan
| | | | - Fumie Hamano
- Department of Lipidomics, The University of Tokyo, Tokyo, Japan.,Life Sciences Core Facility The University of Tokyo, Tokyo, Japan.,Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and.,International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipidomics, The University of Tokyo, Tokyo, Japan.,Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Chen Y, Berejnaia O, Liu J, Wang SP, Daurio NA, Yin W, Mayoral R, Petrov A, Kasumov T, Zhang GF, Previs SF, Kelley DE, McLaren DG. Quantifying ceramide kinetics in vivo using stable isotope tracers and LC-MS/MS. Am J Physiol Endocrinol Metab 2018; 315:E416-E424. [PMID: 29509438 DOI: 10.1152/ajpendo.00457.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous studies have implicated dyslipidemia as a key factor in mediating insulin resistance. Ceramides have received special attention since their levels are inversely associated with normal insulin signaling and positively associated with factors that are involved in cardiometabolic disease. Despite the growing literature surrounding ceramide biology, there are limited data regarding the activity of ceramide synthesis and turnover in vivo. Herein, we demonstrate the ability to measure ceramide kinetics by coupling the administration of [2H]water with LC-MS/MS analyses. As a "proof-of-concept" we determined the effect of a diet-induced alteration on ceramide flux; studies also examined the effect of myriocin (a known inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis). Our data suggest that one can estimate ceramide synthesis and draw conclusions regarding the source of fatty acids; we discuss caveats in regards to method development in this area.
Collapse
Affiliation(s)
- Ying Chen
- MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | | | - Jinqi Liu
- MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | | | | | - Wu Yin
- MRL, Merck & Co., Inc., Kenilworth, New Jersey
| | | | | | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Guo-Fang Zhang
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, and Department of Medicine, Duke University , Durham, North Carolina
| | | | | | | |
Collapse
|
19
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
20
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
21
|
Fujiwara Y, Hama K, Tsukahara M, Izumi-Tsuzuki R, Nagai T, Ohe-Yamada M, Inoue K, Yokoyama K. Acyl Chain Preference in Foam Cell Formation from Mouse Peritoneal Macrophages. Biol Pharm Bull 2018; 41:86-91. [DOI: 10.1248/bpb.b17-00610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuko Fujiwara
- Faculty of Pharmaceutical Sciences, Teikyo University
| | - Kotaro Hama
- Faculty of Pharmaceutical Sciences, Teikyo University
| | | | | | - Toru Nagai
- Faculty of Pharmaceutical Sciences, Teikyo University
| | | | - Keizo Inoue
- Faculty of Pharmaceutical Sciences, Teikyo University
| | | |
Collapse
|
22
|
Kauppila TJ, Syage JA, Benter T. Recent developments in atmospheric pressure photoionization-mass spectrometry. MASS SPECTROMETRY REVIEWS 2017; 36:423-449. [PMID: 25988849 DOI: 10.1002/mas.21477] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/29/2015] [Indexed: 05/28/2023]
Abstract
Recent developments in atmospheric pressure photoionization (APPI), which is one of the three most important ionization techniques in liquid chromatography-mass spectrometry, are reviewed. The emphasis is on the practical aspects of APPI analysis, its combination with different separation techniques, novel instrumental developments - especially in gas chromatography and ambient mass spectrometry - and the applications that have appeared in 2009-2014. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:423-449, 2017.
Collapse
Affiliation(s)
- Tiina J Kauppila
- Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Jack A Syage
- Morpho Detection, 1251 E. Dyer Rd., Santa Ana, CA 92705, USA
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
23
|
Wilkinson DJ, Brook MS, Smith K, Atherton PJ. Stable isotope tracers and exercise physiology: past, present and future. J Physiol 2016; 595:2873-2882. [PMID: 27610950 DOI: 10.1113/jp272277] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022] Open
Abstract
Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Matthew S Brook
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Kenneth Smith
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Philip J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
24
|
An LC-MRM method for measuring intestinal triglyceride assembly using an oral stable isotope-labeled fat challenge. Bioanalysis 2016; 8:1265-77. [DOI: 10.4155/bio-2016-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: A traditional oral fatty acid challenge assesses absorption of triacylglycerol (TG) into the periphery through the intestines, but cannot distinguish the composition or source of fatty acid in the TG. Stable isotope-labeled tracers combined with LC-MRM can be used to identify and distinguish TG synthesized with dietary and stored fatty acids. Results: Concentrations of three abundant TGs (52:2, 54:3 and 54:4) were monitored for incorporation of one or two 2H11-oleate molecules per TG. This method was subjected to routine assay validation and meets typical requirements for an assay to be used to support clinical studies. Conclusion: Calculations for the fractional appearance rate of TG in plasma are presented along with the intracellular enterocyte precursor pool for 12 study participants.
Collapse
|
25
|
Stäubert C, Krakowsky R, Bhuiyan H, Witek B, Lindahl A, Broom O, Nordström A. Increased lanosterol turnover: a metabolic burden for daunorubicin-resistant leukemia cells. Med Oncol 2015; 33:6. [PMID: 26698156 PMCID: PMC4689760 DOI: 10.1007/s12032-015-0717-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
The cholesterol metabolism is essential for cancer cell proliferation. We found the expression of genes involved in the cholesterol biosynthesis pathway up-regulated in the daunorubicin-resistant leukemia cell line CEM/R2, which is a daughter cell line to the leukemia cell line CCRF-CEM (CEM). Cellular (2)H2O labelling, mass spectrometry, and isotopomer analysis revealed an increase in lanosterol synthesis which was not accompanied by an increase in cholesterol flux or pool size in CEM/R2 cells. Exogenous addition of lanosterol had a negative effect on CEM/R2 and a positive effect on sensitive CEM cell viability. Treatment of CEM and CEM/R2 cells with cholesterol biosynthesis inhibitors acting on the enzymes squalene epoxidase and lanosterol synthase, both also involved in the 24,25-epoxycholesterol shunt pathway, revealed a connection of this pathway to lanosterol turnover. Our data highlight that an increased lanosterol flux poses a metabolic weakness of resistant cells that potentially could be therapeutically exploited.
Collapse
Affiliation(s)
- Claudia Stäubert
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.,Department of Forest Genetics and Plant Physiology, Swedish Metabolomics Centre, Swedish University of Agricultural Sciences, Umeå, Sweden.,Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rosanna Krakowsky
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Hasanuzzaman Bhuiyan
- Doping Laboratory, Department of Clinical Pharmacology, Karolinska University Hospital, Stockholm, Sweden
| | - Barbara Witek
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Anna Lindahl
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Broom
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Anders Nordström
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden. .,Department of Forest Genetics and Plant Physiology, Swedish Metabolomics Centre, Swedish University of Agricultural Sciences, Umeå, Sweden. .,Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
26
|
Previs SF, Herath K, Castro-Perez J, Mahsut A, Zhou H, McLaren DG, Shah V, Rohm RJ, Stout SJ, Zhong W, Wang SP, Johns DG, Hubbard BK, Cleary MA, Roddy TP. Effect of Error Propagation in Stable Isotope Tracer Studies: An Approach for Estimating Impact on Apparent Biochemical Flux. Methods Enzymol 2015; 561:331-58. [PMID: 26358910 DOI: 10.1016/bs.mie.2015.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stable isotope tracers are widely used to quantify metabolic rates, and yet a limited number of studies have considered the impact of analytical error on estimates of flux. For example, when estimating the contribution of de novo lipogenesis, one typically measures a minimum of four isotope ratios, i.e., the precursor and product labeling pre- and posttracer administration. This seemingly simple problem has 1 correct solution and 80 erroneous outcomes. In this report, we outline a methodology for evaluating the effect of error propagation on apparent physiological endpoints. We demonstrate examples of how to evaluate the influence of analytical error in case studies concerning lipid and protein synthesis; we have focused on (2)H2O as a tracer and contrast different mass spectrometry platforms including GC-quadrupole-MS, GC-pyrolysis-IRMS, LC-quadrupole-MS, and high-resolution FT-ICR-MS. The method outlined herein can be used to determine how to minimize variations in the apparent biology by altering the dose and/or the type of tracer. Likewise, one can facilitate biological studies by estimating the reduction in the noise of an outcome that is expected for a given increase in the number of replicate injections.
Collapse
Affiliation(s)
| | | | | | - Ablatt Mahsut
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Haihong Zhou
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | | | - Vinit Shah
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Rory J Rohm
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Steven J Stout
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Wendy Zhong
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| | | | | | | | | | - Thomas P Roddy
- Merck Research Laboratories, Kenilworth, New Jersey, USA
| |
Collapse
|
27
|
Stäubert C, Bhuiyan H, Lindahl A, Broom OJ, Zhu Y, Islam S, Linnarsson S, Lehtiö J, Nordström A. Rewired metabolism in drug-resistant leukemia cells: a metabolic switch hallmarked by reduced dependence on exogenous glutamine. J Biol Chem 2015; 290:8348-59. [PMID: 25697355 DOI: 10.1074/jbc.m114.618769] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Stäubert
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden, the Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden, the Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Hasanuzzaman Bhuiyan
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Anna Lindahl
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Oliver Jay Broom
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - Yafeng Zhu
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Saiful Islam
- the Departments of Medical Biochemistry and Biophysics and
| | | | - Janne Lehtiö
- Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| | - Anders Nordström
- From the Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden, the Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden, Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, 17177 Stockholm, Sweden, and
| |
Collapse
|
28
|
Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis 2014; 6:511-24. [PMID: 24568354 DOI: 10.4155/bio.13.348] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The rapid emergence of metabolomics has enabled system-wide measurements of metabolites in various organisms. However, advances in the mechanistic understanding of metabolic networks remain limited, as most metabolomics studies cannot routinely provide accurate metabolite identification, absolute quantification and flux measurement. Stable isotope labeling offers opportunities to overcome these limitations. Here we describe some current approaches to stable isotope-labeled metabolomics and provide examples of the significant impact that these studies have had on our understanding of cellular metabolism. Furthermore, we discuss recently developed software solutions for the analysis of stable isotope-labeled metabolomics data and propose the bioinformatics solutions that will pave the way for the broader application and optimal interpretation of system-scale labeling studies in metabolomics.
Collapse
|
29
|
Hentze H, Jensen KK, Chia SM, Johns DG, Shaw RJ, Davis HR, Shih SJ, Wong KK. Inverse relationship between LDL cholesterol and PCSK9 plasma levels in dyslipidemic cynomolgus monkeys: Effects of LDL lowering by ezetimibe in the absence of statins. Atherosclerosis 2013; 231:84-90. [DOI: 10.1016/j.atherosclerosis.2013.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/05/2013] [Accepted: 08/27/2013] [Indexed: 11/28/2022]
|
30
|
Zhou H, Castro-Perez J, Lassman ME, Thomas T, Li W, McLaughlin T, Dan X, Jumes P, Wagner JA, Gutstein DE, Hubbard BK, Rader DJ, Millar JS, Ginsberg HN, Reyes-Soffer G, Cleary M, Previs SF, Roddy TP. Measurement of apo(a) kinetics in human subjects using a microfluidic device with tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1294-302. [PMID: 23681806 PMCID: PMC4944116 DOI: 10.1002/rcm.6572] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/20/2013] [Accepted: 03/14/2013] [Indexed: 05/15/2023]
Abstract
RATIONALE Apolipoprotein(a) [apo(a)] is the defining protein component of lipoprotein(a) [Lp(a)], an independent risk factor for cardiovascular disease. The regulation of Lp(a) levels in blood is poorly understood in part due to technical challenges in measuring Lp(a) kinetics. Improvements in the ability to readily and reliably measure the kinetics of apo(a) using a stable isotope labeled tracer is expected to facilitate studies of the role of Lp(a) in cardiovascular disease. Since investigators typically determine the isotopic labeling of protein-bound amino acids following acid-catalyzed hydrolysis of a protein of interest [e.g., apo(a)], studies of protein synthesis require extensive protein purification which limits throughput and often requires large sample volumes. We aimed to develop a rapid and efficient method for studying apo(a) kinetics that is suitable for use in studies involving human subjects. METHODS Microfluidic device and tandem mass spectrometry were used to quantify the incorporation of [(2)H3]-leucine tracer into protein-derived peptides. RESULTS We demonstrated that it is feasible to quantify the incorporation of [(2)H3]-leucine tracer into a proteolytic peptide from the non-kringle repeat region of apo(a) in human subjects. Specific attention was directed toward optimizing the multiple reaction monitoring (MRM) transitions, mass spectrometer settings, and chromatography (i.e., critical parameters that affect the sensitivity and reproducibility of isotopic enrichment measurements). The results demonstrated significant advantages with the use of a microfluidic device technology for studying apo(a) kinetics, including enhanced sensitivity relative to conventional micro-flow chromatography, a virtually drift-free elution profile, and a stable and robust electrospray. CONCLUSIONS The technological advances described herein enabled the implementation of a novel method for studying the kinetics of apo(a) in human subjects infused with [(2)H3]-leucine.
Collapse
Affiliation(s)
- Haihong Zhou
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Jose Castro-Perez
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Michael E. Lassman
- Clinical Development Laboratory, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | | | - Wenyu Li
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Theresa McLaughlin
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Xie Dan
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Patricia Jumes
- Clinical Pharmacology, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - John A. Wagner
- Clinical Pharmacology, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - David E. Gutstein
- Clinical Pharmacology, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Brian K. Hubbard
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Daniel J. Rader
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John S. Millar
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Michele Cleary
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| | - Stephen F. Previs
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
- Correspondence to: S. F. Previs, Molecular Biomarkers, Merck Sharp & Dohme Corp., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - Thomas P. Roddy
- Molecular Biomarkers-PPDM, Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA
| |
Collapse
|
31
|
Previs SF, McLaren DG, Wang SP, Stout SJ, Zhou H, Herath K, Shah V, Miller PL, Wilsie L, Castro-Perez J, Johns DG, Cleary MA, Roddy TP. New methodologies for studying lipid synthesis and turnover: looking backwards to enable moving forwards. Biochim Biophys Acta Mol Basis Dis 2013; 1842:402-13. [PMID: 23707557 DOI: 10.1016/j.bbadis.2013.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/26/2022]
Abstract
Our ability to understand the pathogenesis of problems surrounding lipid accretion requires attention towards quantifying lipid kinetics. In addition, studies of metabolic flux should also help unravel mechanisms that lead to imbalances in inter-organ lipid trafficking which contribute to dyslipidemia and/or peripheral lipid accumulation (e.g. hepatic fat deposits). This review aims to outline the development and use of novel methods for studying lipid kinetics in vivo. Although our focus is directed towards some of the approaches that are currently reported in the literature, we include a discussion of the older literature in order to put "new" methods in better perspective and inform readers of valuable historical research. Presumably, future advances in understanding lipid dynamics will benefit from a careful consideration of the past efforts, where possible we have tried to identify seminal papers or those that provide clear data to emphasize essential points. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Stephen F Previs
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - David G McLaren
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Sheng-Ping Wang
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Steven J Stout
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Haihong Zhou
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Kithsiri Herath
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Vinit Shah
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Paul L Miller
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Larissa Wilsie
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Jose Castro-Perez
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Douglas G Johns
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Michele A Cleary
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Thomas P Roddy
- Molecular Biomarkers, Merck, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| |
Collapse
|
32
|
Li J, Hoene M, Zhao X, Chen S, Wei H, Häring HU, Lin X, Zeng Z, Weigert C, Lehmann R, Xu G. Stable isotope-assisted lipidomics combined with nontargeted isotopomer filtering, a tool to unravel the complex dynamics of lipid metabolism. Anal Chem 2013; 85:4651-7. [PMID: 23537127 DOI: 10.1021/ac400293y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Investigations of complex metabolic mechanisms and networks have become a focus of research in the postgenomic area, thereby creating an increasing demand for sophisticated analytical approaches. One such tool is lipidomics analysis that provides, a detailed picture of the lipid composition of a system at a given time. Introducing stable isotopes into the studied system can additionally provide information on the synthesis, transformation and degradation of individual lipid species. However, capturing the entire dynamics of lipid networks is still a challenge. We developed and evaluated a novel strategy for the in-depth analysis of the dynamics of lipid metabolism with the capacity for high molecular specificity and network coverage. The general workflow consists of stable isotope-labeling experiments, ultrahigh-performance liquid chromatography (UHPLC)/high-resolution Orbitrap-mass spectrometry (MS) lipid profiling and data processing by a software tool for global isotopomer filtering and matching. As a proof of concept, this approach was applied to the network-wide mapping of dynamic lipid metabolism in primary human skeletal muscle cells cultured for 4, 12, and 24 h with [U-(13)C]-palmitate. In the myocellular lipid extracts, 692 isotopomers were detected that could be assigned to 203 labeled lipid species spanning 12 lipid (sub)classes. Interestingly, some lipid classes showed high turnover rates but stable total amounts while the amount of others increased in the course of palmitate treatment. The novel strategy presented here has the potential to open new detailed insights into the dynamics of lipid metabolism that may lead to a better understanding of physiological mechanisms and metabolic perturbations.
Collapse
Affiliation(s)
- Jia Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Singaraja RR, Sivapalaratnam S, Hovingh K, Dubé MP, Castro-Perez J, Collins HL, Adelman SJ, Riwanto M, Manz J, Hubbard B, Tietjen I, Wong K, Mitnaul LJ, van Heek M, Lin L, Roddy TA, McEwen J, Dallinge-Thie G, van Vark-van der Zee L, Verwoert G, Winther M, van Duijn C, Hofman A, Trip MD, Marais AD, Asztalos B, Landmesser U, Sijbrands E, Kastelein JJ, Hayden MR. The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans. ACTA ACUST UNITED AC 2012; 6:54-62. [PMID: 23243195 DOI: 10.1161/circgenetics.111.962613] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial lipase is a phospholipase with activity against high-density lipoprotein. Although a small number of mutations in LIPG have been described, the role of LIPG in protection against atherosclerosis is unclear. METHODS AND RESULTS We identified 8 loss-of-function (LOF) mutations in LIPG in individuals with high-density lipoprotein cholesterol. Functional analysis confirmed that most rare mutations abolish lipase activity in vitro, indicating complete LOF, whereas 2 more common mutations N396S and R476W reduce activity by ≈50%, indicating partial LOF and implying ≈50% and ≈75% remaining endothelial lipase function in heterozygous complete LOF and partial LOF mutation carriers, respectively. complete LOF mutation carriers had significantly higher plasma high-density lipoprotein cholesterol levels compared with partial LOF mutation carriers. Apolipoprotein B-depleted serum from complete LOF carriers showed significantly enhanced cholesterol efflux acceptor capacity, whereas only trends were observed in partial LOF carriers. Carriers of LIPG mutations exhibited trends toward reduced coronary artery disease in 4 independent cohorts (meta-analysis odds ratio, 0.7; P=0.04). CONCLUSIONS Our data suggest that the impact of LIPG mutations is directly related to their effect on endothelial lipase function and support that antagonism of endothelial lipase function improves cardioprotection.
Collapse
|
34
|
McLaren DG, Wang SP, Stout SJ, Xie D, Miller PL, Mendoza V, Rosa R, Castro-Perez J, Previs SF, Johns DG, Roddy TP. Tracking fatty acid kinetics in distinct lipoprotein fractions in vivo: a novel high-throughput approach for studying dyslipidemia in rodent models. J Lipid Res 2012; 54:276-81. [PMID: 23042787 DOI: 10.1194/jlr.d030791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Isotopic tracers have been used to examine lipid trafficking for many years, and data from those studies have typically yielded novel insight regarding the pathophysiology of dyslipidemia. Previous experimental designs were suitable for studies in humans because relatively large volumes of plasma could be regularly sampled. We have expanded on the earlier logic by applying high-throughput analytical methods that require reduced sample volumes. Specifically, we have examined the possibility of coupling gel-based separations of lipoproteins (e.g., lipoprint) with LC-MS/MS analyses of complex lipid mixtures as a way to routinely measure the labeling profiles of distinct lipids in discrete lipoprotein subfractions. We demonstrate the ability to measure the incorporation of [U-(13)C]oleate into triglycerides (TG), PLs (PL), and cholesterol esters (CE) in VLDL, LDL, and HDL particles in mice. Although rodent models of dyslipidemia are inherently different from humans because of alterations in enzyme activities and underlying metabolism, rodent models can be used to screen novel compounds for efficacy in altering a given biochemical pathway and therein enable studies of target engagement in vivo. We expect that it is possible to translate our approach for application in other systems, including studies in humans.
Collapse
|
35
|
Li Q, Tomcik K, Zhang S, Puchowicz MA, Zhang GF. Dietary regulation of catabolic disposal of 4-hydroxynonenal analogs in rat liver. Free Radic Biol Med 2012; 52:1043-53. [PMID: 22245097 PMCID: PMC3289253 DOI: 10.1016/j.freeradbiomed.2011.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/17/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022]
Abstract
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.
Collapse
Affiliation(s)
- Qingling Li
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Kristyen Tomcik
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | - Shenghui Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
| | | | - Guo-Fang Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland OH 44106
- Corresponding author: Guo-Fang Zhang, Department of Nutrition, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., W-G48, Cleveland, OH, 44106-4954, Tel.: 216 368 6533, Fax: 216 368 6560,
| |
Collapse
|
36
|
Zhou H, Li W, Wang SP, Mendoza V, Rosa R, Hubert J, Herath K, McLaughlin T, Rohm RJ, Lassman ME, Wong KK, Johns DG, Previs SF, Hubbard BK, Roddy TP. Quantifying apoprotein synthesis in rodents: coupling LC-MS/MS analyses with the administration of labeled water. J Lipid Res 2012; 53:1223-31. [PMID: 22389331 DOI: 10.1194/jlr.d021295] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable isotope tracer studies of apoprotein flux in rodent models present difficulties as they require working with small volumes of plasma. We demonstrate the ability to measure apoprotein flux by administering either (2)H- or (18)O-labeled water to mice and then subjecting samples to LC-MS/MS analyses; we were able to simultaneously determine the labeling of several proteolytic peptides representing multiple apoproteins. Consistent with relative differences reported in the literature regarding apoprotein flux in humans, we found that the fractional synthetic rate of apoB is greater than apoA1 in mice. In addition, the method is suitable for quantifying acute changes in protein flux: we observed a stimulation of apoB production in mice following an intravenous injection of Intralipid and a decrease in apoB production in mice treated with an inhibitor of microsomal triglyceride transfer protein. In summary, we demonstrate a high-throughput method for studying apoprotein kinetics in rodent models. Although notable differences exist between lipoprotein profiles that are observed in rodents and humans, we expect that the method reported here has merit in studies of dyslipidemia as i) rodent models can be used to probe target engagement in cases where one aims to modulate apoprotein production and ii) the approach should be adaptable to studies in humans.
Collapse
Affiliation(s)
- Haihong Zhou
- Atherosclerosis, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rabinowitz JD, Purdy JG, Vastag L, Shenk T, Koyuncu E. Metabolomics in drug target discovery. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 76:235-46. [PMID: 22114327 DOI: 10.1101/sqb.2011.76.010694] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Most diseases result in metabolic changes. In many cases, these changes play a causative role in disease progression. By identifying pathological metabolic changes, metabolomics can point to potential new sites for therapeutic intervention. Particularly promising enzymatic targets are those that carry increased flux in the disease state. Definitive assessment of flux requires the use of isotope tracers. Here we present techniques for finding new drug targets using metabolomics and isotope tracers. The utility of these methods is exemplified in the study of three different viral pathogens. For influenza A and herpes simplex virus, metabolomic analysis of infected versus mock-infected cells revealed dramatic concentration changes around the current antiviral target enzymes. Similar analysis of human-cytomegalovirus-infected cells, however, found the greatest changes in a region of metabolism unrelated to the current antiviral target. Instead, it pointed to the tricarboxylic acid (TCA) cycle and its efflux to feed fatty acid biosynthesis as a potential preferred target. Isotope tracer studies revealed that cytomegalovirus greatly increases flux through the key fatty acid metabolic enzyme acetyl-coenzyme A carboxylase. Inhibition of this enzyme blocks human cytomegalovirus replication. Examples where metabolomics has contributed to identification of anticancer drug targets are also discussed. Eventual proof of the value of metabolomics as a drug target discovery strategy will be successful clinical development of therapeutics hitting these new targets.
Collapse
Affiliation(s)
- J D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | |
Collapse
|
38
|
Castro-Perez J, Briand F, Gagen K, Wang SP, Chen Y, McLaren DG, Shah V, Vreeken RJ, Hankemeier T, Sulpice T, Roddy TP, Hubbard BK, Johns DG. Anacetrapib promotes reverse cholesterol transport and bulk cholesterol excretion in Syrian golden hamsters. J Lipid Res 2011; 52:1965-73. [PMID: 21841206 PMCID: PMC3196228 DOI: 10.1194/jlr.m016410] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/29/2011] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) transfers cholesteryl ester (CE) and triglyceride between HDL and apoB-containing lipoproteins. Anacetrapib (ANA), a reversible inhibitor of CETP, raises HDL cholesterol (HDL-C) and lowers LDL cholesterol in dyslipidemic patients; however, the effects of ANA on cholesterol/lipoprotein metabolism in a dyslipidemic hamster model have not been demonstrated. To test whether ANA (60 mg/kg/day, 2 weeks) promoted reverse cholesterol transport (RCT), ³H-cholesterol-loaded macrophages were injected and (3)H-tracer levels were measured in HDL, liver, and feces. Compared to controls, ANA inhibited CETP (94%) and increased HDL-C (47%). ³H-tracer in HDL increased by 69% in hamsters treated with ANA, suggesting increased cholesterol efflux from macrophages to HDL. ³H-tracer in fecal cholesterol and bile acids increased by 90% and 57%, respectively, indicating increased macrophage-to-feces RCT. Mass spectrometry analysis of HDL from ANA-treated hamsters revealed an increase in free unlabeled cholesterol and CE. Furthermore, bulk cholesterol and cholic acid were increased in feces from ANA-treated hamsters. Using two independent approaches to assess cholesterol metabolism, the current study demonstrates that CETP inhibition with ANA promotes macrophage-to-feces RCT and results in increased fecal cholesterol/bile acid excretion, further supporting its development as a novel lipid therapy for the treatment of dyslipidemia and atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Jose Castro-Perez
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
- Division of Analytical Biosciences, Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - François Briand
- Physiogenex, Prologue Biotech, Labege-Innopole cedex, France
| | - Karen Gagen
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| | - Sheng-Ping Wang
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| | - Ying Chen
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| | - David G. McLaren
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| | - Vinit Shah
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| | - Rob J. Vreeken
- Division of Analytical Biosciences, Netherlands Metabolomics Centre, Leiden, The Netherlands
- LACDR, Leiden University, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Netherlands Metabolomics Centre, Leiden, The Netherlands
- LACDR, Leiden University, Leiden, The Netherlands
| | - Thierry Sulpice
- Physiogenex, Prologue Biotech, Labege-Innopole cedex, France
| | - Thomas P. Roddy
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| | - Brian K. Hubbard
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| | - Douglas G. Johns
- Department of Cardiovascular Diseases, Atherosclerosis, Merck Research Laboratories, Rahway, NJ
| |
Collapse
|
39
|
ApoB siRNA-induced liver steatosis is resistant to clearance by the loss of fatty acid transport protein 5 (Fatp5). Lipids 2011; 46:991-1003. [PMID: 21826528 PMCID: PMC3213337 DOI: 10.1007/s11745-011-3596-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/06/2011] [Indexed: 12/26/2022]
Abstract
The association between hypercholesterolemia and elevated serum apolipoprotein B (APOB) has generated interest in APOB as a therapeutic target for patients at risk of developing cardiovascular disease. In the clinic, mipomersen, an antisense oligonucleotide (ASO) APOB inhibitor, was associated with a trend toward increased hepatic triglycerides, and liver steatosis remains a concern. We found that siRNA-mediated knockdown of ApoB led to elevated hepatic triglycerides and liver steatosis in mice engineered to exhibit a human-like lipid profile. Many genes required for fatty acid synthesis were reduced, suggesting that the observed elevation in hepatic triglycerides is maintained by the cell through fatty acid uptake as opposed to fatty acid synthesis. Fatty acid transport protein 5 (Fatp5/Slc27a5) is required for long chain fatty acid (LCFA) uptake and bile acid reconjugation by the liver. Fatp5 knockout mice exhibited lower levels of hepatic triglycerides due to decreased fatty acid uptake, and shRNA-mediated knockdown of Fatp5 protected mice from diet-induced liver steatosis. Here, we evaluated if siRNA-mediated knockdown of Fatp5 was sufficient to alleviate ApoB knockdown-induced steatosis. We determined that, although Fatp5 siRNA treatment was sufficient to increase the proportion of unconjugated bile acids 100-fold, consistent with FATP5's role in bile acid reconjugation, Fatp5 knockdown failed to influence the degree, zonal distribution, or composition of the hepatic triglycerides that accumulated following ApoB siRNA treatment.
Collapse
|
40
|
Castro-Perez JM, Roddy TP, Shah V, McLaren DG, Wang SP, Jensen K, Vreeken RJ, Hankemeier T, Johns DG, Previs SF, Hubbard BK. Identifying Static and Kinetic Lipid Phenotypes by High Resolution UPLC–MS: Unraveling Diet-Induced Changes in Lipid Homeostasis by Coupling Metabolomics and Fluxomics. J Proteome Res 2011; 10:4281-90. [DOI: 10.1021/pr200480g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jose M. Castro-Perez
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Thomas P. Roddy
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| | - Vinit Shah
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| | - David G. McLaren
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| | - Sheng-Ping Wang
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| | - Kristian Jensen
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| | - Rob J. Vreeken
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Netherlands Metabolomics Centre, LACDR, Leiden University, P.O. Box 9502, 2300RA Leiden, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Netherlands Metabolomics Centre, LACDR, Leiden University, P.O. Box 9502, 2300RA Leiden, The Netherlands
| | - Douglas G. Johns
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| | - Stephen F. Previs
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| | - Brian K. Hubbard
- Department of Cardiovascular Diseases − Atherosclerosis Rahway, Merck Research Laboratories, New Jersey 07065, United States
| |
Collapse
|