1
|
Liu C, Lin Y, Wang Y, Lin S, Zhou J, Tang H, Yi X, Ma Z, Xia T, Jiang B, Tian F, Ju Z, Liu B, Gu X, Yang Z, Wang W. HuR promotes triglyceride synthesis and intestinal fat absorption. Cell Rep 2024; 43:114238. [PMID: 38748875 DOI: 10.1016/j.celrep.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.
Collapse
Affiliation(s)
- Cihang Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Yunping Lin
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Shuyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Central China Fuwai Hospital and Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan 450003, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Nanjing 210093, China
| | - Bin Jiang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Feng Tian
- Department of Laboratory Animal Science, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Zhongzhou Yang
- Medical School, Nanjing University, Nanjing 210093, China.
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Beijing 100191, China; Center for Healthy Aging, Changzhi Medical College, Changzhi 046000, China; Liaoning Technology and Engineering Center for Tumor Immunology and Molecular Theranostics, Collaborative Innovation Center for Age-related Disease, Life Science Institute of Jinzhou Medical University, Jinzhou 121001, Liaoning, China.
| |
Collapse
|
2
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
3
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
4
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
5
|
Burchat N, Akal T, Ntambi JM, Trivedi N, Suresh R, Sampath H. SCD1 is nutritionally and spatially regulated in the intestine and influences systemic postprandial lipid homeostasis and gut-liver crosstalk. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159195. [PMID: 35718096 PMCID: PMC11287785 DOI: 10.1016/j.bbalip.2022.159195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023]
Abstract
Stearoyl-CoA desaturase-1 is an endoplasmic reticulum (ER)-membrane resident protein that inserts a double bond into saturated fatty acids, converting them into their monounsaturated counterparts. Previous studies have demonstrated an important role for SCD1 in modulating tissue and systemic health. Specifically, lack of hepatic or cutaneous SCD1 results in significant reductions in tissue esterified lipids. While the intestine is an important site of lipid esterification and assimilation into the body, the regulation of intestinal SCD1 or its impact on lipid composition in the intestine and other tissues has not been investigated. Here we report that unlike other lipogenic enzymes, SCD1 is enriched in the distal small intestine and in the colon of chow-fed mice and is robustly upregulated by acute refeeding of a high-sucrose diet. We generated a mouse model lacking SCD1 specifically in the intestine (iKO mice). These mice have significant reductions not only in intestinal lipids, but also in plasma triacylglycerols, diacylglycerols, cholesterol esters, and free cholesterol. Additionally, hepatic accumulation of diacylglycerols is significantly reduced in iKO mice. Comprehensive targeted lipidomic profiling revealed a consistent reduction in the myristoleic (14:1) to myristic (14:0) acid ratios in intestine, liver, and plasma of iKO mice. Consistent with the reduction of the monounsaturated fatty acid myristoleic acid in hepatic lipids of chow fed iKO mice, hepatic expression of Pgc-1α, Sirt1, and related fatty acid oxidation genes were reduced in chow-fed iKO mice. Further, lack of intestinal SCD1 reduced expression of de novo lipogenic genes in distal intestine of chow-fed mice and in the livers of mice fed a lipogenic high-sucrose diet. Taken together, these studies reveal a novel pattern of expression of SCD1 in the intestine. They also demonstrate that intestinal SCD1 modulates lipid content and composition of not only intestinal tissues, but also that of plasma and liver. Further, these data point to intestinal SCD1 as a modulator of gut-liver crosstalk, potentially through the production of novel signaling lipids such as myristoleic acid. These data have important implications to understanding how intestinal SCD1 may modulate risk for post-prandial lipemia, hepatic steatosis, and related pathologies.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Tasleenpal Akal
- Department of Nutritional Sciences, Rutgers University, United States of America
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, United States of America
| | - Nirali Trivedi
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Ranjita Suresh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America; Department of Nutritional Sciences, Rutgers University, United States of America.
| |
Collapse
|
6
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
7
|
Ghanem M, Lewis GF, Xiao C. Recent advances in cytoplasmic lipid droplet metabolism in intestinal enterocyte. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159197. [PMID: 35820577 DOI: 10.1016/j.bbalip.2022.159197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Processing of dietary fats in the intestine is a highly regulated process that influences whole-body energy homeostasis and multiple physiological functions. Dysregulated lipid handling in the intestine leads to dyslipidemia and atherosclerotic cardiovascular disease. In intestinal enterocytes, lipids are incorporated into lipoproteins and cytoplasmic lipid droplets (CLDs). Lipoprotein synthesis and CLD metabolism are inter-connected pathways with multiple points of regulation. This review aims to highlight recent advances in the regulatory mechanisms of lipid processing in the enterocyte, with particular focus on CLDs. In-depth understanding of the regulation of lipid metabolism in the enterocyte may help identify therapeutic targets for the treatment and prevention of metabolic disorders.
Collapse
Affiliation(s)
- Murooj Ghanem
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology, University of Toronto, and University Health Network, Toronto, ON, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Stone SJ. Mechanisms of intestinal triacylglycerol synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159151. [PMID: 35296424 DOI: 10.1016/j.bbalip.2022.159151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
Triacylglycerols are a major source of stored energy that are obtained either from the diet or can be synthesized to some extent by most tissues. Alterations in pathways of triacylglycerol metabolism can result in their excessive accumulation leading to obesity, insulin resistance, cardiovascular disease and nonalcoholic fatty liver disease. Most tissues in mammals synthesize triacylglycerols via the glycerol 3-phosphate pathway. However, in the small intestine the monoacylglycerol acyltransferase pathway is the predominant pathway for triacylglycerol biosynthesis where it participates in the absorption of dietary triacylglycerol. In this review, the enzymes that are part of both the glycerol 3-phosphate and monoacylglycerol acyltransferase pathways and their contributions to intestinal triacylglycerol metabolism are reviewed. The potential of some of the enzymes involved in triacylglycerol synthesis in the small intestine as possible therapeutic targets for treating metabolic disorders associated with elevated triacylglycerol is briefly discussed.
Collapse
Affiliation(s)
- Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
9
|
Dawa S, Menon D, Arumugam P, Bhaskar AK, Mondal M, Rao V, Gandotra S. Inhibition of Granuloma Triglyceride Synthesis Imparts Control of Mycobacterium tuberculosis Through Curtailed Inflammatory Responses. Front Immunol 2021; 12:722735. [PMID: 34603294 PMCID: PMC8479166 DOI: 10.3389/fimmu.2021.722735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism plays a complex and dynamic role in host-pathogen interaction during Mycobacterium tuberculosis infection. While bacterial lipid metabolism is key to the success of the pathogen, the host also offers a lipid rich environment in the form of necrotic caseous granulomas, making this association beneficial for the pathogen. Accumulation of the neutral lipid triglyceride, as lipid droplets within the cellular cuff of necrotic granulomas, is a peculiar feature of pulmonary tuberculosis. The role of triglyceride synthesis in the TB granuloma and its impact on the disease outcome has not been studied in detail. Here, we identified diacylglycerol O-acyltransferase 1 (DGAT1) to be essential for accumulation of triglyceride in necrotic TB granulomas using the C3HeB/FeJ murine model of infection. Treatment of infected mice with a pharmacological inhibitor of DGAT1 (T863) led to reduction in granuloma triglyceride levels and bacterial burden. A decrease in bacterial burden was associated with reduced neutrophil infiltration and degranulation, and a reduction in several pro-inflammatory cytokines including IL1β, TNFα, IL6, and IFNβ. Triglyceride lowering impacted eicosanoid production through both metabolic re-routing and via transcriptional control. Our data suggests that manipulation of lipid droplet homeostasis may offer a means for host directed therapy in Tuberculosis.
Collapse
Affiliation(s)
- Stanzin Dawa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Dilip Menon
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Prabhakar Arumugam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Akash Kumar Bhaskar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Moumita Mondal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vivek Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sheetal Gandotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Cardiorespiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
10
|
Takahashi Y, Inoue Y, Kuze K, Sato S, Shimizu M, Kiyono H, Yamauchi Y, Sato R. Comparison of gene expression and activation of transcription factors in organoid-derived monolayer intestinal epithelial cells and organoids. Biosci Biotechnol Biochem 2021; 85:2137-2144. [PMID: 34297057 DOI: 10.1093/bbb/zbab136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.
Collapse
Affiliation(s)
- Yu Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Kuze
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shintaro Sato
- Mucosal Vaccine Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Makoto Shimizu
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshio Yamauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
11
|
Yu F, Wang Z, Zhang T, Chen X, Xu H, Wang F, Guo L, Chen M, Liu K, Wu B. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat Commun 2021; 12:5323. [PMID: 34493722 PMCID: PMC8423749 DOI: 10.1038/s41467-021-25674-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
The role of intestine clock in energy homeostasis remains elusive. Here we show that mice with Bmal1 specifically deleted in the intestine (Bmal1iKO mice) have a normal phenotype on a chow diet. However, on a high-fat diet (HFD), Bmal1iKO mice are protected against development of obesity and related abnormalities such as hyperlipidemia and fatty livers. These metabolic phenotypes are attributed to impaired lipid resynthesis in the intestine and reduced fat secretion. Consistently, wild-type mice fed a HFD during nighttime (with a lower BMAL1 expression) show alleviated obesity compared to mice fed ad libitum. Mechanistic studies uncover that BMAL1 transactivates the Dgat2 gene (encoding the triacylglycerol synthesis enzyme DGAT2) via direct binding to an E-box in the promoter, thereby promoting dietary fat absorption. Supporting these findings, intestinal deficiency of Rev-erbα, a known BMAL1 repressor, enhances dietary fat absorption and exacerbates HFD-induced obesity and comorbidities. Moreover, small-molecule targeting of REV-ERBα/BMAL1 by SR9009 ameliorates HFD-induced obesity in mice. Altogether, intestine clock functions as an accelerator in dietary fat absorption and targeting intestinal BMAL1 may be a promising approach for management of metabolic diseases induced by excess fat intake.
Collapse
MESH Headings
- ARNTL Transcription Factors/deficiency
- ARNTL Transcription Factors/genetics
- Animals
- Circadian Rhythm/genetics
- Diacylglycerol O-Acyltransferase/genetics
- Diacylglycerol O-Acyltransferase/metabolism
- Diet, High-Fat/adverse effects
- Dietary Fats/administration & dosage
- Dietary Fats/metabolism
- Fatty Liver/etiology
- Fatty Liver/genetics
- Fatty Liver/metabolism
- Fatty Liver/prevention & control
- Gene Expression Regulation
- Homeostasis/drug effects
- Homeostasis/genetics
- Hyperlipidemias/etiology
- Hyperlipidemias/genetics
- Hyperlipidemias/metabolism
- Hyperlipidemias/prevention & control
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Obesity/prevention & control
- Promoter Regions, Genetic
- Protein Binding
- Pyrrolidines/pharmacology
- Signal Transduction
- Thiophenes/pharmacology
- Triglycerides/biosynthesis
Collapse
Affiliation(s)
- Fangjun Yu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhigang Wang
- Department of Intensive Care Unit, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianpeng Zhang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xun Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Haiman Xu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Fei Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Lianxia Guo
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China.
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
12
|
Levy E, Beaulieu JF, Spahis S. From Congenital Disorders of Fat Malabsorption to Understanding Intra-Enterocyte Mechanisms Behind Chylomicron Assembly and Secretion. Front Physiol 2021; 12:629222. [PMID: 33584351 PMCID: PMC7873531 DOI: 10.3389/fphys.2021.629222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
During the last two decades, a large body of information on the events responsible for intestinal fat digestion and absorption has been accumulated. In particular, many groups have extensively focused on the absorptive phase in order to highlight the critical "players" and the main mechanisms orchestrating the assembly and secretion of chylomicrons (CM) as essential vehicles of alimentary lipids. The major aim of this article is to review understanding derived from basic science and clinical conditions associated with impaired packaging and export of CM. We have particularly insisted on inborn metabolic pathways in humans as well as on genetically modified animal models (recapitulating pathological features). The ultimate goal of this approach is that "experiments of nature" and in vivo model strategy collectively allow gaining novel mechanistic insight and filling the gap between the underlying genetic defect and the apparent clinical phenotype. Thus, uncovering the cause of disease contributes not only to understanding normal physiologic pathway, but also to capturing disorder onset, progression, treatment and prognosis.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Jean François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Schohraya Spahis
- Research Centre, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
13
|
Vujić N, Korbelius M, Sachdev V, Rainer S, Zimmer A, Huber A, Radović B, Kratky D. Intestine-specific DGAT1 deficiency improves atherosclerosis in apolipoprotein E knockout mice by reducing systemic cholesterol burden. Atherosclerosis 2020; 310:26-36. [PMID: 32882484 PMCID: PMC7116265 DOI: 10.1016/j.atherosclerosis.2020.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022]
Abstract
Background and aims Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is the rate-limiting enzyme catalyzing the final step of triglyceride synthesis by esterifying a diglyceride with a fatty acid. We have previously shown that apolipoprotein E-knockout (ApoE−/−) mice lacking Dgat1 have reduced intestinal cholesterol absorption and potentiated macrophage cholesterol efflux, and consequently, exhibit attenuated atherogenesis. However, he-matopoietic Dgat1 deficiency lacked beneficial effects on atherosclerosis. Due to our recent results on the critical role of intestinal Dgat1 in murine cholesterol homeostasis, we delineated whether intestinal Dgat1 deficiency regulates atherogenesis in mice. Methods We generated intestine-specific Dgat1−/− mice on the ApoE−/− background (iDgat1−/−ApoE−/−) and determined cholesterol homeostasis and atherosclerosis development. Results When fed a Western-type diet, iDgat1−/−ApoE−/− mice exhibited a substantial decrease in fasting plasma cholesterol content in ApoB-containing lipoproteins. Although lipid absorption was delayed, iDgat1−/−ApoE−/− mice had reduced acute and fractional cholesterol absorption coupled with an elevated fecal caloric loss. In line, increased appearance of i.v. administered [3H]cholesterol in duodena and stool of iDgat1−/−ApoE−/− animals suggested potentiated cholesterol elimination. Atherosclerotic lesions were markedly smaller with beneficial alterations in plaque composition as evidenced by reduced macrophage infiltration and necrotic core size despite unaltered collagen content, indicating improved plaque stability. Conclusions Disruption of Dgat1 activity solely in the small intestine of ApoE−/− mice strongly decreased plasma cholesterol levels by abrogating the assimilation of dietary cholesterol, partly by reduced absorption and increased excretion. Consequently, the reduced cholesterol burden significantly attenuated atherogenesis and improved the lesion phenotype in iDgat1−/−ApoE−/− mice.
Collapse
Affiliation(s)
- Nemanja Vujić
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Vinay Sachdev
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Anton Huber
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Branislav Radović
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
14
|
Harrison TJ, Bauer D, Berdichevsky A, Chen X, Duvadie R, Hoogheem B, Hatsis P, Liu Q, Mao J, Miduturu V, Rocheford E, Zecri F, Zessis R, Zheng R, Zhu Q, Streeper R, Patel SJ. Successful Strategies for Mitigation of a Preclinical Signal for Phototoxicity in a DGAT1 Inhibitor. ACS Med Chem Lett 2019; 10:1128-1133. [PMID: 31413796 DOI: 10.1021/acsmedchemlett.9b00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Abstract
Diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor Pradigastat (1) was shown to be effective at decreasing postprandial triglyceride levels in a patient population with familial chylomicronemia syndrome (FCS). Although pradigastat does not cause photosensitization in humans at the high clinical dose of 40 mg, a positive signal was observed in preclinical models of phototoxicity. Herein, we describe a preclinical phototoxicity mitigation strategy for diarylamine containing molecules utilizing the introduction of an amide or suitable heterocyclic function. This strategy led to the development of two second-generation compounds with low risk of phototoxicity, disparate exposure profiles, and comparable efficacy to 1 in a rodent lipid bolus model for post-prandial plasma triglycerides.
Collapse
Affiliation(s)
| | - Daniel Bauer
- Preclinical Safety, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hung YH, Buhman KK. DGAT1 deficiency disrupts lysosome function in enterocytes during dietary fat absorption. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:587-595. [PMID: 30342099 DOI: 10.1016/j.bbalip.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/27/2018] [Accepted: 10/13/2018] [Indexed: 11/25/2022]
Abstract
Enterocytes, the absorptive cells of the small intestine, mediate the process of dietary fat absorption by secreting triacylglycerol (TAG) into circulation. When levels of dietary fat are high, TAG is stored in cytoplasmic lipid droplets (CLDs) and sequentially hydrolyzed for ultimate secretion. Mice with deficiency in acyl CoA: diacylglycerol acyltransferase 1 (Dgat1-/- mice) were previously reported to have a reduced rate of intestinal TAG secretion and abnormal TAG accumulation in enterocyte CLDs. This unique intestinal phenotype is critical to their resistance to diet-induced obesity; however, the underlying mechanism remains unclear. Emerging evidence shows that lysosomal TAG hydrolysis contributes to autophagy-mediated CLD mobilization termed lipophagy, and when disrupted results in CLD accumulation. In order to study how lipophagy contributes to the unique intestinal phenotype of Dgat1-/- mice, enterocytes from wild-type (WT) and Dgat1-/- mice were examined at 2 and 6 h after oral oil gavage. Through ultrastructural analysis we observed TAG present within autophagic vesicles (AVs) in mouse enterocytes, suggesting the role of lipophagy in intestinal CLD mobilization during dietary fat absorption. Furthermore, we found that Dgat1-/- mice had abnormal TAG accumulation within AVs and less acidic lysosomes compared to WT mice. Together these findings suggest that the delayed dietary fat absorption seen in Dgat1-/- mice is, in part, due to the dysregulated flux of autophagy-mediated CLD mobilization and impairment of lysosomal acidification in enterocytes. The present study highlights the critical role of lysosome in enterocyte CLD mobilization for proper dietary fat absorption.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States of America
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
16
|
Luo H, Jiang M, Lian G, Liu Q, Shi M, Li TY, Song L, Ye J, He Y, Yao L, Zhang C, Lin ZZ, Zhang CS, Zhao TJ, Jia WP, Li P, Lin SY, Lin SC. AIDA Selectively Mediates Downregulation of Fat Synthesis Enzymes by ERAD to Retard Intestinal Fat Absorption and Prevent Obesity. Cell Metab 2018; 27:843-853.e6. [PMID: 29617643 DOI: 10.1016/j.cmet.2018.02.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/05/2017] [Accepted: 02/21/2018] [Indexed: 01/24/2023]
Abstract
The efficiency of intestinal absorption of dietary fat constitutes a primary determinant accounting for individual vulnerability to obesity. However, how fat absorption is controlled and contributes to obesity remains unclear. Here, we show that inhibition of endoplasmic-reticulum-associated degradation (ERAD) increases the abundance of triacylglycerol synthesis enzymes and fat absorption in small intestine. The C2-domain protein AIDA acts as an essential factor for the E3-ligase HRD1 of ERAD to downregulate rate-limiting acyltransferases GPAT3, MOGAT2, and DGAT2. Aida-/- mice, when grown in a thermal-neutral condition or fed high-fat diet, display increased intestinal fatty acid re-esterification, circulating and tissue triacylglycerol, accompanied with severely increased adiposity without enhancement of adipogenesis. Intestine-specific knockout of Aida largely phenocopies its whole-body knockout, strongly indicating that increased intestinal TAG synthesis is a primary impetus to obesity. The AIDA-mediated ERAD system may thus represent an anti-thrifty mechanism impinging on the enzymes for intestinal fat absorption and systemic fat storage.
Collapse
Affiliation(s)
- Hui Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ming Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guili Lian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Meng Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Terytty Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lintao Song
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jing Ye
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Cixiong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhi-Zhong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tong-Jin Zhao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University, Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Peng Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shu-Yong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
17
|
The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function. Sci Rep 2018; 8:4983. [PMID: 29563512 PMCID: PMC5862879 DOI: 10.1038/s41598-018-23223-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
It is increasingly recognized that synthesis and turnover of cardiac triglyceride (TG) play a pivotal role in the regulation of lipid metabolism and function of the heart. The last step in TG synthesis is catalyzed by diacylglycerol:acyltransferase (DGAT) which esterifies the diacylglycerol with a fatty acid. Mammalian heart has two DGAT isoforms, DGAT1 and DGAT2, yet their roles in cardiac metabolism and function remain poorly defined. Here, we show that inactivation of DGAT1 or DGAT2 in adult mouse heart results in a moderate suppression of TG synthesis and turnover. Partial inhibition of DGAT activity increases cardiac fatty acid oxidation without affecting PPARα signaling, myocardial energetics or contractile function. Moreover, coinhibition of DGAT1/2 in the heart abrogates TG turnover and protects the heart against high fat diet-induced lipid accumulation with no adverse effects on basal or dobutamine-stimulated cardiac function. Thus, the two DGAT isoforms in the heart have partially redundant function, and pharmacological inhibition of one DGAT isoform is well tolerated in adult hearts.
Collapse
|
18
|
Maciejewski BS, Manion TB, Steppan CM. Pharmacological inhibition of diacylglycerol acyltransferase-1 and insights into postprandial gut peptide secretion. World J Gastrointest Pathophysiol 2017; 8:161-175. [PMID: 29184702 PMCID: PMC5696614 DOI: 10.4291/wjgp.v8.i4.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/25/2017] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) plays in postprandial gut peptide secretion and signaling.
METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge. Following a lipid challenge, plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h. Incretin hormones [glucagon like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY) and glucose dependent insulinotropic polypeptide (GIP)] were then quantitated. The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice. Additionally, a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition. To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition, other interventions [inhibitors of dipeptidyl peptidase-IV (sitagliptin), pancreatic lipase (Orlistat), GPR119 knockout mice] were evaluated.
RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice were lipid challenged and levels of both active and total GLP-1 in the plasma were increased. This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice. Furthermore, PF-04620110 was able to dose responsively increase GLP-1 and PYY, but blunt GIP at all doses of PF-04620110 during lipid challenge. Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1. In contrast, in a combination study with Orlistat, the ability of PF-04620110 to elicit an enhanced incretin response was abrogated. To further explore this observation, GPR119 knockout mice were evaluated. In response to a lipid challenge, GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY. However, PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.
CONCLUSION Collectively, these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.
Collapse
Affiliation(s)
- Benjamin S Maciejewski
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, United States
| | - Tara B Manion
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, United States
| | - Claire M Steppan
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA 02139, United States
- Pfizer Inc., Groton, CT 06340, United States
| |
Collapse
|
19
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
20
|
Yan J, Wang G, Dang X, Guo B, Chen W, Wang T, Zeng L, Wang H, Hu Y. Discovery of a low-systemic-exposure DGAT-1 inhibitor with a picolinoylpyrrolidine-2-carboxylic acid moiety. Bioorg Med Chem 2017; 25:4701-4714. [DOI: 10.1016/j.bmc.2017.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
21
|
Raza GS, Putaala H, Hibberd AA, Alhoniemi E, Tiihonen K, Mäkelä KA, Herzig KH. Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci Rep 2017; 7:5294. [PMID: 28706193 PMCID: PMC5509720 DOI: 10.1038/s41598-017-05259-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/25/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity and dyslipidemia are hallmarks of metabolic and cardiovascular diseases. Polydextrose (PDX), a soluble fiber has lipid lowering effects. We hypothesize that PDX reduces triglycerides and cholesterol by influencing gut microbiota, which in turn modulate intestinal gene expression. C57BL/6 male mice were fed a Western diet (WD) ±75 mg PDX twice daily by oral gavage for 14 days. Body weight and food intake were monitored daily. Fasting plasma lipids, caecal microbiota and gene expression in intestine and liver were measured after 14 days of feeding. PDX supplementation to WD significantly reduced food intake (p < 0.001), fasting plasma triglyceride (p < 0.001) and total cholesterol (p < 0.05). Microbiome analysis revealed that the relative abundance of Allobaculum, Bifidobacterium and Coriobacteriaceae taxa associated with lean phenotype, increased in WD + PDX mice. Gene expression analysis with linear mixed-effects model showed consistent downregulation of Dgat1, Cd36, Fiaf and upregulation of Fxr in duodenum, jejunum, ileum and colon in WD + PDX mice. Spearman correlations indicated that genera enriched in WD + PDX mice inversely correlated with fasting lipids and downregulated genes Dgat1, Cd36 and Fiaf while positively with upregulated gene Fxr. These results suggest that PDX in mice fed WD promoted systemic changes via regulation of the gut microbiota and gene expression in intestinal tract.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland
| | - Heli Putaala
- DuPont Nutrition and Health, Global Health and Nutrition Science, Kantvik, Finland
| | - Ashley A Hibberd
- DuPont Nutrition and Health, Genomics & Microbiome Science, St. Louis, MO, USA
| | | | - Kirsti Tiihonen
- DuPont Nutrition and Health, Global Health and Nutrition Science, Kantvik, Finland
| | - Kari Antero Mäkelä
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland
| | - Karl-Heinz Herzig
- Research unit of Biomedicine and Biocenter of Oulu, Department of Physiology, University of Oulu, Oulu, Finland. .,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland. .,Medical Research Center (MRC), University of Oulu, and University Hospital, Oulu, Finland.
| |
Collapse
|
22
|
Hung YH, Carreiro AL, Buhman KK. Dgat1 and Dgat2 regulate enterocyte triacylglycerol distribution and alter proteins associated with cytoplasmic lipid droplets in response to dietary fat. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:600-614. [PMID: 28249764 PMCID: PMC5503214 DOI: 10.1016/j.bbalip.2017.02.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/31/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Enterocytes, the absorptive cells of the small intestine, mediate efficient absorption of dietary fat (triacylglycerol, TAG). The digestive products of dietary fat are taken up by enterocytes, re-esterified into TAG, and packaged on chylomicrons (CMs) for secretion into blood or temporarily stored within cytoplasmic lipid droplets (CLDs). Altered enterocyte TAG distribution impacts susceptibility to high fat diet associated diseases, but molecular mechanisms directing TAG toward these fates are unclear. Two enzymes, acyl CoA: diacylglycerol acyltransferase 1 (Dgat1) and Dgat2, catalyze the final, committed step of TAG synthesis within enterocytes. Mice with intestine-specific overexpression of Dgat1 (Dgat1Int) or Dgat2 (Dgat2Int), or lack of Dgat1 (Dgat1-/-), were previously found to have altered intestinal TAG secretion and storage. We hypothesized that varying intestinal Dgat1 and Dgat2 levels alters TAG distribution in subcellular pools for CM synthesis as well as the morphology and proteome of CLDs. To test this we used ultrastructural and proteomic methods to investigate intracellular TAG distribution and CLD-associated proteins in enterocytes from Dgat1Int, Dgat2Int, and Dgat1-/- mice 2h after a 200μl oral olive oil gavage. We found that varying levels of intestinal Dgat1 and Dgat2 altered TAG pools involved in CM assembly and secretion, the number or size of CLDs present in enterocytes, and the enterocyte CLD proteome. Overall, these results support a model where Dgat1 and Dgat2 function coordinately to regulate the process of dietary fat absorption by preferentially synthesizing TAG for incorporation into distinct subcellular TAG pools in enterocytes.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia L Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Nakajima K, Chatelain R, Clairmont KB, Commerford R, Coppola GM, Daniels T, Forster CJ, Gilmore TA, Gong Y, Jain M, Kanter A, Kwak Y, Li J, Meyers CD, Neubert AD, Szklennik P, Tedesco V, Thompson J, Truong D, Yang Q, Hubbard BK, Serrano-Wu MH. Discovery of an Orally Bioavailable Benzimidazole Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitor That Suppresses Body Weight Gain in Diet-Induced Obese Dogs and Postprandial Triglycerides in Humans. J Med Chem 2017; 60:4657-4664. [DOI: 10.1021/acs.jmedchem.7b00173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katsumasa Nakajima
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Ricardo Chatelain
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Kevin B. Clairmont
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Renee Commerford
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Gary M. Coppola
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Thomas Daniels
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Cornelia J. Forster
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Thomas A. Gilmore
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Yongjin Gong
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Monish Jain
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Aaron Kanter
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Youngshin Kwak
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Jingzhou Li
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Charles D. Meyers
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Alan D. Neubert
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Paul Szklennik
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Vivienne Tedesco
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - James Thompson
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - David Truong
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Qing Yang
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Brian K. Hubbard
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| | - Michael H. Serrano-Wu
- Global Discovery Chemistry, ‡Cardiovascular and Metabolism, ∥PK Sciences, and §Translational
Medicine, Novartis Institutes for Biomedical Research, 100 Technology
Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Pyun YM, Oh JH, Kwak HJ, Kim JY, Han SJ, Lee GB, Pagire SH, Pagire HS, Kim KY, Jung WH, Rhee SD, Lee DH, Ahn JH. Optimization of Benzimidazole Scaffold with a trans
-Phenylcyclohexyl Acetic Acid as Diacylglycerol Acyltransferase-1 Inhibitors. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Mi Pyun
- Department of Chemistry; Sogang University; Seoul 121-742 Republic of Korea
| | - Joon Hyun Oh
- Department of Chemistry; Sogang University; Seoul 121-742 Republic of Korea
| | - Hyun Jung Kwak
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Ji Young Kim
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Seo-Jung Han
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Gwi Bin Lee
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Suvarna H. Pagire
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Haushabhau S. Pagire
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Ki Young Kim
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Won Hoon Jung
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Sang Dal Rhee
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
| | - Duck Hyung Lee
- Department of Chemistry; Sogang University; Seoul 121-742 Republic of Korea
| | - Jin Hee Ahn
- Drug Discovery Division; Korea Research Institute of Chemical Technology; Daejeon 305-600 Republic of Korea
- Department of Chemistry; Gwangju Institute of Science and Technology; Gwangju 61005 Republic of Korea
| |
Collapse
|
25
|
Sachdev V, Leopold C, Bauer R, Patankar JV, Iqbal J, Obrowsky S, Boverhof R, Doktorova M, Scheicher B, Goeritzer M, Kolb D, Turnbull AV, Zimmer A, Hoefler G, Hussain MM, Groen AK, Kratky D. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1132-1141. [PMID: 27344248 PMCID: PMC4948681 DOI: 10.1016/j.bbalip.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia.
Collapse
Affiliation(s)
- Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Christina Leopold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Raimund Bauer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jay V Patankar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, 11203 New York, United States
| | - Sascha Obrowsky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Renze Boverhof
- Departments of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Marcela Doktorova
- Departments of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Bernhard Scheicher
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kolb
- Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, 8010 Graz, Austria
| | | | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, 11203 New York, United States
| | - Albert K Groen
- Departments of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
26
|
Vujic N, Porter Abate J, Schlager S, David T, Kratky D, Koliwad SK. Acyl-CoA:Diacylglycerol Acyltransferase 1 Expression Level in the Hematopoietic Compartment Impacts Inflammation in the Vascular Plaques of Atherosclerotic Mice. PLoS One 2016; 11:e0156364. [PMID: 27223895 PMCID: PMC4880185 DOI: 10.1371/journal.pone.0156364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023] Open
Abstract
The final step of triacylglycerol synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferases (DGATs). We have previously shown that ApoE-/-Dgat1-/- mice are protected from developing atherosclerosis in association with reduced foam cell formation. However, the role of DGAT1, specifically in myeloid and other hematopoietic cell types, in determining this protective phenotype is unknown. To address this question, we reconstituted the bone marrow of irradiated Ldlr-/-mice with that from wild-type (WT→ Ldlr-/-) and Dgat1-/-(Dgat1-/-→ Ldlr-/-) donor mice. We noted that DGAT1 in the hematopoietic compartment exerts a sex-specific effect on systemic cholesterol homeostasis. However, both male and female Dgat1-/-→ Ldlr-/-mice had higher circulating neutrophil and lower lymphocyte counts than control mice, suggestive of a classical inflammatory phenotype. Moreover, specifically examining the aortae of these mice revealed that Dgat1-/-→ Ldlr-/-mice have atherosclerotic plaques with increased macrophage content. This increase was coupled to a reduced plaque collagen content, leading to a reduced collagen-to-macrophage ratio. Together, these findings point to a difference in the inflammatory contribution to plaque composition between Dgat1-/-→ Ldlr-/-and control mice. By contrast, DGAT1 deficiency did not affect the transcriptional responses of cultured macrophages to lipoprotein treatment in vitro, suggesting that the alterations seen in the plaques of Dgat1-/-→ Ldlr-/-mice in vivo do not reflect a cell intrinsic effect of DGAT1 in macrophages. We conclude that although DGAT1 in the hematopoietic compartment does not impact the overall lipid content of atherosclerotic plaques, it exerts reciprocal effects on inflammation and fibrosis, two processes that control plaque vulnerability.
Collapse
Affiliation(s)
- Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Jess Porter Abate
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Tovo David
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Suneil K. Koliwad
- Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
27
|
Mansbach CM, Siddiqi S. Control of chylomicron export from the intestine. Am J Physiol Gastrointest Liver Physiol 2016; 310:G659-68. [PMID: 26950854 DOI: 10.1152/ajpgi.00228.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/22/2016] [Indexed: 01/31/2023]
Abstract
The control of chylomicron output by the intestine is a complex process whose outlines have only recently come into focus. In this review we will cover aspects of chylomicron formation and prechylomicron vesicle generation that elucidate potential control points. Substrate (dietary fatty acids and monoacylglycerols) availability is directly related to the output rate of chylomicrons. These substrates must be converted to triacylglycerol before packaging in prechylomicrons by a series of endoplasmic reticulum (ER)-localized acylating enzymes that rapidly convert fatty acids and monoacylglycerols to triacylglycerol. The packaging of the prechylomicron with triacylglycerol is controlled by the microsomal triglyceride transport protein, another potential limiting step. The prechylomicrons, once loaded with triacylglycerol, are ready to be incorporated into the prechylomicron transport vesicle that transports the prechylomicron from the ER to the Golgi. Control of this exit step from the ER, the rate-limiting step in the transcellular movement of the triacylglycerol, is a multistep process involving the activation of PKCζ, the phosphorylation of Sar1b, releasing the liver fatty acid binding protein from a heteroquatromeric complex, which enables it to bind to the ER and organize the prechylomicron transport vesicle budding complex. We propose that control of PKCζ activation is the major physiological regulator of chylomicron output.
Collapse
Affiliation(s)
- Charles M Mansbach
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| | - Shahzad Siddiqi
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| |
Collapse
|
28
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
29
|
Lipid metabolism and signaling in cardiac lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1513-24. [PMID: 26924249 DOI: 10.1016/j.bbalip.2016.02.016] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
The heart balances uptake, metabolism and oxidation of fatty acids (FAs) to maintain ATP production, membrane biosynthesis and lipid signaling. Under conditions where FA uptake outpaces FA oxidation and FA sequestration as triacylglycerols in lipid droplets, toxic FA metabolites such as ceramides, diacylglycerols, long-chain acyl-CoAs, and acylcarnitines can accumulate in cardiomyocytes and cause cardiomyopathy. Moreover, studies using mutant mice have shown that dysregulation of enzymes involved in triacylglycerol, phospholipid, and sphingolipid metabolism in the heart can lead to the excess deposition of toxic lipid species that adversely affect cardiomyocyte function. This review summarizes our current understanding of lipid uptake, metabolism and signaling pathways that have been implicated in the development of lipotoxic cardiomyopathy under conditions including obesity, diabetes, aging, and myocardial ischemia-reperfusion. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
30
|
Bowman TA, O'Keeffe KR, D'Aquila T, Yan QW, Griffin JD, Killion EA, Salter DM, Mashek DG, Buhman KK, Greenberg AS. Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol Metab 2016; 5:210-220. [PMID: 26977393 PMCID: PMC4770262 DOI: 10.1016/j.molmet.2016.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 01/03/2016] [Indexed: 11/10/2022] Open
Abstract
Objective The family of acyl-CoA synthetase enzymes (ACSL) activates fatty acids within cells to generate long chain fatty acyl CoA (FACoA). The differing metabolic fates of FACoAs such as incorporation into neutral lipids, phospholipids, and oxidation pathways are differentially regulated by the ACSL isoforms. In vitro studies have suggested a role for ACSL5 in triglyceride synthesis; however, we have limited understanding of the in vivo actions of this ACSL isoform. Methods To elucidate the in vivo actions of ACSL5 we generated a line of mice in which ACSL5 expression was ablated in all tissues (ACSL5−/−). Results Ablation of ACSL5 reduced ACSL activity by ∼80% in jejunal mucosa, ∼50% in liver, and ∼37% in brown adipose tissue lysates. Body composition studies revealed that ACSL5−/−, as compared to control ACSL5loxP/loxP, mice had significantly reduced fat mass and adipose fat pad weights. Indirect calorimetry studies demonstrated that ACSL5−/− had increased metabolic rates, and in the dark phase, increased respiratory quotient. In ACSL5−/− mice, fasting glucose and serum triglyceride were reduced; and insulin sensitivity was improved during an insulin tolerance test. Both hepatic mRNA (∼16-fold) and serum levels of fibroblast growth factor 21 (FGF21) (∼13-fold) were increased in ACSL5−/− as compared to ACSL5loxP/loxP. Consistent with increased FGF21 serum levels, uncoupling protein-1 gene (Ucp1) and PPAR-gamma coactivator 1-alpha gene (Pgc1α) transcript levels were increased in gonadal adipose tissue. To further evaluate ACSL5 function in intestine, mice were gavaged with an olive oil bolus; and the rate of triglyceride appearance in serum was found to be delayed in ACSL5−/− mice as compared to control mice. Conclusions In summary, ACSL5−/− mice have increased hepatic and serum FGF21 levels, reduced adiposity, improved insulin sensitivity, increased energy expenditure and delayed triglyceride absorption. These studies suggest that ACSL5 is an important regulator of whole-body energy metabolism and ablation of ACSL5 may antagonize the development of obesity and insulin resistance. Role of acyl CoA synthetase 5 (ACSL5) in systemic metabolism was studied in an ACSL5 deficient mouse. ACSL5 deficiency reduced total ACSL activity in liver, intestine, and brown adipose tissue. ACSL5 deficient mice had increased hepatic and circulating FGF21 expression and energy expenditure. ACSL5 deficient mice demonstrated delayed triglyceride absorption.
Collapse
Key Words
- ACSL
- ACSL, long-chain acyl-CoA synthetase
- ACSL5−/−, mice with global ablation of ACSL5
- AUC, area under the curve
- Acyl-CoA
- Dietary fat absorption
- ES, embryonic stem
- FGF21
- FGF21, fibroblast growth factor 21
- ITT, insulin tolerance test
- Intestine
- Liver
- NAFLD, non-alcoholic fatty liver disease
- PGC1α, PPAR-gamma coactivator 1α
- PPAR, peroxisome proliferator activated receptor
- RER, respiratory exchange ratio
- SDS, sodium dodecyl sulfate
- SREBP1c, steroid response element binding protein-1c
- T2DM, type2 diabetes
- UCP1, uncoupling protein-1
- VLDL, very low density lipoprotein
Collapse
Affiliation(s)
- Thomas A Bowman
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - Kayleigh R O'Keeffe
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| | - Qing Wu Yan
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - John D Griffin
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - Elizabeth A Killion
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - Deanna M Salter
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| | - Douglas G Mashek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
| | - Andrew S Greenberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
31
|
Velliquette RA, Grann K, Missler SR, Patterson J, Hu C, Gellenbeck KW, Scholten JD, Randolph RK. Identification of a botanical inhibitor of intestinal diacylglyceride acyltransferase 1 activity via in vitro screening and a parallel, randomized, blinded, placebo-controlled clinical trial. Nutr Metab (Lond) 2015; 12:27. [PMID: 26246845 PMCID: PMC4526202 DOI: 10.1186/s12986-015-0025-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/29/2015] [Indexed: 01/19/2023] Open
Abstract
Background Diacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans. Methods Twenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of 14C labeled TG synthesis in cells incubated with 14C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity. Results Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model. Conclusion These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects. Trial registration This trial was registered with ClinicalTrials.gov NCT02333461 Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0025-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodney A Velliquette
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Kerry Grann
- Nutrition Product Development, Food, Beverages and Chewables, Amway R&D, Ada, MI 49355 USA
| | - Stephen R Missler
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Jennifer Patterson
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Chun Hu
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| | - Kevin W Gellenbeck
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| | - Jeffrey D Scholten
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - R Keith Randolph
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| |
Collapse
|
32
|
Douglass JD, Zhou YX, Wu A, Zadroga JA, Gajda AM, Lackey AI, Lang W, Chevalier KM, Sutton SW, Zhang SP, Flores CM, Connelly MA, Storch J. Global deletion of MGL in mice delays lipid absorption and alters energy homeostasis and diet-induced obesity. J Lipid Res 2015; 56:1153-71. [PMID: 25842377 DOI: 10.1194/jlr.m058586] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/20/2022] Open
Abstract
Monoacylglycerol lipase (MGL) is a ubiquitously expressed enzyme that catalyzes the hydrolysis of monoacylglycerols (MGs) to yield FFAs and glycerol. MGL contributes to energy homeostasis through the mobilization of fat stores and also via the degradation of the endocannabinoid 2-arachidonoyl glycerol. To further examine the role of MG metabolism in energy homeostasis, MGL(-/-) mice were fed either a 10% (kilocalories) low-fat diet (LFD) or a 45% (kilocalories) high-fat diet (HFD) for 12 weeks. Profound increases of MG species in the MGL(-/-) mice compared with WT control mice were found. Weight gain over the 12 weeks was blunted in both diet groups. MGL(-/-) mice were leaner than WT mice at both baseline and after 12 weeks of LFD feeding. Circulating lipids were decreased in HFD-fed MGL(-/-) mice, as were the levels of several plasma peptides involved in glucose homeostasis and energy balance. Interestingly, MGL(-/-) mice had markedly reduced intestinal TG secretion following an oral fat challenge, suggesting delayed lipid absorption. Overall, the results indicate that global MGL deletion leads to systemic changes that produce a leaner phenotype and an improved serum metabolic profile.
Collapse
Affiliation(s)
- John D Douglass
- Department of Nutritional Sciences Rutgers University, New Brunswick, NJ 08901
| | - Yin Xiu Zhou
- Department of Nutritional Sciences Rutgers University, New Brunswick, NJ 08901
| | - Amy Wu
- Department of Nutritional Sciences Rutgers University, New Brunswick, NJ 08901
| | - John A Zadroga
- Department of Nutritional Sciences Rutgers University, New Brunswick, NJ 08901
| | - Angela M Gajda
- Department of Nutritional Sciences Rutgers University, New Brunswick, NJ 08901
| | - Atreju I Lackey
- Department of Nutritional Sciences Rutgers University, New Brunswick, NJ 08901
| | - Wensheng Lang
- Janssen Research & Development, LLC, Spring House, PA 19477
| | | | | | - Sui-Po Zhang
- Janssen Research & Development, LLC, Spring House, PA 19477
| | | | | | - Judith Storch
- Department of Nutritional Sciences Rutgers University, New Brunswick, NJ 08901 Rutgers Center for Lipid Research, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
33
|
Schie IW, Krafft C, Popp J. Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst 2015; 140:3897-909. [PMID: 25811305 DOI: 10.1039/c5an00178a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy and stimulated Raman scattering (SRS) microscopy are two nonlinear optical imaging modalities that are at the frontier of label-free and chemical specific biological and clinical diagnostics. The applications of coherent Raman scattering (CRS) microscopies are multifold, ranging from investigation of basic aspects of cell biology to the label-free detection of pathologies. This review summarizes recent progress of biological and clinical applications of CRS between 2008 and 2014, covering applications such as lipid droplet research, single cell analysis, tissue imaging and multiphoton histopathology of atherosclerosis, myelin sheaths, skin, hair, pharmaceutics, and cancer and surgical margin detection.
Collapse
Affiliation(s)
- Iwan W Schie
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | | | | |
Collapse
|
34
|
Lehnert K, Ward H, Berry SD, Ankersmit-Udy A, Burrett A, Beattie EM, Thomas NL, Harris B, Ford CA, Browning SR, Rawson P, Verkerk GA, van der Does Y, Adams LF, Davis SR, Jordan TW, MacGibbon AKH, Spelman RJ, Snell RG. Phenotypic population screen identifies a new mutation in bovine DGAT1 responsible for unsaturated milk fat. Sci Rep 2015; 5:8484. [PMID: 25719731 PMCID: PMC4341421 DOI: 10.1038/srep08484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/30/2014] [Indexed: 12/21/2022] Open
Abstract
Selective breeding has strongly reduced the genetic diversity in livestock species, and contemporary breeding practices exclude potentially beneficial rare genetic variation from the future gene pool. Here we test whether important traits arising by new mutations can be identified and rescued in highly selected populations. We screened milks from 2.5 million cows to identify an exceptional individual which produced milk with reduced saturated fat content, and improved unsaturated and omega-3 fatty acid concentrations. The milk traits were transmitted dominantly to her offspring, and genetic mapping and genome sequencing revealed a new mutation in a previously unknown splice enhancer of the DGAT1 gene. Homozygous carriers show features of human diarrheal disorders, and may be useful for the development of therapeutic strategies. Our study demonstrates that high-throughput phenotypic screening can uncover rich genetic diversity even in inbred populations, and introduces a novel strategy to develop novel milks with improved nutritional properties.
Collapse
Affiliation(s)
- Klaus Lehnert
- 1] ViaLactia Biosciences (NZ) Ltd., Auckland, New Zealand [2] School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hamish Ward
- ViaLactia Biosciences (NZ) Ltd., Auckland, New Zealand
| | - Sarah D Berry
- ViaLactia Biosciences (NZ) Ltd., Auckland, New Zealand
| | | | | | | | | | | | | | - Sharon R Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Pisana Rawson
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | | | - Linda F Adams
- ViaLactia Biosciences (NZ) Ltd., Auckland, New Zealand
| | | | - T William Jordan
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | | | | | - Russell G Snell
- 1] ViaLactia Biosciences (NZ) Ltd., Auckland, New Zealand [2] School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Tsuda N, Kumadaki S, Higashi C, Ozawa M, Shinozaki M, Kato Y, Hoshida K, Kikuchi S, Nakano Y, Ogawa Y, Furusako S. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice. PLoS One 2014; 9:e112027. [PMID: 25405858 PMCID: PMC4236014 DOI: 10.1371/journal.pone.0112027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022] Open
Abstract
Objective Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice. Design and Methods We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500), reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO) mice. Results The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice. Conclusions Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.
Collapse
Affiliation(s)
- Naoto Tsuda
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Shin Kumadaki
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Chika Higashi
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Makoto Ozawa
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Mikihiko Shinozaki
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yutaka Kato
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Koutarou Hoshida
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Satomi Kikuchi
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yoshihisa Nakano
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Furusako
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| |
Collapse
|
36
|
Yen CLE, Nelson DW, Yen MI. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res 2014; 56:489-501. [PMID: 25231105 DOI: 10.1194/jlr.r052902] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
37
|
Liu L, Trent CM, Fang X, Son NH, Jiang H, Blaner WS, Hu Y, Yin YX, Farese RV, Homma S, Turnbull AV, Eriksson JW, Hu SL, Ginsberg HN, Huang LS, Goldberg IJ. Cardiomyocyte-specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure. J Biol Chem 2014; 289:29881-91. [PMID: 25157099 DOI: 10.1074/jbc.m114.601864] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides. To test whether DGAT1 loss alone affects heart function, we created cardiomyocyte-specific DGAT1 knock-out (hDgat1(-/-)) mice. hDgat1(-/-) mouse hearts had 95% increased DAG and 85% increased ceramides compared with floxed controls. 50% of these mice died by 9 months of age. The heart failure marker brain natriuretic peptide increased 5-fold in hDgat1(-/-) hearts, and fractional shortening (FS) was reduced. This was associated with increased expression of peroxisome proliferator-activated receptor α and cluster of differentiation 36. We crossed hDgat1(-/-) mice with previously described enterocyte-specific Dgat1 knock-out mice (hiDgat1(-/-)). This corrected the early mortality, improved FS, and reduced cardiac ceramide and DAG content. Treatment of hDgat1(-/-) mice with the glucagon-like peptide 1 receptor agonist exenatide also improved FS and reduced heart DAG and ceramide content. Increased fatty acid uptake into hDgat1(-/-) hearts was normalized by exenatide. Reduced activation of protein kinase Cα (PKCα), which is increased by DAG and ceramides, paralleled the reductions in these lipids. Our mouse studies show that loss of DGAT1 reproduces the lipid abnormalities seen in severe human heart failure.
Collapse
Affiliation(s)
- Li Liu
- From the Divisions of Preventive Medicine and Nutrition and Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Chad M Trent
- From the Divisions of Preventive Medicine and Nutrition and
| | - Xiang Fang
- From the Divisions of Preventive Medicine and Nutrition and Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | - Ni-Huiping Son
- From the Divisions of Preventive Medicine and Nutrition and
| | - HongFeng Jiang
- From the Divisions of Preventive Medicine and Nutrition and
| | | | - Yunying Hu
- From the Divisions of Preventive Medicine and Nutrition and
| | - Yu-Xin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease and Departments of Medicine and Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Shunichi Homma
- Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | - Jan W Eriksson
- Astra-Zeneca Company, 431 50 Mölndal, Sweden, Department of Medical Sciences, Uppsala University, 751 05 Uppsala, Sweden, and
| | - Shi-Lian Hu
- Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | | | - Li-Shin Huang
- From the Divisions of Preventive Medicine and Nutrition and
| | - Ira J Goldberg
- From the Divisions of Preventive Medicine and Nutrition and Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, Division of Endocrinology, Diabetes, and Metabolism, New York University Langone School of Medicine, New York, New York 10016
| |
Collapse
|
38
|
Camp JG, Frank CL, Lickwar CR, Guturu H, Rube T, Wenger AM, Chen J, Bejerano G, Crawford GE, Rawls JF. Microbiota modulate transcription in the intestinal epithelium without remodeling the accessible chromatin landscape. Genome Res 2014; 24:1504-16. [PMID: 24963153 PMCID: PMC4158762 DOI: 10.1101/gr.165845.113] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbiota regulate intestinal physiology by modifying host gene expression along the length of the intestine, but the underlying regulatory mechanisms remain unresolved. Transcriptional specificity occurs through interactions between transcription factors (TFs) and cis-regulatory regions (CRRs) characterized by nucleosome-depleted accessible chromatin. We profiled transcriptome and accessible chromatin landscapes in intestinal epithelial cells (IECs) from mice reared in the presence or absence of microbiota. We show that regional differences in gene transcription along the intestinal tract were accompanied by major alterations in chromatin accessibility. Surprisingly, we discovered that microbiota modify host gene transcription in IECs without significantly impacting the accessible chromatin landscape. Instead, microbiota regulation of host gene transcription might be achieved by differential expression of specific TFs and enrichment of their binding sites in nucleosome-depleted CRRs near target genes. Our results suggest that the chromatin landscape in IECs is preprogrammed by the host in a region-specific manner to permit responses to microbiota through binding of open CRRs by specific TFs.
Collapse
Affiliation(s)
- J Gray Camp
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Computer Science Department, Stanford University, Stanford, California 94305, USA
| | - Christopher L Frank
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
| | - Harendra Guturu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - Tomas Rube
- Physics Department, Stanford University, Stanford, California 94305, USA
| | - Aaron M Wenger
- Computer Science Department, Stanford University, Stanford, California 94305, USA
| | - Jenny Chen
- Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Computer Science Department, Stanford University, Stanford, California 94305, USA
| | - Gregory E Crawford
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA; Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, North Carolina 27708, USA
| | - John F Rawls
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA;
| |
Collapse
|
39
|
Pasture v. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. Br J Nutr 2014; 112:520-35. [PMID: 24932525 DOI: 10.1017/s0007114514001172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dairy products derived from the milk of cows fed in pastures are characterised by higher amounts of conjugated linoleic acid and α-linolenic acid (ALA), and several studies have shown their ability to reduce cardiovascular risk. However, their specific metabolic effects compared with standard dairy in a high-fat diet (HFD) context remain largely unknown; this is what we determined in the present study with a focus on the metabolic and intestinal parameters. The experimental animals were fed for 12 weeks a HFD containing 20 % fat in the form of a pasture dairy cream (PDC) or a standard dairy cream (SDC). Samples of plasma, liver, white adipose tissue, duodenum, jejunum and colon were analysed. The PDC mice, despite a higher food intake, exhibited lower fat mass, plasma and hepatic TAG concentrations, and inflammation in the adipose tissue than the SDC mice. Furthermore, they exhibited a higher expression of hepatic PPARα mRNA and adipose tissue uncoupling protein 2 mRNA, suggesting an enhanced oxidative activity of the tissues. These results might be explained, in part, by the higher amounts of ALA in the PDC diet and in the liver and adipose tissue of the PDC mice. Moreover, the PDC diet was found to increase the proportions of two strategic cell populations involved in the protective function of the intestinal epithelium, namely Paneth and goblet cells in the small intestine and colon, compared with the SDC diet. In conclusion, a PDC HFD leads to improved metabolic outcomes and to a stronger gut barrier compared with a SDC HFD. This may be due, at least in part, to the protective mechanisms induced by specific lipids.
Collapse
|
40
|
Zhou G, Zorn N, Ting P, Aslanian R, Lin M, Cook J, Lachowicz J, Lin A, Smith M, Hwa J, van Heek M, Walker S. Development of novel benzomorpholine class of diacylglycerol acyltransferase I inhibitors. ACS Med Chem Lett 2014; 5:544-9. [PMID: 24900877 DOI: 10.1021/ml400527n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/01/2014] [Indexed: 11/30/2022] Open
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) presents itself as a potential therapeutic target for obesity and diabetes for its important role in triglyceride biosynthesis. Herein we report the rational design of a novel class of DGAT1 inhibitors featuring a benzomorpholine core (23n). SAR exploration yielded compounds with good potency and selectivity as well as reasonable physical and pharmacokinetic properties. This class of DGAT1 inhibitors was tested in rodent models to evaluate DGAT1 inhibition as a novel approach for the treatment of metabolic diseases. Compound 23n conferred weight loss and a reduction in liver triglycerides when dosed chronically in mice with diet-induced obesity and depleted serum triglycerides following a lipid challenge.
Collapse
Affiliation(s)
- Gang Zhou
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Nicolas Zorn
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Pauline Ting
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Robert Aslanian
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mingxiang Lin
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - John Cook
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jean Lachowicz
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Albert Lin
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michelle Smith
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Joyce Hwa
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Margaret van Heek
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Scott Walker
- Discovery and Preclinical
Sciences, Merck Research Laboratories, 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
41
|
Zumbusch A, Langbein W, Borri P. Nonlinear vibrational microscopy applied to lipid biology. Prog Lipid Res 2013; 52:615-32. [PMID: 24051337 DOI: 10.1016/j.plipres.2013.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/31/2013] [Indexed: 11/15/2022]
Abstract
Optical microscopy is an indispensable tool that is driving progress in cell biology. It still is the only practical means of obtaining spatial and temporal resolution within living cells and tissues. Most prominently, fluorescence microscopy based on dye-labeling or protein fusions with fluorescent tags is a highly sensitive and specific method of visualizing biomolecules within sub-cellular structures. It is however severely limited by labeling artifacts, photo-bleaching and cytotoxicity of the labels. Coherent Raman Scattering (CRS) has emerged in the last decade as a new multiphoton microscopy technique suited for imaging unlabeled living cells in real time with high three-dimensional spatial resolution and chemical specificity. This technique has proven to be particularly successful in imaging unstained lipids from artificial membrane model systems, to living cells and tissues to whole organisms. In this article, we will review the experimental implementations of CRS microscopy and their application to imaging lipids. We will cover the theoretical background of linear and non-linear vibrational micro-spectroscopy necessary for the understanding of CRS microscopy. The different experimental implementations of CRS will be compared in terms of sensitivity limits and excitation and detection methods. Finally, we will provide an overview of the applications of CRS microscopy to lipid biology.
Collapse
Affiliation(s)
- Andreas Zumbusch
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | |
Collapse
|
42
|
Liu J, Gorski JN, Gold SJ, Chen D, Chen S, Forrest G, Itoh Y, Marsh DJ, McLaren DG, Shen Z, Sonatore L, Carballo-Jane E, Craw S, Guan X, Karanam B, Sakaki J, Szeto D, Tong X, Xiao J, Yoshimoto R, Yu H, Roddy TP, Balkovec J, Pinto S. Pharmacological inhibition of diacylglycerol acyltransferase 1 reduces body weight and modulates gut peptide release--potential insight into mechanism of action. Obesity (Silver Spring) 2013; 21:1406-15. [PMID: 23671037 DOI: 10.1002/oby.20193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 11/11/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Investigation was conducted to understand the mechanism of action of diacylglycerol acyltransferase 1 (DGAT1) using small molecules DGAT1 inhibitors, compounds K and L. DESIGN AND METHODS Biochemical and stable-label tracer approaches were applied to interrogate the functional activities of compounds K and L on TG synthesis and changes of carbon flow. Energy homeostasis and gut peptide release upon DGAT1 inhibition was conducted in mouse and dog models. RESULTS Compounds K and L, dose-dependently inhibits post-prandial TG excursion in mouse and dog models. Weight loss studies in WT and Dgat1(-/-) mice, confirmed that the effects of compound K on body weight loss is mechanism-based. Compounds K and L altered incretin peptide release following oral fat challenge. Immunohistochemical studies with intestinal tissues demonstrate lack of detectable DGAT1 immunoreactivity in enteroendocrine cells. Furthermore, (13) C-fatty acid tracing studies indicate that compound K inhibition of DGAT1 increased the production of phosphatidyl choline (PC). CONCLUSION Treatment with DGAT1 inhibitors improves lipid metabolism and body weight. DGAT1 inhibition leads to enhanced PC production via alternative carbon channeling. Immunohistological studies suggest that DGAT1 inhibitor's effects on plasma gut peptide levels are likely via an indirect mechanism. Overall these data indicate a translational potential towards the clinic.
Collapse
Affiliation(s)
- Jinqi Liu
- Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Maciejewski BS, LaPerle JL, Chen D, Ghosh A, Zavadoski WJ, McDonald TS, Manion TB, Mather D, Patterson TA, Hanna M, Watkins S, Gibbs EM, Calle RA, Steppan CM. Pharmacological inhibition to examine the role of DGAT1 in dietary lipid absorption in rodents and humans. Am J Physiol Gastrointest Liver Physiol 2013; 304:G958-69. [PMID: 23558010 DOI: 10.1152/ajpgi.00384.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alterations in fat metabolism, in particular elevated plasma concentrations of free fatty acids and triglycerides (TG), have been implicated in the pathogenesis of Type 2 diabetes, obesity, and cardiovascular disease. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a member of the large family of membrane-bound O-acyltransferases, catalyzes the final step in triacylglycerol formation. In the intestine, DGAT1 is one of the acyltransferases responsible for the reesterficiation of dietary TG. Following a single dose of a selective pharmacological inhibitor of DGAT1, PF-04620110, a dose-dependent inhibition of TG and vitamin A absorption postprandially was demonstrated in rodents and human subjects. In C57/BL6J mice, acute DGAT1 inhibition alters the temporal and spatial pattern of dietary lipid absorption. To understand the impact of DGAT1 inhibition on enterocyte lipid metabolism, lipomic profiling was performed in rat intestine and plasma as well as human plasma. DGAT1 inhibition causes an enrichment of polyunsaturated fatty acids within the TG class of lipids. This pharmacological intervention gives us insight as to the role of DGAT1 in human dietary lipid absorption.
Collapse
Affiliation(s)
- Benjamin S Maciejewski
- Pfizer Worldwide Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hepatic triacylglycerol synthesis and secretion: DGAT2 as the link between glycaemia and triglyceridaemia. Biochem J 2013; 451:1-12. [PMID: 23489367 DOI: 10.1042/bj20121689] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
lThe liver regulates both glycaemia and triglyceridaemia. Hyperglycaemia and hypertriglyceridaemia are both characteristic of (pre)diabetes. Recent observations on the specialised role of DGAT2 (diacylglycerol acyltransferase 2) in catalysing the de novo synthesis of triacylglycerols from newly synthesized fatty acids and nascent diacylglycerols identifies this enzyme as the link between the two. This places DGAT2 at the centre of carbohydrate-induced hypertriglyceridaemia and hepatic steatosis. This function is complemented, but not substituted for, by the ability of DGAT1 to rescue partial glycerides from complete hydrolysis. In peripheral tissues not normally considered to be lipogenic, synthesis of triacylglycerols may largely bypass DGAT2 except in hyperglycaemic/hyperinsulinaemic conditions, when induction of de novo fatty acid synthesis in these tissues may contribute towards increased triacylglycerol secretion (intestine) or insulin resistance (adipose tissue, and cardiac and skeletal muscle).
Collapse
|
45
|
Uchida A, Slipchenko MN, Eustaquio T, Leary JF, Cheng JX, Buhman KK. Intestinal acyl-CoA:diacylglycerol acyltransferase 2 overexpression enhances postprandial triglyceridemic response and exacerbates high fat diet-induced hepatic triacylglycerol storage. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1377-85. [PMID: 23643496 DOI: 10.1016/j.bbalip.2013.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 02/06/2023]
Abstract
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2(Int) mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.
Collapse
Affiliation(s)
- Aki Uchida
- Purdue University, West Lafayette, IN, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Gao Y, Nelson DW, Banh T, Yen MI, Yen CLE. Intestine-specific expression of MOGAT2 partially restores metabolic efficiency in Mogat2-deficient mice. J Lipid Res 2013; 54:1644-1652. [PMID: 23536640 DOI: 10.1194/jlr.m035493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acyl CoA:monoacylglycerol acyltransferase (MGAT) catalyzes the resynthesis of triacylglycerol, a crucial step in the absorption of dietary fat. Mice lacking the gene Mogat2, which codes for an MGAT highly expressed in the small intestine, are resistant to obesity and other metabolic disorders induced by high-fat feeding. Interestingly, these Mogat2⁻/⁻ mice absorb normal amounts of dietary fat but exhibit a reduced rate of fat absorption, increased energy expenditure, decreased respiratory exchange ratio, and impaired metabolic efficiency. MGAT2 is expressed in tissues besides intestine. To test the hypothesis that intestinal MGAT2 enhances metabolic efficiency and promotes the storage of metabolic fuels, we introduced the human MOGAT2 gene driven by the intestine-specific villin promoter into Mogat2⁻/⁻ mice. We found that the expression of MOGAT2 in the intestine increased intestinal MGAT activity, restored fat absorption rate, partially corrected energy expenditure, and promoted weight gain upon high-fat feeding. However, the changes in respiratory exchange ratio were not reverted, and the recoveries in metabolic efficiency and weight gain were incomplete. These data indicate that MGAT2 in the intestine plays an indispensable role in enhancing metabolic efficiency but also raise the possibility that MGAT2 in other tissues may contribute to the regulation of energy metabolism.
Collapse
Affiliation(s)
- Yu Gao
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Taylor Banh
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI.
| |
Collapse
|
47
|
Schober G, Arnold M, Birtles S, Buckett LK, Pacheco-López G, Turnbull AV, Langhans W, Mansouri A. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats. J Lipid Res 2013; 54:1369-84. [PMID: 23449193 DOI: 10.1194/jlr.m035154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased β-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.
Collapse
Affiliation(s)
- Gudrun Schober
- Physiology and Behavior Laboratory, Institute of Food, Nutrition, and Health, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Diacylglycerol acyltransferase-1 (DGAT1) inhibition perturbs postprandial gut hormone release. PLoS One 2013; 8:e54480. [PMID: 23336002 PMCID: PMC3545956 DOI: 10.1371/journal.pone.0054480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/12/2012] [Indexed: 12/27/2022] Open
Abstract
Diacylglycerol acyltransferase-1 (DGAT1) is a potential therapeutic target for treatment of obesity and related metabolic diseases. However, the degree of DGAT1 inhibition required for metabolic benefits is unclear. Here we show that partial DGAT1 deficiency in mice suppressed postprandial triglyceridemia, led to elevations in glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) only following meals with very high lipid content, and did not protect from diet-induced obesity. Maximal DGAT1 inhibition led to enhanced GLP-1 and PYY secretion following meals with physiologically relevant lipid content. Finally, combination of DGAT1 inhibition with dipeptidyl-peptidase-4 (DPP-4) inhibition led to further enhancements in active GLP-1 in mice and dogs. The current study suggests that targeting DGAT1 to enhance postprandial gut hormone secretion requires maximal inhibition, and suggests combination with DPP-4i as a potential strategy to develop DGAT1 inhibitors for treatment of metabolic diseases.
Collapse
|
49
|
Uchida A, Lee HJ, Cheng JX, Buhman KK. Imaging Cytoplasmic Lipid Droplets in Enterocytes and Assessing Dietary Fat Absorption. Methods Cell Biol 2013; 116:151-66. [DOI: 10.1016/b978-0-12-408051-5.00014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Ables GP, Yang KJZ, Vogel S, Hernandez-Ono A, Yu S, Yuen JJ, Birtles S, Buckett LK, Turnbull AV, Goldberg IJ, Blaner WS, Huang LS, Ginsberg HN. Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying. J Lipid Res 2012; 53:2364-79. [PMID: 22911105 PMCID: PMC3466005 DOI: 10.1194/jlr.m029041] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 catalyzes the final step of triglyceride (TG) synthesis. We show that acute administration of a DGAT1 inhibitor (DGAT1i) by oral gavage or genetic deletion of intestinal Dgat1 (intestine-Dgat1(-/-)) markedly reduced postprandial plasma TG and retinyl ester excursions by inhibiting chylomicron secretion in mice. Loss of DGAT1 activity did not affect the efficiency of retinol esterification, but it did reduce TG and retinoid accumulation in the small intestine. In contrast, inhibition of microsomal triglyceride transfer protein (MTP) reduced chylomicron secretion after oral fat/retinol loads, but with accumulation of dietary TG and retinoids in the small intestine. Lack of intestinal accumulation of TG and retinoids in DGAT1i-treated or intestine-Dgat1(-/-) mice resulted, in part, from delayed gastric emptying associated with increased plasma levels of glucagon-like peptide (GLP)-1. However, neither bypassing the stomach through duodenal oil injection nor inhibiting the receptor for GLP-1 normalized postprandial TG or retinyl esters excursions in the absence of DGAT1 activity. In summary, intestinal DGAT1 inhibition or deficiency acutely delayed gastric emptying and inhibited chylomicron secretion; however, the latter occurred when gastric emptying was normal or when lipid was administered directly into the small intestine. Long-term hepatic retinoid metabolism was not impacted by DGAT1 inhibition.
Collapse
Affiliation(s)
- Gene P Ables
- Department of Medicine, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|