1
|
Kim DY, Oh S, Ko HS, Park S, Jeon YJ, Kim J, Yang DK, Park KW. Sesamolin suppresses adipocyte differentiation through Keap1-dependent Nrf2 activation in adipocytes. Nutr Res 2024; 128:14-23. [PMID: 39002358 DOI: 10.1016/j.nutres.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 07/15/2024]
Abstract
Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.
Collapse
Affiliation(s)
- Da-Young Kim
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Seungjun Oh
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Hae-Sun Ko
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea
| | - Sanghee Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
2
|
Lee NR, Kwon TJ, Chung EC, Bae J, Soung SH, Tak HJ, Choi JY, Lee YE, Won Hwang N, Lee JS, Shin KJ, Lee CH, Kim K, Kim S. Combination of Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 attenuates fat accumulation and alters the metabolome and gut microbiota in mice with high-fat diet-induced obesity. Food Funct 2024; 15:647-662. [PMID: 38099933 DOI: 10.1039/d3fo03557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This study evaluated the effects of formulations with Lacticaseibacillus paracasei BEPC22 and Lactiplantibacillus plantarum BELP53 on adiposity, the alteration of microbiota, and the metabolome in high-fat diet-fed mice. The strains were selected based on their fat and glucose absorption inhibitory activities and potential metabolic interactions. The optimal ratio of the two strains in the probiotic formulation was determined based on their adipocyte differentiation inhibitory activities. Treatment of formulations with BEPC22 and BELP53 for 10 weeks decreased body weight gain at 6 weeks; it also decreased the food efficiency ratio, white adipose tissue volume, and adipocyte size. Moreover, it decreased the expression of the lipogenic gene Ppar-γ in the liver, while significantly increasing the expression of the fat oxidation gene Ppar-α in the white adipose tissue. Notably, treatment with a combination of the two strains significantly reduced the plasma levels of the obesity hormone leptin and altered the microbiota and metabolome. The omics data also indicated the alteration of anti-obesity microbes and metabolites such as Akkermansia and indolelactic acid, respectively. These findings suggest that treatment with a combination of BEPC22 and BELP53 exerts synergistic beneficial effects against obesity.
Collapse
Affiliation(s)
- Na-Rae Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea.
| | - Eui-Chun Chung
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Jaewoong Bae
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Song-Hui Soung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05209, Republic of Korea
| | - Hyun-Ji Tak
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05209, Republic of Korea
| | - Jun-Young Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea.
| | - Young-Eun Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Nak Won Hwang
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Jong Seo Lee
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Kum-Joo Shin
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| | - Choong Hwan Lee
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05209, Republic of Korea
| | - KilSoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea.
- College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu 41566, Korea
| | - Seokjin Kim
- R&D Center, Hecto Healthcare Co., Ltd, Seoul 06142, Republic of Korea.
| |
Collapse
|
3
|
Maisto M, Marzocchi A, Keivani N, Piccolo V, Summa V, Tenore GC. Natural Chalcones for the Management of Obesity Disease. Int J Mol Sci 2023; 24:15929. [PMID: 37958912 PMCID: PMC10648025 DOI: 10.3390/ijms242115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In the last decade, the incidence of obesity has increased dramatically worldwide, reaching a dangerous pandemic spread. This condition has serious public health implications as it significantly increases the risk of chronic diseases such as type 2 diabetes, fatty liver, hypertension, heart attack, and stroke. The treatment of obesity is therefore the greatest health challenge of our time. Conventional therapeutic treatment of obesity is based on the use of various synthetic molecules belonging to the class of appetite suppressants, lipase inhibitors, hormones, metabolic regulators, and inhibitors of intestinal peptide receptors. The long-term use of these molecules is generally limited by various side effects and tolerance. For this reason, the search for natural alternatives to treat obesity is a current research goal. This review therefore examined the anti-obesity potential of natural chalcones based on available evidence from in vitro and animal studies. In particular, the results of the main in vitro studies describing the principal molecular therapeutic targets and the mechanism of action of the different chalcones investigated were described. In addition, the results of the most relevant animal studies were reported. Undoubtedly, future clinical studies are urgently needed to confirm and validate the potential of natural chalcones in the clinical prophylaxis of obesity.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 59, 80131 Naples, Italy; (A.M.); (N.K.); (V.P.); (V.S.); (G.C.T.)
| | | | | | | | | | | |
Collapse
|
4
|
Seo MJ, Won SM, Kwon MJ, Song JH, Lee EB, Cho JH, Park KW, Yoon JH. Screening of lactic acid bacteria with anti-adipogenic effect and potential probiotic properties from grains. Sci Rep 2023; 13:11022. [PMID: 37419937 PMCID: PMC10329024 DOI: 10.1038/s41598-023-36961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
A total of 187 lactic acid bacteria were isolated from four types of grains collected in South Korea. The bacterial strains were assigned as members of Levilactobacillus brevis, Latilactobacillus curvatus, Lactiplantibacillus plantarum, Lactococcus taiwanensis, Pediococcus pentosaceus, and Weissella paramesenteroides based on the closest similarity using 16S rRNA gene sequence analysis. The strains belonging to the same species were analyzed using RAPD-PCR, and one or two among strains showing the same band pattern were selected. Finally, 25 representative strains were selected for further functional study. Inhibitory effects of lipid accumulation were observed in the strains tested. Pediococcus pentosaceus K28, Levilactobacillus brevis RP21 and Lactiplantibacillus plantarum RP12 significantly reduced lipid accumulation and did not show cytotoxicity in C3H10T1/2 cells at treatment of 1-200 μg/mL. The three LAB strains decreased significantly expression of six adipogenic marker genes, PPARγ, C/EBPα, CD36, LPL, FAS and ACC, in C3H10T1/2 adipocytes. The three strains survived under strong acidity and bile salt conditions. The three strains showed adhesion to Caco-2 cells similar to a reference strain LGG. The resistance of the three strains to several antibiotics was also assessed. Strains RP12 and K28 were confirmed not to produce harmful enzymes based on API ZYM kit results. Based on these results, strains K28, RP21 and RP12 isolated from grains had the ability to inhibit adipogenesis in adipocytes and potentially be useful as probiotics.
Collapse
Affiliation(s)
- Min Ju Seo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sung-Min Won
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Min Ju Kwon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Ji Hyeon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Eun Bee Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jun Hyeong Cho
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Song B, Wang J, Ren Y, Su Y, Geng X, Yang F, Wang H, Zhang J. Butein inhibits cancer cell growth by rescuing the wild-type thermal stability of mutant p53. Biomed Pharmacother 2023; 163:114773. [PMID: 37156116 DOI: 10.1016/j.biopha.2023.114773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023] Open
Abstract
p53 is a transcription factor that activates the expression of various genes involved in the maintenance of genomic stability, and more than 50% of cancers harbor inactivating p53 mutations, which are indicative of highly aggressive cancer and poor prognosis. Pharmacological targeting of mutant p53 to restore the wild-type p53 tumor-suppressing function is a promising strategy for cancer therapy. In this study, we identified a small molecule, Butein, that reactivates mutant p53 activity in tumor cells harboring the R175H or R273H mutation. Butein restored wild-type-like conformation and DNA-binding ability in HT29 and SK-BR-3 cells harboring mutant p53-R175H and mutant p53-R273H, respectively. Moreover, Butein enabled the transactivation of p53 target genes and decreased the interactions of Hsp90 with mutant p53-R175H and mutant p53-R273H proteins, while Hsp90 overexpression reversed targeted p53 gene activation. In addition, Butein induced thermal stabilization of wild-type p53, mutant p53-R273H and mutant p53-R175H, as determined via CETSA. From docking study, we further proved that Butein binding to p53 stabilized the DNA-binding loop-sheet-helix motif of mutant p53-R175H and regulated its DNA-binding activity via an allosteric mechanism, conferring wild-type-like the DNA-binding activity of mutant p53. Collectively, the data suggest that Butein is a potential antitumor agent that restores p53 function in cancers harboring mutant p53-R273H or mutant p53-R175H. SIGNIFICANCE: Butein restores the ability of mutant p53 to bind DNA by reversing its transition to the Loop3 (L3) state, endows p53 mutants with thermal stability and re-establishes their transcriptional activity to induce cancer cell death.
Collapse
Affiliation(s)
- Bin Song
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Jiajian Wang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yixin Ren
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Yongnan Su
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Xueye Geng
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Fan Yang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Wang
- School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Jihong Zhang
- Lab of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Province Clinical Research Center for Hematologic Disease, Kunming 650032, China.
| |
Collapse
|
6
|
Rehman M, Chaudhary R, Rajput S, Agarwal V, Kaushik AS, Srivastava S, Srivastava S, Singh R, Aziz I, Singh S, Mishra V. Butein Ameliorates Chronic Stress Induced Atherosclerosis via Targeting Anti-inflammatory, Anti-fibrotic and BDNF Pathways. Physiol Behav 2023; 267:114207. [PMID: 37100219 DOI: 10.1016/j.physbeh.2023.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023]
Abstract
Chronic stress is a major risk factor for various diseases, including cardiovascular diseases (CVDs). Chronic stress enhances the release of pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α, making individuals susceptible to atherosclerosis which is dominant cause for CVDs. In present study, we validated a mouse model of chronic unpredictable stress (CUS), and assessed the characteristic features of atherosclerosis in thoracic aortas of CUS mice. The CUS procedure consisted of exposing groups of mice to random stressors daily for 10-weeks. The stress response was verified by presence of depressive-like behaviors and increased serum corticosterone in mice which was determined by battery of behavioural tests (SPT, EPMT, NSFT) and ELISA, respectively. Atherosclerosis parameters in CUS mice were evaluated by lipid indices estimation followed by histological assessment of plaque deposition and fibrosis in thoracic aorta. Further, we assessed the efficacy of a polyphenol, i.e. Butein in conferring protection against chronic stress-induced atherosclerosis and the possible mechanism of action. Butein (20mg/kg x 28 days, alternatively, i.p.) was administered to CUS mice after 6-weeks of CUS exposure till the end of the protocol. Butein treatment decreased peripheral IL-1β and enhanced peripheral as well as central BDNF levels. Histological assessment revealed decreased macrophage expression and reduced fibrosis in thoracic aorta of Butein treated mice. Further, treatment with Butein lowered lipid indices in CUS mice. Our findings thus, suggest that 10-weeks of CUS induce characteristic features of atherosclerosis in mice and Butein can offer protection in CUS-induced atherosclerosis through multiple mechanisms including anti-inflammatory, antifibrotic and anti-adipogenic actions.
Collapse
Affiliation(s)
- Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Sonu Rajput
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India
| | - Rohit Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Irfan Aziz
- Integral University, Kursi road, Lucknow, Uttar Pradesh 226026, India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India.
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025(.) India.
| |
Collapse
|
7
|
Lamichhane G, Pandeya PR, Lamichhane R, Rhee SJ, Devkota HP, Jung HJ. Anti-Obesity Potential of Ponciri Fructus: Effects of Extracts, Fractions and Compounds on Adipogenesis in 3T3-L1 Preadipocytes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030676. [PMID: 35163941 PMCID: PMC8839251 DOI: 10.3390/molecules27030676] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ponciri Fructus, a crude drug consisting of the dried immature fruits of Poncirus trifoliata (L.) Raf., is a popular folk medicine used for the treatment of allergy and gastrointestinal disorders in Korea and China. In this study, the anti-adipogenic activity of extracts and isolated compounds were evaluated using 3T3-L1 preadipocytes. METHODS Dried immature fruits were extracted and fractionated into n-hexane, ethyl acetate (EtOAc), n-butanol and water-soluble fractions. The ethanol extract and fractions were tested for anti-adipogenic activity in the 3T3-L1 cell line. The active fractions (n-hexane and EtOAc fractions) were further subjected to chromatographic techniques to isolate and identify active compounds. Furthermore, the isolated compounds were evaluated for their anti-adipogenic activity. RESULTS Altogether, seven compounds, including two flavonoids, one phytosteroid and four coumarin derivatives, were isolated. Ethanol extract, n-hexane fraction, EtOAc fraction and three isolated compounds (phellopterin, oxypeucedanin and poncirin) showed significant anti-adipogenic activity as observed by reduced lipid deposition in differentiated 3T3-L1 cells. Further, oxypeucedanin downregulated the key adipogenic markers, such as peroxisome proliferator-activated receptors proteins γ (PPAR-γ), sterol response element binding proteins-1 (SREBP-1), CCAAT/enhancer binding proteins-α (C/EBP-α), adipocyte-specific lipid binding proteins (FABP-4), adipocyte fatty acid binding proteins (aP2), lipoprotein lipase (LPL) and leptin. CONCLUSION This study indicated that the ethanol extract, hexane fraction and ethyl acetate fraction of P. trifoliata fruits possess strong anti-adipogenic activity, containing the active compounds such as phellopterin, oxypeucedanin and poncirin. Further research is recommended to explore their efficacy and safety in animal and clinical models.
Collapse
Affiliation(s)
- Gopal Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Korea; (G.L.); (P.R.P.); (R.L.)
| | - Prakash Raj Pandeya
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Korea; (G.L.); (P.R.P.); (R.L.)
| | - Ramakanta Lamichhane
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Korea; (G.L.); (P.R.P.); (R.L.)
| | - Su-jin Rhee
- Department of Pharmacy, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto 862-0973, Japan;
| | - Hyun-Ju Jung
- Department of Oriental Pharmacy and Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 570-749, Korea; (G.L.); (P.R.P.); (R.L.)
- Correspondence: ; Tel.: +82-63-850-6814
| |
Collapse
|
8
|
Annie-Mathew AS, Prem-Santhosh S, Jayasuriya R, Ganesh G, Ramkumar KM, Sarada DVL. The pivotal role of Nrf2 activators in adipocyte biology. Pharmacol Res 2021; 173:105853. [PMID: 34455076 DOI: 10.1016/j.phrs.2021.105853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
Adipose tissue is instrumental in maintaining metabolic homeostasis by regulating energy storage in the form of triglycerides. In the case of over-nutrition, adipocytes favorably regulate lipogenesis over lipolysis and accumulate excess triglycerides, resulting in increased adipose tissue mass. An abnormal increase in hypertrophic adipocytes is associated with chronic complications such as insulin resistance, obesity, diabetes, atherosclerosis and nonalcoholic fatty liver disease. Experimental studies indicate the occurrence of oxidative stress in the pathogenesis of obesity. A common underlying link between increasing adipose tissue mass and oxidative stress is the Nuclear Factor Erythroid 2-related factor 2 (Nrf2), Keap1-Nrf2-ARE signaling, which plays an indispensable role in metabolic homeostasis by regulating oxidative and inflammatory responses. Additionally, Nrf2 also activates CCAAT/enhancer-binding protein α, (C/EBP-α), C/EBP-β and peroxisome proliferator-activated receptor γ (PPARγ) the crucial pro-adipogenic factors that promote de novo adipogenesis. Hence, at the forefront of research is the quest for prospecting novel compounds to modulate Nrf2 activity in the context of adipogenesis and obesity. This review summarizes the molecular mechanism behind the activation of the Keap1-Nrf2-ARE signaling network and the role of Nrf2 activators in adipocyte pathophysiology.
Collapse
Affiliation(s)
- A S Annie-Mathew
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Subramanian Prem-Santhosh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Goutham Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India; SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - D V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Yun UJ, Nho CW, Park KW, Yang DK. Hexane Extract of Chloranthus japonicus Increases Adipocyte Differentiation by Acting on Wnt/β-Catenin Signaling Pathway. Life (Basel) 2021; 11:life11030241. [PMID: 33804020 PMCID: PMC7999792 DOI: 10.3390/life11030241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
Chloranthus japonicus has been heavily investigated for the treatment of various diseases. This paper attempts to show that Chloranthus japonicus can modulate adipocyte differentiation of preadipocytes. To establish this, we investigated the effects of Chloranthus japonicus extract in peroxisome proliferator-activated receptor γ (PPARγ) expression, adipogenesis, and the underlying molecular mechanisms in C3H10T1/2 and 3T3-L1 cells. Our data showed that Chloranthus japonicus methanol extract increased lipid accumulation and promoted adipocyte differentiation. Further studies on the fractionation with various solvents led to the identification of Chloranthus japonicus hexane extract (CJHE) as the most potent inducer of adipocyte differentiation. CJHE consistently increased lipid accumulation and adipocyte marker expression including Pparγ and it acted during the early stages of adipocyte differentiation. Mechanistic studies revealed that CJHE and a Wnt inhibitor similarly stimulated adipogenesis and were active in Wnt-selective reporter assays. The effects of CJHE were inhibited by Wnt3a protein treatment and were significantly blunted in β-catenin-silenced cells, further suggesting that CJHE acted on Wnt pathways to promote adipogenesis. We also showed that Chloranthus japonicus extracts generated from different plant parts similarly promoted adipocyte differentiation. These results identified Chloranthus japonicus as a pro-adipogenic natural product and suggest its potential use in metabolic syndrome.
Collapse
Affiliation(s)
- Ui Jeong Yun
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea;
| | - Chu Won Nho
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, Gangwon-do 25451, Korea;
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (K.W.P.); (D.K.Y.)
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do 54596, Korea
- Correspondence: (K.W.P.); (D.K.Y.)
| |
Collapse
|
10
|
Efficacy of a Novel Herbal Formulation (F2) on the Management of Obesity: In Vitro and In Vivo Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8854915. [PMID: 33628322 PMCID: PMC7884115 DOI: 10.1155/2021/8854915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/23/2022]
Abstract
Background Currently, obesity and its comorbidities have become a serious threat to human health necessitating urgent development of safe and effective therapy for their management. Materials and Methods In this research, a novel polyherbal formulation (F2) was prepared by mixing specific proportions of royal jelly and lemon juice with ethanol extracts of Orostachys japonicus, Rhus verniciflua, and Geranium thunbergii. The antioxidant activity was assessed using DPPH and ABTS assay methods. The antiobesity potential of the F2 was assessed in vitro using 3T3-L1 fibroblast and in vivo using a high-fat diet (HFD) fed C57BL/6J mice model. F2 was administered in mice at the dose of 23 mg/kg and 46 mg/kg, twice daily by oral gavage. A well-accepted antiobesity agent, Garcinia cambogia (GC), at 200 mg/kg was used as a positive control. Results F2 was observed to exhibit synergistic antiadipogenic activity in 3T3-L1 cells. This inhibition was reinforced by the downregulation of specific adipogenic transcription factors. Furthermore, F2 was also found to reduce mice body weight gain, food efficiency ratio, fasting blood glucose level, fat deposition into the liver, and mass of white adipose tissue. F2 also played a role in the excretion of fat consumed by the mice. For most of the assays performed, the F2 (46 mg/kg) was comparable to the positive control GC (200 mg/kg). In addition, potential and synergistic antioxidant activity was observed on F2. Conclusion The results revealed that the formulation F2 exhibited potential antiobesity activity through the inhibition of adipocyte differentiation, dietary fat absorption, and reduction of free fatty acids deposition in tissues.
Collapse
|
11
|
Shin E, Jin H, Suh D, Luo Y, Ha H, Kim TH, Hahn Y, Hyun S, Lee K, Bae J. An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2. EMBO J 2020; 39:e104719. [PMID: 33215742 PMCID: PMC7737606 DOI: 10.15252/embj.2020104719|] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.
Collapse
Affiliation(s)
| | - Hanyong Jin
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Dae‐Shik Suh
- Department of Obstetrics and GynecologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Yongyang Luo
- School of PharmacyChung‐Ang UniversitySeoulKorea
| | - Hye‐Jeong Ha
- School of PharmacyChung‐Ang UniversitySeoulKorea
| | - Tae Heon Kim
- Department of PathologyBundang CHA HospitalCHA UniversitySeongnamKorea
| | - Yoonsoo Hahn
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Seogang Hyun
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kangseok Lee
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Jeehyeon Bae
- School of PharmacyChung‐Ang UniversitySeoulKorea
| |
Collapse
|
12
|
Shin E, Jin H, Suh D, Luo Y, Ha H, Kim TH, Hahn Y, Hyun S, Lee K, Bae J. An alternative miRISC targets a cancer-associated coding sequence mutation in FOXL2. EMBO J 2020; 39:e104719. [PMID: 33215742 PMCID: PMC7737606 DOI: 10.15252/embj.2020104719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.
Collapse
Affiliation(s)
| | - Hanyong Jin
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Dae‐Shik Suh
- Department of Obstetrics and GynecologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Yongyang Luo
- School of PharmacyChung‐Ang UniversitySeoulKorea
| | - Hye‐Jeong Ha
- School of PharmacyChung‐Ang UniversitySeoulKorea
| | - Tae Heon Kim
- Department of PathologyBundang CHA HospitalCHA UniversitySeongnamKorea
| | - Yoonsoo Hahn
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Seogang Hyun
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Kangseok Lee
- Department of Life ScienceChung‐Ang UniversitySeoulKorea
| | - Jeehyeon Bae
- School of PharmacyChung‐Ang UniversitySeoulKorea
| |
Collapse
|
13
|
Lactobacillus sakei ADM14 Induces Anti-Obesity Effects and Changes in Gut Microbiome in High-Fat Diet-Induced Obese Mice. Nutrients 2020; 12:nu12123703. [PMID: 33266101 PMCID: PMC7761388 DOI: 10.3390/nu12123703] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of our study was to evaluate the anti-obesity effects of Lactobacillus sakei (L. sakei) ADM14 administration in a high-fat diet-induced obese mouse model and the resulting changes in the intestinal microbiota. Prior to in vivo testing, L. sakei ADM14 was shown to inhibit adipogenesis through in vitro test and genetic analysis. Subsequently, mice were orally administered 0.85% saline supplemented or not with L. sakei ADM14 to high-fat diet group and normal diet group daily. The results showed that administration of L. sakei ADM14 reduced weight gain, epididymal fat expansion, and total blood cholesterol and glucose levels, and significantly decreased expression of lipid-related genes in the epididymal fat pad. Administration of L. sakei ADM14 showed improvement in terms of energy harvesting while restoring the Firmicutes to Bacteroidetes ratio and also increased the relative abundance of specific microbial taxa such as Bacteroides faecichinchillae and Alistipes, which are abundant in non-obese people. L. sakei ADM14 affected the modulation of gut microbiota, altered the strain profile of short-chain fatty acid production in the cecum and enhanced the stimulation of butyrate production. Overall, L. sakei ADM14 showed potential as a therapeutic probiotic supplement for metabolic disorders, confirming the positive changes of in vivo indicators and controlling gut microbiota in a high-fat diet-induced obese mouse model.
Collapse
|
14
|
Fermented Rhus Verniciflua Stokes Extract Alleviates Nonalcoholic Fatty Liver through the AMPK/SREBP1/PCSK9 Pathway in HFD-Induced Nonalcoholic Fatty Liver Animal Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: We have previously reported the anti-hepatic lipogenic effect of fermented Rhus verniciflua stokes extract (FRVE) in an oleic-acid-treated HepG2 cell model. Methods: Herein, we advanced our understanding and evaluated the impact of FRVE in HFD-fed C57BL/6 mice using an animal model of nonalcoholic fatty liver disease (NAFLD). Milk thistle extract was used as a positive control to compare the effects of FRVE. Results: FRVE decreased body weight, intra-abdominal fat weight, and liver weight. Furthermore, FRVE decreased HFD-induced elevated serum levels of ALT, AST, TC, and TG, and downregulated the increase in hepatic lipid accumulation and TG levels. FRVE reduced hepatic SREBP-1, PCSK-9, SREBP-2, and ApoB mRNA levels. IHC data showed that FRVE reduced the levels of nucleic SREBP-1, increased the levels of LDLR, and upregulated the expression of p-AMPK. Conclusion: Overall, these results demonstrate the anti-hepatic lipidemic effect of FRVE in an animal model. These findings are consistent with our previous study and strongly suggest that FRVE exerts anti-hepatic lipogenic effects by activating AMPK.
Collapse
|
15
|
Farias-Pereira R, Zhang Z, Park CS, Kim D, Kim KH, Park Y. Butein inhibits lipogenesis in Caenorhabditis elegans. Biofactors 2020; 46:777-787. [PMID: 32663368 DOI: 10.1002/biof.1667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 12/20/2022]
Abstract
Butein, a flavonoid found in annatto seeds and lacquer trees, may be used for many health benefits, including the prevention of obesity. However, its anti-obesity effects are not completely understood; in particular, the effects of butein on the regulation of lipid metabolism have not been explained. Thus, the goal of the current study was to determine the effects of butein on lipid metabolism in Caenorhabditis elegans, which is a multi-organ nematode used as an animal model in obesity research. Butein at 70 μM reduced triglyceride content by 27% compared to the control without altering food intake and energy expenditure. The reduced triglyceride content by butein was associated with the downregulation of sbp-1, fasn-1, and fat-7, the lipogenesis-related homologs of sterol regulatory element-binding proteins, fatty acid synthase and stearoyl-CoA desaturase, respectively. Furthermore, fat-7 and skn-1, a homolog of nuclear respiratory factors, were identified as genetic requirements for butein's effects on triglyceride content in C. elegans. The effects of butein on sbp-1 and fasn-1 were dependent on skn-1, but the downregulation of fat-7 was independent of skn-1. These results suggest that the inhibitory effects of butein on lipogenesis are via SKN-1- and FAT-7-dependent pathways in C. elegans.
Collapse
Affiliation(s)
| | - Zhenyu Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts, USA
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
16
|
Wang T, Mei J, Li X, Xu X, Ma B, Li W. A novel tsRNA-16902 regulating the adipogenic differentiation of human bone marrow mesenchymal stem cells. Stem Cell Res Ther 2020; 11:365. [PMID: 32831139 PMCID: PMC7444066 DOI: 10.1186/s13287-020-01882-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/18/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Transfer RNA-derived small RNAs (tsRNAs) are a recently discovered form of non-coding RNA capable of regulating myriad physiological processes. The role of tsRNAs in hMSC adipogenic differentiation, however, remains incompletely understood. The purpose of this study was to identify the novel tsRNA-16902 as a regulator of hMSC adipogenic differentiation. METHODS In this study, we conducted transcriptomic sequencing of hMSCs after inducing their adipogenic differentiation, and we were thereby able to clarify the molecular mechanism underlying the role of tsRNA-16902 in this context via a series of molecular biology methods. RESULTS When we knocked down tsRNA-16902 expression, this impaired hMSC adipogenic differentiation and associated marker gene expression. Bioinformatics analyses further revealed tsRNA-16902 to target retinoic acid receptor γ (RARγ). Luciferase reporter assays also confirmed the ability of tsRNA-16902 to bind to the RARγ 3'-untranslated region. Consistent with this, RARγ overexpression led to impaired hMSC adipogenesis. Further analyses revealed that Smad2/3 phosphorylation was increased in cells that either overexpressed RARγ or in which tsRNA-16902 had been knocked down. We also assessed the adipogenic differentiation of hMSCs in which tsRNA-16902 was knocked down and at the same time a Smad2/3 inhibitor was added to disrupt Smad2/3 phosphorylation. The adipogenic differentiation of hMSCs in which tsRNA-16902 was knocked down was further enhanced upon the addition of a Smad2/3 signaling inhibitor relative to tsRNA-16902 knockdown alone. CONCLUSIONS Through a comprehensive profiling analysis of tsRNAs that were differentially expressed in the context of hMSC adipogenic differentiation, we were able to identify tsRNA-16902 as a previously uncharacterized regulator of adipogenesis. tsRNA-16902 is able to regulate hMSC adipogenic differentiation by targeting RARγ via the Smad2/3 signaling pathway. Together, our results may thus highlight novel strategies of value for treating obesity.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China.
| | - Jun Mei
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Xingnuan Li
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China
| | - Baicheng Ma
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China.
| | - Weidong Li
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, China.
| |
Collapse
|
17
|
Prabhu DS, Rajeswari VD. PPAR-Gamma as putative gene target involved in Butein mediated anti-diabetic effect. Mol Biol Rep 2020; 47:5273-5283. [PMID: 32642916 DOI: 10.1007/s11033-020-05605-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/20/2020] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused due to varied genetic and lifestyle factors. The search for a potential natural compound to enhance the treatment of diabetes is the need of the hour. Butein, a flavonoid, found sufficiently in Faba bean, is said to possess an anti-diabetic property. In-silico analysis, Butein is predicted as a potential anti-diabetic compound, due to its regulatory action on PPAR-Gamma. Based on this evidence, the Butein's anti-diabetic action is studied in diabetic induced rat models. The drug property of Butein is studied through in-silico analysis to determine the metabolic properties. In animal models, the biochemical analysis, histopathological and gene expression against PPAR-Gamma were studied comparatively. Butein being a hydrophobic compound, the bioavailability is said to be minimum. Hence, Butein formulation was made using biopolymer Chitosan for the synergistic anti-diabetic action. The Butein Chitosan formulation was optimized and characterized using analytical techniques. Further, the anti-diabetic activity of Butein and Butein Chitosan formulation was studied in diabetic induced rats. The obtained in-silico analysis results showed that Butein is the most favorable drug. Apparently, in the rat model, Butein and Butein Chitosan formulation effectively controlled the blood glucose levels without any side effects. The histopathological observations of the tissue samples showed nontoxic activity. Additionally, the gene expression analysis predicted the possible mechanism of anti-diabetic action exhibited through the down regulation of PPAR-Gamma. Whereas, the Butein Chitosan formulation failed, to show synergetic anti-diabetic activity as expected. This study is vital in introducing Butein as a safe anti-diabetic compound, which can be used in the treatment of T2DM.
Collapse
Affiliation(s)
- D Sathya Prabhu
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632 014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
18
|
Roh K, Lee JH, Kang H, Park KW, Song Y, Lee S, Ku JM. Synthesis and evaluation of butein derivatives for in vitro and in vivo inflammatory response suppression in lymphedema. Eur J Med Chem 2020; 197:112280. [PMID: 32361286 DOI: 10.1016/j.ejmech.2020.112280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
Herein, we demonstrate that butein (1) can prevent swelling in a murine lymphedema model by suppressing tumor necrosis factor α (TNF-α) production. Butein derivatives were synthesized and evaluated to identify compounds with in vitro anti-inflammatory activity. Among them, 20 μM of compounds 7j, 7m, and 14a showed 50% suppression of TNF-α production in mouse peritoneal macrophages after lipopolysaccharide stimulation. Compound 14a, exhibited the strongest potency with an in vitro IC50 of 14.6 μM and suppressed limb volume by 70% in a murine lymphedema model. The prodrug strategy enabled a six-fold increase in kinetic solubility of compound 1 and five-fold higher levels of active metabolite in the blood for compound 14a via oral administration in the pharmacokinetics study. We suggest that the compound 14a could be developed as a potential therapeutic agent targeting anti-inflammatory activity to alleviate lymphedema progression.
Collapse
Affiliation(s)
- Kangsan Roh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Hun Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, 147 Gwanggyo-ro, Suwon, 16229, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jin-Mo Ku
- Bio-Center, Gyeonggido Business & Science Accelerator, 147 Gwanggyo-ro, Suwon, 16229, Republic of Korea.
| |
Collapse
|
19
|
Lee DH, Chang SH, Yang DK, Song NJ, Yun UJ, Park KW. Sesamol Increases Ucp1 Expression in White Adipose Tissues and Stimulates Energy Expenditure in High-Fat Diet-Fed Obese Mice. Nutrients 2020; 12:nu12051459. [PMID: 32443555 PMCID: PMC7284577 DOI: 10.3390/nu12051459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Sesamol found in sesame oil has been shown to ameliorate obesity by regulating lipid metabolism. However, its effects on energy expenditure and the underlying molecular mechanism have not been clearly elucidated. In this study, we show that sesamol increased the uncoupling protein 1 (Ucp1) expression in adipocytes. The administration of sesamol in high-fat diet (HFD)-fed mice prevented weight gain and improved metabolic derangements. The three-week sesamol treatment of HFD-fed mice, when the body weights were not different between the sesamol and control groups, increased energy expenditure, suggesting that an induced energy expenditure is a primary contributing factor for sesamol’s anti-obese effects. Consistently, sesamol induced the expression of energy-dissipating thermogenic genes, including Ucp1, in white adipose tissues. The microarray analysis showed that sesamol dramatically increased the Nrf2 target genes such as Hmox1 and Atf3 in adipocytes. Moreover, 76% (60/79 genes) of the sesamol-induced genes were also regulated by tert-butylhydroquinone (tBHQ), a known Nrf2 activator. We further verified that sesamol directly activated the Nrf2-mediated transcription. In addition, the Hmox1 and Ucp1 induction by sesamol was compromised in Nrf2-deleted cells, indicating the necessity of Nrf2 in the sesamol-mediated Ucp1 induction. Together, these findings demonstrate the effects of sesamol in inducing Ucp1 and in increasing energy expenditure, further highlighting the use of the Nrf2 activation in stimulating thermogenic adipocytes and in increasing energy expenditure in obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Dong Ho Lee
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do 54596, Korea;
| | - No-Joon Song
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
- Correspondence: ; Tel.: +82-031-290-7804; Fax: +82-031-290-7882
| |
Collapse
|
20
|
Won SM, Chen S, Park KW, Yoon JH. Isolation of lactic acid bacteria from kimchi and screening of Lactobacillus sakei ADM14 with anti-adipogenic effect and potential probiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109296] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Butein Promotes Lineage Commitment of Bone Marrow-Derived Stem Cells into Osteoblasts via Modulating ERK1/2 Signaling Pathways. Molecules 2020; 25:molecules25081885. [PMID: 32325749 PMCID: PMC7221720 DOI: 10.3390/molecules25081885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 01/16/2023] Open
Abstract
Butein is a phytochemical that belongs to the chalcone family of flavonoids and has antitumor, anti-inflammatory, and anti-osteoclastic bone resorption activities. This study aims to investigate the effects of butein on the differentiation potential of mouse primary bone marrow-derived mesenchymal stem cells (mBMSCs) into osteoblast and adipocyte lineages. Primary cultures of mBMSCs are treated with different doses of butein during its differentiation. Osteoblast differentiation is assessed by alkaline phosphatase (ALP) activity quantification and Alizarin red staining for matrix mineralization, while adipogenesis is assessed by quantification of lipid accumulation using Oil Red O staining. Osteoblastic and adipocytic gene expression markers are determined by quantitative real-time PCR (qPCR). Western blot analysis is used to study the activation of extracellular signal-regulated kinase (ERK1/2). Interestingly, butein promotes the lineage commitment of mBMSCs into osteoblasts, while suppressing their differentiation into adipocytes in a dose-dependent manner. A similar effect of butein is confirmed in human (h) primary BMSCs. Occurring at the molecular level, butein significantly upregulates the mRNA expression of osteoblast-related genes, while downregulating the expression of adipocyte-related genes. The mechanism of butein-induced osteogenesis is found to be mediated by activating the ERK1/2 signaling pathway. To conclude, we identify butein as a novel nutraceutical compound with an osteo-anabolic activity to promote the lineage commitment of BMSCs into osteoblast versus adipocyte. Thus, butein can be a plausible therapeutic drug for enhancing bone formation in osteoporotic patients.
Collapse
|
22
|
Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, Zhao S, Chen W, Zhou R, Li Z, Bai C. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112172. [PMID: 31442619 DOI: 10.1016/j.jep.2019.112172] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora alopecuroides L., which is called Kudouzi in China, is a medicinal plant distributed in Western and Central Asia, especially in China, and has been used for decades to treat fever, bacterial infection, heart disease, rheumatism, and gastrointestinal diseases. AIM OF THE REVIEW This review aims to provide up-to-date information on S. alopecuroides, including its botanical characterization, medicinal resources, traditional uses, phytochemistry, pharmacological research, and toxicology, in exploring future therapeutic and scientific potentials. MATERIALS AND METHODS The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations, and other web sources, such as the official website of Flora of China and Yao Zhi website (https://db.yaozh.com/). RESULTS A total of 128 compounds, such as alkaloids, flavonoids, steroids, and polysaccharides, were isolated from S. alopecuroides. Among these compounds, the effects of alkaloids, such as matrine and oxymatrine, were extensively studied and developed into new drugs. S. alopecuroides and its active components had a wide range of pharmacological activities, such as anticancer, antiviral, anti-inflammatory, antimicrobial, analgesic, and neuroprotective functions, as well as protective properties against pulmonary fibrosis and cardiac fibroblast proliferation. CONCLUSIONS As an important traditional Chinese medicine, modern pharmacological studies have demonstrated that S. alopecuroides has prominent bioactivities, especially on gynecological inflammation and hepatitis B, and anticancer activities. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the comprehensive evaluation, quality control, understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of S. alopecuroides require further detailed research.
Collapse
Affiliation(s)
- Ruizhou Wang
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xinxin Deng
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Qixia Gao
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Xiuli Wu
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Lu Han
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xiaojuan Gao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Shipeng Zhao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Weibin Chen
- Ningxia Doushun Biological Technology Co., Ltd., Yanchi, 751500, PR China
| | - Rongrong Zhou
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Zhiyong Li
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| | - Changcai Bai
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China.
| |
Collapse
|
23
|
Abstract
Butein is a plant flavonoid chalcone, with presumed anti-adipogenic properties. It was reported to impair preadipocyte differentiation, limit adipose tissue (AT) development and enhance white AT browning in rodents. In this study, we investigated the hypothesis that these effects of butein may occur via reduction of ADAMTS5 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 5) expression. Murine 3T3-L1 or 3T3-F442A preadipocytes were differentiated into mature adipocytes in the presence of butein or vehicle. At regular time intervals RNA was collected for gene expression studies. Male hemizygous mice for Tg(Ucp1-luc2,-tdTomato)1Kajim (ThermoMouse) were exposed to butein or vehicle, after which ATs were analyzed for Adamts5 and uncoupling protein-1 (Ucp-1) mRNA level changes. During preadipocyte differentiation, butein (25 – 50 mM) did not affect Adamts5 or Ucp-1 expression. Oil Red O analysis and monitoring of differentiation markers failed to demonstrate effects of butein on the differentiation extent. Furthermore, butein administration to the ThermoMouse (10 or 20 mg/kg, 4 days) or to the C57BL6/Rj mice (20 mg/kg, 4 weeks) did not enhance Adamts5 or Ucp-1 expression. Thus, we could not demonstrate marked effects of butein on the preadipocyte differentiation extent or AT development and browning, nor on Adamts5 or Ucp-1 gene expression during these processes.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Christine Vranckx
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Dries Bauters
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - H. Roger Lijnen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Ilse Scroyen
- Department Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Choi JH, Song NJ, Lee AR, Lee DH, Seo MJ, Kim S, Chang SH, Yang DK, Hwang YJ, Hwang KA, Ha TS, Yun UJ, Park KW. Oxyresveratrol Increases Energy Expenditure through Foxo3a-Mediated Ucp1 Induction in High-Fat-Diet-Induced Obese Mice. Int J Mol Sci 2018; 20:ijms20010026. [PMID: 30577593 PMCID: PMC6337118 DOI: 10.3390/ijms20010026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
The phytochemical oxyresveratrol has been shown to exert diverse biological activities including prevention of obesity. However, the exact reason underlying the anti-obese effects of oxyresveratrol is not fully understood. Here, we investigated the effects and mechanism of oxyresveratrol in adipocytes and high-fat diet (HFD)-fed obese mice. Oxyresveratrol suppressed lipid accumulation and expression of adipocyte markers during the adipocyte differentiation of 3T3-L1 and C3H10T1/2 cells. Administration of oxyresveratrol in HFD-fed obese mice prevented body-weight gains, lowered adipose tissue weights, improved lipid profiles, and increased glucose tolerance. The anti-obese effects were linked to increases in energy expenditure and higher rectal temperatures without affecting food intake, fecal lipid content, and physical activity. The increased energy expenditure by oxyresveratrol was concordant with the induction of thermogenic genes including Ucp1, and the reduction of white adipocyte selective genes in adipose tissue. Furthermore, Foxo3a was identified as an oxyresveratrol-induced gene and it mimicked the effects of oxyresveratrol for induction of thermogenic genes and suppression of white adipocyte selective genes, suggesting the role of Foxo3a in oxyresveratrol-mediated anti-obese effects. Taken together, these data show that oxyresveratrol increases energy expenditure through the induction of thermogenic genes in adipose tissue and further implicates oxyresveratrol as an ingredient and Foxo3a as a molecular target for the development of functional foods in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Jin Hee Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - A Reum Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Dong Ho Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Min-Ju Seo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Suji Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do 54596, Korea.
| | - Yu-Jin Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, RDA, Wanju-Gun, Jeollabuk-do 55365, Korea.
| | - Kyung-A Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, RDA, Wanju-Gun, Jeollabuk-do 55365, Korea.
| | - Tal Soo Ha
- Department of Life Science, Deagu University, Gyeongsan, Gyeongsangbuk-do 38453, Korea.
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea.
| |
Collapse
|
25
|
Atf3 induction is a therapeutic target for obesity and metabolic diseases. Biochem Biophys Res Commun 2018; 504:903-908. [PMID: 30224057 DOI: 10.1016/j.bbrc.2018.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Activating transcription factor 3 (Atf3) has been previously demonstrated to impact obesity and metabolism. However, a metabolic role of Atf3 in mice remains debatable. We investigated the role of Atf3 in mice and further investigated Atf3 expression as a therapeutic target for obesity and metabolic diseases. Atf3 knockout (KO) mice fed with a high fat diet (HFD) aggravated weight gain and impaired glucose metabolism compared to littermate control wild type (WT) mice. Atf3 KO aged mice fed with a chow diet (CD) for longer than 10 months also displayed increased body weight and fat mass compared to WT aged mice. We also assessed requirements of Atf3 in a phytochemical mediated anti-obese effect. Effect of sulfuretin, a previously known phytochemical Atf3 inducer, in counteracting weight gain and improving glucose tolerance was almost completely abolished in the absence of Atf3, indicating that Atf3 induction can be a molecular target for preventing obesity and metabolic diseases. We further identified other Atf3 small molecule inducers that exhibit inhibitory effects on lipid accumulation in adipocytes. These data highlight the role of Atf3 in obesity and further suggest the use of chemical Atf3 inducers for prevention of obesity and metabolic diseases.
Collapse
|
26
|
Chang SH, Yun UJ, Choi JH, Kim S, Lee AR, Lee DH, Seo MJ, Panic V, Villanueva CJ, Song NJ, Park KW. Identification of Phf16 and Pnpla3 as new adipogenic factors regulated by phytochemicals. J Cell Biochem 2018; 120:3599-3610. [PMID: 30272815 DOI: 10.1002/jcb.27637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023]
Abstract
Adipocyte differentiation is controlled by multiple signaling pathways. To identify new adipogenic factors, C3H10T1/2 adipocytes were treated with previously known antiadipogenic phytochemicals (resveratrol, butein, sulfuretin, and fisetin) for 24 hours. Commonly regulated genes were then identified by transcriptional profiling analysis. Three genes (chemokine (C-X-C motif) ligand 1 [ Cxcl1], heme oxygenase 1 [ Hmox1], and PHD (plant homeo domain) finger protein 16 [ Phf16]) were upregulated while two genes (G0/G1 switch gene 2 [ G0s2] and patatin-like phospholipase domain containing 3 [ Pnpla3]) were downregulated by these four antiadipogenic compounds. Tissue expression profiles showed that the G0s2 and Pnpla3 expressions were highly specific to adipose depots while the other three induced genes were ubiquitously expressed with significantly higher expression in adipose tissues. While Cxcl1 expression was decreased, expressions of the other four genes were significantly increased during adipogenic differentiation of C3H10T1/2 cells. Small interfering RNA-mediated knockdown including Phf16 and Pnpla3 indicated that these genes might play regulatory roles in lipid accumulation and adipocyte differentiation. Specifically, the silencing of two newly identified adipogenic genes, Phf16 or Pnpla3, suppressed lipid accumulation and expression of adipocyte markers in both 3T3-L1 and C3H10T1/2 cells. Taken together, these data showed previously uncovered roles of Phf16 and Pnpla3 in adipogenesis, highlighting the potential of using phytochemicals for further investigation of adipocyte biology.
Collapse
Affiliation(s)
- Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Jin Hee Choi
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Suji Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - A Reum Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Dong Ho Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Min-Ju Seo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Vanja Panic
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Claudio J Villanueva
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
27
|
PI3Ka-Akt1-mediated Prdm4 induction in adipose tissue increases energy expenditure, inhibits weight gain, and improves insulin resistance in diet-induced obese mice. Cell Death Dis 2018; 9:876. [PMID: 30158592 PMCID: PMC6115456 DOI: 10.1038/s41419-018-0904-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Stimulation of white adipose tissue (WAT) browning is considered as a potential approach to treat obesity and metabolic diseases. Our previous studies have shown that phytochemical butein can stimulate WAT browning through induction of Prdm4 in adipocytes. Here, we investigated the effects of butein on diet-induced obesity and its underlying molecular mechanism. Treatment with butein prevented weight gains and improved metabolic profiles in diet-induced obese mice. Butein treatment groups also displayed higher body temperature, increased energy expenditure, and enhanced expression of thermogenic genes in adipose tissue. Butein also suppressed body weight gains and improved glucose and insulin tolerance in mice housed at thermoneutrality (30 °C). These effects were associated with adipose-selective induction of Prdm4, suggesting the role of Prdm4 in butein-mediated anti-obese effects. To directly assess the in vivo role of Prdm4, we generated aP2-Prdm4 transgenic mouse lines overexpressing Prdm4 in adipose tissues. Adipose-specific transgenic expression of Prdm4 recapitulated the butein’s actions in stimulating energy expenditure, cold tolerance, and thermogenic gene expression, resulting in prevention of obesity and improvement of metabolism. Mechanistically, direct inhibition of PI3Kα activity followed by selective suppression of its downstream Akt1 mirrored butein’s effect on Ucp1 expression and oxygen consumption. In addition, effects of butein were completely abolished in Akt1 KO mouse embryonic fibroblasts. Together, these studies demonstrate the role of butein in obesity and metabolic diseases, further highlighting that adipose PI3Kα–Akt1–Prdm4 axis is a regulator of energy expenditure.
Collapse
|
28
|
Liao W, Liu J, Zhang D, Huang W, Chen R. Butein Inhibited In Vitro Hexokinase-2-Mediated Tumor Glycolysis in Hepatocellular Carcinoma by Blocking Epidermal Growth Factor Receptor (EGFR). Med Sci Monit 2018; 24:3283-3292. [PMID: 29777095 PMCID: PMC5987617 DOI: 10.12659/msm.906528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Anaerobic glycolysis is an important physiological process of all cancer cells. Butein has been reported to demonstrate substantial antitumor activities in various cancers. However, the effect of butein on tumor glycolysis remains unclear. In this study, the effect of butein on tumor glycolysis and the underlying mechanism were investigated in hepatocellular carcinoma (HCC). MATERIAL AND METHODS Cell proliferation assay and anchorage-independent growth assay were carried out to evaluate the antitumor activities of butein in vitro. The effect of butein on tumor glycolysis was determined by examining the changes in glucose uptake and lactate production. Hexokinase-2 (HK-2) expression in HCC cells upon butein treatment was analyzed by Western blotting. The activity of butein on EGFR signaling pathway was studied and its potency in EGFR exogenous overexpression cells was investigated. RESULTS After butein treatment, HCC cell proliferation was significantly inhibited (91.4% in Hep3B and 88.2% in Huh-7 at 80 μM, p<0.001). Moreover, the number of colonies formed in the agar was substantially decreased (93.8% in Hep3B and 72.3% in Huh-7 at 80 μM, p<0.001). With the suppression of HK-2 expression, glucose consumption in Hep3B and Huh-7 cells decreased by 48.4% and 56.3%, respectively (p<0.01), and the lactate production also was reduced accordingly (39.5% in Hep3B and 48.6% in Huh-7, p<0.01). Mechanism investigations demonstrated that butein dose-dependently blocked the activation of the EGFR signaling pathway in HCC cells. In EGFR exogenous overexpression cells, the glycolysis suppression exerted by butein was substantially attenuated. CONCLUSIONS Butein has a substantial inhibitory effect on tumor glycolysis in HCC cells, and the glycolysis suppression exerted by butein is closely related to its effect on the EGFR signaling pathway.
Collapse
Affiliation(s)
- Weirong Liao
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| | - Jingtian Liu
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| | - Dawei Zhang
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| | - Wenhai Huang
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| | - Runhao Chen
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| |
Collapse
|
29
|
Zhou Y, Wang K, Zhou N, Huang T, Zhu J, Li J. Butein activates p53 in hepatocellular carcinoma cells via blocking MDM2-mediated ubiquitination. Onco Targets Ther 2018; 11:2007-2015. [PMID: 29670376 PMCID: PMC5898589 DOI: 10.2147/ott.s160119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Introduction In this study, we aimed to investigate the effect of butein on p53 in hepatocellular carcinoma (HCC) cells and the related molecular mechanisms by which p53 was activated. Methods MTS assay and clonogenic survival assay were used to examine the antitumor activity of butein in vitro. Reporter gene assay was adopted to evaluate p53 transcriptional activity. Flow cytometry and western blotting were performed to study apoptosis induction and protein expression respectively. Xenograft model was applied to determine the in vivo efficacy and the expression of p53 in tumor tissue was detected by immunohistochemistry. Results HCC cell proliferation and clonogenic survival were significantly inhibited after butein treatment. With the activation of cleaved-PARP and capsase-3, butein induced apoptosis in HCC cells in a dose-dependent manner. The transcriptional activity of p53 was substantially promoted by butein, and the expression of p53-targeted gene was increased accordingly. Mechanism studies demonstrated that the interaction between MDM2 and p53 was blocked by butein and MDM2-mediated p53 ubiquitination was substantially decreased. Short-hairpin RNA experiment results showed that the sensitivity of HCC cells to butein was substantially impaired after p53 was knocked down and butein-induced apoptosis was dramatically decreased. In vivo experiments validated substantial antitumor efficacy of butein against HepG2 xenograft growth, and the expression of p53 in butein-treated tumor tissue was significantly increased. Conclusion Butein demonstrated potent antitumor activities in HCC by activating p53, and butein or its analogs had therapeutic potential for HCC management.
Collapse
Affiliation(s)
- Yuanfeng Zhou
- Institute of Cell Biology, Zhejiang University, Hangzhou, People's Republic of China.,Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People's Republic of China
| | - Kuifeng Wang
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People's Republic of China
| | - Ni Zhou
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People's Republic of China
| | - Tingting Huang
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People's Republic of China
| | - Jiansheng Zhu
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People's Republic of China
| | - Jicheng Li
- Institute of Cell Biology, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
30
|
Yang J, Sung J, Kim Y, Jeong HS, Lee J. Inhibitory Effects of Butein on Adipogenesis through Upregulation of the Nrf2/HO-1 Pathway in 3T3-L1 Adipocytes. Prev Nutr Food Sci 2017; 22:306-311. [PMID: 29333383 PMCID: PMC5758094 DOI: 10.3746/pnf.2017.22.4.306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/05/2017] [Indexed: 01/17/2023] Open
Abstract
Butein is reported to have many biological effects, including anti-fibrogenic, anti-cancer, and anti-inflammatory activities. This study investigated the effects of butein on adipocyte differentiation and the Nrf2/heme oxygenase-1 (HO-1) pathway’s involvement in its anti adipogenic mechanism. Butein treatment reduced protein expression of key adipogenic transcription factors such as CCAAT-enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). At a concentration of 5, 10, and 25 μM butein, PPARγ was decreased by 78.8, 68.3, and 31.4% and C/EBPα by 87.3, 71.7, and 42.1%, respectively. Butein also increased Nrf2 and HO-1 protein expression in a dose-dependent manner. Treatment with zinc protoporphyrin, a specific HO-1 inhibitor, abolished the inhibitory effects of butein on adipogenic transcription factor protein expression. Therefore, butein inhibits adipogenesis, at least partially, through upregulation of the Nrf-2/HO-1 signaling pathway in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Jinwoo Yang
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Chungbuk 28644, Korea
| | - Jeehye Sung
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Chungbuk 28644, Korea
| | - Younghwa Kim
- School of Food Biotechnology and Nutrition, Kyungsung University, Busan 48434, Korea
| | - Heon Sang Jeong
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Chungbuk 28644, Korea
| | - Junsoo Lee
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Chungbuk 28644, Korea
| |
Collapse
|
31
|
Yesmin Simu S, Ahn S, Castro-Aceituno V, Yang DC. Ginsenoside Rg5: Rk1 Exerts an Anti-obesity Effect on 3T3-L1 Cell Line by the Downregulation of PPARγ and CEBPα. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:252-259. [PMID: 29845077 DOI: 10.15171/ijb.1517] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Background: Obesity, a global health problem and a chronic disease, is associated with increased risk of developing type 2 diabetes and coronary heart diseases. A wide variety of natural remedies have been explored for their obesity treatment potential. Objective: The anti-adipogenic effect of ginsenoside Rg5:Rk1 (Rg5:Rk1) on 3T3-L1 mature adipocytes was investigated. Materials and Methods: To elucidate the anti-obesity effect of Rg5:Rk1, a mixture of protopanaxadiol type ginsenosides isolated from Panax ginseng Meyer in a 3T3-L1 adipocytes. In order to determine the anti-obesity effect of Rg5:Rk1, based on oil Red O Staining, triglyceride (TG) content in adipose cells was assessed. Furthermore, to elucidate the possible mechanism of Rg5:RK1 effect on lipid accumulation, mRNA and protein expression analyses of adipocyte markers such as STAT3, PPARγ, CBEPα and ap2 were carried out. Results: Rg5:Rk1 treatment showed an inhibition of lipid droplet accumulation and decrease of TG content. In addition, expression of STAT3, PPARγ, CEBPα and ap2 were decreased in a dose dependent manner. Similarly, the Rg5:Rk1 treatment reduced PPARγ and CEBPα protein expression. Conclusion: Rg5:Rk1 treatment exhibits anti-adipogenic activity by down-regulation of the STAT3/ PPARg/CEBPa signaling pathway in 3T3-L1 adipocyte cell line.
Collapse
Affiliation(s)
- Shakina Yesmin Simu
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Veronica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
32
|
Novel α, β-Unsaturated Sophoridinic Derivatives: Design, Synthesis, Molecular Docking and Anti-Cancer Activities. Molecules 2017; 22:molecules22111967. [PMID: 29135958 PMCID: PMC6150263 DOI: 10.3390/molecules22111967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
Using sophoridine 1 and chalcone 3 as the lead compounds, a series of novel α, β-unsaturated sophoridinic derivatives were designed, synthesized, and evaluated for their in vitro cytotoxicity. Structure-activity relationship (SAR) analysis indicated that introduction of α, β-unsaturated ketone moiety and heterocyclic group might significantly enhance anticancer activity. Among the compounds, 2f and 2m exhibited potential effects against HepG-2 and CNE-2 human cancer cell lines. Furthermore, molecular docking studies were performed to understand possible docking sites of the molecules on the target proteins and the mode of binding. This work provides a theoretical basis for structural optimizations and exploring anticancer pathways of this kind of compound.
Collapse
|
33
|
Lim Y, Sung J, Yang J, Jeong HS, Lee J. Butein inhibits adipocyte differentiation by modulating the AMPK pathway in 3T3-L1 cells. J Food Biochem 2017. [DOI: 10.1111/jfbc.12441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yongrae Lim
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Jeehye Sung
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Jinwoo Yang
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Heon Sang Jeong
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| | - Junsoo Lee
- Division of Food and Animal Sciences; Chungbuk National University; Cheongju Chungbuk Korea
| |
Collapse
|
34
|
Song NJ, Chang SH, Li DY, Villanueva CJ, Park KW. Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Exp Mol Med 2017; 49:e353. [PMID: 28684864 PMCID: PMC5565954 DOI: 10.1038/emm.2017.70] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/25/2016] [Accepted: 12/30/2016] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a central metabolic organ that controls energy homeostasis of the whole body. White adipose tissue (WAT) stores excess energy in the form of triglycerides, whereas brown adipose tissue (BAT) dissipates energy in the form of heat through mitochondrial uncoupling protein 1 (Ucp1). A newly identified adipose tissue called 'beige fat' (BAT-like) is produced through a process called WAT browning. This tissue mainly resides in WAT depots and displays intermediate characteristics of both WAT and BAT. Since the recent discovery of BAT in the human body, along with the identification of molecular targets for BAT activation, stimulating energy expenditure has been considered as a great strategy to treat human obesity and metabolic diseases. Here we summarize recent findings regarding molecular targets and thermogenic small molecules that can stimulate BAT and increase energy expenditure, with an emphasis on possible therapeutic applications in humans.
Collapse
Affiliation(s)
- No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
35
|
Sulfuretin has therapeutic activity against acquired lymphedema by reducing adipogenesis. Pharmacol Res 2017; 121:230-239. [DOI: 10.1016/j.phrs.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/30/2023]
|
36
|
Padmavathi G, Roy NK, Bordoloi D, Arfuso F, Mishra S, Sethi G, Bishayee A, Kunnumakkara AB. Butein in health and disease: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:118-127. [PMID: 28190465 DOI: 10.1016/j.phymed.2016.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/03/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The risk of suffering from many chronic diseases seems to have made no improvement despite the advancement in medications available in the modern world. Moreover, the use of synthetic chemicals as medications has proved to worsen the scenario due to the various adverse side effects associated with them. PURPOSE Extensive research on natural medicines provides ample evidence on the safety and efficacy of phytochemicals and nutraceuticals against diverse chronic ailments. Therefore, it is advisable to use natural products in the management of such diseases. This article aims to present a comprehensive and critical review of known pharmacological and biological effects of butein, an important chalcone polyphenol first isolated from Rhus verniciflua Stokes, implicated in the prevention and treatment of various chronic disease conditions. METHODS An extensive literature search was conducted using PubMed, ScienceDirect, Scopus and Web of ScienceTM core collections using key words followed by evaluation of the bibliographies of relevant articles. RESULTS Butein has been preclinically proven to be effective against several chronic diseases because it possesses a wide range of biological properties, including antioxidant, anti-inflammatory, anticancer, antidiabetic, hypotensive and neuroprotective effects. Furthermore, it has been shown to affect multiple molecular targets, including the master transcription factor nuclear factor-κB and its downstream molecules. Moreover, since it acts on multiple pathways, the chances of non-responsiveness and resistance development is reduced, supporting the use of butein as a preferred treatment option. CONCLUSION Based on numerous preclinical studies, butein shows significant therapeutic potential against various diseases. Nevertheless, well-designed clinical studies are urgently needed to validate the preclinical findings.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, West Australia 6009, Australia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India.
| |
Collapse
|
37
|
Wang Z, Ka SO, Lee Y, Park BH, Bae EJ. Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice. Eur J Pharmacol 2017; 799:201-210. [PMID: 28213287 DOI: 10.1016/j.ejphar.2017.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023]
Abstract
Adipose tissue inflammation and oxidative stress are key components in the development of obesity and insulin resistance. Heme oxygenase (HO)-1 in adipocytes protects against obesity and adipose dysfunction. In this study, we report the identification of butein, a flavonoid chalcone, as a novel inducer of HO-1 expression in adipocytes in vitro and in vivo. Butein upregulated HO-1 mRNA and protein expression in 3T3-L1 adipocytes, accompanied by Kelch-Like ECH-Associated Protein (Keap) 1 degradation and increase in the nuclear level of nuclear factor erythroid 2-related factor 2 (Nrf2). Butein modulation of Keap1 and Nrf2 as well as HO-1 upregulation was reversed by pretreatment with p38 MAPK inhibitor SB203580, indicating the involvement of p38 MAPK in butein activation of Nrf2 in adipocytes. In addition, HO-1 activation by butein led to the inhibitions of reactive oxygen species and adipocyte differentiation, as evidenced by the fact that butein repression of reactive oxygen species and adipogenesis was reversed by pretreatment with HO-1 inhibitor SnPP. Induction of HO-1 expression by butein was also demonstrated in the adipose tissue of C57BL/6 mice fed a high-fat diet administered along with butein for three weeks, and correlated with the inhibitions of adiposity and adipose tissue inflammation, which were reversed by co-administration of SnPP. Altogether, our results demonstrate that butein activates the p38 MAPK/Nrf2/HO-1 pathway to act as a potent inhibitor of adipose hypertrophy and inflammation in a diet-induced obesity model and thus has potential for suppressing obesity-linked metabolic syndrome.
Collapse
Affiliation(s)
- Zheng Wang
- College of Pharmacy, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sun-O Ka
- Chonbuk National University Medical School, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Youngyi Lee
- Chonbuk National University Medical School, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Byung-Hyun Park
- Chonbuk National University Medical School, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
38
|
Song NJ, Kim S, Jang BH, Chang SH, Yun UJ, Park KM, Waki H, Li DY, Tontonoz P, Park KW. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation. PLoS One 2016; 11:e0162228. [PMID: 27611793 PMCID: PMC5017651 DOI: 10.1371/journal.pone.0162228] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/21/2016] [Indexed: 11/18/2022] Open
Abstract
Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes.
Collapse
Affiliation(s)
- No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Suji Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Byung-Hyun Jang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Moon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
| | - Hironori Waki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113–8655, Japan
| | - Dean Y. Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT, 84112, United States of America
| | - Peter Tontonoz
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Korea
- * E-mail:
| |
Collapse
|
39
|
Yun UJ, Song NJ, Yang DK, Kwon SM, Kim K, Kim S, Jo DG, Park WJ, Park KW, Kang H. miR-195a inhibits adipocyte differentiation by targeting the preadipogenic determinator Zfp423. J Cell Biochem 2016; 116:2589-97. [PMID: 25903991 DOI: 10.1002/jcb.25204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/15/2015] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in various cellular processes including proliferation and differentiation. In this study, we identified miRNA-195a (miR-195a) as a regulator of adipocyte differentiation. Differential expression of miR-195a in preadipocytes and adipocytes suggests its role in lipid accumulation and adipocyte differentiation. Forced expression of miR-195a mimics suppressed lipid accumulation and inhibited expression of adipocyte markers such as PPARγ and aP2 in 3T3-L1 and C3H10T1/2 cells. Conversely, downregulation of miR-195a by anti-miR-195a increased lipid accumulation and expression of adipocyte markers. Target prediction analysis suggested zinc finger protein 423 (Zfp423), a preadipogenic determinator, as a potential gene recognized by miR-195a. In line with this, mimicked expression of miR-195a reduced the expression of Zfp423, whereas anti-miR-195a increased its expression. Predicted targeting sequences in Zfp423 3'UTR, but not mutated sequences fused to luciferase, were regulated by miR-195a. Ectopic Zfp423 expression in 3T3-L1 cells increased lipid accumulation and expression of adipocyte markers, consistent with the observation that miR-195a targets Zfp423, resulting in suppressed adipocyte differentiation. In addition, miR-195a and Zfp423 were inversely correlated in obese fat tissues, raising the possibility of miRNA's role in obesity. Together, our data show that miR-195a is an anti-adipogenic regulator, which acts by targeting Zfp423, and further suggest the roles of miR-195a in obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ui Jeong Yun
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Dong Kwon Yang
- Icahn School of Medicine at Mount Sinai, New York, USA.,College of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - So-Mi Kwon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Kwangho Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Jin Park
- College of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| |
Collapse
|
40
|
Prdm4 induction by the small molecule butein promotes white adipose tissue browning. Nat Chem Biol 2016; 12:479-81. [PMID: 27159578 PMCID: PMC4912433 DOI: 10.1038/nchembio.2081] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 03/17/2016] [Indexed: 01/19/2023]
Abstract
Increasing the thermogenic activity of adipocytes holds promise as an approach to combating human obesity and its related metabolic diseases. We identified PR domain containing 4 (Prdm4) induction by the small molecule butein as a means to induce uncoupling protein 1 expression, increase energy expenditure, and stimulate the generation of thermogenic adipocytes. This study highlights a Prdm4-dependent pathway, modulated by small molecules, that stimulates white adipose tissue browning.
Collapse
|
41
|
Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:122. [PMID: 27121110 PMCID: PMC4848824 DOI: 10.1186/s12906-016-1103-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/21/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Rhus verniciflua Stokes (RVS) belongs to the Anacardiaceae family and traditionally used for cancer treatment. RVS and butein, a major compound of RVS, were known to induce apoptosis via AKT inhibition in cancer cells. Thus, in this study, we investigated the effect of RVS and its derivative compounds (fisetin, quercetin, butein) on cell death in SKOV-3/PAX cells. METHODS The 80 % ethanol extract of RVS and its derivative compounds (fisetin, quercetin, butein) were prepared. The cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Apoptotic cells were detected by staining with propidium iodide (PI) and Annexin V-fluorescein isothiocyanate/7-aminoactinomycin D (Annexin V-FITC/7-AAD). The expression level of intracellular signaling related-proteins in apoptosis and growth were measured by western blot assay. RESULTS We found that RVS and butein suppressed the growth of SKOV-3/PAX cells in a dose-dependent manner. We also found that RVS and butein produced the cleavage of caspase-9, -8, -3, and PARP. Similarly, sub-G1 phase and Annexin V-FITC positive cells were increased by RVS and butein. Moreover, RVS and butein significantly reduced AKT phosphorylation in SKOV-3/PAX cells. PI3K inhibitor LY294002 caused PARP cleavage supporting our finding. CONCLUSION Our data clearly indicate that RVS and butein induce apoptosis of SKOV-3/PAX cells through inhibition of AKT activation. RVS and butein could be useful compounds for the treatment for paclitaxel resistant-ovarian cancer.
Collapse
|
42
|
Antiadipogenic and proosteogenic effects of luteolin, a major dietary flavone, are mediated by the induction of DnaJ (Hsp40) Homolog, Subfamily B, Member 1. J Nutr Biochem 2016; 30:24-32. [DOI: 10.1016/j.jnutbio.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
|
43
|
Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation. Sci Rep 2016; 6:19377. [PMID: 26786165 PMCID: PMC4726366 DOI: 10.1038/srep19377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Notch signaling pathways modulate various cellular processes, including cell proliferation, differentiation, adhesion, and communication. Recent studies have demonstrated that Notch1 signaling also regulates hepatic glucose production and lipid synthesis. However, the effect of Notch1 signaling on hepatic lipid oxidation has not yet been directly investigated. To define the function of Notch1 signaling in hepatic lipid metabolism, wild type mice and Notch1 deficient antisense transgenic (NAS) mice were fed a high-fat diet. High-fat diet -fed NAS mice exhibited a marked reduction in hepatic triacylglycerol accumulation compared with wild type obese mice. The improved fatty liver was associated with an increased expression of hepatic genes involved in fatty acid oxidation. However, lipogenic genes were not differentially expressed in the NAS liver, suggesting lipolytic-specific regulatory effects by Notch1 signaling. Expression of fatty acid oxidative genes and the rate of fatty acid oxidation were also increased by inhibition of Notch1 signaling in HepG2 cells. In addition, similar regulatory effects on lipid accumulation were observed in adipocytes. Taken together, these data show that inhibition of Notch1 signaling can regulate the expression of fatty acid oxidation genes and may provide therapeutic strategies in obesity-induced hepatic steatosis.
Collapse
|
44
|
Abstract
Natural compounds isolated from various plant sources have been used for therapeutic purpose for centuries. These compounds have been routinely used for the management of various chronic ailments and have gained considerable attention because of their significant efficacy and comparatively low side effects. Butein, a chacolnoid compound that has been isolated from various medicinal plants has exhibited a wide range of beneficial pharmacological effects, such as anti-inflammatory, anticancer, antioxidant, and anti-angiogenic in diverse disease models. This article briefly summarizes the past published literature related to the therapeutic and protective effects of butein, as demonstrated in various models of human chronic diseases. Further analysis of its important cellular targets, toxicity, and pharmacokinetic profile may further significantly expand its therapeutic application.
Collapse
|
45
|
Park YK, Hong VS, Lee TY, Lee J, Choi JS, Park DS, Park GY, Jang BC. The novel anti-adipogenic effect and mechanisms of action of SGI-1776, a Pim-specific inhibitor, in 3T3-L1 adipocytes. Int J Mol Med 2015; 37:157-64. [PMID: 26719859 DOI: 10.3892/ijmm.2015.2415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
The proviral integration site for moloney murine leukemia virus (Pim) kinases, consisting of Pim-1, Pim-2 and Pim-3, belongs to a family of serine/threonine kinases that are involved in controlling cell growth and differentiation. Pim kinases are emerging as important mediators of adipocyte differentiation. SGI-1776, an inhibitor of Pim kinases, is widely used to assess the physiological roles of Pim kinases, particularly cell functions. In the present study, we examined the effects of SGI-1776 on adipogenesis. The anti‑adipogenic effect of SGI‑1776 was measured by Oil Red O staining and AdipoRed assays. The effect of SGI‑1776 on the growth of 3T3‑L1 adipocytes was determined by cell count analysis. The effects of SGI‑1776 on the protein and mRNA expression of adipogenesis-related proteins and adipokines in 3T3‑L1 adipocytes were also evaluated by western blot analysis and RT‑PCR, respectively. Notably, SGI-1776 markedly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. On a mechanistic level, SGI-1776 inhibited not only the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ) and fatty acid synthase (FAS), but also the phosphorylation of signal transducer and activator of transcription-3 (STAT-3). Moreover, SGI-1776 decreased the expression of adipokines, including the expression of leptin and regulated on activation, normal T cell expressed and secreted (RANTES) during adipocyte differentiation. These findings demonstrate that SGI-1776 inhibits adipogenesis by downregulating the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS and STAT-3.
Collapse
Affiliation(s)
- Yu-Kyoung Park
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| | - Victor Sukbong Hong
- Department of Chemistry, College of Natural Sciences, Keimyung University, Daegu 704-701, Republic of Korea
| | - Tae-Yoon Lee
- Department of Microbiology, College of Medicine, Yeungnam University, Daegu 705‑717, Republic of Korea
| | - Jinho Lee
- Department of Chemistry, College of Natural Sciences, Keimyung University, Daegu 704-701, Republic of Korea
| | - Jong-Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Dong-Soon Park
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Gi-Young Park
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 704-701, Republic of Korea
| |
Collapse
|
46
|
Jin MJ, Kim IS, Rehman SU, Dong MS, Na CS, Yoo HH. A Liquid Chromatography-Tandem Mass Spectrometry Method for Simultaneous Quantitation of 10 Bioactive Components in Rhus verniciflua Extracts. J Chromatogr Sci 2015; 54:390-6. [PMID: 26499118 DOI: 10.1093/chromsci/bmv152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to develop a simultaneous method to quantify 10 bioactive compounds in Rhus verniciflua extracts using high-performance liquid chromatography-tandem mass spectrometry. The chromatographic separation was performed using a C18 column under gradient elution with 0.1% formic acid and acetonitrile as the mobile phase solvents. The analytes were detected in the negative-ion mode using multiple-reaction monitoring detection with an electrospray ionization interface. The calibration curves for all the analytes showed good linearity (r(2) >0.997) over the concentration range of 1-1,000 ng/mL. The recovery values were within 89.53-110.14%, and the intra- and interday coefficients of variation were <4.86% for all the tested compounds. The developed method was successfully applied to a quality assessment of the R. verniciflua extract samples.
Collapse
Affiliation(s)
- Ming Ji Jin
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - In Sook Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Shaheed Ur Rehman
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Mi-Sook Dong
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Chun-Soo Na
- Lifetree Biotech Co., Ltd., Suwon, Gyeonggi-do 441-350, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| |
Collapse
|
47
|
Song NJ, Kwon SM, Kim S, Yoon HJ, Seo CR, Jang B, Chang SH, Ku JM, Lee JS, Park KM, Hong JW, Kim GH, Park KW. Sulfuretin induces osteoblast differentiation through activation of TGF-β signaling. Mol Cell Biochem 2015; 410:55-63. [PMID: 26260053 DOI: 10.1007/s11010-015-2537-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/06/2015] [Indexed: 12/27/2022]
Abstract
The identification and examination of potential determinants controlling the progression of cell fate toward osteoblasts can be intriguing subjects. In this study, the effects of sulfuretin, a major compound isolated from Rhus verniciflua Stokes, on osteoblast differentiation were investigated. Treatments of sulfuretin induced alkaline phosphatase (ALP) activity in mesenchymal C3H10T1/2 cells and mineralization in preosteoblast MC3T3-E1 cells. Pro-osteogenic effects of sulfuretin were consistently observed in freshly isolated primary bone marrow cells. In mechanical studies, sulfuretin specifically induced expression of TGF-β target genes, such as SMAD7 and PAI-1, but not other signaling pathway-related genes. Similar to the results of gene expression analysis, reporter assays further demonstrated TGF-β-specific induction by sulfuretin. Furthermore, disruption of TGF-β signaling using treatment with TGF-β-specific inhibitor, SB-431542, and introduction of SMAD2/3 small interfering RNA impaired the effects of sulfuretin in inducing ALP activity and expression of ALP mRNA. Together, these data indicate that the pro-osteogenic effects of sulfuretin are mediated through activation of TGF-β signaling, further supporting the potential of sulfuretin in the prevention of bone-related diseases such as bone fracture and osteoporosis.
Collapse
Affiliation(s)
- No-Joon Song
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - So-Mi Kwon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Suji Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyang-Jin Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Cho-Rong Seo
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Byunghyun Jang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jin-Mo Ku
- Natural Product Research Team, Gyeonggi Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, 443-270, Republic of Korea
| | - Jeong-Soo Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea
| | - Ki-Moon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Joung-Woo Hong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
48
|
Jeong SJ, Park JG, Kim S, Kweon HY, Seo S, Na DS, Lee D, Hong CY, Na CS, Dong MS, Oh GT. Extract of Rhus verniciflua stokes protects the diet-induced hyperlipidemia in mice. Arch Pharm Res 2015; 38:2049-58. [DOI: 10.1007/s12272-015-0579-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/19/2015] [Indexed: 01/28/2023]
|
49
|
Koo Y, Lee H, Kim S, Song NJ, Ku JM, Lee J, Choi CH, Park KW, Kim G. Fabrication, characterisation and in vitro biological activities of a sulfuretin-supplemented nanofibrous composite scaffold for tissue engineering. RSC Adv 2015. [DOI: 10.1039/c5ra06648d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A biocomposite consisting of PCL/BMP-2 and sulfuretin/alginate was proposed. Evaluation of in vitro cellular activities demonstrated that the sulfuretin can act as an outstanding biological component for enhancing bone tissue growth.
Collapse
Affiliation(s)
- YoungWon Koo
- Department of Biomechatronic Eng
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - Hyeongjin Lee
- Department of Biomechatronic Eng
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - Suji Kim
- Department of Food Science and Biotechnology
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - No-Joon Song
- Department of Food Science and Biotechnology
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - Jin-Mo Ku
- Gyeonggi Bio-Center
- Suwon 443-270
- Korea
| | - JaeHwan Lee
- Department of Food Science and Biotechnology
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - Chang Hyun Choi
- Department of Biomechatronic Eng
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology
- Sungkyunkwan University
- Suwon 440-746
- Korea
| | - GeunHyung Kim
- Department of Biomechatronic Eng
- Sungkyunkwan University
- Suwon 440-746
- Korea
| |
Collapse
|
50
|
Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|