1
|
Wang A, Ren H, Zhang Y, Ge H, Zhou Z. Dietary Puerariae Lobatae Radix polysaccharides improve ovarian function and reproductive efficiency in laying hens with fatty liver hemorrhagic syndrome. Poult Sci 2025; 104:105062. [PMID: 40120252 PMCID: PMC11987623 DOI: 10.1016/j.psj.2025.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is a common nutritional and metabolic disease in laying hens, leading to a rapid decline in egg production. This study aims to evaluate the antioxidant effects of dietary supplementation with Pueraria Lobatae Radix polysaccharide (PLRP) on laying hens with FLHS induced by a high-energy low-protein (HELP) diet. A total of 72 thirty-seven-wk-old Hy-Line Brown laying hens were divided into 4 groups: basal diet (CON), HELP diet (HELP), HELP + 100 mg/kg PLRP (HELP-Low), and HELP + 300 mg/kg PLRP (HELP-High), with 6 replicates of 3 hens each. After 4 weeks on the HELP diet, PLRP was added to the diet of the HELP-Low and HELP-High groups for 8 weeks. The results demonstrated that PLRP supplementation significantly improved laying rate compared to the HELP group, with the HELP-Low and HELP-High groups exhibiting respective increases of 23.81% and 28.57% (P < 0.01). PLRP also promoted follicular development, increasing the number of stratified, primary, and secondary follicles and improving the ovarian index. Biochemical analysis revealed enhanced antioxidant activity, with increased levels of T-AOC, T-SOD, and GSH-Px and reduced MDA in the liver and ovaries of PLRP-treated hens (P < 0.05). At the molecular level, PLRP upregulated mRNA expression of ER-α, ER-β, MTTP, APOB, APOVLDL-II, and VTG-II in the liver, as well as VLDLR, LHR, and FSHR in the ovaries, facilitating yolk precursor biosynthesis and follicular development (P < 0.05). It indicated that PLRP supplementation mitigates oxidative stress and enhances yolk precursor synthesis, thereby improving egg production in FLHS-affected hens. PLRP shows promise as an effective feed additive for preventing and alleviating FLHS in laying hens. Future studies will investigate the regulatory effects of PLRP on gut microbiota composition and its potential interactions with FLHS in laying hens.
Collapse
Affiliation(s)
- Anqi Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Hui Ren
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yanyan Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Hongfan Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Lu J, Zhang X, Wang Q, Ma M, Li YF, Guo J, Wang XG, Dou TC, Hu YP, Wang KH, Qu L. Effects of exogenous energy on synthesis of steroid hormones and expression characteristics of the CREB/StAR signaling pathway in theca cells of laying hen. Poult Sci 2024; 103:103414. [PMID: 38262338 PMCID: PMC10835437 DOI: 10.1016/j.psj.2023.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Energy and the cAMP-response element binding protein (CREB)/steroidogenic acute regulatory protein (StAR) signaling pathway play important roles in steroid hormone production and follicular development in hens. This present study aimed to investigate the effects of exogenous energy on the synthesis of steroid hormones and the expression characteristics of the CREB/StAR signaling pathway in theca cells of laying hen. The primary theca cells of small yellow follicles were randomly divided into 6 treatments and cultured in medium with glucose concentrations of 1, 1.5, 3, 4.5, 6, and 7.5 mg/mL for 48 h. It was found that growth was robust and cell outlines were clear when cells were cultured with 1, 1.5, 3, and 4.5 mg/mL glucose, but cell viability was diminished and cell density decreased after exposure to glucose at 6 and 7.5 mg/mL for 48 h. Cell viability showed an increasing and then decreasing quadratic response to increasing glucose concentration in culture (r2 = 0.688, P < 0.001). The cell viability of theca cells cultured with 4.5 mg/mL glucose was greater than those cultured with 1, 1.5, 6, and 7.5 mg/mL glucose (P < 0.05). The concentration of estradiol in the medium containing 3 mg/mL glucose was higher than in medium containing 1, 1.5, and 6 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between progesterone concentrations and glucose concentrations (r2 = 0.522, P = 0.002). The concentration of progesterone in medium with 4.5 mg/mL glucose was higher than in medium with 1 and 7.5 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between the relative expression of CREB1 (r2 = 0.752, P < 0.001), StAR (r2 = 0.456, P = 0.002), CYP1B1 (r2 = 0.568, P < 0.001), and 3β-HSD (r2 = 0.319, P = 0.018) in theca cells of laying hens and glucose concentrations after treatment with different glucose concentrations for 48 h. After treatment with 4.5 mg/mL glucose, the expression of StAR, CYP1B1, and 3β-HSD genes were increased compared to treatment with 1, 1.5, 3, 6, and 7.5 mg/mL glucose (P < 0.001). There was an increasing and then decreasing quadratic correlation between glucose concentrations and protein expression of CREB1 (r2 = 0.819, P < 0.001), StAR (r2 = 0.844, P < 0.001), 3β-HSD (r2 = 0.801, P < 0.001), and CYP11A1 (r2 = 0.800, P < 0.001) in theca cells of laying hens. The protein expression of CREB1, StAR, and 3β-HSD in theca cells cultured with 4.5 mg/mL glucose was higher than in other groups (P < 0.001). The results indicate that the appropriate glucose concentration (4.5 mg/mL) can improve the synthesis of steroid hormones in theca cells of laying hens through the upregulation of key genes and proteins in the CREB/StAR signaling pathway.
Collapse
Affiliation(s)
- J Lu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - X Zhang
- Agricultural and Rural Bureau of Hanjiang District, Yangzhou 225100, China
| | - Q Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - M Ma
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y F Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - J Guo
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - X G Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - T C Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y P Hu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - K H Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - L Qu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China.
| |
Collapse
|
3
|
Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Stress-Related Gene Expression in Liver Tissues from Laying Hens Housed in Conventional Cage and Cage-Free Systems in the Tropics. Vet Med Int 2024; 2024:4107326. [PMID: 38250291 PMCID: PMC10799707 DOI: 10.1155/2024/4107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Global egg production is mainly based on cage systems, which have been associated with negative effects on the welfare of birds. Stress factors in restrictive production systems can lead to changes in gene transcription and protein synthesis, ultimately impacting the quality of poultry products. The liver serves various metabolic functions, such as glycogen storage, and plays a crucial role in animals' adaptation to environmental changes. Consequently, both internal and external conditions can influence liver functions. The aim of this study was to evaluate the gene expression of AGP, CRP, NOX4, SOD1, CAT, GPX1, SREBF1, and FXR in the liver of laying hens under two different production systems. Liver tissues from Hy-Line Brown hens housed in conventional cage and cage-free egg production systems at 60 and 80 weeks of production were used. mRNA transcript levels were determined by qPCR using the relative quantification method and ACTB as the reference gene. AGP, SOD1, and SREBF1 gene expressions were significantly higher in the conventional cage group at the 60 weeks of production. Furthermore, the mRNA levels of transcripts related to oxidative stress and lipid metabolism were higher in the group of laying hens housed in conventional cages compared to those in cage-free systems. These results suggest differential gene expression of genes related to oxidative stress in liver tissues from hens housed in conventional cages compared to cage-free systems. The conditions of the egg production system can impact the gene expression of oxidative stress and lipid synthesis genes, potentially leading to changes in the metabolism and performance of hens, including egg quality.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Postal Code 730006299, Ibagué, Tolima, Colombia
| |
Collapse
|
4
|
Yu Z, Cheng M, Luo S, Wei J, Song T, Gong Y, Zhou Z. Comparative Lipidomics and Metabolomics Reveal the Underlying Mechanisms of Taurine in the Alleviation of Nonalcoholic Fatty Liver Disease Using the Aged Laying Hen Model. Mol Nutr Food Res 2023; 67:e2200525. [PMID: 37909476 DOI: 10.1002/mnfr.202200525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/18/2023] [Indexed: 11/03/2023]
Abstract
SCOPE Aged laying hen is recently suggested as a more attractive animal model than rodent for studying nonalcoholic fatty liver disease (NAFLD) of humans. This study aims to reveal effects and metabolic regulation mechanisms of taurine alleviating NAFLD by using the aged laying hen model. METHODS AND RESULTS Liver histomorphology and biochemical indices show 0.02% taurine effectively alleviated fat deposition and liver damage. Comparative liver lipidomics and gene expressions analyses reveal taurine promoted lipolysis, fatty acids oxidation, lipids transport, and reduced oxidative stress in liver. Furthermore, comparative serum metabolomics screen six core metabolites negatively correlated with NAFLD, including linoleic acid, gamma-linolenic acid, pantothenate, L-methionine, 2-methylbutyroylcarnitine, L-carnitine; and two core metabolites positively correlated with NAFLD, including lysophosphatidylcholine (14:0/0:0) and lysophosphatidylcholine (16:0/0:0). Metabolic pathway analysis reveals taurine mainly regulated linoleic acid metabolism, cysteine and methionine metabolism, carnitine metabolism, pantothenic acid and coenzyme A biosynthesis metabolism, and glycerophospholipid metabolism to up-adjust levels of six negatively correlated metabolites and down-adjust two positively correlated metabolites for alleviating NAFLD of aged hens. CONCLUSION This study firstly reveals underlying metabolic mechanisms of taurine alleviating NAFLD using the aged hen model, thereby laying the foundation for taurine's application in the prevention of NAFLD in both human and poultry.
Collapse
Affiliation(s)
- Zhengwang Yu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shanghai Yuanyao Agriculture and Animal Husbandry Technology Co., Ltd, Shanghai, 200000, China
| | - Manman Cheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shimei Luo
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tieping Song
- Yichang Tianyou Huamu Technology Co.,Ltd, Yichang, 443000, China
| | - Yanzhang Gong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Jiang C, Chen R, Shi X, Zhuang L, Zhou C, Zhou W, Li J, Xu G, Zheng J. Effects of Breeds on the Content of Functional Nutrition in Eggs. Animals (Basel) 2023; 13:3066. [PMID: 37835672 PMCID: PMC10571526 DOI: 10.3390/ani13193066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was to compare the differences in the content of functional nutrients in eggs, performance parameters, and egg quality parameters of different chicken breeds. In Trial 1, 150 41-week-old hens of each breed, including the Dwarf Layer, White Leghorn, Silky fowl, Beijing-you chicken, and Shouguang chicken, were randomly assigned to the control (CON) and 2.5% flaxseed oil (FSO) groups to compare the difference in n-3 polyunsaturated fatty acid (PUFA) content in eggs. The contents of α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and total n-3 PUFA in eggs were increased (p < 0.05) in the FSO groups. The ALA (4.28%), DHA (2.03%), and total n-3 PUFA (6.46%) contents in eggs of Dwarf Layer were the highest among the five breeds (p < 0.05). To further verify if other functional nutrients also have such differences, 600 24-week-old White Leghorn and Dwarf Layer were allocated to four groups: CON, FSO, 0.02% selenium-enriched yeast (SEY), and 0.20% marigold flower extract (MFE), in Trial 2. The content of functional nutrients in eggs was significantly increased (p < 0.05) after feeding these additions. After feeding FSO, the eggs of the Dwarf Layer had a higher n-3 PUFA content than the White Leghorn (p < 0.05). However, no significant differences were found in selenium and lutein content in different breeds. Performance and egg quality were not negatively impacted by FSO, SEY, or MFE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.J.); (R.C.); (X.S.); (L.Z.); (C.Z.); (W.Z.); (J.L.); (G.X.)
| |
Collapse
|
6
|
Berenjian A, Bakhtiarizadeh MR, Mohammadi-Sangcheshmeh A, Sharifi SD. A nutrigenomics approach to study the effects of ω-3 fatty acids in laying hens under physiological stress. Front Physiol 2023; 14:1198247. [PMID: 37560158 PMCID: PMC10407228 DOI: 10.3389/fphys.2023.1198247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Supplement of ω-3 fatty acids can decrease the harmful effects of stress. However, the potential molecular mechanisms that are modulated by dietary ω-3 fatty acids in laying hens under stress remain unknown. Hence, RNA-sequencing (RNA-Seq) technology was used to gain new insights into different gene expression profiles and potential pathways involved in response to stress in the liver of 35-week-old Lohmann LSL-Lite laying hens supplemented with ω-3. Three groups including control (non-stress), stress, and stress_ω-3 fatty acids (three layers per each group) were applied. A total of 1,321 genes were detected as differentially expressed genes of which 701, 1,049, and 86 DEGs belonged to stress vs. control, stress_ω-3 vs. control, and stress vs. stress_ω-3 pairwise comparisons, respectively. Gene ontology and KEGG pathway analysis indicated that the DEGs were enriched in particular regulation of steroid and cholesterol biosynthetic process, fatty acid degradation, AMPK signaling pathway, fatty acid biosynthesis, and immune response. Our data represented a promising approach regarding the importance of ω-3 as anxiolytic and anti-stress. In this context, UNC13B and ADRA1B genes were downregulated in the stress_ω-3 group compared to the stress group, which are associated with decreased activity of glutamatergic stimulatory neurons and probably play important role in facilitating the response to stress. This study extends the current understanding of the liver transcriptome response to physiological stress, and provides new insights into the molecular responses to stress in laying hens fed a diet supplemented with ω-3 fatty acids.
Collapse
Affiliation(s)
| | | | | | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Chicken embryo thermal manipulation alleviates postnatal heat stress-induced jejunal inflammation by inhibiting Transient Receptor Potential V4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114851. [PMID: 37004430 DOI: 10.1016/j.ecoenv.2023.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 ℃ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.
Collapse
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
8
|
Yang M, Ji Y, Yong T, Liu T, Yang S, Guo S, Meng F, Han X, Liang Q, Cao X, Huang L, Du X, Huang A, Kong F, Zeng X, Bu G. Corticosterone stage-dependently inhibits progesterone production presumably via impeding the cAMP-StAR cascade in granulosa cells of chicken preovulatory follicles. Poult Sci 2022; 102:102379. [PMID: 36608454 PMCID: PMC9829700 DOI: 10.1016/j.psj.2022.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Stress can suppress reproduction capacity in either wild or domestic animals, but the exact mechanism behind it, especially in terms of steroidogenesis, remains under-investigated so far. Considering the important roles of progesterone in avian breeding, we investigated the modulation of corticosterone on progesterone production in cultured granulosa cells of chicken follicles at different developmental stages. Using enzyme immunoassays, our study showed that corticosterone could only inhibit progesterone synthesis in granulosa cells from F5-6, F4, and F3 follicles, but not F2 and F1 follicles. Coincidentally, both quantitative real-time PCR and western blotting revealed that corticosterone could downregulate steroidogenic acute regulatory protein (StAR) expression, suggesting the importance of StAR in corticosterone-related actions. Using the dual-luciferase reporter system, we found that corticosterone can potentially enhance, rather than inhibit, the activity of StAR promoter. Of note, combining high-throughput transcriptomic analysis and quantitative real-time PCR, phosphodiesterase 10A (PDE10A), protein kinase cAMP-dependent type II regulatory subunit alpha (PRKAR2A) and cAMP responsive element modulator (CREM) were identified to exhibit the differential expression patterns consistent with cAMP blocking in granulosa cells from F5-6, F4, and F3, but not F2 and F1 follicles. Afterward, the expression profiles of these genes in granulosa cells of distinct developmental-stage follicles were examined by quantitative real-time PCR, in which all of them expressed correspondingly with progesterone levels of granulosa cells during development. Collectively, these findings indicate that corticosterone can stage-dependently inhibit progesterone production in granulosa cells of chicken preovulatory follicles, through impeding cAMP-induced StAR activity presumptively.
Collapse
Affiliation(s)
- Ming Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Yu Ji
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Tao Yong
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tuoyuan Liu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Shuai Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Shasha Guo
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xingfa Han
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Qiuxia Liang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaohan Cao
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Linyan Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaogang Du
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Anqi Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Fanli Kong
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xianyin Zeng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Guixian Bu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China,Corresponding author:
| |
Collapse
|
9
|
Yang M, Jin C, Cheng X, Liu T, Ji Y, Meng F, Han X, Liang Q, Cao X, Huang L, Du X, Zeng X, Bu G. Corticosterone triggers anti-proliferative and apoptotic effects, and downregulates the ACVR1-SMAD1-ID3 cascade in chicken ovarian prehierarchical, but not preovulatory granulosa cells. Mol Cell Endocrinol 2022; 552:111675. [PMID: 35577112 DOI: 10.1016/j.mce.2022.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
The coordinated proliferation and apoptosis of granulosa cells plays a critical role in follicular development. To identify the exact mechanisms of how stress-driven glucocorticoid production suppresses reproduction, granulosa cells were isolated from chicken follicles at different developmental stages and then treated with corticosterone. Using CCK-8, EDU and TUNEL assays, we showed that corticosterone could trigger both anti-proliferative and pro-apoptotic effects in granulosa cells from 6 to 8 mm follicles only, while depicting no influence on granulosa cells from any preovulatory follicles. High-throughput transcriptomic analysis identified 1362 transcripts showing differential expression profiles in granulosa cells from 6 to 8 mm follicles after corticosterone treatment. Interestingly, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that 17 genes were enriched in the TGF-β signaling pathway, and 13 showed differential expression patterns consistent with corticosterone-induced effects. The differential expression profiles of these 13 genes were examined by quantitative real-time PCR in cultured chicken ovarian granulosa cells at diverse developmental stages following corticosterone challenge for a short (8 h) or long period (24 h). After 24 h of treatment, INHBB, FST, FMOD, NOG, ACVR1, SMAD1 and ID3 were the genes that responded consistently with corticosterone-induced proliferative and apoptotic events in all granulosa cells detected. However, only ACVR1, SMAD1 and ID3 could initiate coincident expression patterns after being treated for 8 h, suggesting their significance in corticosterone-mediated actions. Collectively, these findings indicate that corticosterone can inhibit proliferation and cause apoptosis in chicken ovarian prehierarchical, but not preovulatory granulosa cells, through impeding ACVR1-SMAD1-ID3 signaling presumptively.
Collapse
Affiliation(s)
- Ming Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Chenchen Jin
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xinyue Cheng
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tuoyuan Liu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Yu Ji
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xingfa Han
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Qiuxia Liang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaohan Cao
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Linyan Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaogang Du
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xianyin Zeng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| | - Guixian Bu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| |
Collapse
|
10
|
Carney VL, Anthony NB, Robinson FE, Reimer BL, Korver DR, Zuidhof MJ, Afrouziyeh M. Evolution of maternal feed restriction practices over 60 years of selection for broiler productivity. Poult Sci 2022; 101:101957. [PMID: 35973347 PMCID: PMC9395665 DOI: 10.1016/j.psj.2022.101957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- V L Carney
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - N B Anthony
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - F E Robinson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - B L Reimer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - D R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M J Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - M Afrouziyeh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
11
|
Xu W, Song Z, Wang W, Li X, Yan P, Shi T, Fu C, Liu X. Effects of in ovo feeding of t10,c12-conjugated linoleic acid on hepatic lipid metabolism and subcutaneous adipose tissue deposition in newly hatched broiler chicks. Poult Sci 2022; 101:101797. [PMID: 35358926 PMCID: PMC8968647 DOI: 10.1016/j.psj.2022.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate whether in ovo feeding of t10,c12-conjugated linoleic acid (CLA) could regulate hepatic lipid metabolism and decrease lipid accumulation in newly hatched chicks. Three hundred and sixty fertilely specific pathogen-free hatching eggs were selected and randomly divided into 6 groups. On embryonic day 11 of incubation (E11), 0, 1.5, 3.0, 4.5, 6.0, or 7.5 mg t10,c12-CLA were injected into the eggs. The results indicated that in ovo feeding of t10,c12-CLA significantly decreased the subcutaneous adipose tissue (SAT) mass and the relative SAT weight of newly hatched chicks in linear and quadratic manners (P < 0.05). In liver, the levels of triglycerides were reduced linearly and quadratically and total cholesterol were reduced quadratically as the dose of t10,c12-CLA increased (P < 0.05). Meanwhile, the hepatic carnitine palmitoyltransferase-1a (CPT1a) content and polyunsaturated fatty acid proportion were increased quadratically in t10,c12-CLA groups (P < 0.05), accompanied by the decrease of malondialdehyde level and the increase of glutathione peroxidase and total antioxidant capacity activities (P < 0.05). In addition, in ovo feeding of t10,c12-CLA decreased the mRNA expression levels of fatty acid synthase, acetyl-CoA carboxylase 1 in linear and quadratic manners (P < 0.05), and decreased the mRNA expression of adipose triacylglyceride lipase and stearoyl-CoA desaturase significantly in liver (P < 0.05), accompanied by upregulating the mRNA expression of CPT1a quadratically and AMP-activated protein kinase α linearly and quadratically (P < 0.05). In SAT, the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein-1c were decreased linearly and quadratically (P < 0.05), and the expression of PPARα and CPT1a genes were increased linearly and quadratically as the dose of t10,c12-CLA increased (P < 0.05). In conclusion, our findings demonstrate that in ovo feeding of t10,c12-CLA alleviates lipid accumulation in newly hatched chicks by suppressing fatty acid synthesis and stimulating lipolysis in the liver and inhibiting adipocyte differentiation in subcutaneous adipose tissue.
Collapse
|
12
|
Wang Y, He B, Liu K, Shi J, Li A, Cheng J, Wei Y, Guo S, Wang Y, Ding B. Effects of long-term dietary supplementation of fermented wheat bran on immune performance and inflammatory response in laying hens. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2025346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Yu Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Beibei He
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Kuanbo Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Jingjing Shi
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Junlin Cheng
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Yuanyuan Wei
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| | - Yongwei Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, People’s Republic of China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, People’s Republic of China
| |
Collapse
|
13
|
Supplementing conjugated linoleic acid (CLA) in breeder hens diet increased CLA incorporation in liver and alters hepatic lipid metabolism in chick offspring. Br J Nutr 2021; 127:1443-1454. [PMID: 33658091 DOI: 10.1017/s0007114521000763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This experiment was designed to investigate the effect of supplementing conjugated linoleic acid (CLA) in breeder hens diet on development and hepatic lipid metabolism of chick offspring. Hy-Line Brown breeder hens were allocated into two groups, supplemented with 0 (CT) or 0.5% CLA for 8 weeks. Offspring chicks were grouped according to the mother generation and fed for 7 days. CLA treatment had no significant influence on development, egg quality, and fertility of breeder hens, but darkened the egg yolks in shade and increased yolk sac mass compared to CT group. Addition of CLA resulted in increased body mass and liver mass, and decreased deposition of subcutaneous adipose tissue in chick offspring. The serum triglyceride (TG) and cholesterol (TC) levels of chick offspring were decreased in CLA group. CLA treatment increased the incorporation of both CLA isomers (c9t11 and t10c12) in liver of chick offspring, accompanied by the decreased hepatic TG levels, related to the significant reduction of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) enzyme activities and the increased of carnitine palmitoyltransferase-1 (CPT1) enzyme activity. Meanwhile, CLA treatment reduced the mRNA expression of genes related to fatty acid biosynthesis (FAS, ACC, and sterol regulatory element-binding protein-1c), and induced the expression of genes related to β-oxidative (CPT1, AMP-activated protein kinase, and peroxisome proliferator-activated receptor α) in chick offspring liver. In summary, the addition of CLA in breeder hens diet significantly increased incorporation of CLA in liver of chick offspring, which further regulate hepatic lipid metabolism.
Collapse
|
14
|
Fouad AM, El-Senousey HK, Ruan D, Wang S, Xia W, Zheng C. Tryptophan in poultry nutrition: Impacts and mechanisms of action. J Anim Physiol Anim Nutr (Berl) 2021; 105:1146-1153. [PMID: 33655568 DOI: 10.1111/jpn.13515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 02/08/2021] [Indexed: 01/09/2023]
Abstract
Many studies have shown that productivity, immune system, antioxidant status, and meat and egg quality can be optimized by dietary supplementation with amino acids that are not usually added to poultry diets. Understanding the effects of these amino acids may encourage feed manufacturers and poultry producers to include them as additives. One of these amino acids is tryptophan (Trp). The importance of Trp is directly related to its role in protein anabolism and indirectly related to its metabolites such as serotonin and melatonin. Thus, Trp could affect the secretion of hormones, development of immune organs, meat and egg production, and meat and egg quality in poultry raised under controlled or stressed conditions. Therefore, this review discusses the main roles of Trp in poultry production and its mode (s) of action in order to help poultry producers decide whether they need to add Trp to poultry diets. Further areas of research are also identified to address information gaps.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - HebatAllah Kasem El-Senousey
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dong Ruan
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuang Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weiguang Xia
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chuntian Zheng
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
15
|
Zhang JM, Liu XY, Gu W, Xu HY, Jiao HC, Zhao JP, Wang XJ, Li HF, Lin H. Different effects of probiotics and antibiotics on the composition of microbiota, SCFAs concentrations and FFAR2/3 mRNA expression in broiler chickens. J Appl Microbiol 2021; 131:913-924. [PMID: 33263216 DOI: 10.1111/jam.14953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/26/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022]
Abstract
AIMS The aims of this study were to investigate the effects of probiotics and antibiotics on microbial composition, short chain fatty acids (SCFAs) concentration and free fatty acid receptor 2/3 (FFAR2/3) expression in boiler chickens. METHODS AND RESULTS A total of 150 1-day-old male broilers were randomly allocated into three groups, control (CON) group, probiotics (PB) group and antibiotics (ATB) group. Results indicated that PB improved the average body weight from 1 to 21 days and feed intake from 21 to 42 days (P < 0·05), while ATB improved the feed efficiency from 1 to 42 days (P < 0·05). Based on 16s rRNA sequencing, PB treatment increased the amount of kingdom bacteria, and the relative abundance of the main bacteria including acetate and butyrate producing bacteria of phylum Firmicutes, family Ruminococcaceae and genus Faecalibacterium. ATB treatment also increased the relative abundance of phylum Firmicutes, family Ruminococcaceae and Lachnospiraceae, however, it introduced some pathogenic bacteria, such as bacteria of family Rikenellaceae and Enterobacteriaceae. Gas chromatography and mass spectrometry (GC-MS) assay revealed that PB increased acetate and butyrate concentrations at both 21 and 42 days, and propionate at 42 days in the colorectum. Moreover qRT-PCR analysis showed PB treatment significantly activated the FFAR2/3 mRNA expressions. On the contrast, ATB treatment lowered the colorectal propionate at 21 days, and decreased acetate, propionate and butyrate concentrations at 42 days, accompanied with decreased FFAR2/3 mRNA expressions. CONCLUSIONS Compared to the CON birds, an enriched SCFAs producing bacteria with higher SCFAs contents and activated FFAR2/3 expressions are prominent features of PB birds. However, antibiotics treatment plays the reverse effect compared to PB treatment. SIGNIFICANCE AND IMPACT OF THE STUDY This study brings a significant idea that less SCFAs concentration may be another reason why the antibiotics inhibit the immune system development and immunity of the body.
Collapse
Affiliation(s)
- J-M Zhang
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China.,Biological Research Institute, Shandong Key Laboratory of Animal Microecological agents, Shandong Baolai-leelai Bioengineering Co., Ltd, Tai'an, China
| | - X-Y Liu
- Shandong Institute of Scientific and Technical Information, Ji Nan, China
| | - W Gu
- Biological Research Institute, Shandong Key Laboratory of Animal Microecological agents, Shandong Baolai-leelai Bioengineering Co., Ltd, Tai'an, China
| | - H-Y Xu
- Biological Research Institute, Shandong Key Laboratory of Animal Microecological agents, Shandong Baolai-leelai Bioengineering Co., Ltd, Tai'an, China
| | - H-C Jiao
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| | - J-P Zhao
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| | - X-J Wang
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| | - H-F Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - H Lin
- College of Animal Science and Veterinary Medicine, Shandong Key Lab for Animal Biotechnology and Disease Control, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
16
|
Omega-3 fatty acids reduce the negative effects of dexamethasone-induced physiological stress in laying hens by acting through the nutrient digestibility and gut morphometry. Poult Sci 2020; 100:100889. [PMID: 33516483 PMCID: PMC7936135 DOI: 10.1016/j.psj.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, the effects of omega-3 fatty acids on egg production, nutrients digestibility, eggs yolk lipid peroxidation, and intestinal morphology in laying hens under physiological stress were investigated. Ninety-six 35-wk-old Lohmann LSL-Lite laying hens were used in 2 × 3 factorial arrangement with 2 levels of dexamethasone (DEX) (0 and 1.5 mg/kg of the diet) and 3 levels of omega-3 fatty acids (0, 0.24, or 0.48% of the diet) in a completely randomized design. At 41 wk of age, the stress groups were continuously fed with a DEX 1.5 mg/kg diet for 1 wk. Egg production, egg mass, feed intake, egg weight, and feed conversion ratio were recorded. In addition, the AME, digestibility of CP, crude fat (CF), and organic matter were measured during the stress induction period. At the end of 41 wk of age, malondialdehyde and cholesterol concentrations in the egg yolk and intestinal morphology were investigated. The results showed that egg production, egg mass (P < 0.0001), egg weight (P = 0.043), and BW (P = 0.0005) were lower in DEX layers. Feed intake was reduced by the interaction between DEX and omega-3 fatty acid (P = 0.042). Malondialdehyde value (P = 0.002) and cholesterol concentration (P = 0.001) in egg yolk increased by DEX administration. The combination of DEX administration and omega-3 fatty acids supplementation was found in the indices of intestinal morphology such as villus height and width and crypt depth (P < 0.05). Administration of DEX decreased the CP digestibility (P < 0.0001) and AME (P = 0.006). Digestibility of CF and AME in the group of 0.48% omega-3 fatty acids were higher (P < 0.05) than those of 0 and 0.24%. In conclusion, we found that dietary omega-3 fatty acids had beneficial effects on gut morphology and nutrient digestibility in laying hens under physiological stress. However, they could not alleviate the negative effects of physiological stress on performance.
Collapse
|
17
|
Wang H, Wang X, Zhao J, Jiao H, Lin H. Low protein diet supplemented with crystalline amino acids suppressing appetite and apo-lipoprotein synthesis in laying hens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
|
19
|
Tang D, Wu J, Jiao H, Wang X, Zhao J, Lin H. The development of antioxidant system in the intestinal tract of broiler chickens. Poult Sci 2019; 98:664-678. [PMID: 30289502 DOI: 10.3382/ps/pey415] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
The gastrointestinal tract is the site for the uptake of nutrients from the external environment. We hypothesized that the antioxidant system in the intestinal tract has a vital protective role from the oxidative damage induced by oxidants in foods. The aim of this study was to investigate the development of the antioxidant system in the intestine of chickens. The activity and gene expression of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and the content of the non-enzymatic substance glutathione (GSH) were measured in the duodenum, jejunum, and ileum of chickens at 1, 3, 7, 11, 14, 21, 35, and 42 d of age. The results showed that the small intestinal tract had relatively higher SOD activity and GSH concentration and lower CAT and GSH-Px activities, compared with those of other visceral organs. CAT and GSH-Px activities and GSH concentration showed a decreasing trend with age, whereas SOD activity was not significantly influenced by age. The gene expression of SOD1, SOD2, and GSH-Px7 showed a dramatic decrease from 3 d of age. The results indicated that SOD and GSH were highly expressed in the first week of age after hatching. To conclude, the results suggest that SOD and GSH play a vital protective role in the small intestine after hatching, which contributes to rapid development of the intestine.
Collapse
Affiliation(s)
- Dazhi Tang
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Jianmin Wu
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Hongchao Jiao
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Xiaojuan Wang
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| | - Hai Lin
- Shandong Agricultural University, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, No. 61 Daizong Street, Taian City, Shandong Province, 271018, China
| |
Collapse
|
20
|
Hu X, Wang Y, Sheikhahmadi A, Li X, Buyse J, Lin H, Song Z. Effects of glucocorticoids on lipid metabolism and AMPK in broiler chickens' liver. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:23-30. [PMID: 30790719 DOI: 10.1016/j.cbpb.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) plays a pivotal role in the regulation of carbohydrate, lipid, and protein metabolism in animals. In this study, we examined whether any cross talk exists between glucocorticoids and AMPK in the regulation of the liver bile acid biosynthesis pathway. Dexamethasone treatment decreased the growth performance of broiler chickens. The liver mRNA levels of fatty acid transport protein (FATP-1), farnesoid X receptor (FXR), AMPK alpha 1 subunit (AMPKα1), and glucocorticoid receptor were significantly upregulated in DEX-treated broilers; the gene expression of liver cholesterol 7 alpha-hydroxylase (CYP7A1) was significantly downregulated. The protein level of liver CYP7A1 was significantly decreased by DEX treatment at both 24 and 72 h, while the protein level of p-AMPK/ t-AMPK stayed unchanged. In the in vitro cultured hepatocytes, compound C pretreatment blocked the increase in CYP7A1 protein level by DEX and significantly suppressed FATP-1, SREBP-1c, FXR, and CYP7A1 gene expression stimulated by DEX. Compound C treatment significantly reduces the protein level of p-AMPK, and the combination of compound C and DEX significantly reduces the protein level of t-AMPK. Thus, glucocorticoids affected liver AMPK and the bile acid synthesis signal pathway, and AMPK might be involved in the glucocorticoid effect of liver bile acid synthesis.
Collapse
Affiliation(s)
- Xiyi Hu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yufeng Wang
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Ardashir Sheikhahmadi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Xianlei Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Johan Buyse
- Division Animal and Human Health Engineering, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
21
|
Fan X, Jiao H, Zhao J, Wang X, Lin H. Lipopolysaccharide impairs mucin secretion and stimulated mucosal immune stress response in respiratory tract of neonatal chicks. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:71-78. [PMID: 29203321 DOI: 10.1016/j.cbpc.2017.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022]
Abstract
The chicken immune system is immature at the time of hatching. The development of the respiratory immune system after hatching is vital to young chicks. The aim of this study was to investigate the effect of LPS on respiratory mucin and IgA production in chicks. In this study, we selected 7days old AA broilers of similar weigh randomly; LPS atomized at 1mg/kg body weigh dose in the confined space of 1 cubic meter. The chickens exposed for 2h. Then collect samples after 4h and 8h respectively. Compared to control, LPS inhibited mucus production in BALF, caused a rising trend of the concentration of IgA in serum and BALF, and increased the protein expression of IgA in lung tissue. And LPS treat induced a decreasing trend of the mRNA expression of IL-6 and TGF-β and significantly decreased the gene expression of TGF-α and EGFR after 4h. After 8h the LPS suppressed the TGF-β mRNA expression significantly. In addition, LPS treatment stimulated airway epithelial cilia sparse after 4h. Therefore, results proved: LPS can impair mucin expression and stimulated mucosal immune stress reaction of respiratory tract. This study suggested that LPS involved in respiratory tract mucosal immune response in chicks by regulating gene expression of cytokines and epithelial growth factors.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
22
|
Bastos MS, Del Vesco AP, Santana TP, Santos TS, de Oliveira Junior GM, Fernandes RPM, Barbosa LT, Gasparino E. The role of cinnamon as a modulator of the expression of genes related to antioxidant activity and lipid metabolism of laying quails. PLoS One 2017; 12:e0189619. [PMID: 29267351 PMCID: PMC5739405 DOI: 10.1371/journal.pone.0189619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Since cinnamon has vitamins and minerals in addition to antioxidants compounds in its chemical composition studies have shown the potential of cinnamon supplementation on some important characteristics in the performance of birds. Thus, this study was conducted under the hypothesis that the inclusion of cinnamon in the laying quail diet could influence the performance of the birds through the expression of genes related to antioxidant activity and lipid metabolism. To test this hypothesis, 144 Japanese quail (Coturnix japonica) with an initial age of 18 weeks and average weight of 133g were distributed in a completely randomized design with two treatments: no cinnamon supplementation (NCS—control group) and with supplementation of 9g/kg of cinnamon powder (CPS). The experiment lasted for 84 days. At the end of the experimental period, six animals from each treatment were euthanized by cervical dislocation, blood was collected and organs weighed. Liver tissue was collected for gene expression and biochemical analyses. We observed a significant effect of cinnamon inclusion on the weight of the pancreas (P = 0.0418), intestine (P = 0.0209) and ovary (P = 0.0389). Lower weights of the pancreas and intestine, and a higher ovary weight was observed in birds receiving the CPS diet. Quails fed with cinnamon supplementation also had better feed conversion per egg mass (2.426 g /g, P = 0.0126), and higher triglyceride (1516.60 mg/dL, P = 0.0207), uric acid (7.40 mg/dL, P = 0.0003) and VLDL (300.40 mg/dL, P = 0.0252) contents. A decreased content of thiobarbituric acid reactive substances (TBARS) and lower catalase activity was observed in the liver of quails from the CPS diet (0.086 nmoles/mg PTN, and 2.304 H2O2/min/mg PTN, respectively). Quails from the CPS group presented significantly greater expression of FAS (fatty acid synthase, 36,03 AU), ACC (Acetyl-CoA Carboxylase, 31.33 AU), APOAI (apolipoprotein A-I, 803,9 AU), ESR2 (estrogen receptor 2, 0.73 AU) SOD (superoxide dismutase, 4,933.9 AU) and GPx7 (glutathione peroxidase 7, 9.756 AU) than quails from the control group. These results allow us to suggest that cinnamon powder supplementation in the diet of laying quails can promote balance in the metabolism and better performance through the modulation of antioxidant activity and the expression of genes related to lipid metabolism.
Collapse
Affiliation(s)
- Marisa Silva Bastos
- Animal Science Department, Federal University of Sergipe, São Cristóvão s/n, Brazil
| | - Ana Paula Del Vesco
- Animal Science Department, Federal University of Sergipe, São Cristóvão s/n, Brazil
- * E-mail:
| | | | | | | | | | | | - Eliane Gasparino
- Animal Science Department, Estadual University of Maringá, Maringá, Brazil
| |
Collapse
|
23
|
Wang Y, Du W, Lei K, Wang B, Wang Y, Zhou Y, Li W. Effects of Dietary Bacillus licheniformis on Gut Physical Barrier, Immunity, and Reproductive Hormones of Laying Hens. Probiotics Antimicrob Proteins 2017; 9:292-299. [DOI: 10.1007/s12602-017-9252-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Hu J, Hester P, Makagon M, Vezzoli G, Gates R, Xiong Y, Cheng H. Cooled perch effects on performance and well-being traits in caged White Leghorn hens. Poult Sci 2016; 95:2737-2746. [DOI: 10.3382/ps/pew248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2016] [Accepted: 06/06/2016] [Indexed: 01/02/2023] Open
|
25
|
Jiang B, Le L, Liu H, Xu L, He C, Hu K, Peng Y, Xiao P. Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells. Free Radic Res 2016; 50:1173-1187. [DOI: 10.1080/10715762.2016.1222374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Liang Le
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yong Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- State Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
26
|
Wang CL, Fan YC, Wang C, Tsai HJ, Chou CH. The impact of Salmonella Enteritidis on lipid accumulation in chicken hepatocytes. Avian Pathol 2016; 45:450-7. [DOI: 10.1080/03079457.2016.1162280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Chia-Lan Wang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
| | - Yang-Chi Fan
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - Hsiang-Jung Tsai
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
- Animal Health Research Institute, Council of Agriculture, New Taipei City, Taiwan (ROC)
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan (ROC)
| |
Collapse
|
27
|
Ahmed AA, Musa HH, Sifaldin AZ. Prenatal corticosterone exposure programs growth, behavior, reproductive function and genes in the chicken. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2016. [DOI: 10.1016/j.apjr.2016.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Fan X, Liu S, Liu G, Zhao J, Jiao H, Wang X, Song Z, Lin H. Vitamin A Deficiency Impairs Mucin Expression and Suppresses the Mucosal Immune Function of the Respiratory Tract in Chicks. PLoS One 2015; 10:e0139131. [PMID: 26422233 PMCID: PMC4589363 DOI: 10.1371/journal.pone.0139131] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/08/2015] [Indexed: 02/03/2023] Open
Abstract
The chicken immune system is immature at the time of hatching. The development of the respiratory immune system after hatching is vital to young chicks. The aim of this study was to investigate the effect of dietary vitamin A supplement levels on respiratory mucin and IgA production in chicks. In this study, 120 one-day-old broiler chicks were randomly divided into 4 groups consisting of three replicates of 10 broilers and subjected to dietary vitamin A supplement levels of 0, 1,500, 6,000, or 12,000 IU/kg for seven days. Compared with control birds, vitamin A supplementation significantly increased the mucin and IgA levels in the bronchoalveolar lavage fluid (BALF) as well as the IgA level in serum. In the lungs, vitamin A supplementation downregulated TNF-α and EGFR mRNA expression. The TGF-β and MUC5AC mRNA expression levels were upregulated by vitamin A supplementation at a dose of 6,000 IU/kg, and the IL-13 mRNA expression level was increased at the 12,000 IU/kg supplement level. Vitamin A deficiency (control) significantly decreased the mRNA expression levels of MUC2, IgA, EGFR, IL-13 and TGF-β in trachea tissue. Histological section analysis revealed that the number of goblet cells in the tracheal epithelium was less in the 0 and 12,000 IU/kg vitamin A supplement groups than in the other groups. In conclusion, vitamin A deficiency suppressed the immunity of the airway by decreasing the IgA and mucin concentrations in neonatal chicks. This study suggested that a suitable level of vitamin A is essential for the secretion of IgA and mucin in the respiratory tract by regulating the gene expression of cytokines and epithelial growth factors.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
| | - Shaoqiong Liu
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
| | - Guanhua Liu
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
- * E-mail: (HL); (ZS)
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong, 271018, China
- * E-mail: (HL); (ZS)
| |
Collapse
|
29
|
Conservation of Regional Variation in Sex-Specific Sex Chromosome Regulation. Genetics 2015; 201:587-98. [PMID: 26245831 DOI: 10.1534/genetics.115.179234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
Regional variation in sex-specific gene regulation has been observed across sex chromosomes in a range of animals and is often a function of sex chromosome age. The avian Z chromosome exhibits substantial regional variation in sex-specific regulation, where older regions show elevated levels of male-biased expression. Distinct sex-specific regulation also has been observed across the male hypermethylated (MHM) region, which has been suggested to be a region of nascent dosage compensation. Intriguingly, MHM region regulatory features have not been observed in distantly related avian species despite the hypothesis that it is situated within the oldest region of the avian Z chromosome and is therefore orthologous across most birds. This situation contrasts with the conservation of other aspects of regional variation in gene expression observed on the avian sex chromosomes but could be the result of sampling bias. We sampled taxa across the Galloanserae, an avian clade spanning 90 million years, to test whether regional variation in sex-specific gene regulation across the Z chromosome is conserved. We show that the MHM region is conserved across a large portion of the avian phylogeny, together with other sex-specific regulatory features of the avian Z chromosome. Our results from multiple lines of evidence suggest that the sex-specific expression pattern of the MHM region is not consistent with nascent dosage compensation.
Collapse
|
30
|
Dihydromyricetin ameliorates the oxidative stress response induced by methylglyoxal via the AMPK/GLUT4 signaling pathway in PC12 cells. Brain Res Bull 2014; 109:117-26. [PMID: 25451453 DOI: 10.1016/j.brainresbull.2014.10.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/03/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023]
Abstract
Dihydromyricetin (DMY), the major bioactive flavonoid ingredient extracted from the leaves of Ampelopsis grossedentata (Hand.-Mazz) W.T. Wang, displays multiple pharmacological activities, including oxidation resistance, antitumor properties and free radical scavenging capacities. However, the role of DMY in methylglyoxal (MG)-induced diabetes-associated cognitive decline and its underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DMY on oxidative stress and glucose transport activity in a MG-induced PC12 cell line and to explore the related mechanisms. The effects of DMY on cell survival and apoptosis were examined, and the dysregulation of intracellular Ca(2+) was determined. Oxidative stress was evaluated by monitoring ROS production and the glutathione to glutathione disulfide ratio. The effects of DMY on glucose metabolism were investigated using a fluorescently labeled deoxyglucose analog and by measuring ATP and lactate production. Western blot analysis was performed to examine the protein levels of glyoxalase I (Glo-1), glucose transporter 4 (GLUT4), AMP-activated protein kinase (AMPKα) and phosphorylated AMPKα (p-AMPKα). The results revealed that DMY suppressed cellular oxidative stress in PC12 cells and balanced glucose metabolism. Additionally, DMY reduced GLUT4 translocation dysfunction and increased Glo-1 and p-AMPKα expression. We found that DMY protected PC12 cells against MG-induced apoptosis and glycometabolic disorders, at least in part by restraining the hyperactivation of p-AMPK activity and normalizing the translocation of GLUT4 from the intracellular compartment, resulting in a balance in glucose uptake. This result indicates that DMY may serve as a novel and effective candidate agent to treat diabetic encephalopathy by reducing the toxicity of MG.
Collapse
|