1
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
2
|
Xiong S, Wang Q, Chen Y, Du H, Zhao Y. Leptin limits hepatic lipid accumulation and inflammation via vagal activation of the JAK2-STAT3/AMPK pathway. J Nutr Biochem 2024; 134:109748. [PMID: 39186956 DOI: 10.1016/j.jnutbio.2024.109748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) begins with hepatic lipid accumulation, and leptin has antisteatosis properties. In this study, we investigated the effects of leptin on hepatic steatosis and inflammation through the vagal pathway independently of the inhibitory effect of food intake. Male Sprague-Dawley rats were matched for food intake after the high-fat diet (HFD)-induced obesity model and were injected intraperitoneally with leptin or leptin + lidocaine for 6 weeks. Control rats received equal volumes of saline. Adipose tissue mass, NAFLD activity scores (NAS), hepatic inflammatory factors, hepatic triglyceride content and hepatic lipid metabolism-related protein levels were evaluated. Leptin ameliorated HFD-induced hepatic lipid accumulation, improved NAS, and decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) levels in the presence of matched intake. Lidocaine decreased the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) expression in the nucleus tractus solitarius (NTS) and abrogated the leptin-mediated improvement. Leptin increased hypothalamic phosphorylated Janus kinase 2 (p-JAK2) and p-STAT3 expression, as well as the expression of mitochondrial respiratory chain-related genes. Leptin also increased hepatic phosphorylated adenosine 5'-monophosphate-activated protein kinase (p-AMPK) expression and phosphorylation of its downstream target acetyl Co A carboxylase 1 (ACC1), reducing de novo lipogenesis. Our results suggest that leptin ameliorated hepatic lipid accumulation and inflammation by activating the JAK2-STAT3/AMPK pathway through the vagal pathway independently of the inhibitory effect of ingestion. Leptin has the potential to be a drug for early NAFLD treatment.
Collapse
Affiliation(s)
- Shichao Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yiru Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Huidi Du
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
4
|
Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, Zhao J. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metab 2024; 36:947-968. [PMID: 38718757 DOI: 10.1016/j.cmet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/26/2024]
Abstract
Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.
Collapse
Affiliation(s)
- Tao Bo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Zhenyu Yao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Shanshan Shao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Jiajun Zhao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.
| |
Collapse
|
5
|
Meng Z, Liu C, Xu M, Tao Y, Li H, Wang X, Liao J, Wang M. Adipose transplantation improves metabolism and atherosclerosis but not perivascular adipose tissue abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe null mice. Am J Physiol Cell Physiol 2024; 326:C1410-C1422. [PMID: 38525541 PMCID: PMC11371364 DOI: 10.1152/ajpcell.00698.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chuangxing Liu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengke Xu
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongqiang Tao
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyu Li
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xijia Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiawei Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mengyu Wang
- Department of Cardiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Agarwal AK, Tunison K, Horton JD, Garg A. Regulated regeneration of adipose tissue in lipodystrophic Agpat2-null mice partially ameliorates hepatic steatosis. iScience 2024; 27:109517. [PMID: 38623324 PMCID: PMC11016861 DOI: 10.1016/j.isci.2024.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 01/22/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024] Open
Abstract
Both humans and mice with congenital generalized lipodystrophy due to AGPAT2 deficiency develop diabetes mellitus, insulin resistance, and hepatic steatosis, which have been attributed to the near total loss of adipose tissue (AT). Here, we show that regulated AT regeneration in doxycycline (dox)-fed Tg-AT-hAGPAT2;mAgpat2-/- mice partially ameliorates hepatic steatosis at 12 weeks of age and causes reduced expression of genes involved in hepatic de novo lipogenesis despite partial (∼30-50%) AT regeneration compared to that in wild-type mice. Compared to chow-fed Tg-AT-hAGPAT2;mAgpat2-/- mice, those fed dox diet had markedly reduced serum insulin levels, suggesting an improvement in insulin resistance. Interestingly, the fasting plasma glucose levels in dox-fed Tg-AT-hAGPAT2;mAgpat2-/- mice were no different than those in chow-fed wild-type mice. Indirect calorimetry revealed normalization in the energy balance of dox-fed Tg-AT-hAGPAT2;mAgpat2-/- mice compared to that in chow-fed mice. This study's findings suggest that partial AT regeneration in lipodystrophic mice can ameliorate metabolic derangements.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Agarwal AK, Tunison K, Vale G, McDonald JG, Li X, Horton JD, Garg A. Adipose-specific overexpression of human AGPAT2 in mice causes increased adiposity and mild hepatic dysfunction. iScience 2024; 27:108653. [PMID: 38274405 PMCID: PMC10809107 DOI: 10.1016/j.isci.2023.108653] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/11/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
AGPAT2, a critical enzyme involved in the biosynthesis of phospholipids and triacylglycerol (TAG), is highly expressed in adipose tissue (AT). Whether overexpression of AGPAT2 in AT will result in increased TAG synthesis (obesity) and its metabolic complications remains unknown. We overexpressed human AGPAT2 specifically in AT using the adiponectin promoter and report increased mass of subcutaneous, gonadal, and brown AT in wild-type mice. Unexpectedly, overexpression of hAGPAT2 did not change the pattern of phospholipid or TAG concentration of the AT depots. Although there is an increase in liver weight, plasma aspartate aminotransferase, and plasma insulin at various time points of the study, it did not result in significant liver dysfunction. Despite increased adiposity in the Tg-AT-hAGPAT2;mAgpat2+/+ mice, there was no significant increase in TAG concentration of AT. Therefore, this study suggests a role of AGPAT2 in the generation of AT, but not for adipocyte TAG synthesis.
Collapse
Affiliation(s)
- Anil K. Agarwal
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katie Tunison
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Goncalo Vale
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeffrey G. McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xilong Li
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay D. Horton
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abhimanyu Garg
- Section of Nutrition and Metabolic Diseases, Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Sakuma I, Gaspar RC, Luukkonen PK, Kahn M, Zhang D, Zhang X, Murray S, Golla JP, Vatner DF, Samuel VT, Petersen KF, Shulman GI. Lysophosphatidic acid triggers inflammation in the liver and white adipose tissue in rat models of 1-acyl-sn-glycerol-3-phosphate acyltransferase 2 deficiency and overnutrition. Proc Natl Acad Sci U S A 2023; 120:e2312666120. [PMID: 38127985 PMCID: PMC10756285 DOI: 10.1073/pnas.2312666120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
AGPAT2 (1-acyl-sn-glycerol-3-phosphate-acyltransferase-2) converts lysophosphatidic acid (LPA) into phosphatidic acid (PA), and mutations of the AGPAT2 gene cause the most common form of congenital generalized lipodystrophy which leads to steatohepatitis. The underlying mechanism by which AGPAT2 deficiency leads to lipodystrophy and steatohepatitis has not been elucidated. We addressed this question using an antisense oligonucleotide (ASO) to knockdown expression of Agpat2 in the liver and white adipose tissue (WAT) of adult male Sprague-Dawley rats. Agpat2 ASO treatment induced lipodystrophy and inflammation in WAT and the liver, which was associated with increased LPA content in both tissues, whereas PA content was unchanged. We found that a controlled-release mitochondrial protonophore (CRMP) prevented LPA accumulation and inflammation in WAT whereas an ASO against glycerol-3-phosphate acyltransferase, mitochondrial (Gpam) prevented LPA content and inflammation in the liver in Agpat2 ASO-treated rats. In addition, we show that overnutrition, due to high sucrose feeding, resulted in increased hepatic LPA content and increased activated macrophage content which were both abrogated with Gpam ASO treatment. Taken together, these data identify LPA as a key mediator of liver and WAT inflammation and lipodystrophy due to AGPAT2 deficiency as well as liver inflammation due to overnutrition and identify LPA as a potential therapeutic target to ameliorate these conditions.
Collapse
Affiliation(s)
- Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Molecular Diagnosis, Graduate School of Medicine Chiba University, Chiba260-8670, Japan
| | - Rafael C. Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Panu K. Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Xuchen Zhang
- Department of Pathology, Yale School of Medicine, New Haven, CT06520
| | | | - Jaya Prakash Golla
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Varman T. Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT06520
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT06520
- Howard Hughes Medical Institute, Chevy Chase, MD20815
| |
Collapse
|
9
|
Tiwari M, Mcilroy GD. From scarcity to solutions: Therapeutic strategies to restore adipose tissue functionality in rare disorders of lipodystrophy. Diabet Med 2023; 40:e15214. [PMID: 37638531 DOI: 10.1111/dme.15214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
AIMS Lipodystrophy is a rare disorder characterised by abnormal or deficient adipose tissue formation and distribution. It poses significant challenges to affected individuals, including the development of severe metabolic complications like diabetes and fatty liver disease. These conditions are often chronic, debilitating and life-threatening, with limited treatment options and a lack of specialised expertise. This review aims to raise awareness of lipodystrophy disorders and highlights therapeutic strategies to restore adipose tissue functionality. METHODS Extensive research has been conducted, including both historical and recent advances. We have examined and summarised the literature to provide an overview of potential strategies to restore adipose tissue functionality and treat/reverse metabolic complications in lipodystrophy disorders. RESULTS A wealth of basic and clinical research has investigated various therapeutic approaches for lipodystrophy. These include ground-breaking methods such as adipose tissue transplantation, innovative leptin replacement therapy, targeted inhibition of lipolysis and cutting-edge gene and cell therapies. Each approach shows great potential in addressing the complex challenges posed by lipodystrophy. CONCLUSIONS Lipodystrophy disorders require urgent attention and innovative treatments. Through rigorous basic and clinical research, several promising therapeutic strategies have emerged that could restore adipose tissue functionality and reverse the severe metabolic complications associated with this condition. However, further research and collaboration between academics, clinicians, patient advocacy groups and pharmaceutical companies will be crucial in transforming these scientific breakthroughs into effective and viable treatment options for individuals and families affected by lipodystrophy. Fostering such interdisciplinary partnerships could pave the way for a brighter future for those battling this debilitating disorder.
Collapse
Affiliation(s)
- Mansi Tiwari
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| | - George D Mcilroy
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Yao Z, Gong Y, Chen W, Shao S, Song Y, Guo H, Li Q, Liu S, Wang X, Zhang Z, Wang Q, Xu Y, Wu Y, Wan Q, Zhao X, Xuan Q, Wang D, Lin X, Xu J, Liu J, Proud CG, Wang X, Yang R, Fu L, Niu S, Kong J, Gao L, Bo T, Zhao J. Upregulation of WDR6 drives hepatic de novo lipogenesis in insulin resistance in mice. Nat Metab 2023; 5:1706-1725. [PMID: 37735236 PMCID: PMC10590755 DOI: 10.1038/s42255-023-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/23/2023] [Indexed: 09/23/2023]
Abstract
Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.
Collapse
Affiliation(s)
- Zhenyu Yao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Ying Gong
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanshan Shao
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Honglin Guo
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qihang Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenhai Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yunyun Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wan
- Center of Cell Metabolism and Disease, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuhui Xuan
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Dawei Wang
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Liu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Christopher G Proud
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Xuemin Wang
- Lifelong Health, South Australian Health & Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | - Rui Yang
- Institute of Genome Engineered Animal Models, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lili Fu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Shaona Niu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China
| | - Junjie Kong
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
| | - Tao Bo
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Shandong Clinical Research Center of Diabetes and Metabolic Diseases, Jinan, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Prevention and Control Engineering Laboratory of Endocrine and Metabolic Diseases, Jinan, China.
| |
Collapse
|
11
|
Wakabayashi N, Yagishita Y, Joshi T, Kensler TW. Forced Hepatic Expression of NRF2 or NQO1 Impedes Hepatocyte Lipid Accumulation in a Lipodystrophy Mouse Model. Int J Mol Sci 2023; 24:13345. [PMID: 37686150 PMCID: PMC10487640 DOI: 10.3390/ijms241713345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Lipodystrophy is a disorder featuring loss of normal adipose tissue depots due to impaired production of normal adipocytes. It leads to a gain of fat deposition in ectopic tissues such as liver and skeletal muscle that results in steatosis, dyslipidemia, and insulin resistance. Previously, we established a Rosa NIC/NIC::AdiCre lipodystrophy model mouse. The lipodystrophic phenotype that included hepatomegaly accompanied with hepatic damage due to higher lipid accumulation was attenuated substantially by amplified systemic NRF2 signaling in mice with hypomorphic expression of Keap1; whole-body Nrf2 deletion abrogated this protection. To determine whether hepatic-specific NRF2 signaling would be sufficient for protection against hepatomegaly and fatty liver development, direct, powerful, transient expression of Nrf2 or its target gene Nqo1 was achieved by administration through hydrodynamic tail vein injection of pCAG expression vectors of dominant-active Nrf2 and Nqo1 in Rosa NIC/NIC::AdiCre mice fed a 9% fat diet. Both vectors enabled protection from hepatic damage, with the pCAG-Nqo1 vector being the more effective as seen with a ~50% decrease in hepatic triglyceride levels. Therefore, activating NRF2 signaling or direct elevation of NQO1 in the liver provides new possibilities to partially reduce steatosis that accompanies lipodystrophy.
Collapse
Affiliation(s)
- Nobunao Wakabayashi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| | - Yoko Yagishita
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
- Division of Endocrinology, Columbia University, New York, NY 10032, USA
| | - Tanvi Joshi
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| | - Thomas W. Kensler
- Translational Research Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA or (Y.Y.); (T.J.); (T.W.K.)
| |
Collapse
|
12
|
Robledo F, González-Hodar L, Tapia P, Figueroa AM, Ezquer F, Cortés V. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther 2023; 14:70. [PMID: 37024989 PMCID: PMC10080976 DOI: 10.1186/s13287-023-03262-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Adipose tissue-derived stromal vascular fraction (SVF) harbors multipotent cells with potential therapeutic relevance. We developed a method to form adipose spheroids (AS) from the SVF with complex organoid structure and enhanced leptin secretion upon insulin stimulation. METHODS SVF was generated from the interscapular brown adipose tissue of newborn mice. Immunophenotype and stemness of cultured SVF were determined by flow cytometry and in vitro differentiation, respectively. Spheroids were generated in hanging drops and non-adherent plates and compared by morphometric methods. The adipogenic potential was compared between preadipocyte monolayers and spheroids. Extracellular leptin was quantified by immunoassay. Lipolysis was stimulated with isoprenaline and quantified by colorimetric methods. AS viability and ultrastructure were determined by confocal and transmission electron microscopy analyses. RESULTS Cultured SVF contained Sca1 + CD29 + CD44 + CD11b- CD45- CD90- cells with adipogenic and chondrogenic but no osteogenic potential. Culture on non-adherent plates yielded the highest quantity and biggest size of spheroids. Differentiation of AS for 15 days in a culture medium supplemented with insulin and rosiglitazone resulted in greater Pparg, Plin1, and Lep expression compared to differentiated adipocytes monolayers. AS were viable and maintained leptin secretion even in the absence of adipogenic stimulation. Glycerol release after isoprenaline stimulation was higher in AS compared to adipocytes in monolayers. AS were composed of outer layers of unilocular mature adipocytes and an inner structure composed of preadipocytes, immature adipocytes and an abundant loose extracellular matrix. CONCLUSION Newborn mice adipose SVF can be efficiently differentiated into leptin-secreting AS. Prolonged stimulation with insulin and rosiglitazone allows the formation of structurally complex adipose organoids able to respond to adrenergic lipolytic stimulation.
Collapse
Affiliation(s)
- Fermín Robledo
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lila González-Hodar
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Tapia
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Luo W, Huang Y, Qiu X, Zhuo W, Tao Y, Wang S, Li H, Shen J, Zhao L, Zhang L, Li S, Liu J, Huang Q, Zhou R. Growth-Promoting Effects of Zhenqi Granules on Finishing Pigs. Animals (Basel) 2022; 12:3521. [PMID: 36552440 PMCID: PMC9774107 DOI: 10.3390/ani12243521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Developing nonantibiotic livestock growth promoters attracts intensive interest in the post-antibiotic era. In this study, we investigated the growth-promoting efficacy of Zhenqi granules (ZQ) in pigs and further explored the possible mechanisms by transcriptomics analysis. Weaned piglets (52 days old with an average body weight of 17.92 kg) were fed with diets supplemented with different doses of ZQ (0 g/kg, 1 g/kg, and 2 g/kg) for 30 days and continued observations for an additional 32 days after removing ZQ from the diets. Compared with the control group, the average daily gain, carcass weight, average back fat thickness, and fat meat percentage of the group supplemented with 1 g/kg of ZQ showed a significant increase, and the feed/gain ratio was lower. The group supplemented with 2 g/kg of ZQ also showed a significant increase in average daily gain and average backfat thickness. A transcriptomics analysis revealed that the supplementation of ZQ at 1 g/kg upregulated the expression of genes related to collagen biosynthesis and lipid biosynthesis in skeletal muscle and liver. This effect was primarily through upregulating the mRNA levels of structural proteins and lipid-related enzymes. This study demonstrates the growth-promoting efficacy of ZQ and provides some insights of the mechanism of growth promotion.
Collapse
Affiliation(s)
- Wentao Luo
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Yaxue Huang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Xiuxiu Qiu
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Wenxiao Zhuo
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Yujun Tao
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Shuaiyang Wang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Huaixia Li
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Jing Shen
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Lelin Zhao
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Lijun Zhang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Shuo Li
- Hubei Provincial Veterinary Drug Research Center, HVSEN Biotech, Wuhan 430042, China
| | - Jie Liu
- Hubei Provincial Veterinary Drug Research Center, HVSEN Biotech, Wuhan 430042, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, and Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University College of Veterinary Medicine, Wuhan 430070, China
| |
Collapse
|
14
|
Le Lay S, Magré J, Prieur X. Not Enough Fat: Mouse Models of Inherited Lipodystrophy. Front Endocrinol (Lausanne) 2022; 13:785819. [PMID: 35250856 PMCID: PMC8895270 DOI: 10.3389/fendo.2022.785819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Lipodystrophies belong to the heterogenous group of syndromes in which the primary defect is a generalized or partial absence of adipose tissue, which may be congenital or acquired in origin. Lipodystrophy should be considered in patients manifesting the combination of insulin resistance (with or without overt diabetes), dyslipidemia and fatty liver. Lipodystrophies are classified according to the etiology of the disease (genetic or acquired) and to the anatomical distribution of adipose tissue (generalized or partial). The mechanism of adipose tissue loss is specific to each syndrome, depending on the biological function of the mutated gene. Mice models, together with cellular studies have permitted clarification of the mechanisms by which human mutations deeply compromise adipocyte homeostasis. In addition, rodent models have proven to be crucial in deciphering the cardiometabolic consequences of the lack of adipose tissue such as NAFLD, muscle insulin resistance and cardiomyopathy. More precisely, tissue-specific transgenic and knockout mice have brought new tools to distinguish phenotypic traits that are the consequences of lipodystrophy from those that are cell-autonomous. In this review, we discuss the mice models of lipodystrophy including those of inherited human syndromes of generalized and partial lipodystrophy. We present how these models have demonstrated the central role of white adipose tissue in energetic homeostasis in general, including insulin sensitivity and lipid handling in particular. We underscore the differences reported with the human phenotype and discuss the limit of rodent models in recapitulating adipose tissue primary default. Finally, we present how these mice models have highlighted the function of the causative-genes and brought new insights into the pathophysiology of the cardiometabolic complications associated with lipodystrophy.
Collapse
Affiliation(s)
- Soazig Le Lay
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- Univ Angers, SFR ICAT, Angers, France
| | - Jocelyne Magré
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
| | - Xavier Prieur
- Nantes Université, CNRS, INSERM, l’institut du thorax, Nantes, France
- *Correspondence: Xavier Prieur,
| |
Collapse
|
15
|
Hoffmann A, Ebert T, Hankir MK, Flehmig G, Klöting N, Jessnitzer B, Lössner U, Stumvoll M, Blüher M, Fasshauer M, Tönjes A, Miehle K, Kralisch S. Leptin Improves Parameters of Brown Adipose Tissue Thermogenesis in Lipodystrophic Mice. Nutrients 2021; 13:2499. [PMID: 34444659 PMCID: PMC8399124 DOI: 10.3390/nu13082499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022] Open
Abstract
Lipodystrophy syndromes (LD) are a heterogeneous group of very rare congenital or acquired disorders characterized by a generalized or partial lack of adipose tissue. They are strongly associated with severe metabolic dysfunction due to ectopic fat accumulation in the liver and other organs and the dysregulation of several key adipokines, including leptin. Treatment with leptin or its analogues is therefore sufficient to reverse some of the metabolic symptoms of LD in patients and in mouse models through distinct mechanisms. Brown adipose tissue (BAT) thermogenesis has emerged as an important regulator of systemic metabolism in rodents and in humans, but it is poorly understood how leptin impacts BAT in LD. Here, we show in transgenic C57Bl/6 mice overexpressing sterol regulatory element-binding protein 1c in adipose tissue (Tg (aP2-nSREBP1c)), an established model of congenital LD, that daily subcutaneous administration of 3 mg/kg leptin for 6 to 8 weeks increases body temperature without affecting food intake or body weight. This is associated with increased protein expression of the thermogenic molecule uncoupling protein 1 (UCP1) and the sympathetic nerve marker tyrosine hydroxylase (TH) in BAT. These findings suggest that leptin treatment in LD stimulates BAT thermogenesis through sympathetic nerves, which might contribute to some of its metabolic benefits by providing a healthy reservoir for excess circulating nutrients.
Collapse
Affiliation(s)
- Annett Hoffmann
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Thomas Ebert
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 17177 Solna, Sweden
| | - Mohammed K. Hankir
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Gesine Flehmig
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, 04109 Leipzig, Germany;
| | - Beate Jessnitzer
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
| | - Ulrike Lössner
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig, 04109 Leipzig, Germany;
| | - Mathias Fasshauer
- Institute of Nutritional Science, Justus-Liebig-University, 35390 Giessen, Germany;
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
| | - Konstanze Miehle
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
| | - Susan Kralisch
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04109 Leipzig, Germany; (T.E.); (G.F.); (B.J.); (U.L.); (M.S.); (M.B.); (A.T.); (K.M.); (S.K.)
| |
Collapse
|
16
|
Jiménez-Cortegana C, García-Galey A, Tami M, del Pino P, Carmona I, López S, Alba G, Sánchez-Margalet V. Role of Leptin in Non-Alcoholic Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9070762. [PMID: 34209386 PMCID: PMC8301314 DOI: 10.3390/biomedicines9070762] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which affects about a quarter of the global population, poses a substantial health and economic burden in all countries, yet there is no approved pharmacotherapy to treat this entity, nor well-established strategies for its diagnosis. Its prevalence has been rapidly driven by increased physical inactivity, in addition to excessive calorie intake compared to energy expenditure, affecting both adults and children. The increase in the number of cases, together with the higher morbimortality that this disease entails with respect to the general population, makes NAFLD a serious public health problem. Closely related to the development of this disease, there is a hormone derived from adipocytes, leptin, which is involved in energy homeostasis and lipid metabolism. Numerous studies have verified the relationship between persistent hyperleptinemia and the development of steatosis, fibrinogenesis and liver carcinogenesis. Therefore, further studies of the role of leptin in the NAFLD spectrum could represent an advance in the management of this set of diseases.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Alba García-Galey
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Malika Tami
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Pilar del Pino
- Unit of Digestive Diseases, Virgen Macarena University Hospital, 41073 Seville, Spain; (P.d.P.); (I.C.)
| | - Isabel Carmona
- Unit of Digestive Diseases, Virgen Macarena University Hospital, 41073 Seville, Spain; (P.d.P.); (I.C.)
| | - Soledad López
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Gonzalo Alba
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41073 Seville, Spain; (C.J.-C.); (A.G.-G.); (M.T.); (S.L.); (G.A.)
- Correspondence:
| |
Collapse
|
17
|
Ramírez-Vélez R, González-Ruíz K, González-Jiménez E, Schmidt-RioValle J, Correa-Rodríguez M, García-Hermoso A, Palomino-Echeverría S, Izquierdo M. Serum leptin as a mediator of the influence of insulin resistance on hepatic steatosis in youths with excess adiposity. Nutr Metab Cardiovasc Dis 2021; 31:1308-1316. [PMID: 33618924 DOI: 10.1016/j.numecd.2020.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS The relationship between insulin resistance (IR) and hepatic steatosis (fatty liver) is well known; however, the extent to which the satiety hormone leptin acts as a confounder or mediator in this relationship is uncertain. We examined whether the association between IR and hepatic steatosis is mediated by leptin in Colombian adolescents with excess adiposity. METHODS AND RESULTS A total of 122 adolescents (mean age: 13.4 years; 68% girls) participated in the study. We assessed body composition, hepatic steatosis (as defined by the controlled attenuation parameter [CAP]), cardiometabolic risk factors (body mass index, waist circumference, body composition), biochemical variables (leptin, insulin, glucose, lipid profile, cardiometabolic Z-score, transaminases, etc.), and physical fitness (cardiorespiratory fitness and grip strength). Partial correlation, regression, and mediation analyses were conducted using the Barron and Kenny framework. RESULTS Ninety-two youths (75.4%) had IR. Mediation analysis revealed a positive relationship between Homeostasis Model Assessment-IR (HOMA-IR) and CAP (βdir = 3.414, 95% confidence interval [CI]: 1.012 to 5.816, p < 0.001), which was attenuated when leptin was included in the model, thus indicating that leptin mediates this relationship (βind = 1.074, 95% CI: 0.349 to 2.686, p < 0.001). The percentage of the total effect mediated by leptin was 21%. Regarding sex, the mediation effect of leptin remains significant among boys (βind = 0.962, 95% CI: 0.009 to 2.615, p < 0.001), but not in girls (βind = 0.991, 95% CI: 1.263 to 5.483, p = 0.477). CONCLUSIONS The findings are clinically relevant to consider leptin levels as a surrogate marker of insulin sensitivity when assessing youths with excess adiposity and/or suspected Nonalcoholic hepatic steatosis or nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Institute of Health Carlos III, Madrid, Spain.
| | - Katherine González-Ruíz
- Physical Exercise and Sports Research Group, Vice Chancellor for Research, Manuela Beltrán University (UMB), Bogotá, DC, 110231, Colombia.
| | - Emilio González-Jiménez
- Department of Nursing, Health Sciences Faculty, University of Granada, Avda. De la Ilustración 60, 18016, Granada, Spain.
| | - Jacqueline Schmidt-RioValle
- Department of Nursing, Health Sciences Faculty, University of Granada, Avda. De la Ilustración 60, 18016, Granada, Spain.
| | - María Correa-Rodríguez
- Department of Nursing, Health Sciences Faculty, University of Granada, Avda. De la Ilustración 60, 18016, Granada, Spain.
| | - Antonio García-Hermoso
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain; Physical Activity, Sport and Health Sciences Laboratory, University of Santiago de Chile (USACH), Santiago de Chile, 7500618, Chile.
| | - Sara Palomino-Echeverría
- Translational Bioinformatics Unit (TransBio), Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain.
| | - Mikel Izquierdo
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN)-Universidad Pública de Navarra (UPNA), IDISNA, 31008, Pamplona, Spain; CIBER of Frailty and Healthy Aging (CIBERFES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
18
|
Barrios V, López-Villar E, Frago LM, Canelles S, Díaz-González F, Burgos-Ramos E, Frühbeck G, Chowen JA, Argente J. Cerebral Insulin Bolus Revokes the Changes in Hepatic Lipid Metabolism Induced by Chronic Central Leptin Infusion. Cells 2021; 10:cells10030581. [PMID: 33800837 PMCID: PMC8000796 DOI: 10.3390/cells10030581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Central actions of leptin and insulin on hepatic lipid metabolism can be opposing and the mechanism underlying this phenomenon remains unclear. Both hormones can modulate the central somatostatinergic system that has an inhibitory effect on growth hormone (GH) expression, which plays an important role in hepatic metabolism. Using a model of chronic central leptin infusion, we evaluated whether an increase in central leptin bioavailability modifies the serum lipid pattern through changes in hepatic lipid metabolism in male rats in response to an increase in central insulin and the possible involvement of the GH axis in these effects. We found a rise in serum GH in leptin plus insulin-treated rats, due to an increase in pituitary GH mRNA levels associated with lower hypothalamic somatostatin and pituitary somatostatin receptor-2 mRNA levels. An augment in hepatic lipolysis and a reduction in serum levels of non-esterified fatty acids (NEFA) and triglycerides were found in leptin-treated rats. These rats experienced a rise in lipogenic-related factors and normalization of serum levels of NEFA and triglycerides after insulin treatment. These results suggest that an increase in insulin in leptin-treated rats can act on the hepatic lipid metabolism through activation of the GH axis.
Collapse
Affiliation(s)
- Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Correspondence: (V.B.); (J.A.)
| | - Elena López-Villar
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
| | - Laura M. Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
| | - Francisca Díaz-González
- Institute of Medical and Molecular Genetics (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, E-28049 Madrid, Spain;
| | - Emma Burgos-Ramos
- Faculty of Environmental Sciences and Biochemistry, Universidad de Castilla-La Mancha, E-45071 Toledo, Spain;
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008 Pamplona, Spain
| | - Julie A. Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009 Madrid, Spain; (E.L.-V.); (L.M.F.); (S.C.); (J.A.C.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain;
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, E-28029 Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, E-28049 Madrid, Spain
- Correspondence: (V.B.); (J.A.)
| |
Collapse
|
19
|
Gava FN, da Silva AA, Dai X, Harmancey R, Ashraf S, Omoto ACM, Salgado MC, Moak SP, Li X, Hall JE, do Carmo JM. Restoration of Cardiac Function After Myocardial Infarction by Long-Term Activation of the CNS Leptin-Melanocortin System. JACC Basic Transl Sci 2021; 6:55-70. [PMID: 33532666 PMCID: PMC7838051 DOI: 10.1016/j.jacbts.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Leptin protects against progression to heart failure after myocardial infarction. This beneficial effect requires activation of the brain melanocortin system. Stimulation of brain MC4R recapitulates the cardiac protective effects of leptin. Leptin-MC4R activation improves cardiac substrate oxidation and mitochondrial function. It also improves Ca2+ coupling and contractile function in viable cardiomyocytes after MI.
Heart failure has a high mortality rate, and current therapies offer limited benefits. The authors demonstrate that activation of the central nervous system leptin-melanocortin pathway confers remarkable protection against progressive heart failure following severe myocardial infarction. The beneficial cardiac-protective actions of leptin require activation of brain melanocortin-4 receptors and elicit improvements in cardiac substrate oxidation, cardiomyocyte contractility, Ca2+ coupling, and mitochondrial efficiency. These findings highlight a potentially novel therapeutic approach for myocardial infarction and heart failure.
Collapse
Key Words
- AMPK, adenosine monophosphate–activated protein kinase
- BP, blood pressure
- CNS, central nervous system
- HF, heart failure
- HR, heart rate
- ICV, intracerebroventricular
- LV, left ventricular
- MC4R
- MC4R, melanocortin-4 receptor
- MI, myocardial infarction
- MTII, melanotan II
- appetite
- blood pressure
- cardiac metabolism
- heart failure
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Fabio N Gava
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Veterinary Clinics, Londrina State University, Parana, Brazil
| | - Alexandre A da Silva
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Xuemei Dai
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Romain Harmancey
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sadia Ashraf
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana C M Omoto
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Physiology, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Mateus C Salgado
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil
| | - Sydney P Moak
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Xuan Li
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - John E Hall
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jussara M do Carmo
- Department of Physiology and Biophysics and Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
20
|
Santos JL, Cortés VA. Eating behaviour in contrasting adiposity phenotypes: Monogenic obesity and congenital generalized lipodystrophy. Obes Rev 2021; 22:e13114. [PMID: 33030294 DOI: 10.1111/obr.13114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Most known types of nonsyndromic monogenic obesity are caused by rare mutations in genes of the leptin-melanocortin pathway controlling appetite and adiposity. In contrast, congenital generalized lipodystrophy represents the most extreme form of leanness in humans caused by recessive mutations in four genes involved in phospholipid/triglyceride synthesis and lipid droplet/caveolae structure. In this disease, the inability to store triglyceride in adipocytes results in hypoleptinemia and ectopic hepatic and muscle fat accumulation leading to fatty liver, hypertriglyceridemia and severe insulin resistance. As a result of hypoleptinemia, patients with lipodystrophy show alterations in eating behaviour characterized by constant increased energy intake. As it occurs in obesity caused by genetic leptin deficiency, exogenous leptin rapidly reduces hunger scores in patients with congenital generalized lipodystrophy, with additional beneficial effects on glucose homeostasis and metabolic profile normalization. The melanocortin-4 receptor agonist setmelanotide has been used in the treatment of monogenic obesities. There is only one report on the effect of setmelanotide in a patient with partial lipodystrophy resulting in mild reductions in hunger scores, with no improvements in metabolic status. The assessment of contrasting phenotypes of obesity/leanness represents an adequate strategy to understand the pathophysiology and altered eating behaviour associated with adipose tissue excessive accumulation/paucity.
Collapse
Affiliation(s)
- José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor A Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020; 158:1899-1912. [PMID: 32061598 DOI: 10.1053/j.gastro.2019.12.054] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Adipose tissue and the liver play significant roles in the regulation of whole-body energy homeostasis, but they have not evolved to cope with the continuous, chronic, nutrient surplus seen in obesity. In this review, we detail how prolonged metabolic stress leads to adipose tissue dysfunction, inflammation, and adipokine release that results in increased lipid flux to the liver. Overall, the upshot of hepatic fat accumulation alongside an insulin-resistant state is that hepatic lipid enzymatic pathways are modulated and overwhelmed, resulting in the selective buildup of toxic lipid species, which worsens the pro-inflammatory and pro-fibrotic shift observed in nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge.
| | - Michele Vacca
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Samuel Virtue
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital
| | - Michael Allison
- The Liver Unit, Department of Medicine, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Hills Road, Cambridge
| | - Antonio Vidal-Puig
- Wellcome Trust-Medical Research Council Institute of Metabolic Science-Metabolic Research Laboratories, Addenbrooke's Hospital; Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
22
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
23
|
do Carmo JM, da Silva AA, Gava FN, Moak SP, Dai X, Hall JE. Impact of leptin deficiency compared with neuronal-specific leptin receptor deletion on cardiometabolic regulation. Am J Physiol Regul Integr Comp Physiol 2019; 317:R552-R562. [PMID: 31411897 DOI: 10.1152/ajpregu.00077.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main goal of this study was to compare the impact of total body leptin deficiency with neuronal-specific leptin receptor (LR) deletion on metabolic and cardiovascular regulation. Liver fat, diacylglycerol acyltransferase-2 (DGTA2), and CD36 protein content were measured in wild-type (WT), nervous system LR-deficient (LR/Nestin-Cre), and leptin deficient (ob/ob) mice. Blood pressure (BP) and heart rate (HR) were recorded by telemetry, and motor activity (MA) and oxygen consumption (V̇o2) were monitored at 24 wk of age. Female and male LR/Nestin-Cre and ob/ob mice were heavier than WT mice (62 ± 5 and 61 ± 3 vs. 31 ± 1 g) and hyperphagic (6.2 ± 0.5 and 6.1 ± 0.7 vs. 3.5 ± 1.0 g/day), with reduced V̇o2 (27 ± 1 and 33 ± 1 vs 49 ± 3 ml·kg-1·min-1) and decreased MA (3 ± 1 and 7 ± 2 vs 676 ± 105 cm/h). They were also hyperinsulinemic and hyperglycemic compared with WT mice. LR/Nestin-Cre mice had high levels of plasma leptin, while ob/ob mice had undetectable leptin levels. Despite comparable obesity, LR/Nestin-Cre mice had lower liver fat content, DGTA2, and CD36 protein levels than ob/ob mice. Male WT, LR/Nestin-Cre, and ob/ob mice exhibited similar BP (111 ± 3, 110 ± 1 and 109 ± 2 mmHg). Female LR/Nestin-Cre and ob/ob mice, however, had higher BP than WT females despite similar metabolic phenotypes compared with male LR/Nestin-Cre and ob/ob mice. These results indicate that although nervous system LRs play a crucial role in regulating body weight and glucose homeostasis, peripheral LRs regulate liver fat deposition. In addition, our results suggest potential sex differences in the impact of obesity on BP regulation.
Collapse
Affiliation(s)
- Jussara M do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fabio N Gava
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sydney P Moak
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xuemei Dai
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
24
|
Abstract
Lipodystrophies are the result of a range of inherited and acquired causes, but all are characterized by perturbations in white adipose tissue function and, in many instances, its mass or distribution. Though patients are often nonobese, they typically manifest a severe form of the metabolic syndrome, highlighting the importance of white fat in the "safe" storage of surplus energy. Understanding the molecular pathophysiology of congenital lipodystrophies has yielded useful insights into the biology of adipocytes and informed therapeutic strategies. More recently, genome-wide association studies focused on insulin resistance have linked common variants to genes implicated in adipose biology and suggested that subtle forms of lipodystrophy contribute to cardiometabolic disease risk at a population level. These observations underpin the use of aligned treatment strategies in insulin-resistant obese and lipodystrophic patients, the major goal being to alleviate the energetic burden on adipose tissue.
Collapse
|
25
|
Polyzos SA, Perakakis N, Mantzoros CS. Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metabolism 2019; 96:66-82. [PMID: 31071311 DOI: 10.1016/j.metabol.2019.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 01/17/2023]
Abstract
Lipodystrophy is a group of clinically heterogeneous, inherited or acquired, disorders characterized by complete or partial absence of subcutaneous adipose tissue that may occur simultaneously with the pathological, ectopic, accumulation of fat in other regions of the body, including the liver. Fatty liver adds significantly to hepatic and extra-hepatic morbidity in patients with lipodystrophy. Lipodystrophy is strongly associated with severe insulin resistance and related comorbidities, such as hyperglycemia, hyperlipidemia and nonalcoholic fatty liver disease (NAFLD), but other hepatic diseases may co-exist in some types of lipodystrophy, including autoimmune hepatitis in acquired lipodystrophies, or viral hepatitis in human immunodeficiency virus (HIV)-associated lipodystrophy. The aim of this review is to summarize evidence linking lipodystrophy with hepatic disease and to provide a special focus on potential therapeutic perspectives of leptin replacement therapy and adiponectin upregulation in lipodystrophy.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Nikolaos Perakakis
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Wang H, Xu PF, Li JY, Liu XJ, Wu XY, Xu F, Xie BC, Huang XM, Zhou ZH, Kayoumu A, Liu G, Huang W. Adipose tissue transplantation ameliorates lipodystrophy-associated metabolic disorders in seipin-deficient mice. Am J Physiol Endocrinol Metab 2019; 316:E54-E62. [PMID: 30457912 DOI: 10.1152/ajpendo.00180.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seipin deficiency is responsible for type 2 congenital generalized lipodystrophy with severe loss of adipose tissue and can lead to hepatic steatosis, insulin resistance (IR), and dyslipidemia in humans. Adipose tissue secretes many adipokines that are central to the regulation of metabolism. In this study, we investigated whether transplantation of normal adipose tissue could ameliorate severe hepatic steatosis, IR, and dyslipidemia in lipoatrophic seipin knockout (SKO) mice. Normal adipose tissue from wild-type mice was transplanted into 6-wk-old SKO mice. At 4 mo after adipose tissue transplantation (AT), the transplanted fat survived with detectable blood vessels, and the reduced levels of plasma leptin, a major adipokine, were dramatically increased. Severe hepatic steatosis, IR, and dyslipidemia in SKO mice were ameliorated after AT. In addition, abnormal hepatic lipogenesis and β-oxidation gene expression in SKO mice were improved after AT. Our results suggest that AT may be an effective treatment to improve lipodystrophy-associated metabolic disorders.
Collapse
Affiliation(s)
- Huan Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Peng-Fei Xu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
- Institute of Military Training Related Medical Science of PLA, 150th Central Hospital of PLA , Luoyang, Henan , China
| | - Jing-Yi Li
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Xue-Jing Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Xiao-Yue Wu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Fang Xu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Bei-Chen Xie
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Xiao-Min Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Zi-Hao Zhou
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Abudurexiti Kayoumu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China
| |
Collapse
|
27
|
Liu XJ, Wu XY, Wang H, Wang SX, Kong W, Zhang L, Liu G, Huang W. Renal injury in Seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk. FASEB J 2018; 32:5550-5562. [PMID: 29738274 DOI: 10.1096/fj.201701427r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Seipin deficiency is responsible for type 2 congenital generalized lipodystrophy with severe loss of adipose tissue (AT) and could lead to renal failure in humans. However, the effect of Seipin on renal function is poorly understood. Here we report that Seipin knockout (SKO) mice exhibited impaired renal function, enlarged glomerular and mesangial surface areas, renal depositions of lipid, and advanced glycation end products. Elevated glycosuria and increased electrolyte excretion were also detected. Relative renal gene expression in fatty acid oxidation and reabsorption pathways were impaired in SKO mice. Elevated glycosuria might be associated with reduced renal glucose transporter 2 levels. To improve renal function, AT transplantation or leptin administration alone was performed. Both treatments effectively ameliorated renal injury by improving all of the parameters that were measured in the kidney. The treatments also rescued insulin resistance and low plasma leptin levels in SKO mice. Our findings demonstrate for the first time that Seipin deficiency induces renal injury, which is closely related to glucolipotoxicity and impaired renal reabsorption in SKO mice, and is primarily caused by the loss of AT and especially the lack of leptin. AT transplantation and leptin administration are two effective treatments for renal injury in Seipin-deficient mice.-Liu, X.-J., Wu, X.-Y., Wang, H., Wang, S.-X., Kong, W., Zhang, L., Liu, G., Huang, W. Renal injury in Seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk.
Collapse
Affiliation(s)
- Xue-Jing Liu
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Xiao-Yue Wu
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Huan Wang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Su-Xia Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Ministry of Health of China, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ling Zhang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
Skowronski AA, Ravussin Y, Leibel RL, LeDuc CA. Energy homeostasis in leptin deficient Lepob/ob mice. PLoS One 2017; 12:e0189784. [PMID: 29261744 PMCID: PMC5738099 DOI: 10.1371/journal.pone.0189784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/03/2017] [Indexed: 01/28/2023] Open
Abstract
Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.
Collapse
Affiliation(s)
- Alicja A. Skowronski
- Institute of Human Nutrition, Columbia University, New York City, New York, United States of America
- Department of Medicine, Columbia University, New York City, New York, United States of America
| | - Yann Ravussin
- Department of Medicine, Columbia University, New York City, New York, United States of America
| | - Rudolph L. Leibel
- Institute of Human Nutrition, Columbia University, New York City, New York, United States of America
- Department of Pediatrics, Columbia University, New York City, New York, United States of America
- Obesity Research Core, Columbia University, New York City, New York, United States of America
| | - Charles A. LeDuc
- Department of Pediatrics, Columbia University, New York City, New York, United States of America
- Obesity Research Core, Columbia University, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Chen HJ, Liu J. Actein ameliorates hepatic steatosis and fibrosis in high fat diet-induced NAFLD by regulation of insulin and leptin resistant. Biomed Pharmacother 2017; 97:1386-1396. [PMID: 29156528 DOI: 10.1016/j.biopha.2017.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/03/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023] Open
Abstract
Insulin and leptin resistance are highly involved in metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). Presently, no approved treatment is available. Actein is isolated from the rthizomes of Cimicifuga foetida, a triterpene glycoside, exhibiting important biological properties, such as anti-inflammatory, anti-cancer, and anti-oxidant activity. However, its effects on metabolic syndrome are poorly understood. The aims of the study were mainly to investigate the molecular mechanisms regulating insulin and leptin resistance, and lipogenic action of actein in high fat diet-fed mice. Our data indicated that actein-treated mice displayed lower body weight, epididymal and subcutaneous fat mass, as well as serum lipid levels. Also, improved insulin and leptin resistance were observed in actein-treated groups. Liver inflammation and fibrosis triggered by high fat diet were decreased for actein administration. Moreover, hepatic lipid accumulation was also reduced by actein along with reductions of hepatic de novo lipogenesis-linked signals in actein-treated rodents with high fat diet. High fat diet-induced activation of insulin receptor substrate 1/Forkhead box protein O1 (IRS1/FOXO1), Janus kinase 2 gene/signal transducer and activator of transcription (JAK2/STAT3) and Protein Kinase B/Glycogen synthase kinase 3 beta (AKT/GSK3β) pathways in liver was inhibited by actein, a potential mechanism by which hyperinsulinemia, hyperleptindemia and dyslipidemia were attenuated. Thus, the findings above might be of nutritional and therapeutic importance for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hong-Jun Chen
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
31
|
Jelenik T, Kaul K, Séquaris G, Flögel U, Phielix E, Kotzka J, Knebel B, Fahlbusch P, Hörbelt T, Lehr S, Reinbeck AL, Müller-Wieland D, Esposito I, Shulman GI, Szendroedi J, Roden M. Mechanisms of Insulin Resistance in Primary and Secondary Nonalcoholic Fatty Liver. Diabetes 2017; 66:2241-2253. [PMID: 28490610 PMCID: PMC5521856 DOI: 10.2337/db16-1147] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/30/2017] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease is associated with hepatic insulin resistance and may result primarily from increased hepatic de novo lipogenesis (PRIM) or secondarily from adipose tissue lipolysis (SEC). We studied mice with hepatocyte- or adipocyte-specific SREBP-1c overexpression as models of PRIM and SEC. PRIM mice featured increased lipogenic gene expression in the liver and adipose tissue. Their selective, liver-specific insulin resistance was associated with increased C18:1-diacylglycerol content and protein kinase Cε translocation. SEC mice had decreased lipogenesis mediated by hepatic cholesterol responsive element-binding protein and featured portal/lobular inflammation along with total, whole-body insulin resistance. Hepatic mitochondrial respiration transiently increased and declined with aging along with higher muscle reactive oxygen species production. In conclusion, hepatic insulin resistance originates from lipotoxicity but not from lower mitochondrial capacity, which can even transiently adapt to increased peripheral lipolysis. Peripheral insulin resistance is prevented during increased hepatic lipogenesis only if adipose tissue lipid storage capacity is preserved.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Gilles Séquaris
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Ulrich Flögel
- Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Pia Fahlbusch
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Tina Hörbelt
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Stefan Lehr
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute for Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
| | - Dirk Müller-Wieland
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Abstract
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole-body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity-related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.
Collapse
Affiliation(s)
- Alexandros Vegiopoulos
- Junior Group Metabolism and Stem Cell Plasticity, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Maria Rohm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Joint Heidelberg-IDC Translational Diabetes Program Inner Medicine I, Neuherberg, Germany
| |
Collapse
|
33
|
Shearin AL, Monks BR, Seale P, Birnbaum MJ. Lack of AKT in adipocytes causes severe lipodystrophy. Mol Metab 2016; 5:472-479. [PMID: 27408773 PMCID: PMC4921941 DOI: 10.1016/j.molmet.2016.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
Objective Adipose depot mass is tightly regulated to maintain energy homeostasis. AKT is a critical kinase in the insulin-signaling cascade that is required for the process of adipogenesis in vitro. However, the role of AKT in the maintenance and/or function of mature adipocytes in vivo had not been examined. Methods To study this, we deleted Akt1 and Akt2 in adipocytes of mice using the AdipoQ-Cre driver. Results Strikingly, mice lacking adipocyte AKT were severely lipodystrophic, having dramatically reduced gonadal adipose and no discernible subcutaneous or brown adipose tissue. As a result, these mice developed severe insulin resistance accompanied by fatty liver, hepatomegaly and with enlarged islets of Langerhans. Conclusions These data reveal the critical role of adipocyte AKT and insulin signaling for maintaining adipose tissue mass. AKT-action and insulin signaling are required in an adipocyte-autonomous fashion to maintain adipose tissue stores. Mice with adipocyte-specific loss of Akt1 and Akt2 display a nearly complete loss of white and brown adipose tissue. These lipodystrophic mice have organomegaly, perturbed glucose homeostasis and insulin resistance.
Collapse
Affiliation(s)
- Abigail L Shearin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Bobby R Monks
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Morris J Birnbaum
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Improvement in glycemia after glucose or insulin overload in leptin-infused rats is associated with insulin-related activation of hepatic glucose metabolism. Nutr Metab (Lond) 2016; 13:19. [PMID: 26937247 PMCID: PMC4774133 DOI: 10.1186/s12986-016-0079-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/25/2016] [Indexed: 11/16/2022] Open
Abstract
Background Insulin regulates glucose homeostasis through direct effects on the liver, among other organs, with leptin modulating insulin’s hepatic actions. Since central leptin may modify insulin signaling in the liver, we hypothesized that leptin infusion activates hepatic glycogen synthesis following peripheral administration of a bolus of glucose or insulin, thus regulating glycemia. Findings Oral glucose and intraperitoneal insulin tolerance tests were performed in control, intracerebroventricular leptin-treated and pair-fed rats during 14 days. An improvement in glycemia and an increase in hepatic free glucose and glycogen concentrations after glucose or insulin overload were observed in leptin-treated rats. In order to analyze whether the liver was involved in these changes, we studied activation of insulin signaling by Western blotting and multiplex bead immunoassay after leptin infusion. Our studies revealed an increase in phosphorylation of insulin receptor substrate-1 and Akt in leptin-treated rats. Examination of parameters related to glucose uptake and metabolism in the liver revealed an augment in glucose transporter 2 and a decrease in phosphoenolpyruvate carboxylase protein levels in this group. Conclusions These results indicate that central leptin increases hepatic insulin signaling, associated with increased glycogen concentrations after glucose or insulin overload, leading to an improvement in glycemia.
Collapse
|
35
|
Fibroblast Growth Factor 21 Suppresses Adipogenesis in Pig Intramuscular Fat Cells. Int J Mol Sci 2015; 17:ijms17010011. [PMID: 26703591 PMCID: PMC4730258 DOI: 10.3390/ijms17010011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 01/08/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in the treatment of disease associated with muscle insulin resistance which is characterized by various factors, such as intramuscular triglyceride (IMT) content. Studies have also shown that FGF21 inhibits triglyceride synthesis in vivo. However, the precise mechanism whereby FGF21 regulates triglyceride metabolism in intramuscular fat (IMF), which may influence the muscle insulin sensitivity, is not clearly understood. In order to understand the role of FGF21 in IMF deposition, we performed FGF21 overexpression in IMF cells by stable transfection. Our results showed that FGF21 inhibited the key adipogenesis gene mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein (CEBP) family by reducing lysine-specific demethylase 1 (LSD1) expression which led to significant decline in lipid accumulation, and the result was confirmed by Western blot. Moreover, triggered by FGF21, parts of the adipokines—fatty acid-binding protein 4 (FABP4), glucose transporter 4 (GLUT4), adiponectin (ADIPOQ), and perilipin (PLIN1)—were also down-regulated. Furthermore, FGF21 gene expression was suppressed by transcription factor CEBP beta (CEBPB) which contributed strongly to triglyceride synthesis. Taken together, our study is the first to experimentally demonstrate FGF21 emerging as an efficient blockade of adipogenesis in IMF, thus also providing a new understanding of the mechanism whereby FGF21 improves insulin sensitivity.
Collapse
|
36
|
Abstract
Congenital generalized lipodystrophy (CGL) is a heterogeneous autosomal recessive disorder characterized by a near complete lack of adipose tissue from birth and, later in life, the development of metabolic complications, such as diabetes mellitus, hypertriglyceridaemia and hepatic steatosis. Four distinct subtypes of CGL exist: type 1 is associated with AGPAT2 mutations; type 2 is associated with BSCL2 mutations; type 3 is associated with CAV1 mutations; and type 4 is associated with PTRF mutations. The products of these genes have crucial roles in phospholipid and triglyceride synthesis, as well as in the formation of lipid droplets and caveolae within adipocytes. The predominant cause of metabolic complications in CGL is excess triglyceride accumulation in the liver and skeletal muscle owing to the inability to store triglycerides in adipose tissue. Profound hypoleptinaemia further exacerbates metabolic derangements by inducing a voracious appetite. Patients require psychological support, a low-fat diet, increased physical activity and cosmetic surgery. Aside from conventional therapy for hyperlipidaemia and diabetes mellitus, metreleptin replacement therapy can dramatically improve metabolic complications in patients with CGL. In this Review, we discuss the molecular genetic basis of CGL, the pathogenesis of the disease's metabolic complications and therapeutic options for patients with CGL.
Collapse
Affiliation(s)
- Nivedita Patni
- Division of Paediatric Endocrinology, Department of Paediatrics, Department of Internal Medicine, Centre for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8537, USA
| | - Abhimanyu Garg
- Division of Nutrition and Metabolic Diseases, Department of Internal Medicine, Center for Human Nutrition, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8537, USA
| |
Collapse
|
37
|
Munusamy S, do Carmo JM, Hosler JP, Hall JE. Obesity-induced changes in kidney mitochondria and endoplasmic reticulum in the presence or absence of leptin. Am J Physiol Renal Physiol 2015; 309:F731-43. [PMID: 26290368 DOI: 10.1152/ajprenal.00188.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/13/2015] [Indexed: 12/17/2022] Open
Abstract
We investigated obesity-induced changes in kidney lipid accumulation, mitochondrial function, and endoplasmic reticulum (ER) stress in the absence of hypertension, and the potential role of leptin in modulating these changes. We compared two normotensive genetic mouse models of obesity, leptin-deficient ob/ob mice and hyperleptinemic melanocortin-4 receptor-deficient mice (LoxTB MC4R-/-), with their respective lean controls. Compared with controls, ob/ob and LoxTB MC4R-/- mice exhibit significant albuminuria, increased creatinine clearance, and high renal triglyceride content. Renal ATP levels were decreased in both obesity models, and mitochondria isolated from both models showed alterations that would lower mitochondrial ATP production. Mitochondria from hyperleptinemic LoxTB MC4R-/- mice kidneys respired NADH-generating substrates (including palmitate) at lower rates due to an apparent decrease in complex I activity, and these mitochondria showed oxidative damage. Kidney mitochondria of leptin-deficient ob/ob mice showed normal rates of respiration with no evidence of oxidative damage, but electron transfer was partially uncoupled from ATP synthesis. A fourfold induction of C/EBP homologous protein (CHOP) expression indicated induction of ER stress in kidneys of hyperleptinemic LoxTB MC4R-/- mice. In contrast, ER stress was not induced in kidneys of leptin-deficient ob/ob mice. Our findings show that obesity, in the absence of hypertension, is associated with renal dysfunction in mice but not with major renal injury. Alterations to mitochondria that lower cellular ATP levels may be involved in obesity-induced renal injury. The type and severity of mitochondrial and ER dysfunction differs depending upon the presence or absence of leptin.
Collapse
Affiliation(s)
- Shankar Munusamy
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi; and College of Pharmacy, Qatar University, Doha, Qatar
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jonathan P Hosler
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi; Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
38
|
Dai Z, Wang H, Jin X, Wang H, He J, Liu M, Yin Z, Sun Y, Lou Q. Depletion of suppressor of cytokine signaling-1a causes hepatic steatosis and insulin resistance in zebrafish. Am J Physiol Endocrinol Metab 2015; 308:E849-59. [PMID: 25759395 DOI: 10.1152/ajpendo.00540.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
Suppressor of cytokine signaling-1a (SOCS1a) is a member of the suppressor of cytokine signaling family, a group of related molecules that mediate the negative regulation of the JAK-STAT pathway. Here, we depleted SOCS1a using the transcription activator-like (TAL) effector nuclease (TALEN) technique to understand its physiological roles in zebrafish. Although elevated levels of JAK-STAT5 activation and erythropoiesis have been observed in socs1a-deficient zebrafish, these animals exhibited normal growth during the early stages. Socs1a-deficient zebrafish began to grow slowly with certain mortalities after 20 days postfertilization (dpf), whereas the heterozygous socs1a-deficient zebrafish exhibited enhanced somatic growth. Decreased adiposity, hepatic steatosis, and insulin resistance were observed in our socs1a-deficient adult zebrafish, which is similar to the lipodystrophy phenotypes observed in mammals. Comparative transcriptomic analyses revealed elevated levels of gluconeogenesis, lipolysis, and hypoxia-inducible response and decreased activities of lipogenesis and glycolysis in the hepatocytes of socs1a-deflicient adult zebrafish. Evident mitochondrial dysfunction has also been observed in hepatocytes from socs1a-deficient zebrafish. Taken together, our results suggest that the negative regulatory roles of SOCS1a on JAK-STAT5 signaling may be involved in the suppression of the erythropoiesis and growth hormone activities, which was also reflected in the enhanced somatic growth performance observed in the heterozygous socs1a-deficient fish. The differences in the effects caused by SOCS1a depletion on insulin sensitivity, lipid metabolism, and inflammatory responses between zebrafish and mammalian models observed here may reflect differences between the functional mechanisms of SOCS members in terrestrial mammals and aquatic teleosts.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Hualin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, Hubei, China
| | - Xia Jin
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, Hubei, China
| | - Jiangyan He
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhan Yin
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, Hubei, China
| | - Qiyong Lou
- Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; and
| |
Collapse
|
39
|
Lipodystrophies: adipose tissue disorders with severe metabolic implications. J Physiol Biochem 2015; 71:471-8. [DOI: 10.1007/s13105-015-0404-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
|
40
|
Abstract
Obesity and metabolic syndrome pose significant risk for the progression of many types of chronic illness, including liver disease. Hormones released from adipocytes, adipocytokines, associated with obesity and metabolic syndrome, have been shown to control hepatic inflammation and fibrosis. Hepatic fibrosis is the final common pathway that can result in cirrhosis, and can ultimately require liver transplantation. Initially, two key adipocytokines, leptin and adiponectin, appeared to control many fundamental aspects of the cell and molecular biology related to hepatic fibrosis and its resolution. Leptin appears to act as a profibrogenic molecule, while adiponectin has strong-antifibrotic properties. In this review, we emphasize pertinent data associated with these and other recently discovered adipocytokines that may drive or halt the fibrogenic response in the liver.
Collapse
Affiliation(s)
- Neeraj K Saxena
- University of Maryland School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Howard Hall, Room 301, 660W. Redwood Street, Baltimore, MD 21201, USA.
| | - Frank A Anania
- Emory University School of Medicine, Division of Digestive Diseases, Suite 201, 615 Michael Street, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510:84-91. [PMID: 24899308 DOI: 10.1038/nature13478] [Citation(s) in RCA: 848] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes.
Collapse
|
42
|
Rochford JJ. Mouse Models of Lipodystrophy and Their Significance in Understanding Fat Regulation. Curr Top Dev Biol 2014; 109:53-96. [DOI: 10.1016/b978-0-12-397920-9.00005-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|