1
|
de las Heras J, Almohalla C, Blasco-Alonso J, Bourbon M, Couce ML, de Castro López MJ, García Jiménez MC, Gil Ortega D, González-Diéguez L, Meavilla S, Moreno-Álvarez A, Pastor-Rosado J, Sánchez-Pintos P, Serrano-Gonzalo I, López E, Valdivielso P, Yahyaoui R, Quintero J. Practical Recommendations for the Diagnosis and Management of Lysosomal Acid Lipase Deficiency with a Focus on Wolman Disease. Nutrients 2024; 16:4309. [PMID: 39770929 PMCID: PMC11678757 DOI: 10.3390/nu16244309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Lysosomal acid lipase deficiency (LAL-D) is an ultra-rare lysosomal storage disease with two distinct phenotypes, an infantile-onset form (formerly Wolman disease) and a later-onset form (formerly cholesteryl ester storage disease). The objective of this narrative review is to examine the most important aspects of the diagnosis and treatment of LAL-D and to provide practical expert recommendations. The infantile-onset form occurs in the first weeks of life and is characterized by malnourishment and failure to thrive due to gastrointestinal impairment (vomiting, diarrhea, malabsorption), as well as systemic inflammation, hepatosplenomegaly, and adrenal calcifications. Mortality is close to 100% before one year of life in the absence of specific treatment. The later-onset form can be diagnosed in childhood or adulthood and is characterized by chronic liver injury and/or lipid profile alterations. When LAL-D is suspected, enzyme activity should be determined to confirm the diagnosis, with analysis from a dried blood spot sample being the quickest and most reliable method. In infantile-onset LAL-D, the initiation of enzyme replacement therapy (sebelipase α) and careful nutritional management with a low-lipid diet is very urgent, as prognosis is directly linked to the early initiation of specific treatment. In recent years, our knowledge of the management of LAL-D has increased considerably, with improvements regarding the initial enzyme replacement therapy dose and careful nutritional treatment with a low-lipid diet to decrease lipid deposition and systemic inflammation, leading to better outcomes. In this narrative review we offer a quick guide for the initial management of infantile-onset LAL-D.
Collapse
Affiliation(s)
- Javier de las Heras
- Division of Pediatric Metabolism, Cruces University Hospital, CIBER-ER, Metab-ERN, University of the Basque Country (UPV/EHU), Biobizkaia Health Research Institute, 48903 Bilbao, Spain
| | - Carolina Almohalla
- Unidad de Hepatología, Hospital Universitario Río Hortega, 47012 Valladolid, Spain
| | - Javier Blasco-Alonso
- Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Hereditarias, UGC Pediatría, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Mafalda Bourbon
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- BioISI, Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Maria-Luz Couce
- Metabolic Unit, Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - María José de Castro López
- Willink Biochemical Genetics Unit, St Mary’s Hospital, Manchester University Foundation Trust, University of Manchester, Manchester M13 9WL, UK
| | - Mª Concepción García Jiménez
- NeuroMetabolic Unit, Pediatría, Hospital Universitario Miguel Servet, Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - David Gil Ortega
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Luisa González-Diéguez
- Liver Unit, Division of Gastroenterology and Hepatology, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Silvia Meavilla
- Metabolic Unit, Gastroenterology, Hepatology and Nutrition Department, Sant Joan de Déu Hospital, 08950 Barcelona, Spain
| | - Ana Moreno-Álvarez
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Department of Pediatrics, A Coruña University Hospital, 15006 A Coruña, Spain
| | - José Pastor-Rosado
- Lipid Unit, Department of Pediatrics, Hospital General Universitario de Elche, Universidad Miguel Hernandez de Elche, 03202 Elche, Spain
| | - Paula Sánchez-Pintos
- Metabolic Unit, Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - Irene Serrano-Gonzalo
- Fundación Española Para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), 50009 Zaragoza, Spain
- GIIS-012 Group, Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Eduardo López
- Spanish LAL-D Patient Organization, 08918 Badalona, Spain
| | - Pedro Valdivielso
- Unidad de Lípidos, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain
| | - Raquel Yahyaoui
- Clinical Laboratory, Laboratory of Inherited Metabolic Disorders, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
| | - Jesús Quintero
- Pediatric Hepatology and Liver Transplant Unit, Department of Pediatrics, ERN Rare Liver ERN TransplantChild, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
2
|
van der Ham M, Gerrits J, Prinsen B, van Hasselt P, Fuchs S, Jans J, Willems A, de Sain-van der Velden M. UPLC-Orbitrap-HRMS application for analysis of plasma sterols. Anal Chim Acta 2024; 1296:342347. [PMID: 38401937 DOI: 10.1016/j.aca.2024.342347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Correct identification and quantification of different sterol biomarkers can be used as a first-line diagnostic approach for inherited metabolic disorders (IMD). The main drawbacks of current methodologies are related to lack of selectivity and sensitivity for some of these compounds. To address this, we developed and validated two sensitive and selective assays for quantification of six cholesterol biosynthesis pathway intermediates (total amount (free and esterified form) of 7-dehydrocholesterol (7-DHC), 8-dehydrocholesterol (8-DHC), desmosterol, lathosterol, lanosterol and cholestanol), two phytosterols (total amount (free and esterified form) of campesterol and sitosterol) and free form of two oxysterols (7-ketocholesterol (7-KC) and 3β,5α,6β-cholestane-triol (C-triol). For quantification of four cholesterol intermediates we based our analytical approach on sterol derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). Quantification of all analytes is performed using UPLC coupled to an Orbitrap high resolution mass spectrometry (HRMS) system, with detection of target ions through full scan acquisition using positive atmospheric pressure chemical ionization (APCI) mode. UPLC and MS parameters were optimized to achieve high sensitivity and selectivity. Analog stable isotope labeled for each compound was used for proper quantification and correction for recovery, matrix effects and process efficiency. Precision (2.4%-12.3% inter-assay variation), lower limit of quantification (0.027 nM-50.5 nM) and linearity (5.5 μM (R2 0.999) - 72.3 μM (R2 0.997)) for phyto- and oxysterols were determined. The diagnostic potential of these two assays in a cohort of patients (n = 31, 50 samples) diagnosed with IMD affecting cholesterol and lysosomal/peroxisomal homeostasis is demonstrated.
Collapse
Affiliation(s)
- Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Berthil Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Peter van Hasselt
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Sabine Fuchs
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | - Anke Willems
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, the Netherlands
| | | |
Collapse
|
3
|
Jerves Serrano T, Gold J, Cooper JA, Church HJ, Tylee KL, Wu HY, Kim SY, Stepien KM. Hepatomegaly and Splenomegaly: An Approach to the Diagnosis of Lysosomal Storage Diseases. J Clin Med 2024; 13:1465. [PMID: 38592278 PMCID: PMC10932313 DOI: 10.3390/jcm13051465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.
Collapse
Affiliation(s)
| | - Jessica Gold
- Division of Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - James A. Cooper
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Heather J. Church
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Karen L. Tylee
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Hoi Yee Wu
- Willink Biochemical Genetics Laboratory, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (J.A.C.); (H.J.C.); (K.L.T.); (H.Y.W.)
| | - Sun Young Kim
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Karolina M. Stepien
- Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Adult Inherited Metabolic Diseases Department, Salford M6 8HD, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
4
|
Olkkonen VM, Gylling H. Oxy- and Phytosterols as Biomarkers: Current Status and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:353-375. [PMID: 38036889 DOI: 10.1007/978-3-031-43883-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols and phytosterols are sterol compounds present at markedly low levels in tissues and serum of healthy individuals. A wealth of evidence suggests that they could be employed as biomarkers for human diseases or for cholesterol absorption.An increasing number of reports suggest circulating or tissue oxysterols as putative biomarkers for cardiovascular and neurodegenerative diseases or cancers. Thus far most of the studies have been carried out on small study populations. To achieve routine biomarker use, large prospective cohort studies are absolutely required. This, again, would necessitate thorough standardization of the oxysterol analytical methodology across the different laboratories, which now employ different technologies resulting in inconsistencies in the measured oxysterol levels. Routine use of oxysterol biomarkers would also necessitate the development of a new targeted analytical methodology suitable for high-throughput platforms.The most important use of phytosterols as biomarkers involves their use as markers for cholesterol absorption. For this to be achieved, (1) their quantitative analyses should be available in routine lipid laboratories, (2) it should be generally acknowledgment that the profile of cholesterol metabolism can reveal the risk of the development of atherosclerotic cardiovascular diseases (ASCVD), and (3) screening of the profile of cholesterol metabolism should be included in the ASCVD risk surveys. This should be done e.g. in families with a history of early onset or frequent ASCVD and in young adults aged 18-20 years, to exclude the presence of high cholesterol absorption. Individuals in high cholesterol absorption families need preventive measures from young adulthood to inhibit the possible development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
6
|
Ribeiro RM, Vasconcelos SC, Lima PLGDSB, Coelho EF, Oliveira AMN, Gomes EDABM, Mota LDA, Radtke LS, Carvalho MDS, Araújo DABS, Pinheiro MSN, Gama VCDV, Júnior RMM, Braga Neto P, Nóbrega PR. Pathophysiology and Treatment of Lipid Abnormalities in Cerebrotendinous Xanthomatosis: An Integrative Review. Brain Sci 2023; 13:979. [PMID: 37508912 PMCID: PMC10377253 DOI: 10.3390/brainsci13070979] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive disorder caused by pathogenic variants in CYP27A1, leading to a deficiency in sterol 27-hydroxylase. This defect results in the accumulation of cholestanol and bile alcohols in various tissues, including the brain, tendons and peripheral nerves. We conducted this review to evaluate lipid profile abnormalities in patients with CTX. A search was conducted in PubMed, Embase and the Virtual Health Library in January 2023 to evaluate studies reporting the lipid profiles of CTX patients, including the levels of cholestanol, cholesterol and other lipids. Elevated levels of cholestanol were consistently observed. Most patients presented normal or low serum cholesterol levels. A decrease in chenodeoxycholic acid (CDCA) leads to increased synthesis of cholesterol metabolites, such as bile alcohols 23S-pentol and 25-tetrol 3-glucuronide, which may serve as surrogate follow-up markers in patients with CTX. Lipid abnormalities in CTX have clinical implications. Cholestanol deposition in tissues contributes to clinical manifestations, including neurological symptoms and tendon xanthomas. Dyslipidemia and abnormal cholesterol metabolism may also contribute to the increased risk of atherosclerosis and cardiovascular complications observed in some CTX patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lucas Soares Radtke
- Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-372, Brazil
| | | | | | | | | | | | - Pedro Braga Neto
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceara, Fortaleza 60430-372, Brazil
| | - Paulo Ribeiro Nóbrega
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceara, Fortaleza 60430-372, Brazil
| |
Collapse
|
7
|
Pietrobattista A, Spada M, Candusso M, Boenzi S, Dionisi-Vici C, Francalanci P, Morrone A, Ferri L, Indolfi G, Agolini E, Giordano G, Monti L, Maggiore G, Knisely AS. Liver transplantation in an infant with cerebrotendinous xanthomatosis, cholestasis, and rapid evolution of liver failure. Pediatr Transplant 2022; 26:e14318. [PMID: 35633129 DOI: 10.1111/petr.14318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebrotendinous xanthomatosis (CTX) is a disorder of bile acid (BA) metabolism due to biallelic mutations in CYP27A1. The deposition of cholesterol and cholestanol in multiple tissues results, manifesting as neurologic disease in adults or older children. Neonatal cholestasis (NC) as a presentation of CTX is rare; it may self-resolve or persist, evolving to require liver transplantation (LT). METHODS We present in the context of similar reports an instance of CTX manifest as NC and requiring LT. RESULTS A girl aged 4mo was evaluated for NC with normal serum gamma-glutamyl transpeptidase activity. An extensive diagnostic work-up, including liver biopsy, identified no etiology. Rapid progression to end-stage liver disease required LT aged 5mo. The explanted liver showed hepatocyte loss and micronodular cirrhosis. Bile salt export pump (BSEP), encoded by ABCB11, was not demonstrable immunohistochemically. Both severe ABCB11 disease and NR1H4 disease-NR1H4 encodes farsenoid-X receptor, necessary for ABCB11 transcription-were considered. However, selected liver disorder panel sequencing and mass-spectrometry urinary BA profiling identified CTX, with homozygosity for the predictedly pathogenic CYP27A1 variant c.646G > C p.(Ala216Pro). Variation in other genes associated with intrahepatic cholestasis was not detected. Immunohistochemical study of the liver-biopsy specimen found marked deficiency of CYP27A1 expression; BSEP expression was unremarkable. Aged 2y, the girl is free from neurologic disease. CONCLUSIONS Bile acid synthesis disorders should be routinely included in the NC/"neonatal hepatitis" work-up. The mutually supportive triple approach of BA profiling, immunohistochemical study, and genetic analysis may optimally address diagnosis in CTX, a treatable disease with widely varying presentation.
Collapse
Affiliation(s)
- Andrea Pietrobattista
- Hepatology, Gastroenterology, Nutrition and Liver Transplant Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Marco Spada
- Hepatobiliary and Transplant Surgery, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Manila Candusso
- Hepatology, Gastroenterology, Nutrition and Liver Transplant Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Sara Boenzi
- Metabolic Diseases Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Dionisi-Vici
- Metabolic Diseases Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Francalanci
- Department of Pathology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Amelia Morrone
- Department of Neuroscience, Laboratory of Neurometabolic Diseases, Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Ferri
- Department of Neuroscience, Laboratory of Neurometabolic Diseases, Meyer Children's Hospital, Florence, Italy
| | - Giuseppe Indolfi
- Pediatric and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Giordano
- Laboratory of Mass Spectrometry and Metabolomics, Women's and Children's Health Department, Padua University, Padua, Italy
| | - Lidia Monti
- Department of Radiology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giuseppe Maggiore
- Hepatology, Gastroenterology, Nutrition and Liver Transplant Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, Österreich, Austria
| |
Collapse
|
8
|
Diagnosis, treatment, and follow-up of a case of Wolman disease with hemophagocytic lymphohistiocytosis. Mol Genet Metab Rep 2022; 30:100833. [PMID: 35242567 PMCID: PMC8856920 DOI: 10.1016/j.ymgmr.2021.100833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Wolman Disease (WD) is a severe multi-system metabolic disease due to lysosomal acid lipase (LAL) deficiency. We report on a WD infant who developed an unusual hemophagocytic lymphohistiocytosis (HLH) phenotype related to WD treated with sebelipase alfa. A male baby came to our attention at six months of life for respiratory insufficiency and sepsis, abdominal distension, severe hepatosplenomegaly, diarrhea, and severe growth retardation. HLH was diagnosed and treated with intravenous immunoglobulin, steroids, cyclosporine, broad-spectrum antimicrobial therapy, and finally with the anti-IL-6 drug tocilizumab. WD was suspected for the presence of adrenal calcifications and it was confirmed by LAL enzyme activity and by molecular analysis of LIPA. Plasma oxysterols cholestan-3β,5α,6β-triol (C-triol), and 7-ketocholesterol (7-KC) were markedly increased. Sebelipase alfa was started with progressive amelioration of biochemical and clinical features. The child died from sepsis, 2 months after sebelipase discontinuation requested by parents. Our case shows the importance of an early diagnosis of WD and confirms the difficulty to reach a diagnosis in the HLH phenotype. Sebelipase alpha is an effective treatment for LAL deficiency, also in children affected by WD. Further data are necessary to confirm the utility of measuring plasma c-triol as a biochemical marker of the disease.
Collapse
|
9
|
Jiang X, Ory DS. Advancing Diagnosis and Treatment of Niemann-Pick C disease through Biomarker Discovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:146-158. [PMID: 35356760 PMCID: PMC8963791 DOI: 10.37349/ent.2021.00012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 05/30/2023]
Abstract
Niemann-Pick C is a rare neurodegenerative, lysosomal storage disease caused by accumulation of unesterified cholesterol. Diagnosis of the disease is often delayed due to its rarity, the heterogeneous presentation and the early non-specific symptoms. The discovery of disease-specific biomarkers - cholestane-3β,5α,6β-triol (C-triol), trihydroxycholanic acid glycinate (TCG) and N-palmitoyl-O-phosphocholineserine (PPCS, initially referred to as lysoSM-509) - has led to development of non-invasive, blood-based diagnostics. Dissemination of these rapid, sensitive, and specific clinical assays has accelerated diagnosis. Moreover, the superior receiver operating characteristic of the TCG bile acid biomarker and its detection in dried blood spots has also facilitated development of a newborn screen for NPC, which is currently being piloted in New York state. The C-triol, TCG and PPCS biomarkers have also proven useful for monitoring treatment response in peripheral tissues, but are uninformative with respect to treatment efficacy in the central nervous system (CNS). A major gap for the field is the lack of a validated, non-invasive biomarker to monitor the course of disease and CNS response to therapy.
Collapse
Affiliation(s)
- Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
10
|
Badura-Stronka M, Hirschfeld AS, Winczewska-Wiktor A, Budzyńska E, Jakubiuk-Tomaszuk A, Piontek A, Steinborn B, Kozubski W. First case series of Polish patients with cerebrotendinous xanthomatosis and systematic review of cases from the 21st century. Clin Genet 2021; 101:190-207. [PMID: 34689324 DOI: 10.1111/cge.14079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022]
Abstract
Cerebrotendinous xanthomatosis (CTX) is an inborn error of metabolism caused by recessive variants in the cytochrome P450 CYP27A1 gene. CTX is said to manifest with childhood-onset chronic diarrhea and the classic triad of juvenile-onset cataracts, Achilles tendons xanthomas, and progressive ataxia. It is currently one of the few inherited neurometabolic disorders amenable to a specific treatment. The diagnosis may be significantly delayed resulting in permanent neurological impairment. A retrospective review of the clinical characteristics and diagnostic findings in case series of six Polish patients with CTX. Additional retrospective review of symptoms and pathogenic variants of 568 CTX available cases and case series from the past 20 years. To the best of our knowledge, this is the widest review of CTX cases reported in years 2000-2021. We report the largest cohort of Polish patients ever published, with the identification of two hot-spot mutations. During the review of available 568 cases, we found significant differences in the clinical phenotypes and the localization of variants within the gene between Asian and non-Asian populations. These findings may facilitate molecular testing in the Polish and Asian populations. Invariably better screening for CTX and wider awareness is needed.
Collapse
Affiliation(s)
- Magdalena Badura-Stronka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Poznan, Poland
| | | | | | - Edyta Budzyńska
- Central Teaching Hospital, The Medical University of Lodz, Poland
| | - Anna Jakubiuk-Tomaszuk
- Department of Pediatric Neurology and Rehabilitation, Medical University of Bialystok, Poland.,Medical Genetics Unit, Mastermed Medical Center, Poland
| | - Anita Piontek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara Steinborn
- Department of Child Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Plasma Neurofilament Light (NfL) in Patients Affected by Niemann-Pick Type C Disease (NPCD). J Clin Med 2021; 10:jcm10204796. [PMID: 34682919 PMCID: PMC8537496 DOI: 10.3390/jcm10204796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Niemann-Pick type C disease (NPCD) is an autosomal recessive lysosomal storage disorder caused by mutations in the NPC1 or NPC2 genes. The clinical presentation is characterized by visceral and neurological involvement. Apart from a small group of patients presenting a severe perinatal form, all patients develop progressive and fatal neurological disease with an extremely variable age of onset. Different biomarkers have been identified; however, they poorly correlate with neurological disease. In this study we assessed the possible role of plasma NfL as a neurological disease-associated biomarker in NPCD. (2) Methods: Plasma NfL levels were measured in 75 healthy controls and 26 patients affected by NPCD (24 NPC1 and 2 NPC2; 39 samples). (3) Results: Plasma NfL levels in healthy controls correlated with age and were significantly lower in pediatric patients as compared to adult subjects (p = 0.0017). In both pediatric and adult NPCD patients, the plasma levels of NfL were significantly higher than in age-matched controls (p < 0.0001). Most importantly, plasma NfL levels in NPCD patients with neurological involvement were significantly higher than the levels found in patients free of neurological signs at the time of sampling, both in the pediatric and the adult group (p = 0.0076; p = 0.0032, respectively). Furthermore, in adults the NfL levels in non-neurological patients were comparable with those found in age-matched controls. No correlations between plasma NfL levels and NPCD patient age at sampling or plasma levels of cholestan 3β-5α-6β-triol were found. (4) Conclusions: These data suggest a promising role of plasma NfL as a possible neurological disease-associated biomarker in NPCD.
Collapse
|
12
|
McComb M, Browne RW, Bhattacharya S, Bodziak ML, Jakimovski D, Weinstock-Guttman B, Kuhle J, Zivadinov R, Ramanathan M. The cholesterol autoxidation products, 7-ketocholesterol and 7β-hydroxycholesterol are associated with serum neurofilaments in multiple sclerosis. Mult Scler Relat Disord 2021; 50:102864. [PMID: 33677412 DOI: 10.1016/j.msard.2021.102864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum neurofilament light chain (sNfL) is an established marker of neuroaxonal injury in multiple sclerosis (MS). OBJECTIVES To investigate if oxysterols produced from non-enzymatic and enzymatic cholesterol oxidation are differentially associated with sNfL measurements in MS. METHODS This longitudinal study included 62 relapsing-remitting (RR-MS) and 36 progressive MS (PMS) patients with baseline and 5-year follow-up measures of serum levels of 6 oxysterols, sNfL and lipids. The oxysterols, 24-hydroxycholesterol (24HC), 25HC, 27HC, 7αHC, 7βHC and 7-ketocholesterol (7KC), were measured using liquid chromatography-mass spectrometry. sNfL was measured using single molecular array assay. Serum high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) levels were obtained from a lipid profile. RESULTS The enzymatically produced oxysterols 24HC, 25HC, 27HC and 7αHC were not associated with sNfL. However, baseline levels of reactive oxygen species (ROS) produced oxysterols, 7KC (p = 0.032) and 7βHC (p = 0.0025), were positively associated with sNfL levels at follow-up. Follow-up 7KC (p = 0.038) levels were also associated with follow-up sNfL levels. The associations of 7KC or 7βHC with sNfL remained significant after adjusting for LDL-C or HDL-C. CONCLUSIONS 7KC and 7βHC, produced by ROS-mediated cholesterol oxidation are associated with neuroaxonal injury as assessed by sNfL in MS.
Collapse
Affiliation(s)
- Mason McComb
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, United States
| | - Sonia Bhattacharya
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, United States
| | - Mary Lou Bodziak
- Department of Biotechnical and Clinical Laboratory Sciences, State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Zivadinov
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, United States; Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, University at Buffalo, State University of New York, Buffalo, NY, United States.
| |
Collapse
|
13
|
Sidhu R, Kell P, Dietzen DJ, Farhat NY, Do AND, Porter FD, Berry-Kravis E, Reunert J, Marquardt T, Giugliani R, Lourenço CM, Wang RY, Movsesyan N, Plummer E, Schaffer JE, Ory DS, Jiang X. Application of a glycinated bile acid biomarker for diagnosis and assessment of response to treatment in Niemann-pick disease type C1. Mol Genet Metab 2020; 131:405-417. [PMID: 33257258 PMCID: PMC8139135 DOI: 10.1016/j.ymgme.2020.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023]
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3β,5α,6β-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3β,5α,6β-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-β-cyclodextrin (HPβCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPβCD treatment.
Collapse
Affiliation(s)
- Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - An Ngoc Dang Do
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Janine Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Roberto Giugliani
- Department of Genetics, UFRGS, Medical Genetics Service, HCPA, BioDiscovery Laboratory, HCPA, Hospital de Clínicas de Porto Alegre, National Institute of Population Medical Genetics - INAGEMP, Porto Alegre, RS 90035-903, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina - Centro Universitario Estácio de Ribeirão Preto, Rua Abrahão Issa Halach, 980 - Ribeirânia, Ribeirão Preto, - SP, Brazil
| | - Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA; Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA 92868, USA
| | - Nina Movsesyan
- Research Institute, CHOC Children's Hospital, Orange, CA 92868, USA
| | - Ellen Plummer
- Asante Pediatric Hematology and Oncology, Medford, OR, 97504, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Pietrobattista A, Veraldi S, Candusso M, Basso MS, Liccardo D, Della Corte C, Mosca A, Alterio T, Sacchetti E, Catesini G, Deodato F, Boenzi S, Dionisi-Vici C. The contribution of plasma oxysterols in the challenging diagnostic work-up of infantile cholestasis. Clin Chim Acta 2020; 507:181-186. [PMID: 32353361 DOI: 10.1016/j.cca.2020.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022]
|
15
|
High diagnostic value of plasma Niemann-Pick type C biomarkers in adults with selected neurological and/or psychiatric disorders. J Neurol 2020; 267:3371-3377. [PMID: 32592146 DOI: 10.1007/s00415-020-10020-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
Abstract
Late-onset Niemann-Pick type C (NP-C) is a rare, underdiagnosed lysosomal disease with neurological manifestations. A specific treatment, miglustat, can stabilize the disease if given early. Recently, three plasma screening biomarkers (PSBs) were developed [cholestane3β,5α,6βtriol (C-triol), 7-ketocholesterol (7-KC), and lysosphingomyelin-509 (LSM-509)], allowing a simpler and quite robust screening of patients suitable for genetic testing. The objective of our study was to evaluate practical utility and feasibility of large-scale PSB screening for NP-C in selected adult patients. Patients were prospectively enrolled if they showed, starting from 12 years of age, at least one of the three initial neuro-psychiatric manifestations described in NP-C: (1) gait disorder (cerebellar and/or dystonic); (2) cognitive decline with frontal lobe syndrome; (3) atypical psychosis. PSBs were measured in plasma of all patients and, if positive (LSM-509 and/or C-triol + 7-KC elevated), sequencing of NPC1 and NPC2 genes was performed. A total of 251 patients [136 males, 115 females; median age 42.1 (range 12.2-85.6) years] were screened. Six patients had positive PSBs. Two were confirmed to have NP-C (0.8% diagnostic yield, both with all three PSBs highly increased, especially LSM-509). False-positive rate was 1.2%, which was identical if only considering LSM-509. By contrast, false-positive rates were 8.1% and 5.7% for 7-KC and C-triol, respectively. We showed that selecting patients with neurologic and/or psychiatric symptoms consistent with NP-C for large-scale PSB screening is a simple and valid strategy to identify new adult NP-C patients, and would probably lead to earlier diagnosis and treatment administration if widely applied.
Collapse
|
16
|
Eskes ECB, Sjouke B, Vaz FM, Goorden SMI, van Kuilenburg ABP, Aerts JMFG, Hollak CEM. Biochemical and imaging parameters in acid sphingomyelinase deficiency: Potential utility as biomarkers. Mol Genet Metab 2020; 130:16-26. [PMID: 32088119 DOI: 10.1016/j.ymgme.2020.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Acid Sphingomyelinase Deficiency (ASMD), or Niemann-Pick type A/B disease, is a rare lipid storage disorder leading to accumulation of sphingomyelin and its precursors primarily in macrophages. The disease has a broad phenotypic spectrum ranging from a fatal infantile form with severe neurological involvement (the infantile neurovisceral type) to a primarily visceral form with different degrees of pulmonary, liver, spleen and skeletal involvement (the chronic visceral type). With the upcoming possibility of treatment with enzyme replacement therapy, the need for biomarkers that predict or reflect disease progression has increased. Biomarkers should be validated for their use as surrogate markers of clinically relevant endpoints. In this review, clinically important endpoints as well as biochemical and imaging markers of ASMD are discussed and potential new biomarkers are identified. We suggest as the most promising biomarkers that may function as surrogate endpoints in the future: diffusion capacity measured by spirometry, spleen volume, platelet count, low-density lipoprotein cholesterol, liver fibrosis measured with a fibroscan, lysosphingomyelin and walked distance in six minutes. Currently, no biomarkers have been validated. Several plasma markers of lipid-laden cells, fibrosis or inflammation are of high potential as biomarkers and deserve further study. Based upon current guidelines for biomarkers, recommendations for the validation process are provided.
Collapse
Affiliation(s)
- Eline C B Eskes
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Barbara Sjouke
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Gastroenterology & Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, University of Leiden, Department of Medical Biochemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Carla E M Hollak
- Amsterdam UMC, University of Amsterdam, Department of Endocrinology and Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Cooper JA, Church HJ, Wu HY. Cholestane-3β, 5α, 6β-triol: Further insights into the performance of this oxysterol in diagnosis of Niemann-Pick disease type C. Mol Genet Metab 2020; 130:77-86. [PMID: 32178982 DOI: 10.1016/j.ymgme.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 11/20/2022]
Abstract
In recent years the oxysterol species cholestane-3β, 5α, 6β-triol (C-triol) has found application as a diagnostic biomarker for Niemann-Pick disease type C. Other studies have described increased C-triol in patients with Niemann-Pick disease type A/B and milder increases in lysosomal acid lipase deficiency (LALD), whereas they note normal C-triol levels in Smith-Lemli-Opitz syndrome (SLOS) and familial hypercholesterolaemia (FH) patients. Herein, we review data collected in our laboratory during method evaluation along with 5 years of routine analysis and present findings which differ from those reported by other groups with respect to LALD, SLOS and FH in particular, whilst providing further evidence regarding the clinical sensitivity and specificity of this biomarker, which are difficult to accurately assess. All of our Wolman disease (severe LALD) patients have demonstrated gross elevations of C-triol at diagnosis, with reduction to normal levels after induction of enzyme replacement therapy. In diagnostic specimens from SLOS patients we observed very low or undetectable C-triol levels whereas in post-therapeutic SLOS patients demonstrated normalised levels; we also describe a homozygous FH patient in which C-triol is significantly elevated. Upon investigation, we found that C-triol was formed artefactually from cholesterol during our sample preparation, i.e. this is a false positive of analytical origin; at present it is unclear whether similar effects occur during sample preparation in other laboratories. Our data demonstrates clinical sensitivity of 100% during routine application to diagnostic specimens; this is in keeping with other estimates, yet in a small proportion of patients diagnosed prior to C-triol measurement, either by Filipin staining of fibroblasts or molecular genetics, we have observed normal C-triol concentrations. Clinical specificity of C-triol alone is 93.4% and 95.3% when performed in conjunction with lysosomal enzymology. These performance statistics are very similar to those achieved with Filipin staining of cultured fibroblasts in the 5 years preceding introduction of C-triol to routine use in our laboratory. It is increasingly apparent to us that although this analyte is a very useful addition to the diagnostic tools available for NPC, with considerable advantages over more invasive and time-consuming methods, the interpretation of results is complex and should be undertaken only in light of clinical details and results of other analyses including enzymology for lysosomal acid lipase and acid sphingomyelinase.
Collapse
Affiliation(s)
- J A Cooper
- Willink Biochemical Genetics Laboratory, Manchester University NHS Foundation Trust, United Kingdom
| | - H J Church
- Willink Biochemical Genetics Laboratory, Manchester University NHS Foundation Trust, United Kingdom
| | - H Y Wu
- Willink Biochemical Genetics Laboratory, Manchester University NHS Foundation Trust, United Kingdom.
| |
Collapse
|
18
|
Metabolomic Studies of Lipid Storage Disorders, with Special Reference to Niemann-Pick Type C Disease: A Critical Review with Future Perspectives. Int J Mol Sci 2020; 21:ijms21072533. [PMID: 32260582 PMCID: PMC7178094 DOI: 10.3390/ijms21072533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/18/2023] Open
Abstract
Lysosomal storage disorders (LSDs) are predominantly very rare recessive autosomal neurodegenerative diseases.Sphingolipidoses, a sub-group of LSDs, result from defects in lysosomal enzymes involved in sphingolipid catabolism, and feature disrupted storage systems which trigger complex pathogenic cascades with other organelles collaterally affected. This process leads to cell dysfunction and death, particularly in the central nervous system. One valuable approach to gaining insights into the global impact of lysosomal dysfunction is through metabolomics, which represents a discovery tool for investigating disease-induced modifications in the patterns of large numbers of simultaneously-analysed metabolites, which also features the identification of biomarkers Here, the scope and applications of metabolomics strategies to the investigation of sphingolipidoses is explored in order to facilitate our understanding of the biomolecular basis of these conditions. This review therefore surveys the benefits of applying ’state-of-the-art’ metabolomics strategies, both univariate and multivariate, to sphingolipidoses, particularly Niemann-Pick type C disease. Relevant limitations of these techniques are also discussed, along with the latest advances and developments. We conclude that metabolomics strategies are highly valuable, distinctive bioanalytical techniques for probing LSDs, most especially for the detection and validation of potential biomarkers. They also show much promise for monitoring disease progression and the evaluation of therapeutic strategies and targets.
Collapse
|
19
|
Sidhu R, Kell P, Dietzen DJ, Farhat NY, Do AND, Porter FD, Berry-Kravis E, Vite CH, Reunert J, Marquardt T, Giugliani R, Lourenço CM, Bodamer O, Wang RY, Plummer E, Schaffer JE, Ory DS, Jiang X. Application of N-palmitoyl-O-phosphocholineserine for diagnosis and assessment of response to treatment in Niemann-Pick type C disease. Mol Genet Metab 2020; 129:292-302. [PMID: 32033912 PMCID: PMC7145728 DOI: 10.1016/j.ymgme.2020.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Niemann-Pick type C (NPC) disease is a rare lysosomal storage disorder caused by mutations in either the NPC1 or the NPC2 gene. A new class of lipids, N-acyl-O-phosphocholineserines were recently identified as NPC biomarkers. The most abundant species in this class of lipid, N-palmitoyl-O-phosphocholineserine (PPCS), was evaluated for diagnosis of NPC disease and treatment efficacy assessment with 2-hydroxypropyl-β-cyclodextrin (HPβCD) in NPC. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were developed and validated to measure PPCS in human plasma and cerebrospinal fluid (CSF). A cutoff of 248 ng/mL in plasma provided a sensitivity of 100.0% and specificity of 96.6% in identifying NPC1 patients from control and NPC1 carrier subjects. PPCS was significantly elevated in CSF from NPC1 patients, and CSF PPCS levels were significantly correlated with NPC neurological disease severity scores. Plasma and CSF PPCS did not change significantly in response to intrathetical (IT) HPβCD treatment. In an intravenous (IV) HPβCD trial, plasma PPCS in all patients was significantly reduced. These results demonstrate that plasma PPCS was able to diagnose NPC1 patients with high sensitivity and specificity, and to evaluate the peripheral treatment efficacy of IV HPβCD treatment.
Collapse
Affiliation(s)
- Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis J Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - An Ngoc Dang Do
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Charles H Vite
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, PA 19104, USA
| | - Janine Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Roberto Giugliani
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, National Institute of Population Medical Genetics - INAGEMP, Porto Alegre, RS 90035-903, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina - Centro Universitario Estácio de Ribeirão Preto, Rua Abrahão Issa Halach, 980 - Ribeirânia, Ribeirão Preto, SP, Brazil
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA; Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA 92868, USA
| | - Ellen Plummer
- Asante Pediatric Hematology and Oncology - Medford, Medford, OR, 97504, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Pastores GM, Hughes DA. Lysosomal Acid Lipase Deficiency: Therapeutic Options. Drug Des Devel Ther 2020; 14:591-601. [PMID: 32103901 PMCID: PMC7023879 DOI: 10.2147/dddt.s149264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 12/23/2022] Open
Abstract
Lysosomal acid lipase (LAL) deficiency is a metabolic (storage) disorder, encompassing a severe (Wolman disease) and attenuated (Cholesterol ester storage disease) subtype; both inherited as autosomal recessive traits. Cardinal clinical features include the combination of hepatic dysfunction and dyslipidemia, as a consequence of cholesteryl esters and triglyceride accumulation, predominately in the liver and vascular and reticuloendothelial system. Significant morbidity can arise, due to liver failure and/or atherosclerosis; in part related to the severity of the underlying gene defect and corresponding enzyme deficiency. Diagnosis is based on demonstration of decreased LAL enzyme activity, complemented by analysis of the cognate gene defects. Therapeutic options include dietary manipulation and the use of lipid-lowering drugs. Sebelipase alfa, a recombinant enzyme replacement therapy, has garnered regulatory approval, following demonstration of improvements in disease-relevant markers and clinical benefit in clinical trials, which included increased survival in the most severe cases.
Collapse
Affiliation(s)
- Gregory M Pastores
- Department of Medicine (Genetics)/National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital and University College Dublin, Dublin, Ireland
| | - Derralynn A Hughes
- Royal Free London NHS Foundation Trust, University College London, LondonNW3 2QG, UK
| |
Collapse
|
21
|
Anderson A, Campo A, Fulton E, Corwin A, Jerome WG, O'Connor MS. 7-Ketocholesterol in disease and aging. Redox Biol 2020; 29:101380. [PMID: 31926618 PMCID: PMC6926354 DOI: 10.1016/j.redox.2019.101380] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023] Open
Abstract
7-Ketocholesterol (7KC) is a toxic oxysterol that is associated with many diseases and disabilities of aging, as well as several orphan diseases. 7KC is the most common product of a reaction between cholesterol and oxygen radicals and is the most concentrated oxysterol found in the blood and arterial plaques of coronary artery disease patients as well as various other disease tissues and cell types. Unlike cholesterol, 7KC consistently shows cytotoxicity to cells and its physiological function in humans or other complex organisms is unknown. Oxysterols, particularly 7KC, have also been shown to diffuse through membranes where they affect receptor and enzymatic function. Here, we will explore the known and proposed mechanisms of pathologies that are associated with 7KC, as well speculate about the future of 7KC as a diagnostic and therapeutic target in medicine.
Collapse
|
22
|
Griffiths WJ, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson A, Bigger BW, Hoi-Yee Wu T, Goenka A, Ghosh A, Jones SA, Covey DF, Ory DS, Wang Y. Metabolism of Non-Enzymatically Derived Oxysterols: Clues from sterol metabolic disorders. Free Radic Biol Med 2019; 144:124-133. [PMID: 31009661 PMCID: PMC6863434 DOI: 10.1016/j.freeradbiomed.2019.04.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Cholestane-3β,5α,6β-triol (3β,5α,6β-triol) is formed from cholestan-5,6-epoxide (5,6-EC) in a reaction catalysed by cholesterol epoxide hydrolase, following formation of 5,6-EC through free radical oxidation of cholesterol. 7-Oxocholesterol (7-OC) and 7β-hydroxycholesterol (7β-HC) can also be formed by free radical oxidation of cholesterol. Here we investigate how 3β,5α,6β-triol, 7-OC and 7β-HC are metabolised to bile acids. We show, by monitoring oxysterol metabolites in plasma samples rich in 3β,5α,6β-triol, 7-OC and 7β-HC, that these three oxysterols fall into novel branches of the acidic pathway of bile acid biosynthesis becoming (25R)26-hydroxylated then carboxylated, 24-hydroxylated and side-chain shortened to give the final products 3β,5α,6β-trihydroxycholanoic, 3β-hydroxy-7-oxochol-5-enoic and 3β,7β-dihydroxychol-5-enoic acids, respectively. The intermediates in these pathways may be causative of some phenotypical features of, and/or have diagnostic value for, the lysosomal storage diseases, Niemann Pick types C and B and lysosomal acid lipase deficiency. Free radical derived oxysterols are metabolised in human to unusual bile acids via novel branches of the acidic pathway, intermediates in these pathways are observed in plasma.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| | - Eylan Yutuc
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Jonas Abdel-Khalik
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Peter J Crick
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Alison Dickson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Stopford Building, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | - Teresa Hoi-Yee Wu
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Arunabha Ghosh
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
23
|
Abstract
In mammalian systems "sterolomics" can be regarded as the quantitative or semi-quantitative profiling of all metabolites derived from cholesterol and its cyclic precursors. The system can be further complicated by metabolites derived from ingested phytosterols or pharmaceuticals, but this is beyond the scope of this article. "Sterolomics" can be performed on either an unbiased global format, or more usually, exploiting a targeted format. Here we discuss the different mass spectrometry-based analytical techniques used in "sterolomics" giving specific examples in the context of neurodegenerative disease and for the diagnosis of inborn errors of metabolism. We pay particular attention to the profiling of cholesterol metabolites in the bile acid biosynthesis pathways, although the analytical techniques discussed are also appropriate for analysis of hormonal steroids.
Collapse
Affiliation(s)
- William J. Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
24
|
Sitarska D, Ługowska A. Laboratory diagnosis of the Niemann-Pick type C disease: an inherited neurodegenerative disorder of cholesterol metabolism. Metab Brain Dis 2019; 34:1253-1260. [PMID: 31197681 PMCID: PMC6744384 DOI: 10.1007/s11011-019-00445-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023]
Abstract
Niemann-Pick type C disease (NPC) is a genetically determined neurodegenerative metabolic disease resulting from the mutations in the NPC1 or NPC2 genes. It belongs to the lysosomal storage diseases and its main cause is impaired cholesterol transport in late endosomes or lysosomes. NPC is inherited in an autosomal recessive trait. Due to the wide range in age of onset, often unspecific clinical picture and varying dynamics of disease progression, the diagnosis is very difficult and long-lasting. The most characteristic visceral symptoms are hepato- or hepatosplenomegaly, which may appear independently of neurological or psychiatric symptoms at various stages of the disease. Available biochemical biomarkers should be tested as early as possible in patients presenting with hepato- or hepatosplenomegaly, long-lasting cholestatic jaundice in neonates or infantile patients, as well as in individuals at any age with: vertical supranuclear gaze palsy (VSGP), ataxia, dystonia, frontotemporal dementia and untreatable schizophrenia or psychosis. Research on biomarkers which can detect NPC patients (Cholestan-3β, 5α, 6β-triol, 7-ketocholesterol, lysosphingomyelin isoforms and bile acid metabolites) is still ongoing, although they are not specific for the NPC disease only. This mini review describes currently used diagnostic methods.
Collapse
Affiliation(s)
- Dominika Sitarska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957, Warsaw, Poland.
| |
Collapse
|
25
|
Yamada N, Inui A, Sanada Y, Ihara Y, Urahashi T, Fukuda A, Sakamoto S, Kasahara M, Yoshizawa A, Okamoto S, Okajima H, Fujisawa T, Mizuta K. Pediatric liver transplantation for neonatal-onset Niemann-Pick disease type C: Japanese multicenter experience. Pediatr Transplant 2019; 23:e13462. [PMID: 31081242 DOI: 10.1111/petr.13462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/03/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022]
Abstract
Niemann-Pick disease type C (NPC) is a rare autosomal recessive inherited disease characterized by lysosomal accumulation of free cholesterol in macrophages within multiple organs. Infantile-onset NPC often presents with jaundice and hepatosplenomegaly from birth, but these symptoms usually improve during early childhood, and it rarely progresses to liver failure. We report three cases from different hospitals in Japan; the patients developed neonatal-onset NPC, and liver transplantation (LT) was performed as a life-saving procedure. LT was performed at 19 days, 59 days, and 4 months of age, respectively. The last patient was diagnosed with NPC before LT, while the first two patients were diagnosed with neonatal hemochromatosis at LT. In these two patients, the diagnosis of NPC was made more than a year after LT. Even though oral administration of miglustat was started soon after the diagnosis of NPC, all patients showed neurological regression and required artificial respiratory support. All patients survived more than one year after LT; however, one patient died due to tracheal hemorrhage at 4.5 years of age, and another one patient was suspected as recurrence of NPC in liver graft. In conclusion, while LT may be a temporary life-saving measure in patients with neonatal-onset NPC leading to liver failure, the outcome is poor especially due to neurological symptoms. A preoperative diagnosis is thus critical.
Collapse
Affiliation(s)
- Naoya Yamada
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| | - Yukihiro Sanada
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| | - Yoshiyuki Ihara
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| | - Taizen Urahashi
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Atsushi Yoshizawa
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Okamoto
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Okajima
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoo Fujisawa
- Department of Pediatric Hepatology and Gastroenterology, Eastern Yokohama Hospital, Kanagawa, Japan
| | - Koichi Mizuta
- Department of Transplant Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
26
|
Sidhu R, Mondjinou Y, Qian M, Song H, Kumar AB, Hong X, Hsu FF, Dietzen DJ, Yanjanin NM, Porter FD, Berry-Kravis E, Vite CH, Gelb MH, Schaffer JE, Ory DS, Jiang X. N-acyl- O-phosphocholineserines: structures of a novel class of lipids that are biomarkers for Niemann-Pick C1 disease. J Lipid Res 2019; 60:1410-1424. [PMID: 31201291 DOI: 10.1194/jlr.ra119000157] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/13/2019] [Indexed: 01/29/2023] Open
Abstract
Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.
Collapse
Affiliation(s)
- Rohini Sidhu
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yawo Mondjinou
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Mingxing Qian
- Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Haowei Song
- Process and Analytical Development, MilliporeSigma, St. Louis, MO 63118
| | - Arun Babu Kumar
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Xinying Hong
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Fong-Fu Hsu
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dennis J Dietzen
- Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Nicole M Yanjanin
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, and Biochemistry, Rush University Medical Center, Chicago, IL 60612
| | - Charles H Vite
- Department of Clinical Studies and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 70736
| | - Michael H Gelb
- Process and Analytical Development, MilliporeSigma, St. Louis, MO 63118
| | - Jean E Schaffer
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Daniel S Ory
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
27
|
Beck KR, Kanagaratnam S, Kratschmar DV, Birk J, Yamaguchi H, Sailer AW, Seuwen K, Odermatt A. Enzymatic interconversion of the oxysterols 7β,25-dihydroxycholesterol and 7-keto,25-hydroxycholesterol by 11β-hydroxysteroid dehydrogenase type 1 and 2. J Steroid Biochem Mol Biol 2019; 190:19-28. [PMID: 30902677 DOI: 10.1016/j.jsbmb.2019.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
Oxysterols are cholesterol metabolites derived through either autoxidation or enzymatic processes. They consist of a large family of bioactive lipids that have been associated with the progression of multiple pathologies. In order to unravel (patho-)physiological mechanisms involving oxysterols, it is crucial to elucidate the underlying formation and degradation of oxysterols. A role of 11β-hydroxysteroid dehydrogenases (11β-HSDs) in oxysterol metabolism by catalyzing the interconversion of 7-ketocholesterol (7kC) and 7β-hydroxycholesterol (7βOHC) has already been reported. The present study addresses a function of 11β-HSD1 in the enzymatic generation of 7β,25-dihydroxycholesterol (7β25OHC) from 7-keto,25-hydroxycholesterol (7k25OHC) and tested whether 11β-HSD2 is able to catalyze the reverse reaction. For the first time, using recombinant enzymes, the formation of 7k25OHC from 7kC by cholesterol 25-hydroxylase (CH25H) and further stereospecific oxoreduction to 7β25OHC by human and mouse 11β-HSD1 could be demonstrated. Additionally, experiments using human 11β-HSD2 showed the oxidation of 7β25OHC to 7k25OHC. Molecular modeling provided an explanation for the stereospecific interconversion of 7β25OHC and 7k25OHC. Production of the Epstein-Barr virus-induced gene 2 (EBI2) ligand 7β25OHC from 7k25OHC in challenged tissue by 11β-HSD1 may be important in inflammation. In conclusion, these results demonstrate a novel glucocorticoid-independent pre-receptor regulation mediated by 11β-HSDs.
Collapse
Affiliation(s)
- Katharina R Beck
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Sharavan Kanagaratnam
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Hideaki Yamaguchi
- Department of Applied Biological Chemistry, Meijo University, Nagoya 468-8502, Japan
| | - Andreas W Sailer
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Klaus Seuwen
- Disease Area X, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
28
|
Cebolla JJ, Irún P, Mozas P, Giraldo P. Evaluation of two approaches to lysosomal acid lipase deficiency patient identification: An observational retrospective study. Atherosclerosis 2019; 285:49-54. [PMID: 31004967 DOI: 10.1016/j.atherosclerosis.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Lysosomal acid lipase deficiency (LALD) leads to the accumulation of cholesteryl esters and/or triglycerides (TG) in lysosomes due to the lack of the enzyme codified by the LIPA gene. The most common symptoms are dyslipidaemia and hypertransaminasemia, together with manifestations common to other lysosomal storage disorders (LSDs), including visceromegalies and elevated plasma biomarkers. Alteration of the lipid-liver profile (LLP) has been widely applied as a criterion for LALD screening, but the usefulness of biomarkers has not yet been explored. Our purpose was to explore the utility of plasma chitotriosidase activity (ChT) and CCL18/PARC concentration in addition to LLP to identify LALD patients in an observational retrospective study of two different sample collections. METHODS Biological samples refining: Collection 1 (primary hypercholesterolemia suspected) included unrelated individuals with hyperlipidaemia and without LDLR, APOB and PCSK9 gene mutations (Set 1), and Collection 2 (LSD suspected) included individuals without definitive LSD diagnosis (Set 2). We assessed plasma LLP (total cholesterol and its fractions, TG concentration and transaminases activities), as well as plasma ChT and CCL18/PARC. All subjects with anomalous LLP and/or biomarker levels were LIPA sequenced. RESULTS Twenty-four subjects showed altered LLP and/or biomarkers. We identified two LALD patients (one homozygous and one compound heterozygous) and one carrier of a novel LIPA variant. CONCLUSIONS The measurement of plasma ChT and CCL18/PARC combined with LLP will be a useful approach to identifying LALD patients in retrospective LALD patient studies.
Collapse
Affiliation(s)
- Jorge J Cebolla
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), GIIS-012, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain; Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza, 50008, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, 50009, Spain.
| | - Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain
| | - Pilar Mozas
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Pilar Giraldo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), GIIS-012, Zaragoza, 50009, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CB/06/07/1036, Instituto de Salud Carlos III (ISCIII), Hospital Universitario Miguel Servet, Zaragoza, 50009, Spain; Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y Otras Lisosomales (FEETEG), Zaragoza, 50008, Spain
| |
Collapse
|
29
|
Jiang X, Sidhu R, Orsini JJ, Farhat NY, Porter FD, Berry-Kravis E, Schaffer JE, Ory DS. Diagnosis of niemann-pick C1 by measurement of bile acid biomarkers in archived newborn dried blood spots. Mol Genet Metab 2019; 126:183-187. [PMID: 30172462 PMCID: PMC6365165 DOI: 10.1016/j.ymgme.2018.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Niemann-Pick disease type C1 (NPC1) is a rare, neurodegenerative cholesterol storage disorder. Diagnostic delay of >5 years is common due to the rarity of the disease and non-specific early symptoms. To improve diagnosis and facilitate early intervention, we previously developed a newborn screening assay based on newly identified plasma bile acid biomarkers. Because the newborn screen had been validated using dried blood spots (DBS) from already diagnosed NPC1 patients, an unanswered question was whether the screen would be able to detect individuals with NPC1 at birth. METHODS To address this critical question, we obtained the newborn DBS for already diagnosed NPC1 subjects (n = 15) and carriers (n = 3) residing in California, New York, and Michigan states that archive residual DBS in biorepositories. For each of the DBS, we obtained two neighbor controls - DBS from patients born on the same day and in the same hospital as the NPC1 patients and carriers. 3β,5α,6β-trihydroxycholanic acid (bile acid A) and trihydroxycholanic acid glycine conjugate (bile acid B) were measured in the DBS using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. RESULTS Bile acid B, the more specific biomarker for which the fully validated DBS assay was developed, was detected in 8/15 NPC1 patients, and elevated above the cut-off in 2/15 patients (the two samples with the shortest storage time). Bile acid B was detected in 2/2, 6/10, and 0/7 NPC1 samples that have been stored for <10.5 years, 13-20 years, and > 20 years, respectively, indicating that the glycine conjugate is detectable in DBS but may have reduced long-term stability compared with bile acid A, the precursor trihydroxycholanic acid, which was elevated in 15/15 NPC1 subjects, but not in carriers and controls. CONCLUSIONS These results demonstrate that newborn screening for NPC1 disease is feasible using bile acid biomarkers.
Collapse
Affiliation(s)
- Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph J Orsini
- New York State Dept. of Health, Wadsworth Center, Albany, NY 12201, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Oxysterols as a biomarker in diseases. Clin Chim Acta 2019; 491:103-113. [PMID: 30685361 DOI: 10.1016/j.cca.2019.01.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
Abstract
Cholesterol is one of the most important chemical substances as a structural element in human cells, and it is very susceptible to oxidation reactions that form oxysterol. Oxysterols exhibit almost the exact structure as cholesterol and a cholesterol precursor (7-dehydrocholesterol) with an additional hydroxyl, epoxy or ketone moiety. The oxidation reaction is performed via an enzymatic or non-enzymatic mechanism. The wide array of enzymatic oxysterols encountered in the human body varies in origin and function. Oxysterols establish a concentration equilibrium in human body fluids. Disease may alter the equilibrium, and oxysterols may be used as a diagnostic tool. The current review presents the possibility of using non-enzymatic oxysterols and disturbances in enzymatic oxysterol equilibrium in the human body as a potential biomarker for diagnosing and/or monitoring of the progression of various diseases.
Collapse
|
31
|
Deodato F, Boenzi S, Taurisano R, Semeraro M, Sacchetti E, Carrozzo R, Dionisi-Vici C. The impact of biomarkers analysis in the diagnosis of Niemann-Pick C disease and acid sphingomyelinase deficiency. Clin Chim Acta 2018; 486:387-394. [PMID: 30153451 DOI: 10.1016/j.cca.2018.08.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although representing two distinct disease entities, Niemann-Pick disease type C (NP-C) disease and acid sphingomyelinase deficiency (ASMD) share several phenotypic features. The lack of biomarkers was responsible in the past of diagnostic delay. Recently, plasma oxysterols, cholestan-3β,5α,6β-triol (Triol) and 7-ketocholesterol (7-KC) and lysosphingolipids, Lyso-sphingomyelin (Lyso-SM) and Lysosphingomyelin-509 (Lyso-SM-509), have been proposed as diagnostic biomarkers. We aimed to assess the diagnostic power of the two biomarkers categories and to evaluate possible correlations with patients' age and clinical phenotypes. PATIENTS AND METHODS We analyzed plasma oxysterols and lysosphingolipids in patients affected by NP-C and ASMD, and compared with healthy controls. RESULTS Oxysterols were always increased in both NP-C and ASMD. In NP-C, Lyso-SM and Lyso-SM-509 were increased in 70%, and 100% of patients, respectively. Biomarkers negatively correlated with patients' age, with highest levels in early-infantile, intermediate in the late-infantile and lowest in the juvenile phenotype. In ASMD, lysosphingolipids were both increased, with a greater order of magnitude than in NP-C, with highest levels in chronic-neurovisceral vs visceral phenotype. CONCLUSIONS Lysosphingolipids are useful biomarkers for a rapid and precise diagnosis, allowing clear distinction between NP-C and ASMD. They are more reliable biomarkers than oxysterols and correlate with patients' age and clinical phenotype.
Collapse
Affiliation(s)
- Federica Deodato
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Sara Boenzi
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Roberta Taurisano
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Michela Semeraro
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Elisa Sacchetti
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Rosalba Carrozzo
- Unit of Neuromuscular Diseases, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Carlo Dionisi-Vici
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy.
| |
Collapse
|
32
|
Lütjohann D, Björkhem I, Friedrichs S, Kerksiek A, Geilenkeuser WJ, Lövgren-Sandblom A, Ansorena D, Astiasarán I, Baila-Rueda L, Barriuso B, Bretillon L, Browne RW, Caccia C, Cenarro A, Crick PJ, Fauler G, García-Llatas G, Griffiths WJ, Iuliano L, Lagarda MJ, Leoni V, Lottenberg AM, Matysik S, McDonald J, Rideout TC, Schmitz G, Nunes VS, Wang Y, Zerbinati C, Diczfalusy U, Schött HF. International descriptive and interventional survey for oxycholesterol determination by gas- and liquid-chromatographic methods. Biochimie 2018; 153:26-32. [PMID: 30063945 DOI: 10.1016/j.biochi.2018.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 11/15/2022]
Abstract
Increasing numbers of laboratories develop new methods based on gas-liquid and high-performance liquid chromatography to determine serum concentrations of oxygenated cholesterol metabolites such as 7α-, 24(S)-, and 27-hydroxycholesterol. We initiated a first international descriptive oxycholesterol (OCS) survey in 2013 and a second interventional survey 2014 in order to compare levels of OCS reported by different laboratories and to define possible sources of analytical errors. In 2013 a set of two lyophilized serum pools (A and B) was sent to nine laboratories in different countries for OCS measurement utilizing their own standard stock solutions. In 2014 eleven laboratories were requested to determine OCS concentrations in lyophilized pooled sera (C and D) utilizing the same provided standard stock solutions of OCS. The participating laboratories submitted results obtained after capillary gas-liquid chromatography-mass selective detection with either epicoprostanol or deuterium labelled sterols as internal standards and high-performance liquid chromatography with mass selective detection and deuterated OCS as internal standard. Each participant received a clear overview of the results in form of Youden-Plots and basic statistical evaluation in its used unit. The coefficients of variation of the concentrations obtained by all laboratories using their individual methods were 58.5-73.3% (survey 1), 56.8-60.3% (survey 2); 36.2-35.8% (survey 1), 56.6-59.8, (survey 2); 61.1-197.7% (survey 1), 47.2-74.2% (survey 2) for 24(S)-, 27-, and 7α-hydroxycholesterol, respectively. We are surprised by the very great differences between the laboratories, even under conditions when the same standards were used. The values of OCS's must be evaluated in relation to the analytical technique used, the efficiency of the ample separation and the nature of the internal standard used. Quantification of the calibration solution and inappropriate internal standards could be identified as major causes for the high variance in the reported results from the different laboratories. A harmonisation of analytical standard methods is highly needed.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany.
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, Huddinge, Sweden
| | - Silvia Friedrichs
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany
| | - Anja Kerksiek
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany
| | | | - Anita Lövgren-Sandblom
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, Huddinge, Sweden
| | - Diana Ansorena
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Iciar Astiasarán
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Lucía Baila-Rueda
- Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Zaragoza, Spain
| | - Blanca Barriuso
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Lionell Bretillon
- Centre des Sciences du Goŭt et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Richard W Browne
- Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Claudio Caccia
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy; Laboratory of Clinical Pathology, Foundation IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Zaragoza, Spain
| | - Peter J Crick
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - William J Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Luigi Iuliano
- Department of Medico-Surgical Sciences and Biotechnology, Vascular Biology and Mass Spectrometry Laboratory, Sapienza University of Rome, Latina, Italy
| | - María Jésus Lagarda
- Nutrition and Food Science Area, University of Valencia, Burjassot, Valencia, Spain
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy; Laboratory of Clinical Pathology, Foundation IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ana Maria Lottenberg
- Faculty of Medical Sciences, Endocrinology and Metabolism Division, University of Sao Paulo, Sao Paulo, Brazil
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jeff McDonald
- Department of Molecular Genetics, Southwestern Medical Center, University of Texas, Dallas, USA
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY, USA
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Valéria Sutti Nunes
- Faculty of Medical Sciences, Endocrinology and Metabolism Division, University of Sao Paulo, Sao Paulo, Brazil
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Chiara Zerbinati
- Department of Medico-Surgical Sciences and Biotechnology, Vascular Biology and Mass Spectrometry Laboratory, Sapienza University of Rome, Latina, Italy
| | - Ulf Diczfalusy
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Karolinska Institutet, Huddinge, Sweden
| | - Hans-Frieder Schött
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| |
Collapse
|
33
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
34
|
Griffiths WJ, Gilmore I, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson A, Bigger BW, Wu THY, Goenka A, Ghosh A, Jones SA, Wang Y. Identification of unusual oxysterols and bile acids with 7-oxo or 3β,5α,6β-trihydroxy functions in human plasma by charge-tagging mass spectrometry with multistage fragmentation. J Lipid Res 2018; 59:1058-1070. [PMID: 29626102 PMCID: PMC5983402 DOI: 10.1194/jlr.d083246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/26/2018] [Indexed: 12/29/2022] Open
Abstract
7-Oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC), and its hydrolysis product cholestane-3β,5α,6β-triol (3β,5α,6β-triol) are normally minor oxysterols in human samples; however, in disease, their levels may be greatly elevated. This is the case in plasma from patients suffering from some lysosomal storage disorders, e.g., Niemann-Pick disease type C, or the inborn errors of sterol metabolism, e.g., Smith-Lemli-Opitz syndrome and cerebrotendinous xanthomatosis. A complication in the analysis of 7-OC and 5,6-EC is that they can also be formed ex vivo from cholesterol during sample handling in air, causing confusion with molecules formed in vivo. When formed endogenously, 7-OC, 5,6-EC, and 3β,5α,6β-triol can be converted to bile acids. Here, we describe methodology based on chemical derivatization and LC/MS with multistage fragmentation (MSn) to identify the necessary intermediates in the conversion of 7-OC to 3β-hydroxy-7-oxochol-5-enoic acid and 5,6-EC and 3β,5α,6β-triol to 3β,5α,6β-trihydroxycholanoic acid. Identification of intermediate metabolites is facilitated by their unusual MSn fragmentation patterns. Semiquantitative measurements are possible, but absolute values await the synthesis of isotope-labeled standards.
Collapse
Affiliation(s)
| | - Ian Gilmore
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Eylan Yutuc
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Jonas Abdel-Khalik
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Peter J Crick
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Thomas Hearn
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Alison Dickson
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Teresa Hoi-Yee Wu
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Arunabha Ghosh
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Yuqin Wang
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom.
| |
Collapse
|
35
|
Lamri A, Pigeyre M, Garver WS, Meyre D. The Extending Spectrum of NPC1-Related Human Disorders: From Niemann-Pick C1 Disease to Obesity. Endocr Rev 2018; 39:192-220. [PMID: 29325023 PMCID: PMC5888214 DOI: 10.1210/er.2017-00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,INSERM 1190, European Genomics Institute for Diabetes, University of Lille, CHRU Lille, Lille, France
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Mashima R, Maekawa M, Narita A, Okuyama T, Mano N. Elevation of plasma lysosphingomyelin-509 and urinary bile acid metabolite in Niemann-Pick disease type C-affected individuals. Mol Genet Metab Rep 2018; 15:90-95. [PMID: 30023294 PMCID: PMC6047109 DOI: 10.1016/j.ymgmr.2018.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/10/2018] [Indexed: 11/26/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a neurovisceral disorder associated with the accumulation of lipids such as cholesterol and sphingolipids. NPC is caused by either NPC1 or NPC2, which encode lysosomal proteins located at membraneous and soluble fractions, respectively. For the past decade, the oxidation products of cholesterol, such as cholestane-3β,5α,6β-triol and 7-ketocholesterol, have been considered selective biomarkers for NPC. However, recent evidence has indicated numerous novel biomarkers for NPC, which raises the possibility that the diagnosis of NPC might be associated with the elevation of multiple lipid biomarkers, rather than a single biomarker. Sphingosylphosphorylcholine (SPC) has been suggested to be one such biomarker for NPC, in which elevated sphingomyelin is a potential precursor. Thus, we first performed a validation study of plasma SPC using LC-MS/MS. The results showed the following plasma concentrations in the NPC-affected and control individuals, respectively: 8.2 ± 2.8 nM (mean ± SD; median, 7.0 nM; max, 11.7 nM; min, 5.1 nM; n = 5) and 3.1 ± 1.4 nM (median, 2.9 nM; max, 4.8 nM; min, 1.5 nM; n = 7). We further extended the study to plasma lysophingomyelin-509 for NPC, a newly reported biomarker with uncharacterized chemical nature. Based on these result with plasma SPC as a surrogate marker, the value of mean of median of plasma lysophingomyelin-509 in NPC-affected individuals elevated at 65.2 (max, 73.2; min, 26.7; n = 5). Furthermore, the efficacy of plasma SPC and lysosphingomyelin-509 as promising biomarkers for this disorder was supported by the finding that the urinary concentration of 3β-sulfooxy-7β-N-acetylglucosaminyl-5-cholen-24-oic acid, an established biomarker for NPC, was also elevated in the NPC-affected individuals. These results suggest that a novel combination of plasma biomarkers, such as SPC and/or lysophingomyelin-509, and urinary bile acid metabolite could offer a promising platform for the diagnosis of NPC.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Corresponding author.
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Aya Narita
- Division of Child Neurology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To update researchers of recently discovered metabolites of cholesterol and of its precursors and to suggest relevant metabolic pathways. RECENT FINDINGS Patients suffering from inborn errors of sterol biosynthesis, transport and metabolism display unusual metabolic pathways, which may be major routes in the diseased state but minor in the healthy individual. Although quantitatively minor, these pathways may still be important in healthy individuals. Four inborn errors of metabolism, Smith-Lemli-Opitz syndrome, cerebrotendinous xanthomatosis and Niemann Pick disease types B (NPB) and C (NPC) result from mutations in different genes but can generate elevated levels of the same sterol metabolite, 7-oxocholesterol, in plasma. How this molecule is metabolized further is of great interest as its metabolites may have an important role in embryonic development. A second metabolite, abundant in NPC and NPB diseases, cholestane-3β,5α,6β-triol (3β,5α,6β-triol), has recently been shown to be metabolized to the corresponding bile acid, 3β,5α,6β-trihydroxycholanoic acid, providing a diagnostic marker in plasma. The origin of cholestane-3β,5α,6β-triol is likely to be 3β-hydroxycholestan-5,6-epoxide, which can alternatively be metabolized to the tumour suppressor dendrogenin A (DDA). In breast tumours, DDA levels are found to be decreased compared with normal tissues linking sterol metabolism to cancer. SUMMARY Unusual sterol metabolites and pathways may not only provide markers of disease, but also clues towards cause and treatment.
Collapse
Affiliation(s)
- Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, UK
| | | |
Collapse
|
38
|
Benussi A, Cotelli MS, Padovani A, Borroni B. Recent neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC. F1000Res 2018; 7:194. [PMID: 29511534 PMCID: PMC5814740 DOI: 10.12688/f1000research.12361.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Niemann–Pick disease type C (NPC) is a rare autosomal recessive lysosomal storage disorder with extensive biological, molecular, and clinical heterogeneity. Recently, numerous studies have tried to shed light on the pathophysiology of the disease, highlighting possible disease pathways common to other neurodegenerative disorders, such as Alzheimer’s disease and frontotemporal dementia, and identifying possible candidate biomarkers for disease staging and response to treatment. Miglustat, which reversibly inhibits glycosphingolipid synthesis, has been licensed in the European Union and elsewhere for the treatment of NPC in both children and adults. A number of ongoing clinical trials might hold promise for the development of new treatments for NPC. The objective of the present work is to review and evaluate recent literature data in order to highlight the latest neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC pathophysiology. Furthermore, ongoing developments in disease-modifying treatments will be briefly discussed.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| | | | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa, 11, 25123 Brescia BS, Italy
| |
Collapse
|
39
|
Voorink-Moret M, Goorden SMI, van Kuilenburg ABP, Wijburg FA, Ghauharali-van der Vlugt JMM, Beers-Stet FS, Zoetekouw A, Kulik W, Hollak CEM, Vaz FM. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature. Mol Genet Metab 2018; 123:76-84. [PMID: 29290526 DOI: 10.1016/j.ymgme.2017.12.431] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/17/2017] [Accepted: 12/17/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND In patients suspected of a lipid storage disorder (sphingolipidoses, lipidoses), confirmation of the diagnosis relies predominantly on the measurement of specific enzymatic activities and genetic studies. New UPLC-MS/MS methods have been developed to measure lysosphingolipids and oxysterols, which, combined with chitotriosidase activity may represent a rapid first tier screening for lipid storage disorders. MATERIAL AND METHODS A lysosphingolipid panel consisting of lysoglobotriaosylceramide (LysoGb3), lysohexosylceramide (LysoHexCer: both lysoglucosylceramide and lysogalactosylceramide), lysosphingomyelin (LysoSM) and its carboxylated analogue lysosphingomyelin-509 (LysoSM-509) was measured in control subjects and plasma samples of predominantly untreated patients affected with lipid storage disorders (n=74). In addition, the oxysterols cholestane-3β,5α,6β-triol and 7-ketocholesterol were measured in a subset of these patients (n=36) as well as chitotriosidase activity (n=43). A systematic review of the literature was performed to assess the usefulness of these biochemical markers. RESULTS Specific elevations of metabolites, i.e. without overlap between controls and other lipid storage disorders, were found for several lysosomal storage diseases: increased LysoSM levels in acid sphingomyelinase deficiency (Niemann-Pick disease type A/B), LysoGb3 levels in males with classical phenotype Fabry disease and LysoHexCer (i.e. lysoglucosylceramide/lysogalactosylceramide) in Gaucher and Krabbe diseases. While elevated levels of LysoSM-509 and cholestane-3β,5α,6β-triol did not discriminate between Niemann Pick disease type C and acid sphingomyelinase deficiency, LysoSM-509/LysoSM ratio was specifically elevated in Niemann-Pick disease type C. In Gaucher disease type I, mild increases in several lysosphingolipids were found including LysoGb3 with levels in the range of non-classical Fabry males and females. Chitotriosidase showed specific elevations in symptomatic Gaucher disease, and was mildly elevated in all other lipid storage disorders. Review of the literature identified 44 publications. Most findings were in line with our cohort. Several moderate elevations of biochemical markers were found across a wide range of other, mainly inherited metabolic, diseases. CONCLUSION Measurement in plasma of LysoSLs and oxysterols by UPLC-MS/MS in combination with activity of chitotriosidase provides a useful first tier screening of patients suspected of lipid storage disease. The LysoSM-509/LysoSM ratio is a promising parameter in Niemann-Pick disease type C. Further studies in larger groups of untreated patients and controls are needed to improve the specificity of the findings.
Collapse
Affiliation(s)
- M Voorink-Moret
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - S M I Goorden
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - A B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - F A Wijburg
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | - F S Beers-Stet
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - A Zoetekouw
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - W Kulik
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - C E M Hollak
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, The Netherlands.
| | - F M Vaz
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Jiang X, Sidhu R, Mydock-McGrane L, Hsu FF, Covey DF, Scherrer DE, Earley B, Gale SE, Farhat NY, Porter FD, Dietzen DJ, Orsini JJ, Berry-Kravis E, Zhang X, Reunert J, Marquardt T, Runz H, Giugliani R, Schaffer JE, Ory DS. Development of a bile acid-based newborn screen for Niemann-Pick disease type C. Sci Transl Med 2017; 8:337ra63. [PMID: 27147587 DOI: 10.1126/scitranslmed.aaf2326] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/11/2016] [Indexed: 11/02/2022]
Abstract
Niemann-Pick disease type C (NPC) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, it is imperative to improve diagnostics and facilitate early intervention. We used metabolomic profiling to identify potential markers and discovered three unknown bile acids that were increased in plasma from NPC but not control subjects. The bile acids most elevated in the NPC subjects were identified as 3β,5α,6β-trihydroxycholanic acid and its glycine conjugate, which were shown to be metabolites of cholestane-3β,5α,6β-triol, an oxysterol elevated in NPC. A high-throughput mass spectrometry-based method was developed and validated to measure the glycine-conjugated bile acid in dried blood spots. Analysis of dried blood spots from 4992 controls, 134 NPC carriers, and 44 NPC subjects provided 100% sensitivity and specificity in the study samples. Quantification of the bile acid in dried blood spots, therefore, provides the basis for a newborn screen for NPC that is ready for piloting in newborn screening programs.
Collapse
Affiliation(s)
- Xuntian Jiang
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rohini Sidhu
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laurel Mydock-McGrane
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David E Scherrer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian Earley
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah E Gale
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Dennis J Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph J Orsini
- New York State Department of Health, Wadsworth Center, Albany, NY 12201, USA
| | | | - Xiaokui Zhang
- Genzyme, 500 Kendall Street, Cambridge, MA 02142, USA
| | - Janice Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Heiko Runz
- Institute of Human Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany. Department of Genetics and Pharmacogenomics, Merck Research Laboratories, 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Roberto Giugliani
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90035-003, Brazil
| | - Jean E Schaffer
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
41
|
Improvement of 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestane-3β,5α,6β-triol and 6-oxo-cholestan-3β,5α-diol recovery for quantification by GC/MS. Chem Phys Lipids 2017; 207:92-98. [PMID: 28554594 DOI: 10.1016/j.chemphyslip.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/21/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023]
Abstract
5,6α-epoxycholesterol (5,6α-EC) and 5,6β-epoxycholesterol (5,6β-EC) are oxysterols involved in the anticancer pharmacology of the widely used antitumor drug tamoxifen. They are both metabolized into cholestane-3β,5α,6β-triol (CT) by the cholesterol-5,6-epoxide hydrolase (ChEH) enzyme, and CT is metabolized by an as-yet uncharacterized enzyme into 6-oxo-cholestan-3β,5α-diol (OCDO). A recent feasibility study showed that the 5,6-ECs may represent surrogate markers of tamoxifen activity in breast cancer patients undergoing endocrine therapy, thus there is a growing interest in their accurate quantification. These oxysterols are usually quantified by gas-liquid chromatography coupled to mass spectrometry (GC/MS), using an isotope dilution methodology with the corresponding deuterated oxysterol. This method is considered to be relative quantitative since all of the standards used are deuterated oxysterols, however it is not known whether the preparation of each oxysterol is affected in the same way by the extraction, pre-purification by solid phase extraction (SPE) and trimethylsilylation steps, particularly when using biological samples that contain many other reactive compounds. Thus, in this study we investigated the yield of the 5,6-ECs, CT and OCDO recovery from patient serum samples at different stages of their work-up and trimethylsilylation prior to GC/MS analysis, using [14C]-labeled analogs to follow these oxysterols at each step. We measured a 40 to 60% loss of material for the 5,6-ECs and OCDO, however we also describe the conditions that improved their recovery. Our data also show that the use of deuterated 5,6α-EC, 5,6β-EC, CT and OCDO is an absolute requirement for their accurate quantification.
Collapse
|
42
|
Camarena C, Aldamiz-Echevarria LJ, Polo B, Barba Romero MA, García I, Cebolla JJ, Ros E. Update on lysosomal acid lipase deficiency: Diagnosis, treatment and patient management. Med Clin (Barc) 2017; 148:429.e1-429.e10. [PMID: 28285817 DOI: 10.1016/j.medcli.2016.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023]
Abstract
Lysosomal acid lipase deficiency (LALD) is an ultra-rare disease caused by a congenital disorder of the lipid metabolism, characterized by the deposition of cholesterol esters and triglycerides in the organism. In patients with no enzyme function, the disease develops during the perinatal period and is invariably associated with death during the first year of life. In all other cases, the phenotype is heterogeneous, although most patients develop chronic liver diseases and may also develop an early cardiovascular disease. Treatment for LALD has classically included the use of supportive measures that do not prevent the progression of the disease. In 2015, regulatory agencies approved the use of a human recombinant LAL for the treatment of LALD. This long-term enzyme replacement therapy has been associated with significant improvements in the hepatic and lipid profiles of patients with LALD, increasing survival rates in infants with a rapidly progressive disease. Both the severity of LALD and the availability of a specific treatment highlight the need to identify these patients in clinical settings, although its low prevalence and the existing clinical overlap with other more frequent pathologies limit its diagnosis. In this paper we set out practical recommendations to identify and monitor patients with LALD, including a diagnostic algorithm, along with an updated treatment.
Collapse
Affiliation(s)
- Carmen Camarena
- Servicio de Hepatología Infantil, Hospital La Paz, Madrid, España
| | - Luis J Aldamiz-Echevarria
- Unidad de Enfermedades Metabólicas Pediátricas, Hospital Universitario Cruces, Bilbao, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, España; CSUR de Enfermedades Metabólicas Congénitas, Ministerio de Sanidad, Madrid, España
| | - Begoña Polo
- Servicio de Gastroenterología y Hepatología Pediátrica, Hospital La Fe, Valencia, España
| | - Miguel A Barba Romero
- Servicio de Medicina Interna, Complejo Hospitalario y Universitario de Albacete, Universidad de Castilla-La Mancha, Albacete, España
| | - Inmaculada García
- Unidad de Enfermedades Metabólicas Pediátricas, Hospital Miguel Servet, Zaragoza, España
| | - Jorge J Cebolla
- Instituto de Investigación Sanitaria Aragón, Unidad de Investigación Traslacional, Hospital Universitario Miguel Servet, Zaragoza, España; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Emilio Ros
- Unidad de Lípidos, Servicio de Endocrinología y Nutrición, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, España; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, España.
| |
Collapse
|
43
|
Olkkonen VM, Gylling H, Ikonen E. Plant sterols, cholesterol precursors and oxysterols: Minute concentrations-Major physiological effects. J Steroid Biochem Mol Biol 2017; 169:4-9. [PMID: 26733205 DOI: 10.1016/j.jsbmb.2015.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023]
Abstract
Non-cholesterol sterols are present in our body at very low concentrations as compared to cholesterol. Small changes in the structure of sterol molecules confer them highly distinct biological activities. The best-known example are steroid hormones derived from cholesterol. During the past decade, our knowledge of also other biomolecules related to or derived from cholesterol, particularly plant sterols, biosynthetic precursors of cholesterol, and oxysterols, has expanded rapidly. In this review article we recapitulate the latest insights into the properties and physiological activities of these non-cholesterol sterols, as well as their importance in disease processes and potential as diagnostic biomarkers.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Finland.
| | - Helena Gylling
- University of Helsinki and Helsinki University Central Hospital, Internal Medicine, Helsinki FI-00029 HUS, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014 University of Helsinki, Finland
| |
Collapse
|
44
|
Kannenberg F, Nofer JR, Schulte E, Reunert J, Marquardt T, Fobker M. Determination of serum cholestane-3β,5α,6β-triol by gas chromatography-mass spectrometry for identification of Niemann-Pick type C (NPC) disease. J Steroid Biochem Mol Biol 2017; 169:54-60. [PMID: 26940355 DOI: 10.1016/j.jsbmb.2016.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 02/04/2023]
Abstract
Niemann-Pick type C (NPC) is a neurological disease caused by an intracellular cholesterol accumulation. Cholesterol oxidation product cholestane-3β,5α,6β-triol (C-triol) serves as diagnostic biomarker for NPC, but its measurement in the routine laboratory remains difficult. We developed an isotope dilution gas chromatography-mass spectrometry (GC-MS) method permitting screening for NPC in plasma. 1440 plasma samples obtained from clinically suspicious patients were subjected to alkaline saponification. C-triol was extracted with carbon tetrachloride, transformed into the trimethylsilylethers, separated on a fused silica capillary column with a nonpolar silicone stationary phase, and analyzed by GC-MS. NPC diagnosis was confirmed by DNA sequencing. The method was linear over a concentration range of 0.03-200ng/mL with a mean recovery rate of 98.6%. The intra- and inter-day variation coefficients assessed at two concentrations were below 15%. Limits of quantification (LOQ) and detection (LOD) were 0.03ng/mL and 0.01ng/mL, respectively. Receiver operating characteristic (ROC) analysis estimated that the area under curve was 0.997 implying a significant discriminatory power to identify subjects with NPC. Nevertheless, 13 NPC patients and 29 control subjects confirmed by sequencing showed false negative or positive results, respectively. Two patients with cerebrotendinous xanthomatosis showed a 5-10-fold increase in C-triol levels. We developed a quick and sensitive GC-MS method for determination of C-triol, which may serve as a simple and inexpensive diagnostic tool aiding NPC diagnosis in a routine hospital laboratory. As C-triol elevation is not limited to NPC, the NPC diagnosis has to be confirmed by DNA sequencing.
Collapse
Affiliation(s)
- Frank Kannenberg
- Centrum für Laboratoriumsmedizin, University Hospital of Münster, Münster, Germany
| | - Jerzy-Roch Nofer
- Centrum für Laboratoriumsmedizin, University Hospital of Münster, Münster, Germany
| | - Erhard Schulte
- Centrum für Laboratoriumsmedizin, University Hospital of Münster, Münster, Germany
| | - Janine Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, University Hospital of Münster, Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin-Allgemeine Pädiatrie, University Hospital of Münster, Münster, Germany
| | - Manfred Fobker
- Centrum für Laboratoriumsmedizin, University Hospital of Münster, Münster, Germany.
| |
Collapse
|
45
|
Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol 2017; 165:18-37. [PMID: 26960203 DOI: 10.1016/j.jsbmb.2016.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/29/2022]
Abstract
Steroidogenesis begins with cellular internalization of low-density lipoprotein particles and subsequent intracellular processing of cholesterol. Disorders in these steps include Adrenoleukodystrophy, Wolman Disease and its milder variant Cholesterol Ester Storage Disease, and Niemann-Pick Type C Disease, all of which may present with adrenal insufficiency. The means by which cholesterol is directed to steroidogenic mitochondria remains incompletely understood. Once cholesterol reaches the outer mitochondrial membrane, its delivery to the inner mitochondrial membrane is regulated by the steroidogenic acute regulatory protein (StAR). Severe StAR mutations cause classic congenital lipoid adrenal hyperplasia, characterized by lipid accumulation in the adrenal, adrenal insufficiency, and disordered sexual development in 46,XY individuals. The lipoid CAH phenotype, including spontaneous puberty in 46,XX females, is explained by a two-hit model. StAR mutations that retain partial function cause a milder, non-classic disease characterized by glucocorticoid deficiency, with lesser disorders of mineralocorticoid and sex steroid synthesis. Once inside the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side-chain cleavage enzyme, P450scc, encoded by the CYP11A1 gene. Rare patients with mutations of P450scc are clinically and hormonally indistinguishable from those with lipoid CAH, and may also present as milder non-classic disease. Patients with P450scc defects do not have the massive adrenal hyperplasia that characterizes lipoid CAH, but adrenal imaging may occasionally fail to distinguish these, necessitating DNA sequencing.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143-0556, United States.
| |
Collapse
|
46
|
Polo G, Burlina AP, Kolamunnage TB, Zampieri M, Dionisi-Vici C, Strisciuglio P, Zaninotto M, Plebani M, Burlina AB. Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS. ACTA ACUST UNITED AC 2017; 55:403-414. [DOI: 10.1515/cclm-2016-0340] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/15/2016] [Indexed: 11/15/2022]
Abstract
AbstractBackground:Lysosphingolipids (LysoSLs) are derivatives of sphingolipids which have lost the amide-linked acyl chain. More recently, LysoSLs have been identified as storage compounds in several sphingolipidoses, including Gaucher, Fabry and Niemann-Pick diseases. To date, different methods have been developed to measure each individual lysosphingolipid in plasma. This report describes a rapid liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) assay for simultaneous quantification of several LysoSLs in plasma.Methods:We analyzed the following compounds: hexosylsphingosine (HexSph), globotriaosylsphingosine (LysoGb3), lysosphingomyelin (LysoSM) and lysosphingomyelin-509 (LysoSM-509). The sample preparation requires only 100 μL of plasma and consists of an extraction with a mixture of MeOH/acetone/HResults:The method validation showed high sensitivity, an excellent accuracy and precision. Reference ranges were determined in healthy adult and pediatric population. The results demonstrate that the LC-MS/MS method can quantify different LysoSLs and can be used to identify patients with Fabry (LysoGb3), Gaucher and Krabbe (HexSph) diseases, prosaposine deficiency (LysoGb3 and HexSph), and Niemann-Pick disease types A/B and C (LysoSM and LysoSM-509).Conclusions:This LC-MS/MS method allows a rapid and simultaneous quantification of LysoSLs and is useful as a biochemical diagnostic tool for sphingolipidoses.
Collapse
|
47
|
Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res 2016; 64:152-169. [PMID: 27687912 DOI: 10.1016/j.plipres.2016.09.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Oxysterols are cholesterol metabolites that can be produced through enzymatic or radical processes. They constitute a large family of lipids (i.e. the oxysterome) involved in a plethora of physiological processes. They can act through GPCR (e.g. EBI2, SMO, CXCR2), nuclear receptors (LXR, ROR, ERα) and through transporters or regulatory proteins. Their physiological effects encompass cholesterol, lipid and glucose homeostasis. Additionally, they were shown to be involved in other processes such as immune regulatory functions and brain homeostasis. First studied as precursors of bile acids, they quickly emerged as interesting lipid mediators. Their levels are greatly altered in several pathologies and some oxysterols (e.g. 4β-hydroxycholesterol or 7α-hydroxycholestenone) are used as biomarkers of specific pathologies. In this review, we discuss the complex metabolism and molecular targets (including binding properties) of these bioactive lipids in human and mice. We also discuss the genetic mouse models currently available to interrogate their effects in pathophysiological settings. We also summarize the levels of oxysterols reported in two key organs in oxysterol metabolism (liver and brain), plasma and cerebrospinal fluid. Finally, we consider future opportunities and directions in the oxysterol field in order to gain a better insight and understanding of the complex oxysterol system.
Collapse
Affiliation(s)
- Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium.
| |
Collapse
|
48
|
Vanier MT, Gissen P, Bauer P, Coll MJ, Burlina A, Hendriksz CJ, Latour P, Goizet C, Welford RWD, Marquardt T, Kolb SA. Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review. Mol Genet Metab 2016; 118:244-54. [PMID: 27339554 DOI: 10.1016/j.ymgme.2016.06.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
Niemann-Pick disease type C (NP-C) is a neurovisceral lysosomal cholesterol trafficking and lipid storage disorder caused by mutations in one of the two genes, NPC1 or NPC2. Diagnosis has often been a difficult task, due to the wide range in age of onset of NP-C and clinical presentation of the disease, combined with the complexity of the cell biology (filipin) laboratory testing, even in combination with genetic testing. This has led to substantial delays in diagnosis, largely depending on the access to specialist centres and the level of knowledge about NP-C of the physician in the area. In recent years, advances in mass spectrometry has allowed identification of several sensitive plasma biomarkers elevated in NP-C (e.g. cholestane-3β,5α,6β-triol, lysosphingomyelin isoforms and bile acid metabolites), which, together with the concomitant progress in molecular genetic technology, have greatly impacted the strategy of laboratory testing. Specificity of the biomarkers is currently under investigation and other pathologies are being found to also result in elevations. Molecular genetic testing also has its limitations, notably with unidentified mutations and the classification of new variants. This review is intended to increase awareness on the currently available approaches to laboratory diagnosis of NP-C, to provide an up to date, comprehensive and critical evaluation of the various techniques (cell biology, biochemical biomarkers and molecular genetics), and to briefly discuss ongoing/future developments. The use of current tests in proper combination enables a rapid and correct diagnosis in a large majority of cases. However, even with recent progress, definitive diagnosis remains challenging in some patients, for whom combined genetic/biochemical/cytochemical markers do not provide a clear answer. Expertise and reference laboratories thus remain essential, and further work is still required to fulfill unmet needs.
Collapse
Affiliation(s)
- Marie T Vanier
- INSERM Unit 820, 7 Rue Guillaume Paradin, 69008 Lyon, France; Laboratoire Gillet-Mérieux, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Paul Gissen
- UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Great Ormond Street Hospital, London WC1N 3JH, UK.
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University Hospital of Tübingen, 72076 Tübingen, Germany.
| | - Maria J Coll
- Inborn Errors of Metabolism Section, Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, 08036 Barcelona, Spain; CIBERER, Spain.
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital, 35129 Padova, Italy.
| | - Christian J Hendriksz
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS Trust, Salford, Manchester M68HD, UK; University of Pretoria, Steve Biko Academic Hospital, Department of Paediatrics and Child Health, Pretoria 0001, South Africa.
| | - Philippe Latour
- UF de Neurogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, 69500 Bron, France.
| | - Cyril Goizet
- CHU Bordeaux, Department of Medical Genetics, 33076 Bordeaux, France; INSERM Unit 1211, University of Bordeaux, 33076 Bordeaux, France.
| | - Richard W D Welford
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | - Thorsten Marquardt
- Unit for Inborn Errors of Metabolism, University Hospital Münster, 48149 Münster, Germany.
| | - Stefan A Kolb
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| |
Collapse
|
49
|
Selective screening of Niemann–Pick type C Brazilian patients by cholestane-3β,5α,6β-triol and chitotriosidase measurements followed by filipin staining and NPC1/NPC2 gene analysis. Clin Chim Acta 2016; 459:57-62. [DOI: 10.1016/j.cca.2016.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022]
|
50
|
Lario A, de Miguel C, Ojeda E, Gil S, Coll MJ, Alfonso P. [New mutation in a young woman diagnosed with Niemann-Pick disease type C]. Med Clin (Barc) 2016; 146:494-6. [PMID: 27016452 DOI: 10.1016/j.medcli.2016.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND OBJETIVE To describe a new molecular variant of Niemann-Pick disease type C (NPC) in a 27 year-old patient with splenomegaly and abolition of osteotendinous reflexes. MATERIAL AND METHODS NPC1 is the main gene with described mutation in NPC disease. Here we report a case with a new mutation, p.N916S, not described before in a patient diagnosed with NPC. RESULTS p.N916S was described as a cause of NPC disease by predictive programmes Mutation Master, PolyPhen2 and SIFT. CONCLUSIONS p.N916S is a new mutation detected as a cause of NPC disease in a patient without severe neurological symptoms.
Collapse
Affiliation(s)
- Ana Lario
- Servicio de Hematología y Hemoterapia, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, España.
| | - Carlos de Miguel
- Servicio de Hematología y Hemoterapia, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, España
| | - Emilio Ojeda
- Servicio de Hematología y Hemoterapia, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, España
| | - Santiago Gil
- Servicio de Hematología y Hemoterapia, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, España
| | - María J Coll
- Centro de Diagnóstico Biomédico, Hospital Clínic, Barcelona, España
| | - Pilar Alfonso
- Departamento de Bioquímica y Biología Celular y Molecular, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|