1
|
Senevirathne GI, Gendall AR, Johnson KL, Welling MT. Understanding the role of oxylipins in Cannabis to enhance cannabinoid production. FRONTIERS IN PLANT SCIENCE 2025; 16:1568548. [PMID: 40343123 PMCID: PMC12058684 DOI: 10.3389/fpls.2025.1568548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/28/2025] [Indexed: 05/11/2025]
Abstract
Phytocannabinoids are medically important specialized defense compounds that are sparsely distributed among plants, yet Cannabis sativa can synthesize unprecedented amounts of these compounds within highly specialized surface cell factories known as glandular trichomes. The control mechanisms that allow for this high level of productivity are poorly understood at the molecular level, although increasing evidence supports the role of oxylipin metabolism in phytocannabinoid production. Oxylipins are a large class of lipid-based oxygenated biological signaling molecules. Although some oxylipins are known to participate in plant defense, roles for the majority of the ca. 600 plant oxylipins are largely unknown. In this review, we examine oxylipin gene expression within glandular trichomes and identify key oxylipin genes that determine the fate of common lipid precursors. Mechanisms by which oxylipins may be interacting with phytocannabinoid metabolism, as well as specialized plant metabolism more broadly, are discussed and a model summarizing these contributions proposed.
Collapse
Affiliation(s)
- Gayathree I. Senevirathne
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Anthony R. Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Protected Cropping, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Kim L. Johnson
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Protected Cropping, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Matthew T. Welling
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Protected Cropping, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
2
|
Kim JW, Yoon JH, Lee J, Cha HJ, Seo PW, Lee TE, Bornscheuer UT, Oh DK, Park JB, Kim JS. Discovery and Molecular Characterization of a Novel 9 S-Lipoxygenase from Enhygromyxa salina for Fatty Acid Biotransformations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26263-26273. [PMID: 39536131 DOI: 10.1021/acs.jafc.4c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Iron-dependent lipoxygenases (LOXs) are involved in the synthesis of oxylipins from polyunsaturated fatty acids. However, they are usually difficult to overexpress in functional form in microbial cell factories. Moreover, 9-LOXs, generating 9-hydroperoxy fatty acids from C18 polyunsaturated fatty acids, have rarely been found from microbial sources. Here, we discovered a novel 9S-LOX in the marine myxobacterium Enhygromyxa salina (Es-9S-LOX). The recombinant enzyme produced in Escherichia coli exhibited remarkable activity in the dioxygenation of linoleic acid (LA, 1), α-linolenic acid, γ-linolenic acid, and arachidonic acid specifically at the C9 position to yield the product with (S)-configuration at catalytic efficiency of 3.94, 1.42, 1.38, and 0.69 μM-1·s-1, respectively. The elucidated X-ray crystal structure of Es-9S-LOX reveals a long and narrow hydrophobic pocket that allows the substrate to be near the metal ion and the oxygen tunnel. The enzyme was successfully used in a chemoenzymatic reaction to generate a hydroxy fatty acid from LA. Our study thus contributes to the valorization of renewable polyunsaturated fatty acids into a variety of fatty acid derivatives, including hydroxy fatty acids.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeong-Hye Yoon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Jeong Cha
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Pil-Won Seo
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Pilati S, Wild K, Gumiero A, Holdermann I, Hackmann Y, Serra MD, Guella G, Moser C, Sinning I. Vitis vinifera Lipoxygenase LoxA is an Allosteric Dimer Activated by Lipidic Surfaces. J Mol Biol 2024; 436:168821. [PMID: 39424098 DOI: 10.1016/j.jmb.2024.168821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Lipoxygenases catalyze the peroxidation of poly-unsaturated fatty acid chains either free or esterified in membrane lipids. Vitis vinifera LoxA is transcriptionally induced at ripening onset and localizes at the inner chloroplast membrane where it is responsible for galactolipid regiospecific mono- and di-peroxidation. Here we present a kinetic and structural characterization of LoxA. Our X-ray structures reveal a constitutive dimer with detergent induced conformational changes affecting substrate binding and catalysis. In a closed conformation, a LID domain prevents substrate access to the catalytic site by steric hindrance. Detergent addition above the CMC destabilizes the LID and opens the dimer with both catalytic sites accessible from the same surface framed by the PLAT domains. As a consequence, detergent molecules occupy allosteric sites in the PLAT/catalytic domain interface. These structural changes are mirrored by increased enzymatic activity and positive cooperativity when the substrate is provided in micelles. The ability to interact with micelles is lost upon dimer destabilization by site-directed mutagenesis as assessed by tryptophan fluorescence. Our data allow to propose a model for protein activation at the membrane, classifying LoxA as an interfacial enzyme acting on fatty acid chains directly from the membrane similar to mammalian 15-LOX and 5-LOX.
Collapse
Affiliation(s)
- Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Andrea Gumiero
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Iris Holdermann
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Yvonne Hackmann
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mauro Dalla Serra
- Institute of Biophysics, CNR Unit at Trento, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Chrisnasari R, Hennebelle M, Nguyen KA, Vincken JP, van Berkel WJH, Ewing TA. Engineering the substrate specificity and regioselectivity of Burkholderia thailandensis lipoxygenase. N Biotechnol 2024; 84:64-76. [PMID: 39341453 DOI: 10.1016/j.nbt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Lipoxygenases (LOXs) catalyze the regioselective dioxygenation of polyunsaturated fatty acids (PUFAs), generating fatty acid hydroperoxides (FAHPs) with diverse industrial applications. Bacterial LOXs have garnered significant attention in recent years due to their broad activity towards PUFAs, yet knowledge about the structural factors influencing their substrate preferences remains limited. Here, we characterized a bacterial LOX from Burkholderia thailandensis (Bt-LOX), and identified key residues affecting its substrate preference and regioselectivity through site-directed mutagenesis. Bt-LOX preferred ω-6 PUFAs and exhibited regioselectivity at the ω-5 position. Mutations targeting the substrate binding pocket and the oxygen access channel led to the production of three active variants with distinct catalytic properties. The A431G variant bifurcated dioxygenation between the ω-5 and ω-9 positions, while F446V showed reduced regioselectivity with longer PUFAs. Interestingly, L445A displayed altered substrate specificity, favoring ω-3 over ω-6 PUFAs. Furthermore, L445A shifted the regioselectivity of dioxygenation to the ω-2 position in ω-3 PUFAs, and, for some substrates, facilitated dioxygenation closer to the carboxylic acid terminus, suggesting an altered substrate orientation. Among these variants, L445A represents a significant milestone in LOX research, as these alterations in substrate specificity, dioxygenation regioselectivity, and substrate orientation were achieved by a single mutation only. These findings illuminate key residues governing substrate preference and regioselectivity in Bt-LOX, offering opportunities for synthesizing diverse FAHPs and highlighting the potential of bacterial LOXs as biocatalysts with widespread applications.
Collapse
Affiliation(s)
- Ruth Chrisnasari
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Faculty of Biotechnology, University of Surabaya (UBAYA), Surabaya 60293, Indonesia.
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Khoa A Nguyen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Tom A Ewing
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
5
|
Chrisnasari R, Ewing TA, Hilgers R, van Berkel WJH, Vincken JP, Hennebelle M. Versatile ferrous oxidation-xylenol orange assay for high-throughput screening of lipoxygenase activity. Appl Microbiol Biotechnol 2024; 108:266. [PMID: 38498184 PMCID: PMC10948578 DOI: 10.1007/s00253-024-13095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Lipoxygenases (LOXs) catalyze dioxygenation of polyunsaturated fatty acids (PUFAs) into fatty acid hydroperoxides (FAHPs), which can be further transformed into a number of value-added compounds. LOXs have garnered interest as biocatalysts for various industrial applications. Therefore, a high-throughput LOX activity assay is essential to evaluate their performance under different conditions. This study aimed to enhance the suitability of the ferrous-oxidized xylenol orange (FOX) assay for screening LOX activity across a wide pH range with different PUFAs. The narrow linear detection range of the standard FOX assay restricts its utility in screening LOX activity. To address this, the concentration of perchloric acid in the xylenol orange reagent was adjusted. The modified assay exhibited a fivefold expansion in the linear detection range for hydroperoxides and accommodated samples with pH values ranging from 3 to 10. The assay could quantify various hydroperoxide species, indicating its applicability in assessing LOX substrate preferences. Due to sensitivity to pH, buffer types, and hydroperoxide species, the assay required calibration using the respective standard compound diluted in the same buffer as the measured sample. The use of correction factors is suggested when financial constraints limit the use of FAHP standard compounds in routine LOX substrate preference analysis. FAHP quantification by the modified FOX assay aligned well with results obtained using the commonly used conjugated diene method, while offering a quicker and broader sample pH range assessment. Thus, the modified FOX assay can be used as a reliable high-throughput screening method for determining LOX activity. KEY POINTS: • Modifying perchloric acid level in FOX reagent expands its linear detection range • The modified FOX assay is applicable for screening LOX activity in a wide pH range • The modified FOX assay effectively assesses substrate specificity of LOX.
Collapse
Affiliation(s)
- Ruth Chrisnasari
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
- Faculty of Biotechnology, University of Surabaya (UBAYA), Surabaya, 60293, Indonesia
| | - Tom A Ewing
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| | - Roelant Hilgers
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Erba F, Mei G, Minicozzi V, Sabatucci A, Di Venere A, Maccarrone M. Conformational Dynamics of Lipoxygenases and Their Interaction with Biological Membranes. Int J Mol Sci 2024; 25:2241. [PMID: 38396917 PMCID: PMC10889196 DOI: 10.3390/ijms25042241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Lipoxygenases (LOXs) are a family of enzymes that includes different fatty acid oxygenases with a common tridimensional structure. The main functions of LOXs are the production of signaling compounds and the structural modifications of biological membranes. These features of LOXs, their widespread presence in all living organisms, and their involvement in human diseases have attracted the attention of the scientific community over the last decades, leading to several studies mainly focused on understanding their catalytic mechanism and designing effective inhibitors. The aim of this review is to discuss the state-of-the-art of a different, much less explored aspect of LOXs, that is, their interaction with lipid bilayers. To this end, the general architecture of six relevant LOXs (namely human 5-, 12-, and 15-LOX, rabbit 12/15-LOX, coral 8-LOX, and soybean 15-LOX), with different specificity towards the fatty acid substrates, is analyzed through the available crystallographic models. Then, their putative interface with a model membrane is examined in the frame of the conformational flexibility of LOXs, that is due to their peculiar tertiary structure. Finally, the possible future developments that emerge from the available data are discussed.
Collapse
Affiliation(s)
- Fulvio Erba
- Department of Clinical Science and Translational Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Giampiero Mei
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Velia Minicozzi
- Department of Physics and INFN, Tor Vergata University of Rome, Via Della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Annalaura Sabatucci
- Department of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy;
| | - Almerinda Di Venere
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
7
|
Oliw EH. Thirty years with three-dimensional structures of lipoxygenases. Arch Biochem Biophys 2024; 752:109874. [PMID: 38145834 DOI: 10.1016/j.abb.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
8
|
Gorina SS, Egorova AM, Lantsova NV, Toporkova YY, Grechkin AN. Discovery of α-Linolenic Acid 16( S)-Lipoxygenase: Cucumber ( Cucumis sativus L.) Vegetative Lipoxygenase 3. Int J Mol Sci 2023; 24:12977. [PMID: 37629162 PMCID: PMC10454662 DOI: 10.3390/ijms241612977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The GC-MS profiling of the endogenous oxylipins (Me/TMS) from cucumber (Cucumis sativus L.) leaves, flowers, and fruit peels revealed a remarkable abundance of 16-hydroxy-9,12,14-octadecatrienoic acid (16-HOT). Incubations of homogenates from these organs with α-linolenic acid yielded 16(S)-hydroperoxide (16-HPOT) as a predominant product. Targeted proteomic analyses of these tissues revealed the presence of several highly homologous isoforms of the putative "9S-lipoxygenase type 6". One of these isoenzymes (CsLOX3, an 877 amino acid polypeptide) was prepared by heterologous expression in E. coli and exhibited 16(S)- and 13(S)-lipoxygenase activity toward α-linolenic and linoleic acids, respectively. Furthermore, α-linolenate was a preferred substrate. The molecular structures of 16(S)-HOT and 16(S)-HPOT (Me or Me/TMS) were unequivocally confirmed by the mass spectral data, 1H-NMR, 2D 1H-1H-COSY, TOCSY, HMBC, and HSQC spectra, as well as enantiomeric HPLC analyses. Thus, the vegetative CsLOX3, biosynthesizing 16(S)-HPOT, is the first 16(S)-LOX and ω3-LOX ever discovered. Eicosapentaenoic and hexadecatrienoic acids were also specifically transformed to the corresponding ω3(S)-hydroperoxides by CsLOX3.
Collapse
Affiliation(s)
- Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Alevtina M Egorova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia
| |
Collapse
|
9
|
Xia B, Chi H, Zhang B, Lu Z, Liu H, Lu F, Zhu P. Computational Insights and In Silico Characterization of a Novel Mini-Lipoxygenase from Nostoc Sphaeroides and Its Application in the Quality Improvement of Steamed Bread. Int J Mol Sci 2023; 24:ijms24097941. [PMID: 37175648 PMCID: PMC10177866 DOI: 10.3390/ijms24097941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Lipoxygenase (EC1.13.11.12, LOX) has been potentially used in the food industry for food quality improvement. However, the low activity, poor thermal stability, narrow range of pH stability, as well as undesirable isoenzymes and off-flavors, have hampered the application of current commercial LOX. In this study, a putative mini-lipoxygenase gene from cyanobacteria, Nostoc sphaeroides (NsLOX), was cloned and expressed in E. coli BL21. NsLOX displayed only 26.62% structural identity with the reported LOX from Cyanothece sp., indicating it as a novel LOX. The purified NsLOX showed the maximum activity at pH 8.0 and 15 °C, with superior stability at a pH range from 6.0 to 13.0, retaining about 40% activity at 40 °C for 90 min. Notably, NsLOX exhibited the highest specific activity of 78,080 U/mg towards linoleic acid (LA), and the kinetic parameters-Km, kcat, and kcat/Km-attain values of 19.46 μM, 9199.75 s-1, and 473.85 μM-1 s-1, respectively. Moreover, the activity of NsLOX was obviously activated by Ca2+, but it was completely inhibited by Zn2+ and Cu2+. Finally, NsLOX was supplied in steamed bread and contributed even better improved bread quality than the commercial LOX. These results suggest NsLOX as a promising substitute of current commercial LOX for application in the food industry.
Collapse
Affiliation(s)
- Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjie Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huawei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Djian B, Feussner K, Herrfurth C, Zienkiewicz K, Hornung E, Feussner I. Plastidic membrane lipids are oxidized by a lipoxygenase in Lobosphaera incisa. FRONTIERS IN PLANT SCIENCE 2022; 13:1102215. [PMID: 36618660 PMCID: PMC9813749 DOI: 10.3389/fpls.2022.1102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Green microalgae can accumulate neutral lipids, as part of a general lipid remodeling mechanism under stress such as nitrogen starvation. Lobosphaera incisa is of special interest because of its unique TAG acyl chain composition, especially 20:4 (n-6) can reach up to 21% of dry weight after nitrogen starvation. In order to identify factors that may influence the accumulation of polyunsaturated fatty acids (PUFAs), we identified recently a linoleate 13-lipoxygenase (LiLOX). It shares highest identity with plastidic enzymes from vascular plants and is induced upon nitrogen starvation. Here, we confirmed the localization of LiLOX in the stroma of plastids via transient expression in epithelial onion cells. In order to further characterize this enzyme, we focused on the identification of the endogenous substrate of LiLOX. In this regard, an ex vivo enzymatic assay, coupled with non-targeted analysis via mass spectrometry allowed the identification of MGDG, DGDG and PC as three substrate candidates, later confirmed via in vitro assays. Further investigation revealed that LiLOX has preferences towards the lipid class MGDG, which seems in agreement with its localization in the galactolipid rich plastid. Altogether, this study shows the first characterization of plastidic LOX from green algae, showing preference for MGDGs. However, lipidomics analysis did neither reveal an endogenous LiLOX product nor the final end product of MGDG oxidation. Nevertheless, the latter is a key to understanding the role of this enzyme and since its expression is highest during the degradation of the plastidic membrane, it is tempting to assume its involvement in this process.
Collapse
Affiliation(s)
- Benjamin Djian
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Kirstin Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
| | - Krzysztof Zienkiewicz
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
| | - Ellen Hornung
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, University of Goettingen, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
12
|
Zhang B, Chen M, Xia B, Lu Z, Khoo KS, Show PL, Lu F. Characterization and Preliminary Application of a Novel Lipoxygenase from Enterovibrio norvegicus. Foods 2022; 11:2864. [PMID: 36140992 PMCID: PMC9498203 DOI: 10.3390/foods11182864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Lipoxygenases have proven to be a potential biocatalyst for various industrial applications. However, low catalytic activity, low thermostability, and narrow range of pH stability largely limit its application. Here, a lipoxygenase (LOX) gene from Enterovibrio norvegicus DSM 15893 (EnLOX) was cloned and expressed in Escherichia coli BL21 (DE3). EnLOX showed the catalytic activity of 40.34 U mg-1 at 50 °C, pH 8.0. Notably, the enzyme showed superior thermostability, and wide pH range stability. EnLOX remained above 50% of its initial activity after heat treatment below 50 °C for 6 h, and its melting point temperature reached 78.7 °C. More than 70% of its activity was maintained after incubation at pH 5.0-9.5 and 4 °C for 10 h. In addition, EnLOX exhibited high substrate specificity towards linoleic acid, and its kinetic parameters of Vmax, Km, and Kcat values were 12.42 mmol min-1 mg-1, 3.49 μmol L-1, and 16.86 s-1, respectively. LC-MS/MS analysis indicated that EnLOX can be classified as 13-LOX, due to its ability to catalyze C18 polyunsaturated fatty acid to form 13-hydroxy fatty acid. Additionally, EnLOX could improve the farinograph characteristics and rheological properties of wheat dough. These results reveal the potential applications of EnLOX in the food industry.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meirong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Pau Loke Show
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Oliw EH. Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates. Arch Biochem Biophys 2022; 722:109169. [PMID: 35276213 DOI: 10.1016/j.abb.2022.109169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Lipoxygenases (LOX) contain catalytic iron (FeLOX), but fungi also produce LOX with catalytic manganese (MnLOX). In this review, the 3D structures and properties of fungal LOX are compared and contrasted along with their associations with pathogenicity. The 3D structures and properties of two MnLOX (Magnaporthe oryzae, Geaumannomyces graminis) and the catalysis of five additional MnLOX have provided information on the metal center, substrate binding, oxygenation, tentative O2 channels, and biosynthesis of exclusive hydroperoxides. In addition, the genomes of other plant pathogens also code for putative MnLOX. Crystals of the 13S-FeLOX of Fusarium graminearum revealed an unusual altered geometry of the Fe ligands between mono- and dimeric structures, influenced by a wrapping sequence extension near the C-terminal of the dimers. In plants, the enzymes involved in jasmonate synthesis are well documented whereas the fungal pathway is yet to be fully elucidated. Conversion of deuterium-labeled 18:3n-3, 18:2n-6, and their 13S-hydroperoxides to jasmonates established 13S-FeLOX of F. oxysporum in the biosynthesis, while subsequent enzymes lacked sequence homologues in plants. The Rice-blast (M. oryzae) and the Take-all (G. graminis) fungi secrete MnLOX to support infection, invasive hyphal growth, and cell membrane oxidation, contributing to their devastating impact on world production of rice and wheat.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
14
|
Yunus IS, Anfelt J, Sporre E, Miao R, Hudson EP, Jones PR. Synthetic metabolic pathways for conversion of CO2 into secreted short-to medium-chain hydrocarbons using cyanobacteria. Metab Eng 2022; 72:14-23. [DOI: 10.1016/j.ymben.2022.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
15
|
An JU, Kim SE, Oh DK. Molecular insights into lipoxygenases for biocatalytic synthesis of diverse lipid mediators. Prog Lipid Res 2021; 83:101110. [PMID: 34144023 DOI: 10.1016/j.plipres.2021.101110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Oxylipins derived mainly from C20- and C22-polyunsaturated fatty acids (PUFAs), termed lipid mediators (LMs), are essential signalling messengers involved in human physiological responses associated with homeostasis and healing process for infection and inflammation. Some LMs involved in the resolution of inflammation and infection are termed specialized pro-resolving mediators (SPMs), which are generated by human M2 macrophages or polymorphonuclear leukocytes and have the potential to protect and treat hosts from bacterial and viral infections by phagocytosis activation. Lipoxygenases (LOXs) biosynthesize regio- and stereoselective LMs. Thus, understanding the regio- and stereoselectivities of LOXs for PUFAs at a molecular level is important for the biocatalytic synthesis of diverse LMs. Here, we elucidate the catalytic mechanisms and discuss regio- and stereoselectivities and their changes of LOXs determined by insertion direction and position of the substrate and oxygen at a molecular level for the biosynthesis of diverse human LMs. Recently, the biocatalytic synthesis of PUFAs to human LMs or analogues has been conducted using microbial LOXs. Such microbial LOXs involved in the biosynthesis of LMs are expected to exert significantly higher activity and stability than human LOXs. Diverse regio- and stereoselective LOXs can be obtained from microorganisms, which represent a wealth of genomic sources. We reconstruct the biosynthetic pathways of LOX-catalyzed LMs in humans and other organisms. Furthermore, we suggest the effective methods of biocatalytic synthesis of diverse human LMs from PUFAs or glucose by using microbial LOXs, increasing the stability and activity of LOXs, combining the reactions of LOXs, and constructing metabolic pathways.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
16
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
17
|
Schmidt WF, Chen F, Broadhurst CL, Nguyen JK, Qin J, Chao K, Kim MS. GTRS and 2D-NMR studies of alpha and gamma linolenic acids each containing the same H2C14-(H–C C–H)–C11H2–(H–C C–H)–C8H2 moiety. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Pakhomova S, Boeglin WE, Neau DB, Bartlett SG, Brash AR, Newcomer ME. An ensemble of lipoxygenase structures reveals novel conformations of the Fe coordination sphere. Protein Sci 2019; 28:920-927. [PMID: 30861228 PMCID: PMC6459989 DOI: 10.1002/pro.3602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/07/2023]
Abstract
The regio- and stereo-specific oxygenation of polyunsaturated fatty acids is catalyzed by lipoxygenases (LOX); both Fe and Mn forms of the enzyme have been described. Structural elements of the Fe and Mn coordination spheres and the helical catalytic domain in which the metal center resides are highly conserved. However, animal, plant, and microbial LOX each have distinct features. We report five crystal structures of a LOX from the fungal plant pathogen Fusarium graminearum. This LOX displays a novel amino terminal extension that provides a wrapping domain for dimerization. Moreover, this extension appears to interfere with the iron coordination sphere, as the typical LOX configuration is not observed at the catalytic metal when the enzyme is dimeric. Instead novel tetra-, penta-, and hexa-coordinate Fe2+ ligations are apparent. In contrast, a monomeric structure indicates that with repositioning of the amino terminal segment, the enzyme can assume a productive conformation with the canonical Fe2+ coordination sphere.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - William E. Boeglin
- Department of Pharmacology VanderbiltUniversity School of MedicineNashvilleTennessee, 37232
| | - David B. Neau
- Northeastern Collaborative Access Team, Argonne National LaboratoryCornell UniversityArgonneIllinois
| | - Sue G. Bartlett
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | - Alan R. Brash
- Department of Pharmacology VanderbiltUniversity School of MedicineNashvilleTennessee, 37232
| | - Marcia E. Newcomer
- Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| |
Collapse
|
19
|
An JU, Lee IG, Ko YJ, Oh DK. Microbial Synthesis of Linoleate 9 S-Lipoxygenase Derived Plant C18 Oxylipins from C18 Polyunsaturated Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3209-3219. [PMID: 30808175 DOI: 10.1021/acs.jafc.8b05857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plant oxylipins, including hydroxy fatty acids, epoxy hydroxy fatty acids, and trihydroxy fatty acids, which are biosynthesized from C18 polyunsaturated fatty acids (PUFAs), are involved in pathogen-specific defense mechanisms against fungal infections. However, their quantitative biotransformation by plant enzymes has not been reported. A few bacteria produce C18 trihydroxy fatty acids, but the enzymes and pathways related to the biosynthesis of plant oxylipins in bacteria have not been reported. In this study, we first report the biotransformation of C18 PUFAs into plant C18 oxylipins by expressing linoleate 9 S-lipoxygenase with and without epoxide hydrolase from the proteobacterium Myxococcus xanthus in recombinant Escherichia coli. Among the nine types of plant oxylipins, 12,13-epoxy-14-hydroxy- cis, cis-9,15-octadecadienoic acid was identified as a new compound by NMR analysis, and 9,10,11-hydroxy- cis, cis-6,12-octadecadienoic acid and 12,13,14-trihydroxy- cis, cis-9,15-octadecadienoic were suggested as new compounds by LC-MS/MS analysis. This study shows that bioactive plant oxylipins can be produced by microbial enzymes.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
- Synthetic Biology and Bioengineering Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141 , Republic of Korea
| | - In-Gyu Lee
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities (NCIRF) , Seoul National University , Seoul 08826 , Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| |
Collapse
|
20
|
Djian B, Hornung E, Ischebeck T, Feussner I. The green microalga Lobosphaera incisa harbours an arachidonate 15S-lipoxygenase. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:131-142. [PMID: 30277010 PMCID: PMC6587457 DOI: 10.1111/plb.12920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
The green microalga Lobosphaera incisa is an oleaginous eukaryotic alga that is rich in arachidonic acid (20:4). Being rich in this polyunsaturated fatty acid (PUFA), however, makes it sensitive to oxidation. In plants, lipoxygenases (LOXs) are the major enzymes that oxidise these molecules. Here, we describe, to our best knowledge, the first characterisation of a cDNA encoding a LOX (LiLOX) from a green alga. To obtain first insights into its function, we expressed it in E. coli, purified the recombinant enzyme and analysed its enzyme activity. The protein sequence suggests that LiLOX and plastidic LOXs from bryophytes and flowering plants may share a common ancestor. The fact that LiLOX oxidises all PUFAs tested with a consistent oxidation on the carbon n-6, suggests that PUFAs enter the substrate channel through their methyl group first (tail first). Additionally, LiLOX form the fatty acid hydroperoxide in strict S configuration. LiLOX may represent a good model to study plastid LOX, because it is stable after heterologous expression in E. coli and highly active in vitro. Moreover, as the first characterised LOX from green microalgae, it opens the possibility to study endogenous LOX pathways in these organisms.
Collapse
Affiliation(s)
- B. Djian
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
| | - E. Hornung
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
| | - T. Ischebeck
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
- Goettingen Metabolomics and Lipidomics LaboratoryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
| | - I. Feussner
- Department of Plant BiochemistryUniversity of GoettingenAlbrecht‐von‐Haller‐Institute for Plant SciencesGoettingenGermany
- Goettingen Metabolomics and Lipidomics LaboratoryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
- Department of Plant BiochemistryUniversity of GoettingenGoettingen Center for Molecular Biosciences (GZMB)GoettingenGermany
- Department of Plant BiochemistryUniversity of GoettingenInternational Center for Advanced Studies of Energy Conversion (ICASEC)GoettingenGermany
| |
Collapse
|
21
|
Goloshchapova K, Stehling S, Heydeck D, Blum M, Kuhn H. Functional characterization of a novel arachidonic acid 12S-lipoxygenase in the halotolerant bacterium Myxococcus fulvus exhibiting complex social living patterns. Microbiologyopen 2018; 8:e00775. [PMID: 30560563 PMCID: PMC6612559 DOI: 10.1002/mbo3.775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 01/24/2023] Open
Abstract
Lipoxygenases are lipid peroxidizing enzymes, which frequently occur in higher plants and mammals. These enzymes are also expressed in lower multicellular organisms but here they are not widely distributed. In bacteria, lipoxygenases rarely occur and evaluation of the currently available bacterial genomes suggested that <0.5% of all sequenced bacterial species carry putative lipoxygenase genes. We recently rescreened the public bacterial genome databases for lipoxygenase-like sequences and identified two novel lipoxygenase isoforms (MF-LOX1 and MF-LOX2) in the halotolerant Myxococcus fulvus. Both enzymes share a low degree of amino acid conservation with well-characterized eukaryotic lipoxygenase isoforms but they involve the catalytically essential iron cluster. Here, we cloned the MF-LOX1 cDNA, expressed the corresponding enzyme as N-terminal hexa-his-tag fusion protein, purified the recombinant enzyme to electrophoretic homogeneity, and characterized it with respect to its protein-chemical and enzymatic properties. We found that M. fulvus expresses a catalytically active intracellular lipoxygenase that converts arachidonic acid and other polyunsaturated fatty acids enantioselectively to the corresponding n-9 hydroperoxy derivatives. The enzyme prefers C20 - and C22 -polyenoic fatty acids but does not exhibit significant membrane oxygenase activity. The possible biological relevance of MF-LOX1 will be discussed in the context of the suggested concepts of other bacterial lipoxygenases.
Collapse
Affiliation(s)
- Kateryna Goloshchapova
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Sabine Stehling
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dagmar Heydeck
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | | | - Hartmut Kuhn
- Institute of BiochemistryCharité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
22
|
An JU, Oh DK. Stabilization and improved activity of arachidonate 11 S-lipoxygenase from proteobacterium Myxococcus xanthus. J Lipid Res 2018; 59:2153-2163. [PMID: 30257932 DOI: 10.1194/jlr.m088823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Indexed: 12/26/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the dioxygenation of PUFAs to produce regio- and stereospecific oxygenated fatty acids. The identification of regio- and stereospecific LOXs is important because their specific products are involved in different physiological activities in various organisms. Bacterial LOXs are found only in some proteobacteria and cyanobacteria, and they are not stable in vitro. Here, we used C20 and C22 PUFAs such as arachidonic acid (ARA), eicosapentaenoic acid, and docosahexaenoic acid to identify an 11S-specific LOX from the proteobacterium Myxococcus xanthus and explore its in vitro stability and activity. The activity and stability of M. xanthus ARA 11S-LOX as well as the production of 11S-hydroxyeicosatetraenoic acid from ARA were significantly increased by the addition of phosphatidylcholine, Ca2+, and coactosin-like protein (newly identified in the yeast Rhodosporidium toluroides) as stimulatory factors; in fact, LOX activity in the presence of all three factors increased approximately 3-fold. Our results indicate that these stimulatory factors can be used to increase the activity and stability of bacterial LOX and the production of bioactive hydroxy fatty acids, which can contribute to new academic research.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
23
|
Qian H, Zhang C, Lu Z, Xia B, Bie X, Zhao H, Lu F, Yang GY. Consensus design for improved thermostability of lipoxygenase from Anabaena sp. PCC 7120. BMC Biotechnol 2018; 18:57. [PMID: 30236091 PMCID: PMC6148764 DOI: 10.1186/s12896-018-0468-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/06/2018] [Indexed: 01/21/2023] Open
Abstract
Background Lipoxygenase (LOX) from Anabaena sp. PCC 7120 (Ana-rLOX) offers important applications in the food industry, especially for improving aroma and dough rheological properties. However, industrial applications of LOXs have been limited by their poor thermostability. Herein, we report a bioinformatics-based consensus concept approach for the engineering of thermostable Ana-rLOX. Results A series of mutations (N130D, G260A, S437T, N130D/G260Q, N130D/S437Y) showed higher thermostability and activity than the wild-type enzyme. Thus, N130D/G260Q exhibited a 6.6-fold increase in half-life and 2.45 °C increase in unfolding temperature; N130D/S437Y showed a 10 °C increase in optimal temperature. The secondary structure did not change much that contributed to improved thermostability were investigated in detail using circular dichroism. Homology modeling suggested that enhanced thermostability and specific activity may result from favorable hydrophobic interactions. Conclusions A series of mutations were achieved, showing higher thermostability and activity than the wild-type enzyme by semi-rational mutagenesis with limited structure information. Our findings provide important new insights into molecular modifications aimed at improving Ana-rLOX thermostability and activity. Electronic supplementary material The online version of this article (10.1186/s12896-018-0468-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Qian
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China.
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
24
|
Wasternack C, Strnad M. Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds. Int J Mol Sci 2018; 19:E2539. [PMID: 30150593 PMCID: PMC6164985 DOI: 10.3390/ijms19092539] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
: Jasmonic acid (JA) and its related derivatives are ubiquitously occurring compounds of land plants acting in numerous stress responses and development. Recent studies on evolution of JA and other oxylipins indicated conserved biosynthesis. JA formation is initiated by oxygenation of α-linolenic acid (α-LeA, 18:3) or 16:3 fatty acid of chloroplast membranes leading to 12-oxo-phytodienoic acid (OPDA) as intermediate compound, but in Marchantiapolymorpha and Physcomitrellapatens, OPDA and some of its derivatives are final products active in a conserved signaling pathway. JA formation and its metabolic conversion take place in chloroplasts, peroxisomes and cytosol, respectively. Metabolites of JA are formed in 12 different pathways leading to active, inactive and partially active compounds. The isoleucine conjugate of JA (JA-Ile) is the ligand of the receptor component COI1 in vascular plants, whereas in the bryophyte M. polymorpha COI1 perceives an OPDA derivative indicating its functionally conserved activity. JA-induced gene expressions in the numerous biotic and abiotic stress responses and development are initiated in a well-studied complex regulation by homeostasis of transcription factors functioning as repressors and activators.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
25
|
Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:823-833. [DOI: 10.1016/j.bbalip.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022]
|
26
|
Newie J, Neumann P, Werner M, Mata RA, Ficner R, Feussner I. Lipoxygenase 2 from Cyanothece sp. controls dioxygen insertion by steric shielding and substrate fixation. Sci Rep 2017; 7:2069. [PMID: 28522865 PMCID: PMC5437038 DOI: 10.1038/s41598-017-02153-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023] Open
Abstract
The biological function of lipoxygenases depends on the regio and stereo specific formation of fatty acid-derived hydroperoxides and different concepts exist to explain the mechanism that directs dioxygen to a specific carbon atom within the substrate. Here, we report the 1.8 Å resolution crystal structure of a cyanobacterial lipoxygenase that produces bis-allylic hydroperoxides (CspLOX2). Site directed mutagenesis experiments combined with computational approaches reveal that residues around the active site direct dioxygen to a preferred carbon atom and stereo configuration in the substrate fatty acid. Modulating the cavity volume around the pentadiene system of linoleic acid shifted the product formation towards 9S-, 9R-, 13S- or 13R-hydroperoxides in correlation with the site of mutation, thus decreasing the amount of the bis-allylic 11R-hydroperoxide. Decreasing the channel size of a 9R-lipoxygenase (CspLOX1) on the other hand could in turn induce formation of the bis-allylic 11R-hydroperoxide. Together this study suggests that an active site clamp fixing the pentadiene system of the substrate together with steric shielding controls the stereo and regio specific positioning of dioxygen at all positions of the reacting pentadiene system of substrate fatty acids.
Collapse
Affiliation(s)
- Julia Newie
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Piotr Neumann
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Martin Werner
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ricardo A Mata
- University of Goettingen, Institute for Physical Chemistry, Tammannstr. 6, 37077, Goettingen, Germany
| | - Ralf Ficner
- University of Goettingen, Institute of Microbiology and Genetics, Department of Molecular Structural Biology, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany.
| |
Collapse
|
27
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
28
|
Abstract
Most interfacial enzymes undergo activation upon membrane binding. Interfacial activation is determined not only by the binding strength but also by the specific mode of protein-membrane interactions, including the angular orientation and membrane insertion of the enzymes. This chapter describes biophysical techniques to quantitatively evaluate membrane binding, orientation, membrane insertion, and activity of secreted phospholipase A2 (PLA2) and lipoxygenase (LO) enzymes. Procedures for recombinant production and purification of human pancreatic PLA2 and human 5-lipoxygenase (5-LO) are also presented. Several methods for measurements of membrane binding of peripheral proteins are described, i.e., fluorescence resonance energy transfer (FRET) from tryptophan or tyrosine residues of the protein to a fluorescent lipid in vesicles, changes in fluorescence of an environment-sensitive fluorescent lipid upon binding of proteins to membranes, and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. These methods produce the apparent binding constant, the protein-to-lipid binding stoichiometry, and the Hill cooperativity coefficient. Experimental procedures for segmental isotope labeling of proteins and determination of the orientation of membrane-bound proteins by polarized ATR-FTIR spectroscopy are described. Furthermore, evaluation of membrane insertion of peripheral proteins by a fluorescence quenching technique is outlined. Combination of the orientation and membrane insertion provides a unique configuration of the protein-membrane complex and hence elucidates certain details of the enzyme function, such as the modes of acquisition of a membrane-residing substrate and product release. Finally, assays for determination of the activities of secreted PLA2, soybean LO, and human 5-LO are described.
Collapse
Affiliation(s)
- S A Tatulian
- College of Sciences, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
29
|
Chen Y, Wennman A, Karkehabadi S, Engström Å, Oliw EH. Crystal structure of linoleate 13R-manganese lipoxygenase in complex with an adhesion protein. J Lipid Res 2016; 57:1574-88. [PMID: 27313058 DOI: 10.1194/jlr.m069617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of 13R-manganese lipoxygenase (MnLOX) of Gaeumannomyces graminis (Gg) in complex with zonadhesin of Pichia pastoris was solved by molecular replacement. Zonadhesin contains β-strands in two subdomains. A comparison of Gg-MnLOX with the 9S-MnLOX of Magnaporthe oryzae (Mo) shows that the protein fold and the geometry of the metal ligands are conserved. The U-shaped active sites differ mainly due to hydrophobic residues of the substrate channel. The volumes and two hydrophobic side pockets near the catalytic base may sanction oxygenation at C-13 and C-9, respectively. Gly-332 of Gg-MnLOX is positioned in the substrate channel between the entrance and the metal center. Replacements with larger residues could restrict oxygen and substrate to reach the active site. C18 fatty acids are likely positioned with C-11 between Mn(2+)OH2 and Leu-336 for hydrogen abstraction and with one side of the 12Z double bond shielded by Phe-337 to prevent antarafacial oxygenation at C-13 and C-11. Phe-347 is positioned at the end of the substrate channel and replacement with smaller residues can position C18 fatty acids for oxygenation at C-9. Gg-MnLOX does not catalyze the sequential lipoxygenation of n-3 fatty acids in contrast to Mo-MnLOX, which illustrates the different configurations of their substrate channels.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Anneli Wennman
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Åke Engström
- Department of Biochemistry and Microbiology, Uppsala University Biomedical Center, SE-751 23 Uppsala, Sweden
| | - Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
30
|
Wennman A, Oliw EH, Karkehabadi S, Chen Y. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae. J Biol Chem 2016; 291:8130-9. [PMID: 26783260 PMCID: PMC4825015 DOI: 10.1074/jbc.m115.707380] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/12/2016] [Indexed: 02/01/2023] Open
Abstract
Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungusMagnaporthe oryzae(Mo), was expressed inPichia pastoris.Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX.
Collapse
Affiliation(s)
- Anneli Wennman
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ernst H Oliw
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Yang Chen
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
31
|
Newie J, Kasanmascheff M, Bennati M, Feussner I. Kinetics of Bis-Allylic Hydroperoxide Synthesis in the Iron-Containing Lipoxygenase 2 from Cyanothece and the Effects of Manganese Substitution. Lipids 2016; 51:335-47. [PMID: 26832735 DOI: 10.1007/s11745-016-4127-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/19/2016] [Indexed: 01/18/2023]
Abstract
Lipoxygenases (LOX) catalyze the regio- and stereospecific insertion of dioxygen into polyunsaturated fatty acids. While the catalytic metal of LOX is typically a non-heme iron, some fungal LOX contain manganese as catalytic metal (MnLOX). In general, LOX insert dioxygen at C9 or C13 of linoleic acid leading to the formation of conjugated hydroperoxides. MnLOX (EC 1.13.11.45), however, catalyze the oxygen insertion also at C11, resulting in bis-allylic hydroperoxides. Interestingly, the iron-containing CspLOX2 (EC 1.13.11.B6) from Cyanothece PCC8801 also produces bis-allylic hydroperoxides. What role the catalytic metal plays and how this unusual reaction is catalyzed by either MnLOX or CspLOX2 is not understood. Our findings suggest that only iron is the catalytically active metal in CspLOX2. The enzyme loses its catalytic activity almost completely when iron is substituted with manganese, suggesting that the catalytic metal is not interchangeable. Using kinetic and spectroscopic approaches, we further found that first a mixture of bis-allylic and conjugated hydroperoxy products is formed. This is followed by the isomerization of the bis-allylic product to conjugated products at a slower rate. These results suggest that MnLOX and CspLOX2 share a very similar reaction mechanism and that LOX with a Fe or Mn cofactor have the potential to form bis-allylic products. Therefore, steric factors are probably responsible for this unusual specificity. As CspLOX2 is the LOX with the highest proportion of the bis-allylic product known so far, it will be an ideal candidate for further structural analysis to understand the molecular basis of the formation of bis-allylic hydroperoxides.
Collapse
Affiliation(s)
- Julia Newie
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry, Electron Paramagnetic Resonance Spectroscopy Group, Am Fassberg 11, 37077, Göttingen, Germany
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Tammanstrasse 4, 37077, Göttingen, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, Electron Paramagnetic Resonance Spectroscopy Group, Am Fassberg 11, 37077, Göttingen, Germany
- Institute for Organic and Biomolecular Chemistry, Georg-August-University, Tammanstrasse 4, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
- Department of Plant Biochemistry, Goettingen International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-University, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|