1
|
Schoumacher M, Lambert V, Campas M, Blaise P, Locht B, Thys M, Duchateau E, Cavalier E, Rakic JM, Noël A, de Tullio P. Opportunities, challenges, and difficulties in NMR-based metabolomics applied to neovascular age-related macular degeneration (nAMD) patient follow-up. Front Mol Biosci 2025; 11:1449226. [PMID: 39935708 PMCID: PMC11811626 DOI: 10.3389/fmolb.2024.1449226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction This study applies NMR-based metabolomics to investigate neovascular age-related macular degeneration (nAMD), addressing challenges in patient management, disease progression evaluation, and treatment response assessment. A two-year follow-up of 29 nAMD patients undergoing treatment provided 231 time points for analysis. Methods Over the two-year period, 11 males and 18 females (aged 61-92 years) were monitored, yielding 231 time points. At each time point, blood samples for NMR metabolomics analysis, clinical measurements (e.g., lactate, glucose levels, HDL/LDL cholesterol, and blood pH), and optical coherence tomography (OCT) images were collected to evaluate the progression of choroidal neovascularization. 1H-NMR metabolomic analysis led to the quantification of over 60 metabolites and of the major lipoprotein fractions. Both multivariate and univariate statistical approaches tailored for longitudinal data were employed to identify biomarkers correlating metabolomic changes with ocular alterations during disease progression. Results and Discussion Despite a rigorous analytical workflow enabling precise quantification of over 60 metabolites and the application of advanced statistical tools for longitudinal data, achieving consistent results across the cohort proved challenging. The dataset's heterogeneity, reflecting real-world clinical practice, complicated the derivation of global conclusions. Personalized analyses on a patient-by-patient basis successfully identified individual correlation models, but a universal model remained elusive. This study highlights the inherent challenges of translating findings from controlled settings into clinical practice, where factors such as visit frequency, treatment variability, and disease heterogeneity limit data uniformity. We emphasize the importance of experimental design in longitudinal studies, particularly when dealing with incomplete and variable datasets. We are therefore confident that, considering both the challenges and difficulties identified in this work and the preliminary results presented here, it is possible to develop predictive and individualized models for monitoring patients with nAMD. Such models could greatly assist clinicians in providing better care for these patients.
Collapse
Affiliation(s)
- M. Schoumacher
- Clinical Metabolomics Group (CliMe), Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
- Department of Medical Chemistry, University Hospital of Liège, Liège, Belgium
| | - V. Lambert
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - M. Campas
- Clinical Metabolomics Group (CliMe), Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
| | - P. Blaise
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - B. Locht
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - M. Thys
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - E. Duchateau
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - E. Cavalier
- Clinical Metabolomics Group (CliMe), Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
- Department of Medical Chemistry, University Hospital of Liège, Liège, Belgium
| | - J.-M. Rakic
- Department of Ophthalmology, University Hospital of Liège, Liège, Belgium
| | - A. Noël
- Laboratory of Tumor and Development Biology, GIGA, Université de Liège, Liège, Belgium
| | - P. de Tullio
- Clinical Metabolomics Group (CliMe), Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
- Department of Medical Chemistry, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
2
|
Jaskoll S, Kramer A, Elbaz-Hayoun S, Rinsky B, Grunin M, Tiosano L, Vofo BN, Shwartz Y, Chowers I. Genotype-Phenotype Correlations and Genetic Risk Assessment in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:21-25. [PMID: 39930167 DOI: 10.1007/978-3-031-76550-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible vision loss in the elderly, presents researchers and clinicians with a complex challenge due to its multifaceted etiology and phenotype. The difficulty in developing effective treatments, especially for atrophic AMD, is an ongoing concern. Genetics plays a significant role in AMD's pathogenesis, with 52 variants in 34 loci linked to AMD based on a genome-wide association study. The association of genetic burden to the phenotypic and progression features of AMD is a current focus in the field. This perspective presents available information on phenotype-genotype correlations in AMD and on future directions in AMD genetic research which may be further corroborated with specific phenotypes and progression patterns to eventually develop personalized follow-up and therapeutic strategies.
Collapse
Affiliation(s)
- Shlomit Jaskoll
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, IsraelMedical Corps, Israel Defense Forces, Jerusalem, Israel
| | - Adi Kramer
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liran Tiosano
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Brice Nguedia Vofo
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yahel Shwartz
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, and the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Terao R, Sohn BS, Yamamoto T, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Yamaguchi S, Yoshida M, Apte RS. Cholesterol Accumulation Promotes Photoreceptor Senescence and Retinal Degeneration. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39167399 PMCID: PMC11343002 DOI: 10.1167/iovs.65.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose Dysregulated cholesterol metabolism is critical in the pathogenesis of AMD. Cellular senescence contributes to the development of numerous age-associated diseases. In this study, we investigated the link between cholesterol burden and the cellular senescence of photoreceptors. Methods Retinas from rod-specific ATP binding cassette subfamily A member 1 (Abca1) and G member 1 (Abcg1) (Abca1/g1-rod/-rod) knockout mice fed with a high-fat diet were analyzed for the signs of cellular senescence. Real-time quantitative PCR and immunofluorescence were used to characterize the senescence profile of the retina and cholesterol-treated photoreceptor cell line (661W). Inducible elimination of p16(Ink4a)-positive senescent cells (INK-ATTAC) mice or the administration of senolytic drugs (dasatinib and quercetin: D&Q) were used to examine the impact of senolytics on AMD-like phenotypes in Abca1/g1-rod/-rod retina. Results Increased accumulation of senescent cells as measured by markers of cellular senescence was found in Abca1/g1-rod/-rod retina. Exogenous cholesterol also induced cellular senescence in 661W cells. Selective elimination of senescent cells in Abca1/g1-rod/-rod;INK-ATTAC mice or by administration of D&Q improved visual function, lipid accumulation in retinal pigment epithelium, and Bruch's membrane thickening. Conclusions Cholesterol accumulation promotes cellular senescence in photoreceptors. Eliminating senescent photoreceptors improves visual function in a model of retinal neurodegeneration, and senotherapy offers a novel therapeutic avenue for further investigation.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Brian S. Sohn
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Taku Yamamoto
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jason Colasanti
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Charles W. Pfeifer
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Andrea Santeford
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Shinobu Yamaguchi
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Mitsukuni Yoshida
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Feng J, Xie F, Wu Z, Wu Y. Age-related macular degeneration and cardiovascular disease in US population: an observational study. Acta Cardiol 2024; 79:665-671. [PMID: 38126346 DOI: 10.1080/00015385.2023.2295103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND As far as we know, age-related macular degeneration (AMD) has become one of the predominant causes of visual impairments. Previous studies have revealed that AMD and many cardiovascular diseases (CVDs) share the same pathologic and genotypic factors, making the connection between AMD and CVD a hot topic. However, the conclusions of the available studies on the relationship between them are somewhat divergent. METHODS We screened 5523 eligible participants from the National Health and Nutrition Examination Survey (NHANES) database from 2005 through 2008 for an observational clinical study design. Binary logistic regression modelling was used to estimate the relations between AMD and various CVDs with and without adjustment for demographics, health status, and behaviours related to health. RESULTS Binary logistic regression analyses showed that AMD was able to increase the risk of CVDs in patients both unadjusted and after adjusting for confounding variables. CONCLUSIONS Within this study, preventing the development of AMD might cut down the incidence of several CVDs, in particular, significantly lowering the stroke risk. These findings indicate that interventions to prevent AMD may also help to prevent CVDs. In general, late AMD has a more severe impact on the risk of CVDs compared with early AMD. These results could help clinical ophthalmology and cardiovascular medicine in their clinical education and interventions.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Xie
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Jingzhi W, Cui X. The Impact of Blood and Urine Biomarkers on Age-Related Macular Degeneration: Insights from Mendelian Randomization and Cross-sectional Study from NHANES. Biol Proced Online 2024; 26:19. [PMID: 38918699 PMCID: PMC11201032 DOI: 10.1186/s12575-024-00248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is a leading cause of blindness, affecting millions worldwide. Its complex pathogenesis involves a variety of risk factors, including lipid metabolism and inflammation. This study aims to elucidate the causal relationships between biomarkers related to these processes and AMD, leveraging Mendelian randomization (MR) and cross-sectional analysis from the National Health and Nutrition Examination Survey (NHANES). METHOD We conducted a two-phase study, initially using MR to explore the causality between 35 biomarkers and various AMD subtypes, followed by observational analysis with NHANES data to validate these findings. RESULTS MR analysis identified a protective role of TG and a risk factor role of HDL-C and CRP in AMD development. NHANES data corroborated these findings, highlighting a nuanced relationship between these biomarkers and AMD. Notably, lipid metabolism-related biomarkers showed stronger associations with early AMD, whereas CRP's significance was pronounced in late AMD. CONCLUSION This comprehensive analysis, combining MR with NHANES data, reinforces the importance of lipid metabolism and inflammation in AMD's etiology. Future research should further investigate these biomarkers' mechanisms and their potential as therapeutic targets for AMD prevention and treatment.
Collapse
Affiliation(s)
- Wang Jingzhi
- Department of Radiotherapy Oncology, Affiliated Hospital of Medical School, Nanjing University, Yancheng No.1 People's Hospital, Yancheng, China
| | - Xuehao Cui
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
6
|
Terao R, Lee TJ, Colasanti J, Pfeifer CW, Lin JB, Santeford A, Hase K, Yamaguchi S, Du D, Sohn BS, Sasaki Y, Yoshida M, Apte RS. LXR/CD38 activation drives cholesterol-induced macrophage senescence and neurodegeneration via NAD + depletion. Cell Rep 2024; 43:114102. [PMID: 38636518 PMCID: PMC11223747 DOI: 10.1016/j.celrep.2024.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Although dysregulated cholesterol metabolism predisposes aging tissues to inflammation and a plethora of diseases, the underlying molecular mechanism remains poorly defined. Here, we show that metabolic and genotoxic stresses, convergently acting through liver X nuclear receptor, upregulate CD38 to promote lysosomal cholesterol efflux, leading to nicotinamide adenine dinucleotide (NAD+) depletion in macrophages. Cholesterol-mediated NAD+ depletion induces macrophage senescence, promoting key features of age-related macular degeneration (AMD), including subretinal lipid deposition and neurodegeneration. NAD+ augmentation reverses cellular senescence and macrophage dysfunction, preventing the development of AMD phenotype. Genetic and pharmacological senolysis protect against the development of AMD and neurodegeneration. Subretinal administration of healthy macrophages promotes the clearance of senescent macrophages, reversing the AMD disease burden. Thus, NAD+ deficit induced by excess intracellular cholesterol is the converging mechanism of macrophage senescence and a causal process underlying age-related neurodegeneration.
Collapse
Affiliation(s)
- Ryo Terao
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tae Jun Lee
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Colasanti
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles W Pfeifer
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph B Lin
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Keitaro Hase
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinobu Yamaguchi
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Du
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Sohn
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitsukuni Yoshida
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Rajendra S Apte
- John F. Hardesty, MD Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Zhang R, Wang L, Li Y, Gui C, Pei Y, Zhou G. Roles and mechanisms of long non-coding RNAs in age-related macular degeneration. Heliyon 2023; 9:e22307. [PMID: 38027818 PMCID: PMC10679503 DOI: 10.1016/j.heliyon.2023.e22307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Worldwide, age-related macular degeneration (AMD) is a multifactorial progressive fundus disorder that can cause vision impairment and severe central blindness in older adults. Currently, there are no approved prevention or treatment strategies for non-exudative AMD. While targeting VEGF is the main therapeutic approach to delay the degeneration process in exudative AMD, a significant number of patients show insensitivity or ineffectiveness to anti-VEGF therapy. Despite years of research, the exact mechanism underlying drusen formation and macular atrophy in AMD remains unknown. In the pathogenesis of AMD, lncRNAs play crucial roles, as discussed in this paper. This review focuses on the function of dysregulated lncRNAs and the mechanisms by which specific molecules target these lncRNAs in AMD. The analysis reveals that lncRNAs primarily regulate the progression of AMD by mediating apoptosis, epithelial-mesenchymal transition (EMT), dedifferentiation, and oxidative stress in choroidal vascular endothelial cells, retinal pigment epithelium (RPE) cells, and photoreceptors. Consequently, the regulation of apoptosis, dedifferentiation, EMT, and other processes by lncRNAs has emerged as a crucial focus in AMD research.These findings contribute to our understanding of the role of lncRNAs in AMD and their potential as valuable biomarkers. Furthermore, they highlight the need for further basic and clinical studies to explore the value of lncRNAs as biomarkers and potential therapeutic targets for AMD.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Yang Li
- Department of Ophthalmology, Yuncheng Central Hospital, Yuncheng, Shanxi 044000, China
| | - Chenwei Gui
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Yajing Pei
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| | - Guohong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030002, China
| |
Collapse
|
8
|
Jung W, Han K, Kim B, Hwang S, Yoon JM, Park J, Lim DH, Shin DW. Age-Related Macular Degeneration With Visual Disability Is Associated With Cardiovascular Disease Risk in the Korean Nationwide Cohort. J Am Heart Assoc 2023; 12:e028027. [PMID: 37119082 PMCID: PMC10227218 DOI: 10.1161/jaha.122.028027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 04/30/2023]
Abstract
Background Age-related macular degeneration (AMD) is the leading cause of visual disability. AMD shares some risk factors with the pathogenesis of cardiovascular disease (CVD). However, previous studies examining the association between AMD and the risk of CVD provide conflicting results. Hence, we investigated the association between AMD, visual disability, and the risk of CVD. Methods and Results This is a nationwide cohort study using data from the Korean National Health Insurance System database (2009-2019) on subjects who underwent a national health screening program in 2009. A total of 3 789 963 subjects were categorized by the presence of AMD and visual disability. Visual disability was defined as a best-corrected visual acuity of ≤20/100 by validated documentation from a specialist physician. Cox regression hazard model was used to examine the hazard ratios (HRs) of CVD, including myocardial infarction and ischemic stroke, after adjusting for potential confounders. During a mean 9.77 years of follow-up, AMD was associated with a 5% higher risk of myocardial infarction (adjusted HR [aHR], 1.05 [95% CI, 1.01-1.10]) but not associated with increased risk of overall CVD (aHR, 1.02 [95% CI, 1.00-1.05]) or ischemic stroke (aHR, 1.02 [95% CI, 0.98-1.06]). However, when AMD was accompanied by visual disability, there was increased risk of CVD (aHR, 1.17 [95% CI, 1.06-1.29]), myocardial infarction (aHR, 1.18 [95% CI, 1.01-1.37]), and ischemic stroke (aHR, 1.20 [95% CI, 1.06-1.35]). These trends were more evident in women and subjects with cardiometabolic comorbidities. Conclusions AMD with visual disability, but not all AMD, was associated with an increased risk of CVD. Patients with AMD who have visual disability should be targeted for CVD prevention.
Collapse
Affiliation(s)
- Wonyoung Jung
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of MedicineSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial ScienceSoongsil UniversitySeoulRepublic of Korea
| | - Sungsoon Hwang
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| | - Je Moon Yoon
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Junhee Park
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of MedicineSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Dong Hui Lim
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| | - Dong Wook Shin
- Department of Family Medicine/Supportive Care CenterSamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Clinical Research Design and EvaluationSamsung Advanced Institute for Health Science and TechnologySungkyunkwan UniversitySeoulRepublic of Korea
| |
Collapse
|
9
|
Increased end-stage renal disease risk in age-related macular degeneration: a nationwide cohort study with 10-year follow-up. Sci Rep 2023; 13:183. [PMID: 36604459 PMCID: PMC9814881 DOI: 10.1038/s41598-022-26964-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Common etiologies between age-related macular degeneration (AMD) and kidney disease advocate a close link between AMD and end-stage renal disease (ESRD). However, the risk of ESRD in people with AMD was not reported. Here, we investigated the association between AMD and the risk of ESRD by using a nationwide, population-based cohort data in Korea. 4,206,862 participants aged 50 years or older were categorized by presence of AMD and visual disability. Risk of ESRD was the primary outcome. Cox regression hazard model was used to examine the hazard ratios (HRs) with adjustment for potential confounders. Stratified analyses by age, sex, baseline kidney function, and cardiometabolic comorbidities were performed. During the mean 9.95 years of follow-up, there were 21,759 incident ESRD events (0.52%). AMD was associated with 33% increased risk of ESRD (adjusted HR [aHR] 1.33, 95% confidence interval [CI] 1.24-1.44), and the risk was even higher when accompanied by visual disability (aHR 2.05, 95% CI 1.68-2.50) than when not (aHR 1.26, 95% CI 1.17-1.37). Age, baseline kidney function, and cardiometabolic comorbidities significantly interact between AMD and the risk of ESRD. Our findings have clinical implications on disease prevention and risk factor management of ESRD in patients with AMD.
Collapse
|
10
|
Hwang S, Kang SW, Choi J, Son KY, Lim DH, Shin DW, Kim K, Kim SJ. Lipid profile and future risk of exudative age-related macular degeneration development: a nationwide cohort study from South Korea. Sci Rep 2022; 12:18777. [PMID: 36335257 PMCID: PMC9637211 DOI: 10.1038/s41598-022-23607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
This nationwide population-based cohort study evaluated the association between lipid profiles and the future risk of exudative age-related macular degeneration (AMD) using authorized clinical data provided by the Korean National Health Insurance Service. A total of 6,129,616 subjects over 50 years of age who participated in the Korean National Health Screening Program in 2013 or 2014 were included. Data on risk factors, including age, sex, comorbidities, behavioral factors, and baseline lipid profiles, including total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride (TG) levels were collected. Patients were followed-up patients until December 2018, and incident cases of exudative AMD were identified using registered diagnostic codes. During an average follow-up period of 4.91 years, 18,803 patients were newly diagnosed with exudative AMD. Compared to the lowest HDL cholesterol quartile group, the highest HDL cholesterol quartile group had a greater risk of future exudative AMD development with a hazard ratio (95% confidence interval) of 1.13 (1.08-1.18) in the fully adjusted model. The highest TG quartile group had a lower risk of exudative AMD than the lowest TG quartile group, with a hazard ratio (95% confidence interval) of 0.84 (0.81-0.88). High HDL cholesterol and low TG levels were prospectively associated with exudative AMD incidence.
Collapse
Affiliation(s)
- Sungsoon Hwang
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Se Woong Kang
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Jaehwan Choi
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Ki Young Son
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| | - Dong Hui Lim
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong Wook Shin
- grid.264381.a0000 0001 2181 989XDepartment of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea ,grid.414964.a0000 0001 0640 5613Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyunga Kim
- grid.264381.a0000 0001 2181 989XDepartment of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea ,grid.414964.a0000 0001 0640 5613Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Jin Kim
- grid.414964.a0000 0001 0640 5613Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81 Irwon-Ro, Gangnam-Gu, Seoul, 06351 Republic of Korea
| |
Collapse
|
11
|
Jung W, Yoon JM, Han K, Kim B, Hwang S, Lim DH, Shin DW. Association between Age-Related Macular Degeneration and the Risk of Diabetes Mellitus: A Nationwide Cohort Study. Biomedicines 2022; 10:biomedicines10102435. [PMID: 36289698 PMCID: PMC9599121 DOI: 10.3390/biomedicines10102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative and progressive disease of the macula, the part of the retina that is responsible for central vision. AMD shares some risk factors with diabetes mellitus (DM), but little is known about the risk of DM in individuals with AMD. With the goal of establishing novel perspectives, this study aimed to investigate the association between AMD and the risk of DM using the Korean Nationwide Health Insurance Database. Individuals aged ≥ 50 years who underwent a national health screening program in 2009 were enrolled. Participants were categorized by the presence of AMD and visual disability (VD). The Cox hazard regression model was used to examine hazard ratios (HRs) of DM with adjustment for potential confounders. Stratified analyses by age, sex, and comorbidities (hypertension or dyslipidemia) were also performed. During a mean follow-up of 8.61 years, there were 403,367 (11.76%) DM incidences among the final 3,430,532 participants. The crude HR (95% confidence interval (CI)) was 1.16 (1.13–1.20) for AMD. After adjusting for potential confounders, AMD was associated with a 3% decreased risk of DM (aHR 0.97, 95% CI 0.95–1.00), but no significant association with the risk of DM was found in AMD with VD (aHR 1.03, 95% CI 0.93–1.14). In summary, we did not find an increased risk of DM in individuals with AMD. A 3% decreased risk of DM in patients with AMD is not clinically meaningful. Our study suggests that the association between AMD and the risk of DM is weak, considering the potential confounders. Further studies examining this association are needed to extend our knowledge.
Collapse
Affiliation(s)
- Wonyoung Jung
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Je Moon Yoon
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (J.M.Y.); (D.W.S.); Tel.: +82-2-3410-3563 (J.M.Y.); +82-2-3410-5252 (D.W.S.); Fax: +82-2-3410-0074 (J.M.Y.); +82-2-3410-0388 (D.W.S.)
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Korea
| | - Sungsoon Hwang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
| | - Dong Hui Lim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
| | - Dong Wook Shin
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Department of Clinical Research Design & Evaluation, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Korea
- Correspondence: (J.M.Y.); (D.W.S.); Tel.: +82-2-3410-3563 (J.M.Y.); +82-2-3410-5252 (D.W.S.); Fax: +82-2-3410-0074 (J.M.Y.); +82-2-3410-0388 (D.W.S.)
| |
Collapse
|
12
|
Lee HS, Kim B, Park T. Transethnic meta-analysis of exome-wide variants identifies new loci associated with male-specific metabolic syndrome. Genes Genomics 2022; 44:629-636. [PMID: 35384631 DOI: 10.1007/s13258-021-01214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/29/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a group of very common human conditions promoting strong understand the impact of rare variants, beyond exome-wide association studies, to potentially discover causative variants, across different ethnic populations. OBJECTIVE We performed transethnic, exome-wide MetS association studies on MetS in men. METHODS We analyzed genotype data of 5302 European subjects (2658 cases and 2644 controls), in the discovery stage of the European METabolic Syndrome In Men study, generated from exome chips, and 2481 subjects (714 cases and 1767 controls), in the replication stage, across 6 independent cohorts of 5 ancestries (T2D-GENES consortium), using whole-exome sequencing. We therefore evaluated gene-level and variant-level associations, of rare variants for MetS, using logistic regression (LR) and multivariate analyses (MulA). RESULTS Gene-based association found the gene for the cholesteryl ester transfer protein (CETP) (from MulA, p value = 4.67 × 10-9; from LR, p value = 0.009) to well associate with MetS. At two missense variants, from 8 rare variants in CETP, Ala390Pro (rs5880) (from MulA, p value = 1.28 × 10-7; from LR, p value = 1.34 × 10-4) and Arg468Gln (rs1800777) (from MulA, p value = 2.40 × 10-5; from LR, p value = 1.49 × 10-3) significantly associated with MetS across five ancestries. CONCLUSIONS Our findings highlight novel rare variants of genes that confer MetS susceptibility, in Europeans, that are shared with diverse populations, emphasizing an opportunity to further understand the biological target or genes that underlie MetS, across populations.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
- Daegu Institution, National Forensic Service, 33-14, Hogukro, Waegwon-eup, Chilgok-gun, Gyeomgsamgbuk-do, Republic of Korea
| | - Boram Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Statistics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Yanagi Y, Yu RM, Ahamed W, Yu M, Teo KYC, Tan AC, Cheng CY, Wong TY, Apte RS, Cheung CMG. Serum Cholesterol Efflux Capacity in Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy. OPHTHALMOLOGY SCIENCE 2022; 2:100142. [PMID: 36278032 PMCID: PMC9562377 DOI: 10.1016/j.xops.2022.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022]
Abstract
Purpose To investigate serum cholesterol efflux capacity (the ability of the serum to accept cholesterol) and factors that regulate it using nuclear magnetic resonance-quantified measures of lipoprotein particle composition and size and apolipoproteins metrics in patients with age-related macular degeneration (AMD). Design Case-control study. Participants Four hundred two serum samples from 80 patients with early AMD (eAMD), and 212 patients with neovascular AMD (nAMD), including 80 with typical nAMD (tAMD) and 132 with polypoidal choroidal vasculopathy (PCV), and 110 age- and gender matched control participants. Methods Serum from participants showed cholesterol efflux capacity measured using in vitro cell assays and lipoprotein subfractions measured using nuclear magnetic resonance (Nightingale, Ltd). Associations between cholesterol efflux capacity (measured in percentage) and lipid subfractions were investigated in the patients and control participants. Main Outcome Measures Cholesterol efflux capacity and lipid subfractions in control, eAMD, and nAMD. Associations between HDL subfractions and cholesterol efflux capacity. Results Cholesterol efflux capacity was higher in patients with eAMD (68.0 ± 11.3% [mean ± standard deviation]) and nAMD (75.9 ± 27.7%) than in the control participants (56.9 ± 16.7%) after adjusting for age, gender, and use of lipid-lowering drug (P < 0.0001). Nuclear magnetic resonance lipidomics demonstrated that the mean diameter of HDL was larger both in eAMD (9.96 ± 0.27 mm [mean ± standard deviation]) and PCV (9.97 ± 0.23 mm) compared with that of the control participants (9.84 ± 0.24 mm; P = 0.0001 for both). Among the 28 HDL subfractions, most of the small, medium, and large HDLs, but none of the 7 extra large HDLs fractions, were associated moderately with cholesterol efflux capacity in eAMD and PCV (R = 0.149-0.277). Conclusions Serum cholesterol efflux capacity was increased in eAMD and PCV, but not tAMD, possibly reflecting differential underlying pathophysiologic features of lipid dysregulation in tAMD and PCV. Further studies should be directed toward investigating the diverse biological activities of HDL in AMD, including macular pigment transport, regulation of inflammation, and local cholesterol transport system.
Collapse
Key Words
- AMD, age-related macular degeneration
- Age-related macular degeneration
- Cholesterol efflux
- Drusen
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- Lipoprotein
- NMR, nuclear magnetic resonance
- PCV, polypoidal choroidal vasculopathy
- Polypoidal choroidal vasculopathy
- RPE, retinal pigment epithelium
- RPMI, Roswell Park Memorial Institute
- SCES, Singapore Chinese Eye Study
- SD, standard deviation
- VLDL, very low-density lipoprotein
- eAMD, early age-related macular degeneration
- nAMD, neovascular age-related macular degeneration
- tAMD, typical neovascular age-related macular degeneration
Collapse
Affiliation(s)
- Yasuo Yanagi
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore,Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore,Correspondence: Yasuo Yanagi, Singapore Eye Research Institute, 11 Third Hospital Avenue, 168751, Singapore, Republic of Singapore.
| | - Richard M.C. Yu
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore
| | - Waseem Ahamed
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore
| | - Marco Yu
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore,Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| | - Kelvin Yi Chong Teo
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore,Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| | - Anna C.S. Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore,Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| | - Ching-Yu Cheng
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore,Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| | - Tien Yin Wong
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore,Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| | - Rajendra S. Apte
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri,Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Republic of Singapore,Academic Clinical Program, Duke-NUS Medical School, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
14
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
15
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
16
|
Kelly UL, Grigsby D, Cady MA, Landowski M, Skiba NP, Liu J, Remaley AT, Klingeborn M, Bowes Rickman C. High-density lipoproteins are a potential therapeutic target for age-related macular degeneration. J Biol Chem 2020; 295:13601-13616. [PMID: 32737203 PMCID: PMC7521644 DOI: 10.1074/jbc.ra119.012305] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/22/2020] [Indexed: 02/02/2023] Open
Abstract
Strong evidence suggests that dysregulated lipid metabolism involving dysfunction of the retinal pigmented epithelium (RPE) underlies the pathogenesis of age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly. A hallmark of AMD is the overproduction of lipid- and protein-rich extracellular deposits that accumulate in the extracellular matrix (Bruch's membrane (BrM)) adjacent to the RPE. We analyzed apolipoprotein A-1 (ApoA-1)-containing lipoproteins isolated from BrM of elderly human donor eyes and found a unique proteome, distinct from high-density lipoprotein (HDL) isolated from donor plasma of the same individuals. The most striking difference is higher concentrations of ApoB and ApoE, which bind to glycosaminoglycans. We hypothesize that this interaction promotes lipoprotein deposition onto BrM glycosaminoglycans, initiating downstream effects that contribute to RPE dysfunction/death. We tested this hypothesis using two potential therapeutic strategies to alter the lipoprotein/protein profile of these extracellular deposits. First, we used short heparan sulfate oligosaccharides to remove lipoproteins already deposited in both the extracellular matrix of RPE cells and aged donor BrM tissue. Second, an ApoA-1 mimetic, 5A peptide, was demonstrated to modulate the composition and concentration of apolipoproteins secreted from primary porcine RPE cells. Significantly, in a mouse model of AMD, this 5A peptide altered the proteomic profile of circulating HDL and ameliorated some of the potentially harmful changes to the protein composition resulting from the high-fat, high-cholesterol diet in this model. Together, these results suggest that targeting HDL interactions with BrM represents a new strategy to slow AMD progression in humans.
Collapse
Affiliation(s)
- Una L Kelly
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel Grigsby
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Martha A Cady
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael Landowski
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Pulmonary and Vascular Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - Mikael Klingeborn
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
17
|
Murali A, Krishnakumar S, Subramanian A, Parameswaran S. Bruch's membrane pathology: A mechanistic perspective. Eur J Ophthalmol 2020; 30:1195-1206. [PMID: 32345040 DOI: 10.1177/1120672120919337] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bruch's membrane, an extracellular matrix located between the retinal pigment epithelium and the choroid, plays a vital role as structural and functional support to the retinal pigment epithelium. Dysfunction of Bruch's membrane in both age-related macular degeneration and other ocular diseases is caused mostly by extracellular matrix degeneration, deposit formation, and angiogenesis. Although these factors are dealt in greater detail with respect to the cells that are degenerated such as the retinal pigment epithelium and the endothelial cells, the pathology involving the Bruch's membrane is often underrated. Since in most of the macular degenerations early degenerative changes are also observed in the Bruch's membrane, addressing only the cellular component without the underlying membrane will not yield an ideal clinical benefit. This review aims to discuss the factors and the mechanisms affecting the integrity of the Bruch's membrane, which would aid in developing an effective therapy for these pathologies.
Collapse
Affiliation(s)
- Aishwarya Murali
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Subramanian Krishnakumar
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Anuradha Subramanian
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| |
Collapse
|
18
|
Betzler BK, Rim TH, Sabanayagam C, Cheung CMG, Cheng CY. High-Density Lipoprotein Cholesterol in Age-Related Ocular Diseases. Biomolecules 2020; 10:E645. [PMID: 32331355 PMCID: PMC7226134 DOI: 10.3390/biom10040645] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
There is limited understanding of the specific role of high-density lipoprotein cholesterol (HDL-C) in the development of various age-related ocular diseases, despite it being a common measurable biomarker in lipid profiles. This literature review summarizes current knowledge of the role of HDL-C, if any, in pathogenesis and progression of four age-related ocular diseases, namely age-related macular degeneration (AMD), age-related cataract, glaucoma, and diabetic retinopathy (DR), and will primarily discuss epidemiological and genetic evidence.
Collapse
Affiliation(s)
- Bjorn Kaijun Betzler
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Tyler Hyungtaek Rim
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore; (T.H.R.); (C.S.); (C.M.G.C.)
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE-ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore; (T.H.R.); (C.S.); (C.M.G.C.)
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE-ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore; (T.H.R.); (C.S.); (C.M.G.C.)
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE-ACP), Duke-NUS Medical School, Singapore 169857, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 169856, Singapore; (T.H.R.); (C.S.); (C.M.G.C.)
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE-ACP), Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
19
|
Fukuda R, Murakami T. Potential of Lipoprotein-Based Nanoparticulate Formulations for the Treatment of Eye Diseases. Biol Pharm Bull 2020; 43:596-607. [PMID: 32238702 DOI: 10.1248/bpb.b19-00858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoproteins are naturally occurring nanoparticles and their main physiological function is the promotion of lipid metabolism. They can be prepared in vitro for use as drug carriers, and these reconstituted lipoproteins show similar biological activity to their natural counterparts. Some lipoproteins can cross the blood-retinal barrier and are involved in intraocular lipid metabolism. Drug-loaded lipoproteins can be delivered to the retina for the treatment of posterior eye diseases. In this review, we have discussed the therapeutic applications of lipoproteins for eye diseases and introduced the emerging animal models used for the evaluation of their therapeutic effects.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University.,Research Fellow of Japan Society for the Promotion of Science (JSPS)
| | - Tatsuya Murakami
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS)
| |
Collapse
|
20
|
Gao Y, Teo YCK, Beuerman RW, Wong TY, Zhou L, Cheung CMG. A serum metabolomics study of patients with nAMD in response to anti-VEGF therapy. Sci Rep 2020; 10:1341. [PMID: 31992792 PMCID: PMC6987119 DOI: 10.1038/s41598-020-58346-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is the current standard of treatment for choroidal neovascularization (CNV) secondary to neovascular age-related macular degeneration (nAMD), but there are no diagnostic tools to predict response of these therapies. We hypothesize that differences in baseline metabolic profiles of patients with nAMD may influence responsiveness to anti-VEGF therapy, and thus provide prognosticating information for these patients. A prospective study was performed on 100 patients with nAMD treated with anti-VEGF therapy. We classified patients into two groups: responders (n = 54) and non-responders (n = 46). The expression levels of glycerophosphocholine,LysoPC (18:2) and PS (18:0/20:4) were higher in non-responders and these findings were verified in the validation cohort, implicating that reductions in these three metabolites can be used as predictors for responsiveness to anti-VEGF therapy during the initial loading phase for patients with nAMD. Our study also provided new insights into the pathophysiological changes and molecular mechanism of anti- VEGF therapy for nAMD patients.
Collapse
Affiliation(s)
- Yan Gao
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yi Chong Kelvin Teo
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Roger W Beuerman
- Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore, Singapore.
- Singapore National Eye Centre, Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Kersten E, Dammeier S, Ajana S, Groenewoud JMM, Codrea M, Klose F, Lechanteur YT, Fauser S, Ueffing M, Delcourt C, Hoyng CB, de Jong EK, den Hollander AI. Metabolomics in serum of patients with non-advanced age-related macular degeneration reveals aberrations in the glutamine pathway. PLoS One 2019; 14:e0218457. [PMID: 31220133 PMCID: PMC6586309 DOI: 10.1371/journal.pone.0218457] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common, progressive multifactorial vision-threatening disease and many genetic and environmental risk factors have been identified. The risk of AMD is influenced by lifestyle and diet, which may be reflected by an altered metabolic profile. Therefore, measurements of metabolites could identify biomarkers for AMD, and could aid in identifying high-risk individuals. Hypothesis-free technologies such as metabolomics have a great potential to uncover biomarkers or pathways that contribute to disease pathophysiology. To date, only a limited number of metabolomic studies have been performed in AMD. Here, we aim to contribute to the discovery of novel biomarkers and metabolic pathways for AMD using a targeted metabolomics approach of 188 metabolites. This study focuses on non-advanced AMD, since there is a need for biomarkers for the early stages of disease before severe visual loss has occurred. Targeted metabolomics was performed in 72 patients with early or intermediate AMD and 72 control individuals, and metabolites predictive for AMD were identified by a sparse partial least squares discriminant analysis. In our cohort, we identified four metabolite variables that were most predictive for early and intermediate stages of AMD. Increased glutamine and phosphatidylcholine diacyl C28:1 levels were detected in non-advanced AMD cases compared to controls, while the rate of glutaminolysis and the glutamine to glutamate ratio were reduced in non-advanced AMD. The association of glutamine with non-advanced AMD corroborates a recent report demonstrating an elevated glutamine level in early AMD using a different metabolomics technique. In conclusion, this study indicates that metabolomics is a suitable method for the discovery of biomarker candidates for AMD. In the future, larger metabolomics studies could add to the discovery of novel biomarkers in yet unknown AMD pathways and expand our insights in AMD pathophysiology.
Collapse
Affiliation(s)
- Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Sascha Dammeier
- Institute for Ophthalmic Research, Core Facility for Medical Bioanalytics, University of Tübingen, Tübingen, Germany
| | - Soufiane Ajana
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, LEHA team, UMR 1219, Bordeaux, France
| | - Joannes M. M. Groenewoud
- Department of Epidemiology, Biostatistics, and Health Technology Assessment, Radboud university medical center, Nijmegen, the Netherlands
| | - Marius Codrea
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, Core Facility for Medical Bioanalytics, University of Tübingen, Tübingen, Germany
| | - Yara T. Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Sascha Fauser
- F. Hoffmann - La Roche AG, Basel, Switzerland
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Core Facility for Medical Bioanalytics, University of Tübingen, Tübingen, Germany
| | - Cécile Delcourt
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, LEHA team, UMR 1219, Bordeaux, France
| | - Carel B. Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Eiko K. de Jong
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, the Netherlands
| | | |
Collapse
|
22
|
Zhu PW, Gong YX, Min YL, Lin Q, Li B, Shi WQ, Yuan Q, Ye L, Shao Y. The predictive value of high-density lipoprotein for ocular metastases in colorectal cancer patients. Cancer Manag Res 2019; 11:3511-3519. [PMID: 31118776 PMCID: PMC6503335 DOI: 10.2147/cmar.s194637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose: Colorectal cancer (CRC) is a common tumor of the digestive tract that tends to metastasize and leads to high mortality. Ocular metastases (OM) from colorectal cancer are being increasingly diagnosed, and they can lead to a poor prognosis. Serum lipids are a known risk factor for cardiovascular disease, and are also relevant to the occurrence of CRC. In this study, we examined the levels of serum lipids and tried to determine whether there were correlations with the occurrence of OM in patients with colorectal cancer, in order to determine whether serum lipid levels may be a risk factor for OM in this patient population. Patients and methods: Records from a total of 703 patients treated for colorectal cancer from August 2005 to August 2017 were involved in this study. Student’s t-tests, nonparametric rank sum tests, and Chi-square tests were applied to describe whether there were significant differences between the OM group and non-ocular metastases (NOM) group. We used binary logistic regression analysis to determine the risk factors and receiver operating curve (ROC) analyses to assess the diagnostic value for OM in CRC patients. Results: There were no significant differences in gender, age, histopathology type, or tumor classifications between the OM and NOM groups. The levels of serum TC, HDL, and LDL were significantly different between patients with and without lymph node metastases as well as male and female patients. The OM group had higher serum HDL levels compared to the NOM group. Binary logistic regression indicated that HDL was a risk factor for OM in colorectal cancer patients. The ROC curves showed that the AUC of HDL was 0.660. The cutoff value of HDL was 1.27 mmol/L, with a sensitivity of 0.619 and a specificity of 0.650. Conclusion: HDL levels are correlated with ocular metastases in colorectal cancer patients.
Collapse
Affiliation(s)
- Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Ying-Xin Gong
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Ocular Disease Clinical Research Center, Nanchang 330006, Jiangxi, People's Republic of China
| |
Collapse
|
23
|
Colijn JM, den Hollander AI, Demirkan A, Cougnard-Grégoire A, Verzijden T, Kersten E, Meester-Smoor MA, Merle BMJ, Papageorgiou G, Ahmad S, Mulder MT, Costa MA, Benlian P, Bertelsen G, Bron AM, Claes B, Creuzot-Garcher C, Erke MG, Fauser S, Foster PJ, Hammond CJ, Hense HW, Hoyng CB, Khawaja AP, Korobelnik JF, Piermarocchi S, Segato T, Silva R, Souied EH, Williams KM, van Duijn CM, Delcourt C, Klaver CCW. Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration: Evidence from the EYE-RISK and European Eye Epidemiology Consortia. Ophthalmology 2019; 126:393-406. [PMID: 30315903 DOI: 10.1016/j.ophtha.2018.09.045] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Genetic and epidemiologic studies have shown that lipid genes and high-density lipoproteins (HDLs) are implicated in age-related macular degeneration (AMD). We studied circulating lipid levels in relationship to AMD in a large European dataset. DESIGN Pooled analysis of cross-sectional data. PARTICIPANTS Individuals (N = 30 953) aged 50 years or older participating in the European Eye Epidemiology (E3) consortium and 1530 individuals from the Rotterdam Study with lipid subfraction data. METHODS AMD features were graded on fundus photographs using the Rotterdam classification. Routine blood lipid measurements, genetics, medication, and potential confounders were extracted from the E3 database. In a subgroup of the Rotterdam Study, lipid subfractions were identified by the Nightingale biomarker platform. Random-intercepts mixed-effects models incorporating confounders and study site as a random effect were used to estimate associations. MAIN OUTCOME MEASURES AMD features and stage; lipid measurements. RESULTS HDL was associated with an increased risk of AMD (odds ratio [OR], 1.21 per 1-mmol/l increase; 95% confidence interval [CI], 1.14-1.29), whereas triglycerides were associated with a decreased risk (OR, 0.94 per 1-mmol/l increase; 95% CI, 0.91-0.97). Both were associated with drusen size. Higher HDL raised the odds of larger drusen, whereas higher triglycerides decreases the odds. LDL cholesterol reached statistical significance only in the association with early AMD (P = 0.045). Regarding lipid subfractions, the concentration of extra-large HDL particles showed the most prominent association with AMD (OR, 1.24; 95% CI, 1.10-1.40). The cholesteryl ester transfer protein risk variant (rs17231506) for AMD was in line with increased HDL levels (P = 7.7 × 10-7), but lipase C risk variants (rs2043085, rs2070895) were associated in an opposite way (P = 1.0 × 10-6 and P = 1.6 × 10-4). CONCLUSIONS Our study suggested that HDL cholesterol is associated with increased risk of AMD and that triglycerides are negatively associated. Both show the strongest association with early AMD and drusen. Extra-large HDL subfractions seem to be drivers in the relationship with AMD, and variants in lipid genes play a more ambiguous role in this association. Whether systemic lipids directly influence AMD or represent lipid metabolism in the retina remains to be answered.
Collapse
Affiliation(s)
- Johanna M Colijn
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Audrey Cougnard-Grégoire
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Timo Verzijden
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Benedicte M J Merle
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Grigorios Papageorgiou
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Miguel Angelo Costa
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Pascale Benlian
- Univ. Lille, CHU Lille, UMR 8199 - EGID - European Genomic Institute for Diabetes, Lille, France
| | - Geir Bertelsen
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway; Department of Ophthalmology, University Hospital of North Norway, Tromsø, Norway
| | - Alain M Bron
- Department of Ophthalmology, University Hospital, Eye and Nutrition Research Group, Dijon, France
| | - Birte Claes
- Institute of Epidemiology and Social Medicine, University of Muenster, Germany
| | | | - Maja Gran Erke
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Sascha Fauser
- Department of Ophthalmology, University Hospital Cologne, Cologne, Germany; Hoffmann-La Roche AG, Basel, Switzerland
| | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; Integrative Epidemiology, UCL Institute of Ophthalmology, London, United Kingdom
| | - Christopher J Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom; Department of Twin Research & Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Hans-Werner Hense
- Institute of Epidemiology and Social Medicine, University of Muenster, Germany
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Jean-Francois Korobelnik
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France; Service d'Ophtalmologie, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | | | - Tatiana Segato
- Department of Ophthalmology, University of Padova, Padova, Italy
| | - Rufino Silva
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal; Department of Ophthalmology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Eric H Souied
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Creteil, University Paris Est Creteil, Creteil, France
| | - Katie M Williams
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom; Department of Twin Research & Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, United Kingdom
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cécile Delcourt
- Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, Inserm, Bordeaux, France
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Human complement factor H Y402H polymorphism causes an age-related macular degeneration phenotype and lipoprotein dysregulation in mice. Proc Natl Acad Sci U S A 2019; 116:3703-3711. [PMID: 30808757 PMCID: PMC6397537 DOI: 10.1073/pnas.1814014116] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The complement factor H (CFH) Y402H polymorphism (rs1061170) imparts the strongest risk for age-related macular degeneration (AMD), the leading cause of blindness in the elderly. Popular thinking holds that the CFH H402 variant increases complement activation in the eye, predisposing susceptibility to disease. However, clinical trials of complement inhibitors in AMD patients have failed. Here we provide an explanation, showing CFH variant-specific differences in the presentation of AMD-like pathologies. We show that aged mice expressing the human H402, but not Y402 variant, (i) develop AMD-like symptoms and (ii) display differences in their systemic and ocular lipoprotein levels, but not in their complement activation, after diet. These findings support targeting lipoproteins for the treatment of AMD. One of the strongest susceptibility genes for age-related macular degeneration (AMD) is complement factor H (CFH); however, its impact on AMD pathobiology remains unresolved. Here, the effect of the principal AMD-risk–associated CFH variant (Y402H) on the development and progression of age-dependent AMD-like pathologies was determined in vivo. Transgenic mice expressing equal amounts of the full-length normal human CFH Y402 (CFH-Y/0) or the AMD-risk associated CFH H402 (CFH-H/H) variant on a Cfh−/− background were aged to 90 weeks and switched from normal diet (ND) to a high fat, cholesterol-enriched (HFC) diet for 8 weeks. The resulting phenotype was compared with age-matched controls maintained on ND. Remarkably, an AMD-like phenotype consisting of vision loss, increased retinal pigmented epithelium (RPE) stress, and increased basal laminar deposits was detected only in aged CFH-H/H mice following the HFC diet. These changes were not observed in aged CFH-Y/0 mice or in younger (36- to 40-week-old) CFH mice of both genotypes fed either diet. Biochemical analyses of aged CFH mice after HFC diet revealed genotype-dependent changes in plasma and eyecup lipoproteins, but not complement activation, which correlated with the AMD-like phenotype in old CFH-H/H mice. Specifically, apolipoproteins B48 and A1 are elevated in the RPE/choroid of the aged CFH-H/H mice compared with age-matched control CFH-Y/0 fed a HFC diet. Hence, we demonstrate a functional consequence of the Y402H polymorphism in vivo, which promotes AMD-like pathology development and affects lipoprotein levels in aged mice. These findings support targeting lipoproteins as a viable therapeutic strategy for treating AMD.
Collapse
|
25
|
Ban N, Lee TJ, Sene A, Choudhary M, Lekwuwa M, Dong Z, Santeford A, Lin JB, Malek G, Ory DS, Apte RS. Impaired monocyte cholesterol clearance initiates age-related retinal degeneration and vision loss. JCI Insight 2018; 3:120824. [PMID: 30185655 DOI: 10.1172/jci.insight.120824] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022] Open
Abstract
Advanced age-related macular degeneration (AMD), the leading cause of blindness among people over 50 years of age, is characterized by atrophic neurodegeneration or pathologic angiogenesis. Early AMD is characterized by extracellular cholesterol-rich deposits underneath the retinal pigment epithelium (RPE) called drusen or in the subretinal space called subretinal drusenoid deposits (SDD) that drive disease progression. However, mechanisms of drusen and SDD biogenesis remain poorly understood. Although human AMD is characterized by abnormalities in cholesterol homeostasis and shares phenotypic features with atherosclerosis, it is unclear whether systemic immunity or local tissue metabolism regulates this homeostasis. Here, we demonstrate that targeted deletion of macrophage cholesterol ABC transporters A1 (ABCA1) and -G1 (ABCG1) leads to age-associated extracellular cholesterol-rich deposits underneath the neurosensory retina similar to SDD seen in early human AMD. These mice also develop impaired dark adaptation, a cardinal feature of RPE cell dysfunction seen in human AMD patients even before central vision is affected. Subretinal deposits in these mice progressively worsen with age, with concomitant accumulation of cholesterol metabolites including several oxysterols and cholesterol esters causing lipotoxicity that manifests as photoreceptor dysfunction and neurodegeneration. These findings suggest that impaired macrophage cholesterol transport initiates several key elements of early human AMD, demonstrating the importance of systemic immunity and aging in promoting disease manifestation. Polymorphisms in genes involved with cholesterol transport and homeostasis are associated with a significantly higher risk of developing AMD, thus making these studies translationally relevant by identifying potential targets for therapy.
Collapse
Affiliation(s)
- Norimitsu Ban
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Tae Jun Lee
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Mayur Choudhary
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Lekwuwa
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zhenyu Dong
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Andrea Santeford
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Jonathan B Lin
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.,Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Goldis Malek
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.,Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.,Department of Medicine, and.,Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
26
|
Arya S, Emri E, Synowsky SA, Shirran SL, Barzegar-Befroei N, Peto T, Botting CH, Lengyel I, Stewart AJ. Quantitative analysis of hydroxyapatite-binding plasma proteins in genotyped individuals with late-stage age-related macular degeneration. Exp Eye Res 2018; 172:21-29. [DOI: 10.1016/j.exer.2018.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 12/17/2022]
|
27
|
Recent advances in the applications of metabolomics in eye research. Anal Chim Acta 2018; 1037:28-40. [PMID: 30292303 DOI: 10.1016/j.aca.2018.01.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Metabolomics, the identification and quantitation of metabolites in a system, have been applied to identify new biomarkers or elucidate disease mechanism. In this review, we discussed the application of metabolomics in several ocular diseases and recent developments in metabolomics regarding tear fluids analysis, data acquisition and processing.
Collapse
|