1
|
Schmidt AF, Davidson MH, Ditmarsch M, Kastelein JJ, Finan C. Lower activity of cholesteryl ester transfer protein (CETP) and the risk of dementia: a Mendelian randomization analysis. Alzheimers Res Ther 2024; 16:228. [PMID: 39415269 PMCID: PMC11481778 DOI: 10.1186/s13195-024-01594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Elevated concentrations of low-density lipoprotein cholesterol (LDL-C) are linked to dementia risk, and conversely, increased plasma concentrations of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein-A1 (Apo-A1) associate with decreased dementia risk. Inhibition of cholesteryl ester transfer protein (CETP) meaningfully affects the concentrations of these blood lipids and may therefore provide an opportunity to treat dementia. METHODS Drug target Mendelian randomization (MR) was employed to anticipate the on-target effects of lower CETP concentration (μg/mL) on plasma lipids, cardiovascular disease outcomes, autopsy confirmed Lewy body dementia (LBD), as well as Parkinson's dementia. RESULTS MR analysis of lower CETP concentration recapitulated the blood lipid effects observed in clinical trials of CETP-inhibitors, as well as protective effects on coronary heart disease (odds ratio (OR) 0.92, 95% confidence interval (CI) 0.89; 0.96), heart failure, abdominal aortic aneurysm, any stroke, ischemic stroke, and small vessel stroke (0.90, 95%CI 0.85; 0.96). Consideration of dementia related traits indicated that lower CETP concentrations were associated higher total brain volume (0.04 per standard deviation, 95%CI 0.02; 0.06), lower risk of LBD (OR 0.81, 95%CI 0.74; 0.89) and Parkinson's dementia risk (OR 0.26, 95%CI 0.14; 0.48). APOE4 stratified analyses suggested the LBD effect was most pronounced in APOE-ε4 + participants (OR 0.61 95%CI 0.51; 0.73), compared to APOE-ε4- (OR 0.89 95%CI 0.79; 1.01); interaction p-value 5.81 × 10- 4. CONCLUSIONS These results suggest that inhibition of CETP may be a viable strategy to treat dementia, with a more pronounced effect expected in APOE-ε4 carriers.
Collapse
Affiliation(s)
- Amand F Schmidt
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London, WC1E 6HX, UK.
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London, WC1E 6HX, UK.
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam UMC, locatie AMC Postbus 22660, Amsterdam Zuidoost, 1100 DD, The Netherlands.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Michael H Davidson
- Pritzker School of Medicine, University of Chicago, 5801 S Ellis Ave, Chicago, IL, 60637, USA
- NewAmsterdam Pharma B.V, Gooimeer 2-35, Naarden, 1411 DC, Netherlands
| | - Marc Ditmarsch
- NewAmsterdam Pharma B.V, Gooimeer 2-35, Naarden, 1411 DC, Netherlands
| | - John J Kastelein
- NewAmsterdam Pharma B.V, Gooimeer 2-35, Naarden, 1411 DC, Netherlands
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam UMC, locatie AMC Postbus 22660, Amsterdam Zuidoost, 1100 DD, The Netherlands
| | - Chris Finan
- Institute of Cardiovascular Science, Faculty of Population Health, University College London, 69-75 Chenies Mews, London, WC1E 6HX, UK
- UCL British Heart Foundation Research Accelerator, 69-75 Chenies Mews, London, WC1E 6HX, UK
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| |
Collapse
|
2
|
Deng S, Liu J, Niu C. HDL and Cholesterol Ester Transfer Protein (CETP). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:13-26. [PMID: 35575918 DOI: 10.1007/978-981-19-1592-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cholesterol ester transfer protein (CETP) is important clinically and is one of the major targets in cardiovascular disease studies. With high conformational flexibility, its tunnel structure allows unforced movement of high-density lipoproteins (HDLs), VLDLs, and LDLs. Research in reverse cholesterol transports (RCT) reveals that the regulation of CETP activity can change the concentration of cholesteryl esters (CE) in HDLs, VLDLs, and LDLs. These molecular insights demonstrate the mechanisms of CETP activities and manifest the correlation between CETP and HDL. However, animal and cell experiments focused on CETP give controversial results. Inhibiting CETP is found to be beneficial to anti-atherosclerosis in terms of increasing plasma HDL-C, while it is also claimed that CETP weakens atherosclerosis formation by promoting RCT. Currently, the CETP-related drugs are still immature. Research on CETP inhibitors is targeted at improving efficacy and minimizing adverse reactions. As for CETP agonists, research has proved that they also can be used to resist atherosclerosis.
Collapse
Affiliation(s)
- Siying Deng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | | | - Chenguang Niu
- Key Laboratory of Clinical Resources Translation, First Affiliated Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
3
|
Palmisano BT, Anozie U, Yu S, Neuman JC, Zhu L, Edington EM, Luu T, Stafford JM. Cholesteryl Ester Transfer Protein Impairs Triglyceride Clearance via Androgen Receptor in Male Mice. Lipids 2021; 56:17-29. [PMID: 32783209 PMCID: PMC7818496 DOI: 10.1002/lipd.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 12/27/2022]
Abstract
Elevated postprandial triacylglycerols (TAG) are an important risk factor for cardiovascular disease. Men have higher plasma TAG and impaired TAG clearance compared to women, which may contribute to sex differences in risk of cardiovascular disease. Understanding mechanisms of sex differences in TAG metabolism may yield novel therapeutic targets to prevent cardiovascular disease. Cholesteryl ester transfer protein (CETP) is a lipid shuttling protein known for its effects on high-density lipoprotein (HDL) cholesterol levels. Although mice lack CETP, we previously demonstrated that transgenic CETP expression in female mice alters TAG metabolism. The impact of CETP on TAG metabolism in males, however, is not well understood. Here, we demonstrate that CETP expression increases plasma TAG in males, especially in very-low density lipoprotein (VLDL), by impairing postprandial plasma TAG clearance compared to wild-type (WT) males. Gonadal hormones were required for CETP to impair TAG clearance, suggesting a role for sex hormones for this effect. Testosterone replacement in the setting of gonadectomy was sufficient to restore the effect of CETP on TAG. Lastly, liver androgen receptor (AR) was required for CETP to increase plasma TAG. Thus, expression of CETP in males raises plasma TAG by impairing TAG clearance via testosterone signaling to AR. Further understanding of how CETP and androgen signaling impair TAG clearance may lead to novel approaches to reduce TAG and mitigate risk of cardiovascular disease.
Collapse
Affiliation(s)
- Brian T. Palmisano
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
- Division of Cardiovascular MedicineStanford University Medical CenterStanfordCAUSA
| | - Uche Anozie
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Sophia Yu
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Joshua C. Neuman
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
| | - Lin Zhu
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Emery M. Edington
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - Thao Luu
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| | - John M. Stafford
- Tennessee Valley Health System, Veterans AffairsNashvilleTNUSA
- Department of Molecular Physiology & BiophysicsVanderbilt University School of MedicineNashvilleTNUSA
- Department of Medicine, Division of Diabetes, Endocrinology and MetabolismVanderbilt University Medical Center2213 Garland Ave., NashvilleTN37232USA
| |
Collapse
|
4
|
Morton RE, Liu Y. The lipid transfer properties of CETP define the concentration and composition of plasma lipoproteins. J Lipid Res 2020; 61:1168-1179. [PMID: 32591337 DOI: 10.1194/jlr.ra120000691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Indexed: 01/22/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) facilitates the net transfer of cholesteryl esters (CEs) and TGs between lipoproteins, impacting the metabolic fate of these lipoproteins. Previous studies have shown that a CETP antibody can alter CETP's preference for CE versus TG as transfer substrate, suggesting that CETP substrate preference can be manipulated in vivo. Hamster and human CETPs have very different preferences for CE and TG. To assess the effect of altering CETP's substrate preference on lipoproteins in vivo, here, we expressed human CETP in hamsters. Chow-fed hamsters received adenoviruses expressing no CETP, hamster CETP, or human CETP. Plasma CETP mass increased 2-fold in both the hamster and human CETP groups. Although the animals expressing human CETP still had low levels of hamster CETP, the CE versus TG preference of their plasma CETP was similar to that of the human ortholog. Hamster CETP overexpression had little impact on lipoproteins. However, expression of human CETP reduced HDL up to 50% and increased VLDL cholesterol 2.5-fold. LDL contained 20% more CE, whereas HDL CE was reduced 40%, and TG increased 6-fold. The HDL3:HDL2 ratio increased from 0.32 to 0.60. Hepatic expression of three cholesterol-related genes (LDLR, SCARB1, and CYP7A1) was reduced up to 40%. However, HDL-associated CE excretion into feces was unchanged. We conclude that expression of human CETP in hamsters humanizes their lipoprotein profile with respect to the relative concentrations of VLDL, LDL, HDL, and the HDL3:HDL2 ratio. Altering the lipid substrate preference of CETP provides a novel approach for modifying plasma lipoproteins.
Collapse
Affiliation(s)
- Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
5
|
Alterations of lipid metabolism, blood pressure and fatty liver in spontaneously hypertensive rats transgenic for human cholesteryl ester transfer protein. Hypertens Res 2020; 43:655-666. [DOI: 10.1038/s41440-020-0401-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/08/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
|
6
|
Gautier T, Masson D, Lagrost L. The potential of cholesteryl ester transfer protein as a therapeutic target. Expert Opin Ther Targets 2015. [PMID: 26212254 DOI: 10.1517/14728222.2015.1073713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over recent decades, attempts to ascertain the pro-atherogenic nature of plasma cholesteryl ester transfer protein (CETP) and to establish the relevance of its pharmacological blockade as a promising high density lipoproteins-raising and anti-atherogenic therapy have been disappointing. AREAS COVERED The current review focuses on CETP as a multifaceted protein, on genetic variations at the CETP gene and on their possible consequences for cardiovascular risk in human populations. Specific attention is given to physiological modulation of endogenous CETP activity by the apoC1 inhibitor. Finally, the rationale behind the need for selection of patients to treat is discussed in the light of recent studies. EXPERT OPINION At this stage one can only speculate on the clinical outcome of pharmacological CETP inhibitors in high-risk populations, but recent advances give cause to adjust the expectations from now on. The CETP effect is probably largely influenced by the overall metabolic state, and whether CETP blockade may be relevant or not in promoting cholesterol disposal is still questioned. The possible need for a careful stratification of patients to treat with CETP inhibitors is outlined. Finally, manipulation of CETP activity should be considered with caution in the context of sepsis and infectious diseases.
Collapse
Affiliation(s)
- Thomas Gautier
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France
| | - David Masson
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France
| | - Laurent Lagrost
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France.,e 5 UMR866, UFR Sciences de Santé, 7 boulevard Jeanne d'Arc , F-21000 Dijon, France
| |
Collapse
|
7
|
Cholesterol in the retina: the best is yet to come. Prog Retin Eye Res 2014; 41:64-89. [PMID: 24704580 DOI: 10.1016/j.preteyeres.2014.03.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
Abstract
Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because of eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes' roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link.
Collapse
|
8
|
Daniele SM, Montenegro SM, Tarres MC, Picena JC, Martinez SM. The eSS rat, a nonobese model of disordered glucose and lipid metabolism and fatty liver. Diabetol Metab Syndr 2010; 2:15. [PMID: 20236525 PMCID: PMC2847988 DOI: 10.1186/1758-5996-2-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 03/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND eSS is a rat model of type 2 diabetes characterized by fasting hyperglycemia, glucose intolerance, hyperinsulinemia and early hypertriglyceridemia. Diabetic symptoms worsen during the second year of life as insulin release decreases. In 12-month-old males a diffuse hepatic steatosis was detected. We report the disturbances of lipid metabolism of the model with regard to the diabetic syndrome. METHODS The study was conducted in eight 12-month-old eSS male rats and seven age/weight matched eumetabolic Wistar rats fed with a complete commercial diet al libitum. Fasting plasmatic glucose, insulin, triglycerides, total cholesterol, low-density and high-density lipoprotein, and nonesterified fatty acids levels were measured. Very low density and intermediate-density lipoproteins were analyzed and hepatic lipase activity was determined. RESULTS eSS rats developed hyperglycemia and hyperinsulinemia, indicating insulin resistance. Compared with controls, diabetic rats exhibited high plasmatic levels of NEFA, triglycerides (TG), total cholesterol (Chol) and LDL-Chol while high-density lipoprotein (HDL) cholesterol values were reduced. eSS rats also displayed TG-rich VLDL and IDL particles without changes in hepatic lipase activity. CONCLUSION The nonobese eSS rats develop a syndrome characterized by glucose and lipid disorders and hepatic steatosis that may provide new opportunities for studying the pathogenesis of human type 2 diabetes.
Collapse
Affiliation(s)
- Stella M Daniele
- Facultad de Ciencias Bioquímicas, Universidad Nacional deRosario, Rosario, Argentina
| | - Silvana M Montenegro
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo de Investigaciones, Universidad nacional de Rosario, Rosario, Argentina
| | - María C Tarres
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo de Investigaciones, Universidad nacional de Rosario, Rosario, Argentina
| | - Juan C Picena
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Stella M Martinez
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo de Investigaciones, Universidad nacional de Rosario, Rosario, Argentina
| |
Collapse
|
9
|
Curcio CA, Johnson M, Huang JD, Rudolf M. Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 2009; 28:393-422. [PMID: 19698799 PMCID: PMC4319375 DOI: 10.1016/j.preteyeres.2009.08.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The largest risk factor for age-related macular degeneration (ARMD) is advanced age. A prominent age-related change in the human retina is the accumulation of histochemically detectable neutral lipid in normal Bruch's membrane (BrM) throughout adulthood. This change has the potential to have a major impact on physiology of the retinal pigment epithelium (RPE). It occurs in the same compartment as drusen and basal linear deposit, the pathognomonic extracellular, lipid-containing lesions of ARMD. Here we present evidence from light microscopic histochemistry, ultrastructure, lipid profiling of tissues and isolated lipoproteins, and gene expression analysis that this deposition can be accounted for by esterified cholesterol-rich, apolipoprotein B-containing lipoprotein particles constitutively produced by the RPE. This work collectively allows ARMD lesion formation and its aftermath to be conceptualized as a response to the retention of a sub-endothelial apolipoprotein B lipoprotein, similar to a widely accepted model of atherosclerotic coronary artery disease (CAD) (Tabas et al., 2007). This approach provides a wide knowledge base and sophisticated clinical armamentarium that can be readily exploited for the development of new model systems and the future benefit of ARMD patients.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology, University of Alabama School of Medicine, Birmingham, AL 35294-0009, USA.
| | | | | | | |
Collapse
|
10
|
Wang L, Li CM, Rudolf M, Belyaeva OV, Chung BH, Messinger JD, Kedishvili NY, Curcio CA. Lipoprotein particles of intraocular origin in human Bruch membrane: an unusual lipid profile. Invest Ophthalmol Vis Sci 2009; 50:870-7. [PMID: 18806290 PMCID: PMC2692837 DOI: 10.1167/iovs.08-2376] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Throughout adulthood, Bruch membrane (BrM) accumulates esterified cholesterol (EC) associated with abundant 60- to 80-nm-diameter lipoprotein-like particles (LLP), putative apolipoprotein B (apoB) lipoproteins secreted by the retinal pigment epithelium (RPE). In the present study, neutral lipid, phospholipids, and retinoid components of human BrM-LLP were assayed. METHODS Particles isolated from paired choroids of human donors were subjected to comprehensive lipid profiling (preparative liquid chromatography [LC] gas chromatography [GC]), thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), Western blot analysis, and negative stain electron microscopy. Results were compared to plasma lipoproteins isolated from normolipemic volunteers and to conditioned medium from RPE-J cells supplemented with palmitate to induce particle synthesis and secretion. RESULTS EC was the largest component (32.4+/-7.9 mol%) of BrM-LLP lipids. EC was 11.3-fold more abundant than triglyceride (TG), unlike large apoB lipoproteins in plasma. Of the fatty acids (FA) esterified to cholesterol, linoleate (18:2n6) was the most abundant (41.7+/-4.7 mol%). Retinyl ester (RE) was detectable at picomolar levels in BrM-LLP. Notably scarce in any BrM-LLP lipid class was the photoreceptor-abundant FA docosahexaenoate (DHA, 22:6n3). RPE-J cells synthesized apoB and numerous EC-rich spherical particles. CONCLUSIONS BrM-LLP composition resembles plasma LDL more than it does photoreceptors. An EC-rich core is possible for newly synthesized lipoproteins as well as those processed in plasma. Abundant EC could contribute to a transport barrier in aging and lesion formation in age-related maculopathy (ARM). Analysis of BrM-LLP composition has revealed new aspects of retinal cholesterol and retinoid homeostasis.
Collapse
Affiliation(s)
- Lan Wang
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chuan-Ming Li
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin Rudolf
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Byung Hong Chung
- Department of Nutritional Biochemistry and Genomics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D. Messinger
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christine A. Curcio
- Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Dergunov AD, Ponthieux A, Mel’kin MV, Lambert D, Sokolova OY, Akhmedzhanov NM, Visvikis-Siest S, Siest G. Capillary isotachophoresis study of lipoprotein network sensitive to apolipoprotein E phenotype. 2. ApoE and apoC-III relations in triglyceride clearance. Mol Cell Biochem 2009; 325:25-40. [DOI: 10.1007/s11010-008-0017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
|
12
|
Zeller M, Masson D, Farnier M, Lorgis L, Deckert V, Pais de Barros JP, Desrumaux C, Sicard P, Grober J, Blache D, Gambert P, Rochette L, Cottin Y, Lagrost L. High Serum Cholesteryl Ester Transfer Rates and Small High-Density Lipoproteins Are Associated With Young Age in Patients With Acute Myocardial Infarction. J Am Coll Cardiol 2007; 50:1948-55. [DOI: 10.1016/j.jacc.2007.06.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 10/22/2022]
|
13
|
Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 2006; 15:318-30. [DOI: 10.1016/j.carpath.2006.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 11/28/2022] Open
|
14
|
Lemieux C, Gélinas Y, Lalonde J, Labrie F, Richard D, Deshaies Y. Hypocholesterolemic action of the selective estrogen receptor modulator acolbifene in intact and ovariectomized rats with diet-induced hypercholesterolemia. Metabolism 2006; 55:605-13. [PMID: 16631436 DOI: 10.1016/j.metabol.2005.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 11/18/2005] [Indexed: 11/24/2022]
Abstract
Acolbifene (ACOL) is a fourth-generation selective estrogen receptor modulator (SERM) that has strong and pure antiestrogenic properties toward estrogen-sensitive cancers, but improves energy and lipid metabolism in an estrogen-like fashion in rodent models. The aim of this study was to determine the potency of ACOL to reduce cholesterolemia in a dietary model of hypercholesterolemia and to establish its mechanisms of action. Intact and ovariectomized (OVX) female rats were treated for 3 weeks with ACOL, and serum cholesterol and liver determinants of cholesterol metabolism were assessed. Acolbifene prevented both diet- and ovariectomy-induced weight gain and completely prevented diet-induced hypercholesterolemia. Relative to a reference chow diet, the high-cholesterol diet decreased the high-density lipoprotein (HDL) cholesterol fraction, which remained unaffected by ACOL, indicating that in hypercholesterolemic conditions, ACOL modulated only the non-HDL fraction. No impact of ACOL on determinants of liver cholesterol synthesis was observed. In contrast, ACOL increased hepatic low-density lipoprotein receptor protein in both intact and OVX rats, which was negatively correlated with serum total and non-HDL cholesterol (r=-0.59, P<.0001), suggesting a contribution of receptor-mediated hepatic uptake of cholesterol-rich lipoproteins to the hypocholesterolemic effect of ACOL. These findings establish that ACOL retains its powerful cholesterol-lowering action in diet-induced hypercholesterolemia and suggest that the SERM acts in such conditions through favoring hepatic low-density lipoprotein receptor-mediated uptake of cholesterol transported by non-HDL lipoprotein fractions.
Collapse
Affiliation(s)
- Christian Lemieux
- Laval Hospital Research Center, Department of Anatomy and Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
15
|
Masson D, Pais de Barros JP, Zak Z, Gautier T, Le Guern N, Assem M, Chisholm JW, Paterniti JR, Lagrost L. Human apoA-I expression in CETP transgenic rats leads to lower levels of apoC-I in HDL and to magnification of CETP-mediated lipoprotein changes. J Lipid Res 2006; 47:356-65. [PMID: 16282639 DOI: 10.1194/jlr.m500288-jlr200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma cholesteryl ester transfer protein (CETP) has a profound effect on neutral lipid transfers between HDLs and apolipoprotein B (apoB)-containing lipoproteins when it is expressed in combination with human apoA-I in HuAI/CETP transgenic (Tg) rodents. In the present study, human apoA-I-mediated lipoprotein changes in HuAI/CETPTg rats are characterized by 3- to 5-fold increments in the apoB-containing lipoprotein-to-HDL cholesterol ratio, and in the cholesteryl ester-to-triglyceride ratio in apoB-containing lipoproteins. These changes occur despite no change in plasma CETP concentration in HuAI/CETPTg rats, as compared with CETPTg rats. A number of HDL apolipoproteins, including rat apoA-I and rat apoC-I are removed from the HDL surface as a result of human apoA-I overexpression. Rat apoC-I, which is known to constitute a potent inhibitor of CETP, accounts for approximately two-thirds of CETP inhibitory activity in HDL from wild-type rats, and the remainder is carried by other HDL-bound apolipoprotein inhibitors. It is concluded that human apoA-I overexpression modifies HDL particles in a way that suppresses their ability to inhibit CETP. An apoC-I decrease in HDL of HuAI/CETPTg rats contributes chiefly to the loss of the CETP-inhibitory potential that is normally associated with wild-type HDL.
Collapse
Affiliation(s)
- David Masson
- Laboratoire de Biochimie des Lipoprotéines, INSERM U498, Faculté de Médecine, BP87900, 21079 Dijon Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zak Z, Gautier T, Dumont L, Masson D, Deckert V, Duverneuil L, Pais De Barros JP, Le Guern N, Schneider M, Moulin P, Bataillard A, Lagrost L. Effect of cholesteryl ester transfer protein (CETP) expression on diet-induced hyperlipidemias in transgenic rats. Atherosclerosis 2005; 178:279-86. [PMID: 15694935 DOI: 10.1016/j.atherosclerosis.2004.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 08/19/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE In order to determine the influence of the lipid status on the ability of cholesteryl ester transfer protein (CETP) to modify the plasma lipoprotein profile, the effect of hypercholesterolemia versus hypertriglyceridemia were compared in wild-type and CETP-transgenic (CETPTg) rats expressing CETP at a constant level. METHODS AND RESULTS Wild-type and CETPTg rats were fed either a chow diet, a high fat/high cholesterol (HF/HC) diet, or a sucrose diet. As compared to wild-type rats, CETPTg rats fed the standard chow exhibited lower high-density lipoproteins (HDL)-cholesterol concentration (-65%, p<0.01), but similar non-HDL-cholesterol concentrations. Both wild-type and CETPTg rats fed the HF/HC diet displayed pronounced increases in total and non-HDL-cholesterol levels, with no influence of CETP expression in this case. In contrast, the sucrose diet produced significant changes only in CETPTg rats which then exhibited a 82% increase in non-HDL-cholesterol in addition to a 80% reduction in HDL cholesterol when compared to sucrose-fed, wild-type rats (p<0.01 in both cases). The triglyceride to cholesterol ratio in very low-density lipoprotein (VLDL) was 10-fold lower in 'HF/HC' rats than in 'chow' and 'sucrose' rats (p<0.005 and p<0.01, respectively), and VLDL from 'HF/HC' animals were proven to constitute poor cholesteryl ester acceptors. CONCLUSIONS CETP expression modified dramatically the lipoprotein phenotype in 'sucrose' rats but not in 'HF/HC' rats. These observations suggest that a CETP inhibitor treatment is susceptible to produce profound changes in hypertriglyceridemia or combined hyperlipidemia.
Collapse
Affiliation(s)
- Zoulika Zak
- Laboratoire de Biochimie des Lipoprotéines, INSERM U498, Faculté de Médecine, BP 87900, Dijon Cedex 21033, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lemieux C, Gélinas Y, Lalonde J, Labrie F, Cianflone K, Deshaies Y. Hypolipidemic action of the SERM acolbifene is associated with decreased liver MTP and increased SR-BI and LDL receptors. J Lipid Res 2005; 46:1285-94. [PMID: 15741653 DOI: 10.1194/jlr.m400448-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study aimed to identify the mechanisms of the hypolipidemic action of the selective estrogen receptor modulator (SERM) acolbifene (ACOL). Four weeks of treatment with ACOL reduced fasting and postprandial plasma triglycerides (TGs), an effect associated with lower VLDL-TG secretion rate (-25%), and decreased mRNA of microsomal triglyceride transfer protein (MTP; -29%). ACOL increased liver TG concentration (+100%) and amplified the feeding-induced increase in the master lipogenic regulators sterol-regulatory element binding protein-1a (SREBP-1a) and SREBP-1c. ACOL decreased total, HDL, and non-HDL cholesterol (CHOL) by 50%. SREBP-2 mRNA and HMG-CoA reductase activity were minimally affected by ACOL. However, in the fasted state, liver concentration of scavenger receptor class B type I (SR-BI) protein, but not mRNA, was 3-fold higher in ACOL-treated than in control animals and correlated with plasma HDL-CHOL levels (r = 0.80, P < 0.002). Liver LDL receptor (LDLR) protein, but not mRNA, was increased 2-fold by ACOL, independently of the nutritional status. This study demonstrates that ACOL possesses the unique ability among SERMs to reduce VLDL-TG secretion, likely by reducing MTP expression, and strongly suggests that the robust hypocholesterolemic action of ACOL is related to increased removal of CHOL from the circulation as a consequence of enhanced liver SR-BI and LDLR abundance.
Collapse
Affiliation(s)
- Christian Lemieux
- Laval Hospital Research Center, Department of Anatomy and Physiology, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
18
|
Masson D, Staels B, Gautier T, Desrumaux C, Athias A, Le Guern N, Schneider M, Zak Z, Dumont L, Deckert V, Tall A, Jiang XC, Lagrost L. Cholesteryl ester transfer protein modulates the effect of liver X receptor agonists on cholesterol transport and excretion in the mouse. J Lipid Res 2004; 45:543-50. [PMID: 14679166 DOI: 10.1194/jlr.m300432-jlr200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human plasma, unlike mouse plasma, contains the cholesteryl ester transfer protein (CETP) that may influence the reverse cholesterol transport. Liver X receptor (LXR), an oxysterol-activated nuclear receptor induces CETP transcription via a direct repeat 4 element in the CETP gene promoter. The aim of the study was to assess in vivo the impact of LXR activation on CETP expression and its consequences on plasma lipid metabolism and hepatic and bile lipid content. Wild-type and humanized mice expressing CETP were treated for five days with T0901317 LXR agonist. This treatment produced marked rises in both hepatic CETP mRNA and plasma CETP activity levels. Interestingly, the LXR agonist-mediated, 2-fold rise in both total and HDL cholesterol levels in treated wild-type mice was not observed in CETPTg mice, and the accumulation of cholesterol in the liver of CETPTg mice was reversed by LXR agonist treatment. Moreover, LXR activation induced a 2-fold increase in hepatic LDL-receptor expression in wild-type and CETPTg mice, and it produced a significantly greater rise in biliary cholesterol concentration in CETPTg mice as compared with wild-type mice. In conclusion, induction of CETP constitutes a major determinant of the effect of LXR agonists on cholesterol transport and excretion.
Collapse
Affiliation(s)
- David Masson
- Institut National de la Santé et de la Recherche Médicale U498, Faculté de Médecine, BP87900, 21079 Dijon Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang XC, Beyer TP, Li Z, Liu J, Quan W, Schmidt RJ, Zhang Y, Bensch WR, Eacho PI, Cao G. Enlargement of high density lipoprotein in mice via liver X receptor activation requires apolipoprotein E and is abolished by cholesteryl ester transfer protein expression. J Biol Chem 2003; 278:49072-8. [PMID: 12947111 DOI: 10.1074/jbc.m304274200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The factors involved in the generation of larger high density lipoprotein (HDL) particles, HDL1 and HDLc, are still not well understood. Administration of a specific synthetic liver X receptor (LXR) agonist, T0901317, in mice resulted in an increase of not only HDL cholesterol but also HDL particle size (Cao, G., Beyer, T. P., Yang, X. P., Schmidt, R. J., Zhang, Y., Bensch, W. R., Kauffman, R. F., Gao, H., Ryan, T. P., Liang, Y., Eacho, P. I., and Jiang, X. C. (2002) J. Biol. Chem. 277, 39561-39565). We have investigated the roles that apoE and CETP may play in this process. We treated apoE-deficient, cholesterol ester transport protein (CETP) transgenic, and wild type mice with various doses of the LXR agonist and monitored their HDL levels. Fast protein liquid chromatography and apolipoprotein analysis revealed that in apoE knockout mouse plasma, there was neither induction of larger HDL formation nor increase of HDL cholesterol, suggesting that apoE is essential for the LXR agonist effects on HDL metabolism. In CETP transgenic mice, CETP expression completely abolished LXR agonist-mediated HDL enlargement and greatly attenuated HDL cholesterol levels. Analysis of HDL particles by electron microscope and nondenaturing gel electrophoresis revealed similar findings. In apoE-deficient mice, LXR agonist also produced a significant increase in very low density lipoprotein/low density lipoprotein cholesterol and apolipoprotein B content. Our studies provide direct evidence that apoE and CETP are intimately involved in the accumulation of the enlarged HDL (HDL1 or HDLc) particles in mice.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|