1
|
Zamani P, Houessou U, Manikpurage HD, Li Z, Dahmene M, Gaudreault N, Dagenais F, Clavel MA, Pibarot P, Arsenault BJ, Mathieu P, Bossé Y, Thériault S. Aortic valve-specific genes dysregulated in calcific aortic valve stenosis as potential biomarkers and therapeutic targets. HGG ADVANCES 2025; 6:100448. [PMID: 40329539 DOI: 10.1016/j.xhgg.2025.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025] Open
Abstract
Calcific aortic valve stenosis (CAVS) is the most frequent heart valve disease. Elucidating specific gene expression patterns in the aortic valve could provide new insights for understanding disease pathophysiology. We used local RNA sequencing data from 500 explanted human aortic valves to identify aortic valve-specific genes and compared their expression according to disease status and CAVS severity. We identified 100 specific protein-coding genes in the aortic valve compared to 45 other tissues from the Genotype-Tissue Expression (GTEx) project. Among them, 38 were differentially expressed in CAVS. Ten had a gradient of expression between severity levels and were central in a protein-protein interaction network, most of which were involved in extracellular matrix regulation or inflammation. Among the aortic valve-specific genes, four of the corresponding proteins had a significantly different plasma level in individuals with CAVS. These findings represent a robust foundation for the development of specific biomarkers and therapies for CAVS.
Collapse
Affiliation(s)
- Pardis Zamani
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Ursula Houessou
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Hasanga D Manikpurage
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Zhonglin Li
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Manel Dahmene
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - Nathalie Gaudreault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada
| | - François Dagenais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada; Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Marie-Annick Clavel
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Philippe Pibarot
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Patrick Mathieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada; Department of Surgery, Université Laval, Quebec City, QC, Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Medicine, Université Laval, Quebec City, QC, Canada
| | - Sébastien Thériault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
2
|
Gautier T, Deckert V, Nguyen M, Desrumaux C, Masson D, Lagrost L. New therapeutic horizons for plasma phospholipid transfer protein (PLTP): Targeting endotoxemia, infection and sepsis. Pharmacol Ther 2021; 236:108105. [PMID: 34974028 DOI: 10.1016/j.pharmthera.2021.108105] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Phospholipid Transfer Protein (PLTP) transfers amphiphilic lipids between circulating lipoproteins and between lipoproteins, cells and tissues. Indeed, PLTP is a major determinant of the plasma levels, turnover and functionality of the main lipoprotein classes: very low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). To date, most attention has been focused on the role of PLTP in the context of cardiometabolic diseases, with additional insights in neurodegenerative diseases and immunity. Importantly, beyond its influence on plasma triglyceride and cholesterol transport, PLTP plays a key role in the modulation of the immune response, with immediate relevance to a wide range of inflammatory diseases including bacterial infection and sepsis. Indeed, emerging evidence supports the role of PLTP, in the context of its association with lipoproteins, in the neutralization and clearance of bacterial lipopolysaccharides (LPS) or endotoxins. LPS are amphipathic molecules originating from Gram-negative bacteria which harbor major pathogen-associated patterns, triggering an innate immune response in the host. Although the early inflammatory reaction constitutes a key step in the anti-microbial defense of the organism, it can lead to a dysregulated inflammatory response and to hemodynamic disorders, organ failure and eventually death. Moreover, and in addition to endotoxemia and acute inflammation, small amounts of LPS in the circulation can induce chronic, low-grade inflammation with long-term consequences in several metabolic disorders such as atherosclerosis, obesity and diabetes. After an updated overview of the role of PLTP in lipid transfer, lipoprotein metabolism and related diseases, current knowledge of its impact on inflammation, infection and sepsis is critically appraised. Finally, the relevance of PLTP as a new player and novel therapeutic target in the fight against inflammatory diseases is considered.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| | - Valérie Deckert
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service Anesthésie-Réanimation Chirurgicale, Dijon University Hospital, Dijon, France
| | - Catherine Desrumaux
- INSERM, U1198, Montpellier, France; Faculty of Sciences, Université Montpellier, Montpellier, France
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Plateau Automatisé de Biochimie, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service de la Recherche, Dijon University Hospital, Dijon, France.
| |
Collapse
|
3
|
Association between the PLTP rs4810479 SNP and Serum Lipid Traits in the Chinese Maonan and Han Populations. Genet Res (Camb) 2021; 2021:9925272. [PMID: 34385888 PMCID: PMC8328490 DOI: 10.1155/2021/9925272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
The association between the phospholipid transfer protein (PLTP) gene rs4810479 single-nucleotide polymorphism (SNP) and serum lipid levels is largely unknown. This investigation aimed to evaluate the relationship between the PLTP rs4810479 SNP, several environmental risk factors, and serum lipid parameters in the Chinese Maonan and Han nationalities. Polymerase chain reaction-restriction fragment length polymorphism, gel electrophoresis, and direct sequencing were employed to determine the PLTP rs4810479 genotypes in 633 Maonan and 646 Han participants. The frequencies of CC, CT, and TT genotypes and the C allele were different between Maonan and Han groups (29.07%, 53.08%, 17.85%, and 55.61% vs. 35.60%, 49.70%, 14.70%, and 60.45%, respectively, P < 0.05). The C allele carriers in the Maonan group had higher high-density lipoprotein cholesterol levels than the C allele noncarriers, but this finding was only found in Maonan males but not in females. The C allele carriers in Han males had lower total cholesterol and low-density lipoprotein cholesterol levels than the C allele noncarriers. Serum lipid profiles were also affected by several traditional cardiovascular risk factors in both populations. There might be an ethnic- and/or sex-specific association between the PLTP rs4810479 SNP and serum lipid traits.
Collapse
|
4
|
Niksirat H, Siino V, Steinbach C, Levander F. High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. J Proteome Res 2021; 20:4075-4088. [PMID: 34185526 DOI: 10.1021/acs.jproteome.1c00387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular basis of sexual dimorphism in the cardiovascular system may contribute to the improvement of the outcome in biological, pharmacological, and toxicological studies as well as on the development of sex-based drugs and therapeutic approaches. Label-free protein quantification using high-resolution mass spectrometry was applied to detect sex-based proteome differences in the heart of zebrafish Danio rerio. Out of almost 3000 unique identified proteins in the heart, 79 showed significant abundance differences between male and female fish. The functional differences were mapped using enrichment analyses. Our results suggest that a large amount of materials needed for reproduction (e.g., sugars, lipids, proteins, etc.) may impose extra pressure on blood, vessels, and heart on their way toward the ovaries. In the present study, the female's heart shows a clear sexual dimorphism by changing abundance levels of numerous proteins, which could be a way to safely overcome material-induced elevated pressures. These proteins belong to the immune system, oxidative stress response, drug metabolization, detoxification, energy, metabolism, and so on. In conclusion, we showed that sex can induce dimorphism at the molecular level in nonsexual organs such as heart and must be considered as an important factor in cardiovascular research. Data are available via ProteomeXchange with identifier PXD023506.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| |
Collapse
|
5
|
Jiang XC, Yu Y. The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis. Curr Atheroscler Rep 2021; 23:9. [PMID: 33496859 DOI: 10.1007/s11883-021-00907-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Phospholipid transfer protein (PLTP), a member of lipid transfer protein family, is an important protein involved in lipid metabolism in the circulation. This article reviews recent PLTP research progresses, involving lipoprotein metabolism and atherogenesis. RECENT FINDINGS PLTP activity influences atherogenic and anti-atherogenic lipoprotein levels. Human serum PLTP activity is a risk factor for human cardiovascular disease and is an independent predictor of all-cause mortality. PLTP deficiency reduces VLDL and LDL levels and attenuates atherosclerosis in mouse models, while PLTP overexpression exerts an opposite effect. Both PLTP deficiency and overexpression result in reduction of HDL which has different size, inflammatory index, and lipid composition. Moreover, although both PLTP deficiency and overexpression reduce cholesterol efflux capacity, but this effect has no impact in macrophage reverse cholesterol transport in mice. Furthermore, PLTP activity is related with metabolic syndrome, thrombosis, and inflammation. PLTP could be target for the treatment of dyslipidemia and atherosclerosis, although some potential off-target effects should be noted.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, USA.
| | - Yang Yu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| |
Collapse
|
6
|
Impact of Phospholipid Transfer Protein in Lipid Metabolism and Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:1-13. [PMID: 32705590 DOI: 10.1007/978-981-15-6082-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PLTP plays an important role in lipoprotein metabolism and cardiovascular disease development in humans; however, the mechanisms are still not completely understood. In mouse models, PLTP deficiency reduces cardiovascular disease, while its overexpression induces it. Therefore, we used mouse models to investigate the involved mechanisms. In this chapter, the recent main progresses in the field of PLTP research are summarized, and our focus is on the relationship between PLTP and lipoprotein metabolism, as well as PLTP and cardiovascular diseases.
Collapse
|
7
|
Phospholipid transfer protein and alpha-1 antitrypsin regulate Hck kinase activity during neutrophil degranulation. Sci Rep 2018; 8:15394. [PMID: 30337619 PMCID: PMC6193999 DOI: 10.1038/s41598-018-33851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/07/2018] [Indexed: 01/21/2023] Open
Abstract
Excessive neutrophil degranulation is a common feature of many inflammatory disorders, including alpha-1 antitrypsin (AAT) deficiency. Our group has demonstrated that phospholipid transfer protein (PLTP) prevents neutrophil degranulation but serine proteases, which AAT inhibits, cleave PLTP in diseased airways. We propose to identify if airway PLTP activity can be restored by AAT augmentation therapy and how PLTP subdues degranulation of neutrophils in AAT deficient subjects. Airway PLTP activity was lower in AAT deficient patients but elevated in the airways of patients on augmentation therapy. Functional AAT protein (from PiMM homozygotes) prevented PLTP cleavage unlike its mutated ZZ variant (PiZZ). PLTP lowered leukotriene B4 induced degranulation of primary, secondary and tertiary granules from neutrophils from both groups (n = 14/group). Neutrophils isolated from Pltp knockout mice have enhance neutrophil degranulation. Both AAT and PLTP reduced neutrophil degranulation and superoxide production, possibly though their inhibition of the Src tyrosine kinase, Hck. Src kinase inhibitors saracatinib and dasatinib reduced neutrophil degranulation and superoxide production. Therefore, AAT protects PLTP from proteolytic cleavage and both AAT and PLTP mediate degranulation, possibly via Hck tyrosine kinase inhibition. Deficiency of AAT could contribute to reduced lung PLTP activity and elevated neutrophil signaling associated with lung disease.
Collapse
|
8
|
Jiang XC. Phospholipid transfer protein: its impact on lipoprotein homeostasis and atherosclerosis. J Lipid Res 2018; 59:764-771. [PMID: 29438986 DOI: 10.1194/jlr.r082503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Phospholipid transfer protein (PLTP) is one of the major modulators of lipoprotein metabolism and atherosclerosis development in humans; however, we still do not quite understand the mechanisms. In mouse models, PLTP overexpression induces atherosclerosis, while its deficiency reduces it. Thus, mouse models were used to explore the mechanisms. In this review, I summarize the major progress made in the PLTP research field and emphasize its impact on lipoprotein metabolism and atherosclerosis, as well as its regulation.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, Brooklyn, NY
| |
Collapse
|
9
|
Yang X, Yu Y, Wang D, Qin S. Overexpressed PLTP in macrophage may promote cholesterol accumulation by prolonged endoplasmic reticulum stress. Med Hypotheses 2017; 98:45-48. [DOI: 10.1016/j.mehy.2016.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/25/2016] [Indexed: 02/03/2023]
|
10
|
Kim HJ, Ahn SJ, Woo SJ, Hong HK, Suh EJ, Ahn J, Park JH, Ryoo NK, Lee JE, Kim KW, Park KH, Lee C. Proteomics-based identification and validation of novel plasma biomarkers phospholipid transfer protein and mannan-binding lectin serine protease-1 in age-related macular degeneration. Sci Rep 2016; 6:32548. [PMID: 27605007 PMCID: PMC5015054 DOI: 10.1038/srep32548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of severe, progressive visual loss among the elderly. There are currently no established serological markers for the diagnosis of AMD. In this study, we carried out a large-scale quantitative proteomics analysis to identify plasma proteins that could serve as potential AMD biomarkers. We found that the plasma levels of phospholipid transfer protein (PLTP) and mannan-binding lectin serine protease (MASP)-1 were increased in AMD patients relative to controls. The receiver operating characteristic curve based on data from an independent set of AMD patients and healthy controls had an area under the curve of 0.936 for PLTP and 0.716 for MASP-1, revealing excellent discrimination between the two groups. A proteogenomic combination model that incorporated PLTP and MASP-1 along with two known risk genotypes of age-related maculopathy susceptibility 2 and complement factor H genes further enhanced discriminatory power. Additionally, PLTP and MASP-1 mRNA and protein expression levels were upregulated in retinal pigment epithelial cells upon exposure to oxidative stress in vitro. These results indicate that PLTP and MASP-1 can serve as plasma biomarkers for the early diagnosis and treatment of AMD, which is critical for preventing AMD-related blindness.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Seong Joon Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Ophthalmology, Hanyang University College of Medicine, Hanyang University Hospital, Seoul, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eui Jin Suh
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ji Hyun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Na-Kyung Ryoo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| |
Collapse
|
11
|
Kim DS, Burt AA, Ranchalis JE, Vuletic S, Vaisar T, Li WF, Rosenthal EA, Dong W, Eintracht JF, Motulsky AG, Brunzell JD, Albers JJ, Furlong CE, Jarvik GP. PLTP activity inversely correlates with CAAD: effects of PON1 enzyme activity and genetic variants on PLTP activity. J Lipid Res 2015; 56:1351-62. [PMID: 26009633 DOI: 10.1194/jlr.p058032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 01/07/2023] Open
Abstract
Recent studies have failed to demonstrate a causal cardioprotective effect of HDL cholesterol levels, shifting focus to the functional aspects of HDL. Phospholipid transfer protein (PLTP) is an HDL-associated protein involved in reverse cholesterol transport. This study sought to determine the genetic and nongenetic predictors of plasma PLTP activity (PLTPa), and separately, to determine whether PLTPa predicted carotid artery disease (CAAD). PLTPa was measured in 1,115 European ancestry participants from a case-control study of CAAD. A multivariate logistic regression model was used to elucidate the relationship between PLTPa and CAAD. Separately, a stepwise linear regression determined the nongenetic clinical and laboratory characteristics that best predicted PLTPa. A final stepwise regression considering both nongenetic and genetic variables identified the combination of covariates that explained maximal PLTPa variance. PLTPa was significantly associated with CAAD (7.90 × 10(-9)), with a 9% decrease in odds of CAAD per 1 unit increase in PLTPa (odds ratio = 0.91). Triglyceride levels (P = 0.0042), diabetes (P = 7.28 × 10(-5)), paraoxonase 1 (PON1) activity (P = 0.019), statin use (P = 0.026), PLTP SNP rs4810479 (P = 6.38 × 10(-7)), and PCIF1 SNP rs181914932 (P = 0.041) were all significantly associated with PLTPa. PLTPa is significantly inversely correlated with CAAD. Furthermore, we report a novel association between PLTPa and PON1 activity, a known predictor of CAAD.
Collapse
Affiliation(s)
- Daniel Seung Kim
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Amber A Burt
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jane E Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Tomas Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Wan-Fen Li
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Elisabeth A Rosenthal
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Weijiang Dong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Human Anatomy and Histology and Embryology, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | - Jason F Eintracht
- Department of General Medicine, Virginia Mason Medical Center, Seattle, WA
| | - Arno G Motulsky
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - John D Brunzell
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| | - Gail P Jarvik
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
12
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
13
|
Ji A, Wroblewski JM, Webb NR, van der Westhuyzen DR. Impact of phospholipid transfer protein on nascent high-density lipoprotein formation and remodeling. Arterioscler Thromb Vasc Biol 2014; 34:1910-6. [PMID: 25060793 DOI: 10.1161/atvbaha.114.303533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP), which binds phospholipids and facilitates their transfer between lipoproteins in plasma, plays a key role in lipoprotein remodeling, but its influence on nascent high-density lipoprotein (HDL) formation is not known. The effect of PLTP overexpression on apolipoprotein A-I (apoA-I) lipidation by primary mouse hepatocytes was investigated. APPROACH AND RESULTS Overexpression of PLTP through an adenoviral vector markedly affected the amount and size of lipidated apoA-I species that were produced in hepatocytes in a dose-dependent manner, ultimately generating particles that were <7.1 nm but larger than lipid-free apoA-I. These <7.1-nm small particles generated in the presence of overexpressed PLTP were incorporated into mature HDL particles more rapidly than apoA-I both in vivo and in vitro and were less rapidly cleared from mouse plasma than lipid-free apoA-I. The <7.1-nm particles promoted both cellular cholesterol and phospholipid efflux in an ATP-binding cassette transporter A1-dependent manner, similar to apoA-I in the presence of PLTP. Lipid-free apoA-I had a greater efflux capacity in the presence of PLTP than in the absence of PLTP, suggesting that PLTP may promote ATP-binding cassette transporter A1-mediated cholesterol and phospholipid efflux. These results indicate that PLTP alters nascent HDL formation by modulating the lipidated species and by promoting the initial process of apoA-I lipidation. CONCLUSIONS Our findings suggest that PLTP exerts significant effects on apoA-I lipidation and nascent HDL biogenesis in hepatocytes by promoting ATP-binding cassette transporter A1-mediated lipid efflux and the remodeling of nascent HDL particles.
Collapse
Affiliation(s)
- Ailing Ji
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Joanne M Wroblewski
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Nancy R Webb
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY
| | - Deneys R van der Westhuyzen
- From the Department of Internal Medicine (A.J., J.M.W., D.R.v.d.W.), Department of Pharmacology and Nutritional Sciences (A.J., J.M.W., N.R.W., D.R.v.d.W.), Department of Molecular and Cellular Biochemistry (D.R.v.d.W.), and Saha Cardiovascular Research Center (A.J., J.M.W., N.R.W., D.R.v.d.W.), University of Kentucky, Lexington; and Department of Veterans Affairs Medical Center (N.R.W., D.R.v.d.W.), Lexington, KY.
| |
Collapse
|
14
|
Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, Eden E, Jiang XC, D'Armiento J, Foronjy R. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J 2014; 28:2318-31. [PMID: 24532668 DOI: 10.1096/fj.13-246843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1β, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.
Collapse
Affiliation(s)
- Anthony Brehm
- 2Department of Medicine, St. Luke's Roosevelt, Mt. Sinai Health System, Antenucci Bldg., 432 West 58th St., Rm. 311, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Deckert V, Kretz B, Habbout A, Raghay K, Labbé J, Abello N, Desrumaux C, Gautier T, Lemaire-Ewing S, Maquart G, Le Guern N, Masson D, Steinmetz E, Lagrost L. Development of abdominal aortic aneurysm is decreased in mice with plasma phospholipid transfer protein deficiency. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:975-86. [PMID: 23830874 DOI: 10.1016/j.ajpath.2013.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/12/2013] [Accepted: 05/13/2013] [Indexed: 12/13/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) increases the circulating levels of proatherogenic lipoproteins, accelerates blood coagulation, and modulates inflammation. The role of PLTP in the development of abdominal aortic aneurysm (AAA) was investigated by using either a combination of mechanical and elastase injury at one site of mouse aorta (elastase model) or continuous infusion of angiotensin II in hyperlipidemic ApoE-knockout mice (Ang II model). With the elastase model, complete PLTP deficiency was associated with a significantly lower incidence and a lesser degree of AAA expansion. With the Ang II model, findings were consistent with those in the elastase model, with a lower severity grade in PLTP-deficient mice, an intermediate phenotype in PLTP-deficient heterozygotes, and a blunted effect of the PLTP-deficient trait when restricted to bone marrow-derived immune cells. The protective effect of whole-body PLTP deficiency in AAA was illustrated further by a lesser degree of adventitia expansion, reduced elastin degradation, fewer recruited macrophages, and less smooth muscle cell depletion in PLTP-deficient than in wild-type mice, as evident from comparative microscopic analysis of aorta sections. Finally, cumulative evidence supports the association of PLTP deficiency with reduced expression and activity levels of matrix metalloproteinases, known to degrade elastin and collagen. We conclude that PLTP can play a significant role in the pathophysiology of AAA.
Collapse
|
16
|
Chen X, Sun A, Zou Y, Ge J, Kamran H, Jiang XC, Lazar JM. High PLTP activity is associated with depressed left ventricular systolic function. Atherosclerosis 2013; 228:438-42. [PMID: 23545183 DOI: 10.1016/j.atherosclerosis.2013.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/29/2013] [Accepted: 02/26/2013] [Indexed: 12/13/2022]
Abstract
Phospholipid transfer protein (PLTP) modulates lipoprotein metabolism and plays an important role in inflammation and oxidative stress. High PLTP activity is associated with atherosclerosis and its risk factors, which also predispose to left ventricular systolic (LV) dysfunction and/or congestive heart failure. However there are few data linking PLTP activity directly to LV function. According, we sought to determine the relation between PLTP activity and LV ejection fraction (EF) in a Chinese cohort of 732 patients referred for coronary angiography. Weak but significant correlations of PLTP activity levels were found with age (r = -0.09, p = 0.017), male gender (r = 0.09, p = 0.019), diabetes (r = 0.08, p = 0.036), TG (r = 0.11, p = 0.003), HDL-C (r = -0.18, p = <0.001), apo A (-0.30, p < 0.001) apo B (r = 0.20, p < 0.001), fibrinogen (r = 0.32, p < 0.001) and LVEF (r = -0.12, p = 0.003). Median PLTP activity levels were higher among patients with reduced than in normal LV systolic function (LVEF <50%) [26.7 pmol/microl/h (IQR 20.2, 38.6) vs. 19.9 pmol/microl/h (IQR 12.2, 31.0), p < 0.001]. There was a step-wise increase in median PLTP levels in patients with normal, mild, and moderate-severe degrees of LV dysfunction (19.9 pmol/microl/h vs. 25.1 pmol/microl/h vs. 34.7 pmol/microl/h, p < 0.001). Median PLTP activity levels were higher among patients with unstable rather than stable AP and non-CHD patients (25.9 pmol/microl/h vs 20.2 vs 21.9, p = 0.012). On multivariate analyzes, higher median PLTP activity levels were associated with depressed LV systolic function as a dichotomous variable and with lower LVEF as a continuous variable. In conclusion, higher PLTP activity is associated with depressed LV systolic function in a dose-dependent manner independent of coronary heart disease as well as to unstable CHD.
Collapse
Affiliation(s)
- Xueying Chen
- Institute of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Jiang XC, Jin W, Hussain MM. The impact of phospholipid transfer protein (PLTP) on lipoprotein metabolism. Nutr Metab (Lond) 2012; 9:75. [PMID: 22897926 PMCID: PMC3495888 DOI: 10.1186/1743-7075-9-75] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/30/2012] [Indexed: 02/05/2023] Open
Abstract
It has been reported that phospholipid transfer protein (PLTP) is an independent risk factor for human coronary artery disease. In mouse models, it has been demonstrated that PLTP overexpression induces atherosclerosis, while its deficiency reduces it. PLTP is considered a promising target for pharmacological intervention to treat atherosclerosis. However, we must still answer a number of questions before its pharmaceutical potential can be fully explored. In this review, we summarized the recent progresses made in the PLTP research field and focused on its effect on apoB-containing- triglyceride-rich particle and HDL metabolism.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Cell Biology, Downstate Medical Center, State University of New York, 450 Clarkson Ave,, Box 5, Brooklyn, NY, 11203, USA.
| | | | | |
Collapse
|
18
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:345-57. [PMID: 21736953 PMCID: PMC3192936 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
19
|
Plasma PLTP (phospholipid-transfer protein): an emerging role in 'reverse lipopolysaccharide transport' and innate immunity. Biochem Soc Trans 2011; 39:984-8. [PMID: 21787334 DOI: 10.1042/bst0390984] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasma PLTP (phospholipid-transfer protein) is a member of the lipid transfer/LBP [LPS (lipopolysaccharide)-binding protein] family, which constitutes a superfamily of genes together with the short and long PLUNC (palate, lung and nasal epithelium clone) proteins. Although PLTP was studied initially for its involvement in the metabolism of HDL (high-density lipoproteins) and reverse cholesterol transport (i.e. the metabolic pathway through which cholesterol excess can be transported from peripheral tissues back to the liver for excretion in the bile), it displays a number of additional biological properties. In particular, PLTP can modulate the lipoprotein association and metabolism of LPS that are major components of Gram-negative bacteria. The delayed association of LPS with lipoproteins in PLTP-deficient mice results in a prolonged residence time, in a higher toxicity of LPS aggregates and in a significant increase in LPS-induced mortality as compared with wild-type mice. It suggests that PLTP may play a pivotal role in inflammation and innate immunity through its ability to accelerate the 'reverse LPS transport' pathway.
Collapse
|
20
|
Rosenthal EA, Ronald J, Rothstein J, Rajagopalan R, Ranchalis J, Wolfbauer G, Albers JJ, Brunzell JD, Motulsky AG, Rieder MJ, Nickerson DA, Wijsman EM, Jarvik GP. Linkage and association of phospholipid transfer protein activity to LASS4. J Lipid Res 2011; 52:1837-46. [PMID: 21757428 PMCID: PMC3173000 DOI: 10.1194/jlr.p016576] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/08/2011] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein activity (PLTPa) is associated with insulin levels and has been implicated in atherosclerotic disease in both mice and humans. Variation at the PLTP structural locus on chromosome 20 explains some, but not all, heritable variation in PLTPa. In order to detect quantitative trait loci (QTLs) elsewhere in the genome that affect PLTPa, we performed both oligogenic and single QTL linkage analysis on four large families (n = 227 with phenotype, n = 330 with genotype, n = 462 total), ascertained for familial combined hyperlipidemia. We detected evidence of linkage between PLTPa and chromosome 19p (lod = 3.2) for a single family and chromosome 2q (lod = 2.8) for all families. Inclusion of additional marker and exome sequence data in the analysis refined the linkage signal on chromosome 19 and implicated coding variation in LASS4, a gene regulated by leptin that is involved in ceramide synthesis. Association between PLTPa and LASS4 variation was replicated in the other three families (P = 0.02), adjusting for pedigree structure. To our knowledge, this is the first example for which exome data was used in families to identify a complex QTL that is not the structural locus.
Collapse
Affiliation(s)
- Elisabeth A. Rosenthal
- Division of Medical Genetics, Department of Medicine,University of Washington, Seattle, WA
| | - James Ronald
- Division of Medical Genetics, Department of Medicine,University of Washington, Seattle, WA
| | - Joseph Rothstein
- Division of Medical Genetics, Department of Medicine,University of Washington, Seattle, WA
| | | | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine,University of Washington, Seattle, WA
| | - G. Wolfbauer
- Northwest Lipid Metabolism and Diabetes Research Laboratories,Department of Medicine, Division of Metabolisn, Endocrinology, and Nutrition, University of Washington, Seattle, WA
| | - John J. Albers
- Department of Pathology, University of Washington, Seattle, WA
- Northwest Lipid Metabolism and Diabetes Research Laboratories,Department of Medicine, Division of Metabolisn, Endocrinology, and Nutrition, University of Washington, Seattle, WA
| | | | - Arno G. Motulsky
- Division of Medical Genetics, Department of Medicine,University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Mark J. Rieder
- Department of Genome Sciences, University of Washington, Seattle, WA
| | | | - Ellen M. Wijsman
- Division of Medical Genetics, Department of Medicine,University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Biostatistics,University of Washington, Seattle, WA
| | - Gail P. Jarvik
- Division of Medical Genetics, Department of Medicine,University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
21
|
Yazdanyar A, Yeang C, Jiang XC. Role of phospholipid transfer protein in high-density lipoprotein- mediated reverse cholesterol transport. Curr Atheroscler Rep 2011; 13:242-8. [PMID: 21365262 PMCID: PMC3085729 DOI: 10.1007/s11883-011-0172-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reverse cholesterol transport (RCT) describes the process whereby cholesterol in peripheral tissues is transported to the liver where it is ultimately excreted in the form of bile. Given the atherogenic role of cholesterol accumulation within the vessel intima, removal of cholesterol through RCT is considered an anti-atherogenic process. The major constituents of RCT include cell membrane– bound lipid transporters, plasma lipid acceptors, plasma proteins and enzymes, and lipid receptors of liver cell membrane. One major cholesterol acceptor in RCT is high-density lipoprotein (HDL). Both the characteristics and level of HDL are critical determinants for RCT. It is known that phospholipid transfer protein (PLTP) impacts both HDL cholesterol level and biological quality of the HDL molecule. Recent data suggest that PLTP has a site-specific variation in its function. Moreover, the RCT pathway also has multiple steps both in the peripheral tissues and circulation. Therefore, PLTP may influence the RCT pathway at multiple levels. In this review, we focus on the potential role of PLTP in RCT through its impact on HDL homeostasis. The relationship between PLTP and RCT is expected to be an important area in finding novel therapies for atherosclerosis.
Collapse
Affiliation(s)
- Amirfarbod Yazdanyar
- Department of cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave. Box 5, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
22
|
Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1917-24. [PMID: 21782857 DOI: 10.1016/j.bbamcr.2011.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Phospholipid transfer protein (PLTP) plays an important role in regulation of inflammation. Previously published studies have shown that PLTP binds, transfers and neutralizes bacterial lipopolysaccharides. In the current study we tested the hypothesis that PLTP can also regulate anti-inflammatory pathways in macrophages. Incubation of macrophage-like differentiated THP1 cells and human monocyte-derived macrophages with wild-type PLTP in the presence or absence of tumor necrosis factor alpha (TNFα) or interferon gamma (IFNγ) significantly increased nuclear levels of active signal transducer and activator of transcription 3, pSTAT3(Tyr705) (p<0.01). Similar results were obtained in the presence of a PLTP mutant without lipid transfer activity (PLTP(M159E)), suggesting that PLTP-mediated lipid transfer is not required for activation of the STAT3 pathway. Inhibition of ABCA1 by chemical inhibitor, glyburide, as well as ABCA1 RNA inhibition, reversed the observed PLTP-mediated activation of STAT3. In addition, PLTP reduced nuclear levels of active nuclear factor kappa-B (NFκB) p65 and secretion of pro-inflammatory cytokines in conditioned media of differentiated THP1 cells and human monocyte-derived macrophages. Our data suggest that PLTP has anti-inflammatory capabilities in macrophages.
Collapse
Affiliation(s)
- S Vuletic
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
23
|
A-González N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta Mol Basis Dis 2010; 1812:982-94. [PMID: 21193033 DOI: 10.1016/j.bbadis.2010.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 12/30/2022]
Abstract
The liver X receptors (LXRα and LXRβ) are members of the nuclear receptor family of transcription factors that play essential roles in the transcriptional control of lipid metabolism. LXRs are endogenously activated by modified forms of cholesterol known as oxysterols and control the expression of genes important for cholesterol uptake, efflux, transport, and excretion in multiple tissues. In addition to their role as cholesterol sensors, a number of studies have implicated LXRs in the modulation of innate and adaptive immune responses. Both through activation and repression mechanisms, LXRs regulate diverse aspects of inflammatory gene expression in macrophages. The ability of LXRs to coordinate metabolic and immune responses constitutes an attractive therapeutic target for the treatment of chronic inflammatory disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Noelia A-González
- Department of Biochemistry and Molecular Biology, Universidad de Las Palmas de Gran Canaria, ULPGC, Las Palmas, Spain
| | | |
Collapse
|
24
|
Cheung MC, Vaisar T, Han X, Heinecke JW, Albers JJ. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation. Biochemistry 2010; 49:7314-22. [PMID: 20666409 PMCID: PMC2930196 DOI: 10.1021/bi100359f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholipid transfer protein (PLTP), which associates with apolipoprotein A-I (the major HDL protein), plays a key role in lipoprotein remodeling. Because its level in plasma increases during acute inflammation, it may also play previously unsuspected roles in the innate immune system. To gain further insight into its potential physiological functions, we isolated complexes containing PLTP from plasma by immunoaffinity chromatography and determined their composition. Shotgun proteomics revealed that only 6 of the 24 proteins detected in the complexes were apolipoproteins. The most abundant proteins were clusterin (apoJ), PLTP itself, coagulation factors, complement factors, and apoA-I. Remarkably, 20 of the 24 proteins had known protein-protein interactions. Biochemical studies confirmed two previously established interactions and identified five new ones between PLTP and proteins. Moreover, clusterin, apoA-I, and apoE preserved the lipid-transfer activity of recombinant PLTP in the absence of lipid, indicating that these interactions may have functional significance. Unexpectedly, lipids accounted for only 3% of the mass of the PLTP complexes. Collectively, our observations indicate that PLTP in human plasma resides on lipid-poor complexes dominated by clusterin and proteins implicated in host defense and inflammation. They further suggest that protein-protein interactions drive the formation of PLTP complexes in plasma.
Collapse
Affiliation(s)
- Marian C. Cheung
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, 98109
| | - Tomáš Vaisar
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, 98109
| | - Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110
| | - Jay W. Heinecke
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, 98109
| | - John J. Albers
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, WA, 98109
| |
Collapse
|
25
|
Robciuc MR, Metso J, Sima A, Ehnholm C, Jauhiainen M. Human apoA-I increases macrophage foam cell derived PLTP activity without affecting the PLTP mass. Lipids Health Dis 2010; 9:59. [PMID: 20534134 PMCID: PMC2890626 DOI: 10.1186/1476-511x-9-59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 06/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND phospholipid transfer protein (PLTP) plays important roles in lipoprotein metabolism and atherosclerosis and is expressed by macrophages and macrophage foam cells (MFCs). The aim of the present study was to determine whether the major protein from HDL, apoA-I, affects PLTP derived from MFCs. RESULTS as cell model we used human THP-1 monocytes incubated with acetylated LDL, to generate MFC. The addition of apoA-I to the cell media increased apoE secretion from the cells, in a concentration dependent fashion, without affecting cellular apoE levels. In contrast, apoA-I had no effect on PLTP synthesis and secretion, but strongly induced the PLTP activity in the media. ApoA-I also increased phospholipid transfer activity of PLTP isolated from human plasma. This effect was dependent on apoA-I concentration but independent on apoA-I lipidation status. ApoE, ApoA-II and apoA-IV, but not immunoglobulins or bovine serum albumin, also increased PLTP activity. We also report that apoA-I protects PLTP from heat inactivation. CONCLUSION apoA-I enhances the phospholipid transfer activity of PLTP secreted from macrophage foam cells without affecting the PLTP mass.
Collapse
Affiliation(s)
- Marius R Robciuc
- National Institute for Health and Welfare, Public Health Genomics Research Unit and FIMM, Institute for Molecular Medicine Finland, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
26
|
Derbali H, Bossé Y, Côté N, Pibarot P, Audet A, Pépin A, Arsenault B, Couture C, Després JP, Mathieu P. Increased biglycan in aortic valve stenosis leads to the overexpression of phospholipid transfer protein via Toll-like receptor 2. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2638-45. [PMID: 20382708 DOI: 10.2353/ajpath.2010.090541] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aortic stenosis (AS) is the most common valvular heart disease, and it is suspected that atherosclerotic mechanisms are involved in the development of this disorder. Therefore, the retention of lipids within the aortic valve may play a role in the pathobiology of AS. In this study, a gene expression microarray experiment was conducted on human aortic valves with and without AS. The expression levels of transcripts encoding proteoglycans and enzymes involved in lipid retention were compared between the two groups. The microarray results were subsequently replicated in a cohort of 87 AS valves and 36 control valves. In addition, the interaction between proteoglycan and lipid-modifying enzyme was documented in isolated valve interstitial cells (VICs). The microarray results indicated that only biglycan (BGN) and phospholipid transfer protein (PLTP) were overexpressed in the AS valves. These results were then confirmed by quantitative PCR. The immunohistochemical analysis revealed a colocalization of BGN, PLTP, and Toll-like receptor-2 (TLR 2) in AS valves. In vitro, we showed that BGN induces the production of PLTP in VICs via the stimulation of TLR 2. Thus, increased accumulation of BGN in AS valves contributes to the production of PLTP via TLR 2. These results suggest that intricate links between valve matrix proteins, inflammation, and lipid retention are involved in the pathobiology of AS.
Collapse
Affiliation(s)
- Habib Derbali
- Laboratoire d'Etudes Moléculaires des Valvulopathies, Groupe de Recherche en Valvulopathies, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Ste-Foy Québec, Quebec, Canada, G1V-4G5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jarvik GP, Rajagopalan R, Rosenthal EA, Wolfbauer G, McKinstry L, Vaze A, Brunzell J, Motulsky AG, Nickerson DA, Heagerty PJ, Wijsman EM, Albers JJ. Genetic and nongenetic sources of variation in phospholipid transfer protein activity. J Lipid Res 2009; 51:983-90. [PMID: 19965587 DOI: 10.1194/jlr.m000125] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide-binding protein gene family. Expression of PLTP has been implicated in the development of atherosclerosis. We evaluated the effects of PLTP region tagging single nucleotide polymorphisms (SNPs) on the prediction of both carotid artery disease (CAAD) and PLTP activity. CAAD effects were evaluated in 442 Caucasian male subjects with severe CAAD and 497 vascular disease-free controls. SNP prediction of PLTP transfer activity was evaluated in both a subsample of 87 subjects enriched for an allele of interest and in a confirmation sample of 210 Caucasian males and females. Hemoglobin A1c or insulin level predicted 11-14% of age- and sex-adjusted PLTP activity. PLTP SNPs that predicted approximately 11-30% of adjusted PLTP activity variance were identified in the two cohorts. For rs6065904, the allele that was associated with CAAD was also associated with elevated PLTP activity in both cohorts. SNPs associated with PLTP activity also predicted variation in LDL-cholesterol and LDL-B level only in the replication cohort. These results demonstrate that PLTP activity is strongly influenced by PLTP region polymorphisms and metabolic factors.
Collapse
Affiliation(s)
- Gail P Jarvik
- Department of Medicine (Division of Medical Genetics), University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tzotzas T, Desrumaux C, Lagrost L. Plasma phospholipid transfer protein (PLTP): review of an emerging cardiometabolic risk factor. Obes Rev 2009; 10:403-11. [PMID: 19413703 DOI: 10.1111/j.1467-789x.2009.00586.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma phospholipid transfer protein (PLTP) is a lipid transfer glycoprotein that binds to and transfers a number of amphipathic compounds. In earlier studies, the attention of the scientific community focused on the positive role of PLTP in high-density lipoprotein (HDL) metabolism. However, this potentially anti-atherogenic role of PLTP has been challenged recently by another picture: PLTP arose as a pro-atherogenic factor through its ability to increase the production of apolipoprotein B-containing lipoproteins, to decrease their antioxidative protection and to trigger inflammation. In humans, PLTP has mostly been studied in patients with cardiometabolic disorders. Both PLTP and related cholesteryl ester transfer protein (CETP) are secreted proteins, and adipose tissue is an important contributor to the systemic pools of these two proteins. Coincidently, high levels of PLTP and CETP have been found in the plasma of obese patients. PLTP activity and mass have been reported to be abnormally elevated in type 2 diabetes mellitus (T2DM) and insulin-resistant states, and this elevation is frequently associated with hypertriglyceridemia and obesity. This review article presents the state of knowledge on the implication of PLTP in lipoprotein metabolism, on its atherogenic potential, and the complexity of its implication in obesity, insulin resistance and T2DM.
Collapse
Affiliation(s)
- T Tzotzas
- Department of Nutrition and Dietetics, Technological Educational Institution, Thessaloniki, Greece.
| | | | | |
Collapse
|
29
|
Elevation of systemic PLTP, but not macrophage-PLTP, impairs macrophage reverse cholesterol transport in transgenic mice. Atherosclerosis 2008; 204:429-34. [PMID: 19100548 DOI: 10.1016/j.atherosclerosis.2008.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/02/2008] [Accepted: 10/08/2008] [Indexed: 11/21/2022]
Abstract
Phospholipid transfer protein (PLTP) is a multifunctional protein synthesized by various cell types and secreted into the plasma. Plasma PLTP is able to transfer phospholipids between lipoproteins and modulate HDL particles. Mice with overexpression of human PLTP have an increased ability to generate pre beta-HDL, reduced total HDL levels and an increased susceptibility to atherosclerosis. As the macrophage is a key component of the atherosclerotic lesion and an important site of PLTP expression, we investigated the role of systemic and peripheral PLTP in macrophage cholesterol efflux and reverse cholesterol transport (RCT) in vivo. We used an assay in which (3)H-labelled cholesterol-loaded macrophages were injected intraperitoneally into recipient mice, and radioactivity was quantified in plasma, liver and faeces. Firstly, wild type macrophages were injected into wild type, PLTP transgenic (PLTPtg) and apoAI transgenic (apoAItg) mice. While plasma (3)H-tracer levels in apoAItg mice were increased compared with wild type mice, they were reduced in PLTPtg mice. Moreover, overexpression of PLTP significantly decreased faecal (3)H-tracer levels compared with wild type and apoAItg mice. Secondly, wild type mice were injected with peritoneal macrophages derived from PLTPtg or wild type mice. No significant difference in the amount of (3)H-tracer in plasma, liver or faeces was found between the two groups of mice. Our findings demonstrate that macrophage cholesterol efflux and RCT to faeces is impaired in PLTP transgenic mice, and that elevation of macrophage-PLTP does not affect RCT, indicating that higher systemic PLTP levels may promote atherosclerosis development by decreasing the rate of macrophage RCT.
Collapse
|
30
|
Scheideler M, Elabd C, Zaragosi LE, Chiellini C, Hackl H, Sanchez-Cabo F, Yadav S, Duszka K, Friedl G, Papak C, Prokesch A, Windhager R, Ailhaud G, Dani C, Amri EZ, Trajanoski Z. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics 2008; 9:340. [PMID: 18637193 PMCID: PMC2492879 DOI: 10.1186/1471-2164-9-340] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/17/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A reciprocal relationship between bone and fat development in osteoporosis is clinically well established. Some of the key molecular regulators involved in this tissue replacement process have been identified. The detailed mechanisms governing the differentiation of mesenchymal stem cells (MSC) - the key cells involved - are however only now beginning to emerge. In an attempt to address the regulation of the adipocyte/osteoblast balance at the level of gene transcription in a comprehensive and unbiased manner, we performed a large-scale gene expression profiling study using a unique cellular model, human multipotent adipose tissue-derived stem cells (hMADS). RESULTS The analysis of 1606 genes that were found to be differentially expressed between adipogenesis and osteoblastogenesis revealed gene repression to be most prevalent prior to commitment in both lineages. Computational analyses suggested that this gene repression is mediated by miRNAs. The transcriptional activation of lineage-specific molecular processes in both cases occurred predominantly after commitment. Analyses of the gene expression data and promoter sequences produced a set of 65 genes that are candidates for genes involved in the process of adipocyte/osteoblast commitment. Four of these genes were studied in more detail: LXRalpha and phospholipid transfer protein (PLTP) for adipogenesis, the nuclear receptor COUP-TF1 and one uncharacterized gene, TMEM135 for osteoblastogenesis. PLTP was secreted during both early and late time points of hMADS adipocyte differentiation. LXRalpha, COUP-TF1, and the transmembrane protein TMEM135 were studied in primary cultures of differentiating bone marrow stromal cells from healthy donors and were found to be transcriptionally activated in the corresponding lineages. CONCLUSION Our results reveal gene repression as a predominant early mechanism before final cell commitment. We were moreover able to identify 65 genes as candidates for genes controlling the adipocyte/osteoblast balance and to further evaluate four of these. Additional studies will explore the precise role of these candidate genes in regulating the adipogenesis/osteoblastogenesis switch.
Collapse
Affiliation(s)
- Marcel Scheideler
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Christian Elabd
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | | | - Chiara Chiellini
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Hubert Hackl
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Fatima Sanchez-Cabo
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Genomics Unit, Centro Nacional de Investiganciones Cardiovasculares, Madrid, Spain
| | - Sunaina Yadav
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Kalina Duszka
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Gerald Friedl
- Department of Orthopaedics, Medical University of Graz, Graz, Austria
| | - Christine Papak
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Andreas Prokesch
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | | | - Gerard Ailhaud
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Christian Dani
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Ez-Zoubir Amri
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
31
|
Hime NJ, Black AS, Bulgrien JJ, Curtiss LK. Leukocyte-derived hepatic lipase increases HDL and decreases en face aortic atherosclerosis in LDLr-/- mice expressing CETP. J Lipid Res 2008; 49:2113-23. [PMID: 18599739 DOI: 10.1194/jlr.m700564-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In addition to hepatic expression, cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) are expressed by human macrophages. The combined actions of these proteins have profound effects on HDL structure and function. It is not known how these HDL changes influence atherosclerosis. To elucidate the role of leukocyte-derived HL on atherosclerosis in a background of CETP expression, we studied low density lipoprotein receptor-deficient mice expressing human CETP (CETPtgLDLr -/-) with a leukocyte-derived HL deficiency (HL -/- BM). HL(-/-) bone marrow (BM), CETPtgLDLr(-/-) mice were generated via bone marrow transplantation. Wild-type bone marrow was transplanted into CETPtgLDLr(-/-) mice to generate HL +/+ BM, CETPtgLDLr(-/-) controls. The chimeras were fed a high-fat, high-cholesterol diet for 14 weeks to promote atherosclerosis. In female HL(-/-) BM, CETPtgLDLr(-/-) mice plasma HDL-cholesterol concentration during high-fat feeding was decreased 27% when compared with HL +/+ BM, CETPtgLDLr(-/-) mice (P < 0.05), and this was associated with a 96% increase in en face aortic atherosclerosis (P < 0.05). In male CETPtgLDLr(-/-) mice, leukocyte-derived HL deficiency was associated with a 16% decrease in plasma HDL-cholesterol concentration and a 25% increase in aortic atherosclerosis. Thus, leukocyte-derived HL in CETPtgLDLr(-/-) mice has an atheroprotective role that may involve increased HDL levels.
Collapse
Affiliation(s)
- Neil J Hime
- Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | |
Collapse
|
32
|
Vergeer M, Dallinga-Thie GM, Dullaart RPF, van Tol A. Evaluation of phospholipid transfer protein as a therapeutic target. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.3.327] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
van Haperen R, Samyn H, Moerland M, van Gent T, Peeters M, Grosveld F, van Tol A, de Crom R. Elevated expression of phospholipid transfer protein in bone marrow derived cells causes atherosclerosis. PLoS One 2008; 3:e2255. [PMID: 18509527 PMCID: PMC2386265 DOI: 10.1371/journal.pone.0002255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 03/25/2008] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) is expressed by various cell types. In plasma, it is associated with high density lipoproteins (HDL). Elevated levels of PLTP in transgenic mice result in decreased HDL and increased atherosclerosis. PLTP is present in human atherosclerotic lesions, where it seems to be macrophage derived. The aim of the present study is to evaluate the atherogenic potential of macrophage derived PLTP. METHODS AND FINDINGS Here we show that macrophages from human PLTP transgenic mice secrete active PLTP. Subsequently, we performed bone marrow transplantations using either wild type mice (PLTPwt/wt), hemizygous PLTP transgenic mice (huPLTPtg/wt) or homozygous PLTP transgenic mice (huPLTPtg/tg) as donors and low density lipoprotein receptor deficient mice (LDLR-/-) as acceptors, in order to establish the role of PLTP expressed by bone marrow derived cells in diet-induced atherogenesis. Atherosclerosis was increased in the huPLTPtg/wt-->LDLR-/- mice (2.3-fold) and even further in the huPLTPtg/tg-->LDLR-/- mice (4.5-fold) compared with the control PLTPwt/wt-->LDLR-/- mice (both P<0.001). Plasma PLTP activity levels and non-HDL cholesterol were increased and HDL cholesterol decreased compared with controls (all P<0.01). PLTP was present in atherosclerotic plaques in the mice as demonstrated by immunohistochemistry and appears to co-localize with macrophages. Isolated macrophages from PLTP transgenic mice do not show differences in cholesterol efflux or in cytokine production. Lipopolysaccharide activation of macrophages results in increased production of PLTP. This effect was strongly amplified in PLTP transgenic macrophages. CONCLUSIONS We conclude that PLTP expression by bone marrow derived cells results in atherogenic effects on plasma lipids, increased PLTP activity, high local PLTP protein levels in the atherosclerotic lesions and increased atherosclerotic lesion size.
Collapse
Affiliation(s)
- Rien van Haperen
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannelore Samyn
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Matthijs Moerland
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Teus van Gent
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marian Peeters
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frank Grosveld
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arie van Tol
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Rini de Crom
- Department of Cell Biology and Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Vascular Surgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Lee-Rueckert M, Vikstedt R, Metso J, Jauhiainen M, Kovanen PT. Association of cholesteryl ester transfer protein with HDL particles reduces its proteolytic inactivation by mast cell chymase. J Lipid Res 2008; 49:358-68. [DOI: 10.1194/jlr.m700392-jlr200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Settasatian N, Barter PJ, Rye KA. Remodeling of apolipoprotein E-containing spherical reconstituted high density lipoproteins by phospholipid transfer protein. J Lipid Res 2008; 49:115-26. [DOI: 10.1194/jlr.m700220-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Vikstedt R, Metso J, Hakala J, Olkkonen VM, Ehnholm C, Jauhiainen M. Cholesterol efflux from macrophage foam cells is enhanced by active phospholipid transfer protein through generation of two types of acceptor particles. Biochemistry 2007; 46:11979-86. [PMID: 17900150 DOI: 10.1021/bi700833h] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipid transfer protein (PLTP) is expressed by macrophage-derived foam cells in human atherosclerotic lesions, suggesting a regulatory role for PLTP in cellular cholesterol homeostasis. However, the exact role of PLTP in the reverse cholesterol transport pathway is not known. PLTP is present in plasma as two forms, a highly active (HA-PLTP) and a lowly active (LA-PLTP) form. In this study we clarify the role of the two forms of PLTP in cholesterol efflux from [3H]cholesterol oleate-acetyl-LDL-loaded THP-1 macrophages. Incubation of HDL in the presence of HA-PLTP resulted in the formation of two types of acceptor particles, prebeta-HDL and large fused HDL. HA-PLTP increased prebeta-HDL formation and caused a 42% increase in [3H]cholesterol efflux to HDL, while LA-PLTP neither formed prebeta-HDL nor increased cholesterol efflux. Removal of the formed prebeta-HDL by immunoprecipitation decreased cholesterol efflux by 47%. Neither HA- nor LA-PLTP enhanced cholesterol efflux to lipid-free apoA-I. Importantly, also the large fused HDL particles formed during incubation of HDL with HA-PLTP acted as efficient cholesterol acceptors. These observations demonstrate that only HA-PLTP increases macrophage cholesterol efflux, via formation of efficient cholesterol acceptors, prebeta-HDL and large fused HDL particles.
Collapse
Affiliation(s)
- Riikka Vikstedt
- National Public Health Institute, Department of Molecular Medicine, Biomedicum, P.O. Box 104, FI-00251 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
37
|
Ogier N, Klein A, Deckert V, Athias A, Bessède G, Le Guern N, Lagrost L, Desrumaux C. Cholesterol accumulation is increased in macrophages of phospholipid transfer protein-deficient mice: normalization by dietary alpha-tocopherol supplementation. Arterioscler Thromb Vasc Biol 2007; 27:2407-12. [PMID: 17717294 DOI: 10.1161/atvbaha.107.151753] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP) is a multifunctional, extracellular lipid transport protein that plays a major role in lipoprotein metabolism and atherosclerosis. Recent in vivo studies suggested that unlike systemic PLTP, macrophage-derived PLTP would be antiatherogenic. The present study aimed at characterizing the atheroprotective properties of macrophage-derived PLTP. METHODS AND RESULTS Peritoneal macrophages were isolated from PLTP-deficient and wild-type mice and their biochemical characteristics were compared. It is shown that macrophages isolated from PLTP-deficient mice have increased basal cholesterol content and accumulate more cholesterol in the presence of LDL compared with wild-type cells. Cholesterol parameters in macrophages of PLTP-deficient mice were normalized by dietary alpha-tocopherol supplementation. CONCLUSIONS The antiatherogenic properties of macrophage-derived PLTP are related at least in part to its ability to reduce cholesterol accumulation in macrophages through changes in the alpha-tocopherol content and oxidative status of the cells.
Collapse
Affiliation(s)
- Nicolas Ogier
- INSERM U866, Centre de Recherche, IFR Santé-STIC, Faculté de Médecine, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dallinga-Thie GM, Dullaart RPF, van Tol A. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes: effects of apolipoproteins. Curr Opin Lipidol 2007; 18:251-7. [PMID: 17495597 DOI: 10.1097/mol.0b013e3280e12685] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipoprotein metabolism. It is thus vital to understand their pathophysiology and determine which factors influence their functioning in type 2 diabetes. RECENT FINDINGS Cholesteryl ester transfer protein-mediated transfer is increased in diabetic patients and contributes to low plasma high-density lipoprotein cholesterol levels. Apolipoproteins A-I, A-II and E are components of the donor lipoprotein particles that participate in the transfer of cholesteryl esters from high-density lipoprotein to apolipoprotein B-containing lipoproteins. Current evidence for functional roles of apolipoproteins C-I, F and A-IV as modulators of cholesteryl ester transfer is discussed. Phospholipid transfer protein activity is increased in diabetic patients and may contribute to hepatic very low-density lipoprotein synthesis and secretion and vitamin E transfer. Apolipoprotein E could stimulate the phospholipid transfer protein-mediated transfer of surface fragments of triglyceride-rich lipoproteins to high-density lipoprotein, and promote high-density lipoprotein remodelling. SUMMARY Both phospholipid and cholesteryl ester transfer proteins are important in very low and high-density lipoprotein metabolism and display concerted actions in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Geesje M Dallinga-Thie
- Department of Vascular Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
39
|
Moerland M, Anghelescu N, Samyn H, van Haperen R, van Gent T, Strouboulis J, van Tol A, Grosveld F, de Crom R. Inducible expression of phospholipid transfer protein (PLTP) in transgenic mice: acute effects of PLTP on lipoprotein metabolism. Transgenic Res 2007; 16:503-13. [PMID: 17437182 DOI: 10.1007/s11248-007-9094-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
One main determinant in high-density lipoprotein (HDL) metabolism is phospholipid transfer protein (PLTP), a plasma protein that is associated with HDL. In transgenic mice overexpressing human PLTP we found that elevated plasma PLTP levels dose-dependently increased the susceptibility to diet-induced atherosclerosis. This could be mainly due to the fact that most functions of PLTP are potentially atherogenic, such as decreasing plasma HDL levels. To further elucidate the role of PLTP in lipoprotein metabolism and atherosclerosis we generated a novel transgenic mouse model that allows conditional expression of human PLTP. In this mouse model a human PLTP encoding sequence is controlled by a Tet-On system. Upon induction of PLTP expression, our mouse model showed a strongly increased PLTP activity (from 3.0 +/- 0.6 to 11.4 +/- 2.8 AU, p < 0.001). The increase in PLTP activity resulted in an acute decrease in plasma cholesterol of 33% and a comparable decrease in phospholipids. The decrease in total plasma cholesterol and phospholipids was caused by a 35% decrease in HDL-cholesterol level and a 41% decrease in HDL-phospholipid level. These results demonstrate the feasibility of our mouse model to induce an acute elevation of PLTP activity, which is easily reversible. As a direct consequence of an increase in PLTP activity, HDL-cholesterol and HDL-phospholipid levels strongly decrease. Using this mouse model, it will be possible to study the effects of acute elevation of PLTP activity on lipoprotein metabolism and pre-existing atherosclerosis.
Collapse
Affiliation(s)
- Matthijs Moerland
- Department of Cell Biology and Genetics, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Julius U, Jauhiainen M, Ehnholm C, Pietzsch J. Lipid transfer protein activities in subjects with impaired glucose tolerance. Clin Chem Lab Med 2007; 45:237-43. [PMID: 17311515 DOI: 10.1515/cclm.2007.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Impaired glucose tolerance (IGT) is associated with an increased risk of atherosclerosis that may be due in part to dyslipidemia. The purpose of this study was to assess the regulatory role of lipid transfer proteins in the development of this dyslipidemia. METHODS Activities of cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), as well as lipid and protein components of the major lipoprotein fractions, were evaluated in probands with IGT and were compared with those in subjects with normal glucose tolerance. The effect of a fat-rich meal on these variables was also investigated. RESULTS IGT probands had a higher triglyceride content in subfractions of low- (LDL) and high-density lipoprotein (HDL). IGT patients had higher fasting CETP activity. The latter was positively correlated with HDL2 triglycerides and negatively with HDL3 total cholesterol. PLTP activity and mass were not higher in IGT patients. However, PLTP activity correlated with components of VLDL and LDL and was influenced by the type of obesity. Neither CETP and PLTP activities nor PLTP mass were altered by a fat-rich meal. PLTP and CETP activities correlated in both fasting and postprandial conditions. CONCLUSIONS Increased fasting CETP activity may contribute to increased risk of atherosclerosis in subjects with IGT.
Collapse
Affiliation(s)
- Ulrich Julius
- Medical Clinics and Outpatient Department III, University Hospital, Dresden, Germany.
| | | | | | | |
Collapse
|
41
|
Wehinger A, Tancevski I, Schgoer W, Eller P, Hochegger K, Morak M, Hermetter A, Ritsch A, Patsch JR, Foeger B. Phospholipid Transfer Protein Augments Apoptosis in THP-1–Derived Macrophages Induced by Lipolyzed Hypertriglyceridemic Plasma. Arterioscler Thromb Vasc Biol 2007; 27:908-15. [PMID: 17272752 DOI: 10.1161/01.atv.0000259361.91267.8c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Lipolysis of triglyceride-rich lipoproteins (TGRLPs) generates phospholipid-rich surface remnants and induces cytotoxic effects in adjacent vascular cells. We hypothesized that by integrating surface remnants into HDL, phospholipid transfer protein (PLTP) alleviates cytotoxicity. METHODS AND RESULTS To test this hypothesis and gain insight into cytotoxicity during the postprandial phase in vivo, we injected normo-TG and hyper-TG human volunteers after a standardized fat meal (postprandial sample) with heparin, thereby stimulating lipolysis (postprandial heparinized sample). Incubation of (primary) human macrophages and primary human endothelial cells with postprandial heparinized hyper-TG plasma induced pronounced cytotoxic effects that were dose dependent on the TG content of the sample. No such effects were seen with normo-TG and postprandial hyper-TG plasma. In vitro lipolysis of VLDL and chylomicrons indicated that both lipoprotein fractions can cause cytotoxicity. Interestingly, in experiments with THP-1-derived macrophages stably transfected with PLTP, PLTP substantially augmented both net phospholipid uptake and apoptotic cell death due to postprandial heparinized hyper-TG plasma. We observed that activation of caspase-3/7, poly-ADP-ribose polymerase, and enhanced bioactivity of acid sphingomyelinase may all contribute to this augmented apoptosis. CONCLUSIONS Our data show that lipolysis of TGRLPs and their remodelling by PLTP interact to disturb cellular phospholipid flux and intracellular signaling processes, ultimately leading to apoptosis in human macrophages and endothelial cells.
Collapse
Affiliation(s)
- Andreas Wehinger
- Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vikstedt R, Ye D, Metso J, Hildebrand RB, Van Berkel TJC, Ehnholm C, Jauhiainen M, Van Eck M. Macrophage Phospholipid Transfer Protein Contributes Significantly to Total Plasma Phospholipid Transfer Activity and Its Deficiency Leads to Diminished Atherosclerotic Lesion Development. Arterioscler Thromb Vasc Biol 2007; 27:578-86. [PMID: 17170377 DOI: 10.1161/01.atv.0000254815.49414.be] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objective—
Systemic phospholipid transfer protein (PLTP) deficiency in mice is associated with a decreased susceptibility to atherosclerosis, whereas overexpression of human PLTP in mice increases atherosclerotic lesion development. PLTP is also expressed by macrophage-derived foam cells in human atherosclerotic lesions, but the exact role of macrophage PLTP in atherosclerosis is unknown.
Methods and Results—
To clarify the role of macrophage PLTP in atherogenesis, PLTP was selectively disrupted in hematopoietic cells, including macrophages, by transplantation of bone marrow from PLTP knockout (PLTP
−/−
) mice into irradiated low-density lipoprotein receptor knockout mice. Selective deficiency of macrophage PLTP (PLTP
−M/−M
) resulted in a 29% (
P
<0.01 for difference in lesion area) reduction in aortic root lesion area as compared with mice possessing functional macrophage PLTP (384±36*10
3
μm
2
in the PLTP
−M/−M
group (n=10), as compared with 539±35*10
3
μm
2
in the PLTP
+M/+M
group (n=14)) after 9 weeks of Western-type diet feeding. The decreased lesion size in the PLTP
−M/−M
group coincided with significantly lower serum total cholesterol, free cholesterol, and triglyceride levels in these mice. Furthermore, plasma PLTP activity in the PLTP
−M/−M
group was 2-fold (
P
<0.001) lower than that in the PLTP
+M/+M
group.
Conclusion—
Macrophage PLTP is a significant contributor to plasma PLTP activity and deficiency of PLTP in macrophages leads to lowered atherosclerotic lesion development in low-density lipoprotein receptor knockout mice on Western-type diet.
Collapse
Affiliation(s)
- Riikka Vikstedt
- National Public Health Institute, Department of Molecular Medicine, Biomedicum, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ooi EMM, Watts GF, Ji J, Rye KA, Johnson AG, Chan DC, Barrett PHR. Plasma phospholipid transfer protein activity, a determinant of HDL kinetics in vivo. Clin Endocrinol (Oxf) 2006; 65:752-9. [PMID: 17121526 DOI: 10.1111/j.1365-2265.2006.02662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Phospholipid transfer protein (PLTP) is an important regulator in the transport of surface components of triglyceride-rich lipoprotein (TRL) to high density lipoprotein (HDL) during lipolysis and may therefore play an important role in regulating HDL transport. In this study we investigated the relationship of plasma PLTP activity with HDL metabolism in men. DESIGN AND METHODS The kinetics of HDL LpA-I and LpA-I:A-II were measured using intravenous administration of [D3]-leucine, gas chromatography-mass spectrometry (GCMS) and a new multicompartmental model for HDL subpopulation kinetics (SAAM II) in 31 men with wide-ranging body mass index (BMI 18-46 kg/m2). Plasma PLTP activity was determined as the transfer of radiolabelled phosphatidylcholine from small unilamellar phosphatidylcholine vesicles to ultracentrifugally isolated HDL. RESULTS PLTP activity was inversely associated with LpA-I concentration and production rate (PR) after adjusting for insulin resistance (P < 0.05). No significant associations were observed between plasma PLTP activity and LpA-I fractional catabolic rate (FCR). In multivariate analysis, including homeostasis model assessment score (HOMA), triglyceride, cholesteryl ester transfer protein (CETP) activity and PLTP activity, PLTP activity was the only significant determinant of LpA-I concentration and PR (P = 0.020 and P = 0.016, respectively). CONCLUSIONS Plasma PLTP activity may be a significant, independent determinant of LpA-I kinetics in men, and may contribute to the maintenance of the plasma concentration of these lipoprotein particles in setting of hypercatabolism of HDL.
Collapse
Affiliation(s)
- Esther M M Ooi
- Metabolic Research Centre, School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu R, Hojjati MR, Devlin CM, Hansen IH, Jiang XC. Macrophage phospholipid transfer protein deficiency and ApoE secretion: impact on mouse plasma cholesterol levels and atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 27:190-6. [PMID: 17038631 DOI: 10.1161/01.atv.0000249721.96666.e5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE PLTP and apoE play important roles in lipoprotein metabolism and atherosclerosis. It is known that formation of macrophage-derived foam cells (which highly express PLTP and apoE) is the critical step in the process of atherosclerosis. We investigated the relationship between PLTP and apoE in macrophages and the atherogenic relevance in a mouse model. METHODS AND RESULTS We transplanted PLTP-deficient mouse bone marrow into apoE-deficient mice (PLTP-/- --> apoE-/-), creating a mouse model with PLTP deficiency and apoE expression exclusively in the macrophages. We found that PLTP-/- --> apoE-/- mice have significantly lower PLTP activity, compared with controls (WT --> apoE-/-; 20%, P<0.01). On a Western diet, PLTP-/- --> apoE-/- mice have significantly lower plasma apoE than that of WT --> apoE-/- mice (63%, P<0.001), and PLTP-deficient macrophages secrete significantly less apoE than WT macrophages (44%, P<0.01). Moreover, PLTP-/- --> apoE-/- mice have significantly higher plasma cholesterol (98%, P<0.001) and phospholipid (107%, P<0.001) than that of WT --> apoE-/- mice, thus increasing atherosclerotic lesions in the aortic arch and root (403%, P<0.001), as well as the entire aorta (298%, P<0.001). CONCLUSIONS Macrophage PLTP deficiency causes a significant reduction of apoE secretion from the cells, and this in turn promotes the accumulation of cholesterol in the circulation and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
45
|
Tan KCB, Shiu SWM, Wong Y, Wong WK, Tam S. Plasma apolipoprotein E concentration is an important determinant of phospholipid transfer protein activity in type 2 diabetes mellitus. Diabetes Metab Res Rev 2006; 22:307-12. [PMID: 16389649 DOI: 10.1002/dmrr.616] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and plays an important role in HDL metabolism. PLTP exists as a high-activity and a low-activity form in the circulation. In vitro studies have shown that apolipoprotein (apo) E is involved in maintaining PLTP in the active form, while the low-activity form is associated with apo AI. We have therefore investigated whether plasma apo AI, B and E concentrations are important determinants of plasma PLTP activity in type 2 diabetes, a condition associated with increased plasma PLTP activity. METHODS Plasma PLTP activity was assayed by measuring the transfer of radiolabelled phosphatidylcholine from liposomes to HDL; apo AI and B by rate nephelometry and apo E by a 2-point turbidimetric assay. RESULTS Type 2 diabetic patients (n = 230) had higher PLTP activity than controls (n = 97) (2374 +/- 628 nmol/mL/h versus 1862 +/- 585 respectively, p < 0.01). They also had increased fasting triglyceride and low HDL. Plasma apo B (p < 0.01) and apo E (p < 0.05) were increased, whereas apo AI was reduced (p < 0.01). Univariate analysis showed that plasma PLTP activity correlated mainly with apolipoproteins AI and E. Stepwise regression analysis showed that apo E was the main determinant of plasma PLTP activity, accounting for 23% of its variability in the diabetic subjects and 8% in the controls respectively. CONCLUSIONS The associations between plasma apo AI and E concentrations and PLTP activity suggest that these apolipoproteins are important regulators of PLTP activity in vivo. The increase in PLTP activity in type 2 diabetes is partly related to the changes in these apolipoproteins.
Collapse
Affiliation(s)
- K C B Tan
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong.
| | | | | | | | | |
Collapse
|
46
|
Valenta DT, Ogier N, Bradshaw G, Black AS, Bonnet DJ, Lagrost L, Curtiss LK, Desrumaux CM. Atheroprotective Potential of Macrophage-Derived Phospholipid Transfer Protein in Low-Density Lipoprotein Receptor-Deficient Mice Is Overcome by Apolipoprotein AI Overexpression. Arterioscler Thromb Vasc Biol 2006; 26:1572-8. [PMID: 16675720 DOI: 10.1161/01.atv.0000225700.43836.ae] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Using bone marrow transplantation, we assessed the impact of macrophage-derived phospholipid transfer protein (PLTP) on lesion development in hypercholesterolemic mice that expressed either normal levels of mouse apolipoprotein AI (apoAI) or elevated levels of only human apoAI.
Methods and Results—
Bone marrow transplantations were performed in low-density lipoprotein receptor-deficient mice (LDLr−/−) that expressed either normal levels of mouse apoAI (
ms
apoAI) or high levels of only human apoAI (
ms
apoAI−/−, LDLr−/−,
hu
apoAITg). Mice were lethally irradiated, reconstituted with either PLTP-expressing or PLTP-deficient bone marrow cells, and fed a high-fat diet over 16 weeks. Macrophage PLTP deficiency increased atherosclerosis in LDLr−/− mice with minimal changes in total plasma cholesterol levels. In contrast, the extent of atherosclerosis in
ms
apoAI−/−, LDLr−/−,
hu
apoAITg mice was not significantly different between groups that had received PLTP−/− or PLTP+/+ bone marrow. In vitro studies indicated that PLTP deficiency led to a significant decrease in α-tocopherol content and increased oxidative stress in bone marrow cells.
Conclusions—
Our observations suggest an atheroprotective role of macrophage-derived PLTP in mice with normal apoAI plasma levels. The atheroprotective properties of macrophage-derived PLTP were not observable in the presence of elevated plasma concentrations of apoAI.
Collapse
Affiliation(s)
- David T Valenta
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Plasma cholesteryl ester transfer protein and phospholipid transfer protein are involved in lipoprotein metabolism. Conceivably, manipulation of either transfer protein could impact atherosclerosis and other lipid-driven diseases. RECENT FINDINGS Cholesteryl ester transfer protein mediates direct HDL cholesteryl ester delivery to the liver cells; adipose tissue-specific overexpression of cholesteryl ester transfer protein in mice reduces the plasma HDL cholesterol concentration and adipocyte size; cholesteryl ester transfer protein TaqIB polymorphism is associated with HDL cholesterol plasma levels and the risk of coronary heart disease. In apolipoprotein B transgenic mice, phospholipid transfer protein deficiency enhances reactive oxygen species-dependent degradation of newly synthesized apolipoprotein B via a post-endoplasmic reticulum process, as well as improving the antiinflammatory properties of HDL in mice. Activity of this transfer protein in cerebrospinal fluid of patients with Alzheimer's disease is profoundly decreased and exogenous phospholipid transfer protein induces apolipoprotein E secretion by primary human astrocytes in vitro. SUMMARY Understanding the relationship between lipid transfer proteins and lipoprotein metabolism is expected to be an important frontier in the search for a therapy for atherosclerosis.
Collapse
Affiliation(s)
- Xian-Cheng Jiang
- Department of Anatomy and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.
| | | |
Collapse
|
48
|
Tzotzas T, Dumont L, Triantos A, Karamouzis M, Constantinidis T, Lagrost L. Early decreases in plasma lipid transfer proteins during weight reduction. Obesity (Silver Spring) 2006; 14:1038-45. [PMID: 16861609 DOI: 10.1038/oby.2006.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the effect of short-term weight loss in obese women on concentrations of plasma cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), two new risk factors for cardiovascular disease. RESEARCH METHODS AND PROCEDURES Plasma CETP and PLTP mass concentrations were measured in 38 obese, non-diabetic women before and after a moderate, 4% weight loss that was obtained by a 1250 kcal/d diet for 4 weeks. Anthropometric and biological parameters were measured before and after weight loss. RESULTS Plasma CETP concentration decreased substantially after weight loss (2.76 +/- 0.79 before and 2.31 +/- 0.69 mg/L after; p = 0.000), and the same was true for plasma PLTP concentration (9.01 +/- 2.44 mg/L before vs. 8.34 +/- 2.57 after; p = 0.043). The HDL profile shifted toward the small-sized range, with significant decreases in the relative abundance of HDL(2b) and HDL(2a) at the expense of HDL(3b) after weight loss. A significant, positive correlation between CETP and PLTP mass concentrations is reported for the first time in obese patients (r = 0.43, p = 0.004), and weight reduction was accompanied by early, concomitant, and parallel decreases in plasma CETP and PLTP levels (r = 0.47, p = 0.003). The significant relationship between CETP and PLTP levels was lost after the dietary intervention (r = 0.27; p = 0.11). DISCUSSION CETP and PLTP correlate positively and significantly in obese patients. The hypocaloric dietary manipulation constitutes a relevant intervention to reduce rapidly and simultaneously plasma levels of CETP and PLTP. The impact of reduced PLTP activity on HDL size appeared to be more prominent than the impact of concomitant reduction in CETP activity.
Collapse
Affiliation(s)
- Themistoklis Tzotzas
- Department of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
49
|
Lee-Rueckert M, Vikstedt R, Metso J, Ehnholm C, Kovanen PT, Jauhiainen M. Absence of endogenous phospholipid transfer protein impairs ABCA1-dependent efflux of cholesterol from macrophage foam cells. J Lipid Res 2006; 47:1725-32. [PMID: 16687660 DOI: 10.1194/jlr.m600051-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro experiments have demonstrated that exogenous phospholipid transfer protein (PLTP), i.e. purified PLTP added to macrophage cultures, influences ABCA1-mediated cholesterol efflux from macrophages to HDL. To investigate whether PLTP produced by the macrophages (i.e., endogenous PLTP) is also part of this process, we used peritoneal macrophages derived from PLTP-knockout (KO) and wild-type (WT) mice. The macrophages were transformed to foam cells by cholesterol loading, and this resulted in the upregulation of ABCA1. Such macrophage foam cells from PLTP-KO mice released less cholesterol to lipid-free apolipoprotein A-I (apoA-I) and to HDL than did the corresponding WT foam cells. Also, when plasma from either WT or PLTP-KO mice was used as an acceptor, cholesterol efflux from PLTP-KO foam cells was less efficient than that from WT foam cells. After cAMP treatment, which upregulated the expression of ABCA1, cholesterol efflux from PLTP-KO foam cells to apoA-I increased markedly and reached a level similar to that observed in cAMP-treated WT foam cells, restoring the decreased cholesterol efflux associated with PLTP deficiency. These results indicate that endogenous PLTP produced by macrophages contributes to the optimal function of the ABCA1-mediated cholesterol efflux-promoting machinery in these cells. Whether macrophage PLTP acts at the plasma membrane or intracellularly or shuttles between these compartments needs further study.
Collapse
|
50
|
Curtiss LK, Valenta DT, Hime NJ, Rye KA. What is so special about apolipoprotein AI in reverse cholesterol transport? Arterioscler Thromb Vasc Biol 2005; 26:12-9. [PMID: 16269660 DOI: 10.1161/01.atv.0000194291.94269.5a] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An initial step in reverse cholesterol transport is the movement of unesterified cholesterol from peripheral cells to high-density lipoproteins (HDLs). This transfer usually occurs in extracellular spaces, such as the subendothelial space of a vessel wall, and is promoted by the interaction of lipid-free or lipid-poor apolipoprotein (apo)AI with ATP binding cassette A1 cellular transporters on macrophages (MPhi). Because HDL does not interact with MPhi ATP binding cassette A1 and apoAI is not synthesized by macrophages, this apoAI must be generated from spherical HDL. In this brief review, we propose that spherical apoAI is derived from HDL by remodeling events that are accomplished by proteins secreted by cholesteryl ester-loaded foam cells, including the lipid transfer proteins, phospholipid transfer protein, and cholesteryl ester transfer protein, and the triglyceride hydrolases hepatic lipase and lipoprotein lipase.
Collapse
Affiliation(s)
- Linda K Curtiss
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|