1
|
Wu D, Zheng N, Qi K, Cheng H, Sun Z, Gao B, Zhang Y, Pang W, Huangfu C, Ji S, Xue M, Ji A, Li Y. Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Med Gas Res 2015; 5:1. [PMID: 25606341 PMCID: PMC4299593 DOI: 10.1186/s13618-014-0022-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. Hydrogen sulfide (H2S) plays an important role in physiology and pathophysiology of liver. However, whether exogenous H2S could mitigate the hepatic steatosis in mice remains unclear. The aim of this study is to evaluate the effects of H2S on fatty liver. Methods C57BL/6 mice were fed with either a high-fat diet (HFD) or a normal fat diet (NFD) for 16 weeks. After 12 weeks of feeding, the HFD-fed mice were injected one time per day with NaHS or saline for the followed 4 weeks. Results Compared to NFD, HFD could induce an accumulation of lipids in liver and a damage of hepatic structure. Compared to saline treatment, in the liver of HFD fed mice H2S treatment could significantly (1) recover the structure; (2) decrease the accumulation of lipids including triglyceride (TG) and total cholesterol (TC); (3) decrease the expression of fatty acid synthase (FAS) and increase the expression of carnitine palmitoyltransferase-1 (CPT-1); (4) reduce malondialdehyde (MDA) levels; (5) increase the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Conclusion H2S could mitigate the fatty liver by improving lipid metabolism and antioxidant potential in HFD-induced obese mice.
Collapse
Affiliation(s)
- Dongdong Wu
- Medical College of Henan University, Kaifeng, 475004 Henan China
| | - Nairui Zheng
- Institute of Environmental Medicine of Henan University, Kaifeng, 475004 China.,Nursing College of Henan University, Kaifeng, 475004 China
| | - Kunqing Qi
- Department of Neurology, the First Affiliated Hospital, Institute of Neurological Disorder, Henan University, Kaifeng, 475004 China
| | - Huijun Cheng
- Medical College of Henan University, Kaifeng, 475004 Henan China
| | - Ziqiang Sun
- Medical College of Henan University, Kaifeng, 475004 Henan China
| | - Biao Gao
- Medical College of Henan University, Kaifeng, 475004 Henan China
| | - Youjing Zhang
- Medical College of Henan University, Kaifeng, 475004 Henan China
| | - Wuyan Pang
- Huaihe Hospital of Henan University, Kaifeng, 475004 China
| | - Chaoshen Huangfu
- Medical College of Henan University, Kaifeng, 475004 Henan China.,Institute of Environmental Medicine of Henan University, Kaifeng, 475004 China
| | - Shaoping Ji
- Medical College of Henan University, Kaifeng, 475004 Henan China
| | - Mengzhou Xue
- Department of Neurology, the First Affiliated Hospital, Institute of Neurological Disorder, Henan University, Kaifeng, 475004 China
| | - Ailing Ji
- Medical College of Henan University, Kaifeng, 475004 Henan China
| | - Yanzhang Li
- Medical College of Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
2
|
Huang M, Gong Y, Grondolsky J, Hoover-Plow J. Lp(a)/apo(a) modulate MMP-9 activation and neutrophil cytokines in vivo in inflammation to regulate leukocyte recruitment. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1503-17. [PMID: 24650562 DOI: 10.1016/j.ajpath.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
Abstract
Lipoprotein(a) [Lp(a)] is an independent risk factor for cardiovascular diseases, but the mechanism is unclear. The pathogenic risk of Lp(a) is associated with elevated plasma concentration, small isoforms of apolipoprotein [apo(a)], the unique apolipoprotein of Lp(a), and a mimic of plasminogen. Inflammation is associated with both the initiation and recovery of cardiovascular diseases, and plasminogen plays an important role in leukocyte recruitment. Because Lp(a)/apo(a) is expressed only in primates, transgenic mice were generated, apo(a)tg and Lp(a)tg mice, to determine whether Lp(a)/apo(a) modifies plasminogen-dependent leukocyte recruitment or whether apo(a) has an independent role in vivo. Plasminogen activation was markedly reduced in apo(a)tg and Lp(a)tg mice in both peritonitis and vascular injury inflammatory models, and was sufficient to reduce matrix metalloproteinase-9 activation and macrophage recruitment. Furthermore, neutrophil recruitment and the neutrophil cytokines, CXCL1/CXCL2, were suppressed in apo(a)tg mice in the abdominal aortic aneurysm model. Reconstitution of CXCL1 or CXCL2 restored neutrophil recruitment in apo(a)tg mice. Apo(a) in the plasminogen-deficient background and Lp(a)tg mice were resistant to inhibition of macrophage recruitment that was associated with an increased accumulation of apo(a) in the intimal layer of the vessel wall. These data indicate that, in inflammation, Lp(a)/apo(a) suppresses neutrophil recruitment by plasminogen-independent cytokine inhibition, and Lp(a)/apo(a) inhibits plasminogen activation and regulates matrix metalloproteinase-9 activation and macrophage recruitment.
Collapse
Affiliation(s)
- Menggui Huang
- Department of Molecular Cardiology, the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Yanqing Gong
- Department of Molecular Cardiology, the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Jessica Grondolsky
- Department of Molecular Cardiology, the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Jane Hoover-Plow
- Department of Molecular Cardiology, the Cleveland Clinic Lerner Research Institute, Cleveland, Ohio; Department of Cardiovascular Medicine, the Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Cleveland, Ohio.
| |
Collapse
|
3
|
Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, Goldberg IJ, Schwabe RF, Chua SC, Huang LS. Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem 2008; 283:13087-99. [PMID: 18337240 DOI: 10.1074/jbc.m800533200] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatic steatosis is often associated with insulin resistance and obesity and can lead to steatohepatitis and cirrhosis. In this study, we have demonstrated that hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), two enzymes critical for lipolysis in adipose tissues, also contribute to lipolysis in the liver and can mobilize hepatic triglycerides in vivo and in vitro. Adenoviral overexpression of HSL and/or ATGL reduced liver triglycerides by 40-60% in both ob/ob mice and mice with high fat diet-induced obesity. However, these enzymes did not affect fasting plasma triglyceride and free fatty acid levels or triglyceride and apolipoprotein B secretion rates. Plasma 3-beta-hydroxybutyrate levels were increased 3-5 days after infection in both HSL- and ATGL-overexpressing male mice, suggesting an increase in beta-oxidation. Expression of genes involved in fatty acid transport and synthesis, lipid storage, and mitochondrial bioenergetics was unchanged. Mechanistic studies in oleate-supplemented McA-RH7777 cells with adenoviral overexpression of HSL or ATGL showed that reduced cellular triglycerides could be attributed to increases in beta-oxidation as well as direct release of free fatty acids into the medium. In summary, hepatic overexpression of HSL or ATGL can promote fatty acid oxidation, stimulate direct release of free fatty acid, and ameliorate hepatic steatosis. This study suggests a direct functional role for both HSL and ATGL in hepatic lipid homeostasis and identifies these enzymes as potential therapeutic targets for ameliorating hepatic steatosis associated with insulin resistance and obesity.
Collapse
Affiliation(s)
- Brendan N Reid
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dubey P, Cheema SK. Molecular mechanisms involved in the regulation of lipid and lipoprotein metabolism by fish oil. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460875.1.5.559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Zhang YL, Hernandez-Ono A, Siri P, Weisberg S, Conlon D, Graham MJ, Crooke RM, Huang LS, Ginsberg HN. Aberrant hepatic expression of PPARgamma2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J Biol Chem 2006; 281:37603-15. [PMID: 16971390 DOI: 10.1074/jbc.m604709200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-resistant apoB/BATless mice have hypertriglyceridemia because of increased assembly and secretion of very low density apolipoprotein B (apoB) and triglycerides compared with mice expressing only apoB (Siri, P., Candela, N., Ko, C., Zhang, Y., Eusufzai, S., Ginsberg, H. N., and Huang, L. S. (2001) J. Biol. Chem. 276, 46064-46072). Despite increased very low density lipoprotein secretion, apoB/BATless mice have fatty livers. We found that hepatic mRNA levels of key lipogenic enzymes, acetyl-CoA carboxylase, fatty-acid synthase, and stearoyl-CoA desaturase-1 were increased in apoB/BATless mice compared with levels in apoB mice, suggesting increased lipogenesis in apoB/BATless mice. This was confirmed by determining incorporation of tritiated water into fatty acids. Neither the hepatic mRNA of the lipogenic transcription factor, SREBP-1c (sterol-response element-binding protein 1c), nor the nuclear levels of the mature form of SREBP-1 protein were elevated in apoB/BATless mice. By contrast, hepatic levels of peroxisomal proliferator-activated receptor 2 (PPARgamma2) mRNA and protein were specifically increased in apoB/BATless mice, as were hepatic mRNA levels of two targets of PPARgamma, CD36 and aP2. Treatment of apoB/BATless mice for 4 weeks with intraperitoneal injections of a PPARgamma antisense oligonucleotide resulted in dramatic reductions of both PPARgamma1 and PPARgamma2 mRNA, PPARgamma2 protein, and mRNA levels of fatty-acid synthase and acetyl-CoA carboxylase. These changes were associated with decreased hepatic de novo lipogenesis and hepatic triglyceride concentrations. We conclude that hepatic steatosis in apoB/BATless mice is associated with elevated rates of hepatic lipogenesis that are linked directly to increased hepatic expression of PPARgamma2. The mechanism whereby hepatic Ppargamma2 gene expression is increased and how PPARgamma2 stimulates lipogenesis is under investigation.
Collapse
Affiliation(s)
- Yuan-Li Zhang
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lin MH, Lu SC, Huang PC, Liu YC, Liu SY. A high-cholesterol, n-3 polyunsaturated fatty acid diet causes different responses in rats and hamsters. ANNALS OF NUTRITION AND METABOLISM 2005; 49:386-91. [PMID: 16219990 DOI: 10.1159/000088891] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Accepted: 05/13/2005] [Indexed: 11/19/2022]
Abstract
This study was designed to investigate the response to a high-cholesterol, n-3 polyunsaturated fatty acid (PUFA) or n-6 PUFA diet in rats and hamsters. Animals were fed n-3 or n-6 PUFA with a cholesterol-free diet, or with a diet enriched with cholesterol (0.5%, w/w) for 2 weeks. In rats and hamsters fed a cholesterol-free diet, plasma cholesterol, triglycerides and very-low-density lipoprotein (VLDL)-triglyceride levels in n-3 PUFA group were significantly lower than those in n-6 PUFA group. In contrast, when diets were supplemented with 0.5% cholesterol, the plasma cholesterol- and triglyceride-lowering effect of dietary n-3 PUFA disappeared. In hamsters fed with the atherogenic diet (0.5% dietary cholesterol) for 2 weeks, n-3 PUFA induced hypercholesterolemia more than n-6 PUFA, the increase being in the VLDL and low-density lipoprotein (LDL) fractions. Our data thus indicate that elevation of VLDL- and LDL-cholesterol in hamsters by n-3 PUFA, compared with n-6 PUFA, is dependent on 0.5% dietary cholesterol supplementation. In rats, on the other hand, dietary n-3 PUFA did not induce hypercholesterolemia more than n-6 PUFA when 0.5% cholesterol was supplemented. Although the effects of n-3 PUFA on plasma cholesterol, triglycerides and VLDL-triglycerides were similar in hamsters and rats, the interactive effects of n-3 PUFA and cholesterol on plasma and lipoprotein cholesterol levels differed in the two species. It was also found that plasma triglycerides, cholesterol and lipoprotein cholesterol levels in hamsters are higher than in rats in the presence and absence of dietary cholesterol. In addition, cholesterol feeding induces hypertriglyceridemia and hypercholesterolemia only in hamsters. Moreover, liver triglyceride concentrations increased in rats fed a cholesterol-rich diet and hepatic triglyceride levels of the n-3 PUFA-fed rats were significantly lower than those in the n-6 PUFA-fed rats in the presence and absence of dietary cholesterol. However, triglycerides did not accumulate in the liver in hamsters fed a cholesterol-rich diet and hepatic triglyceride levels of the n-3 PUFA-fed hamsters were not significantly different from those in the n-6 PUFA-fed hamsters in the presence and absence of dietary cholesterol. Therefore, these studies confirm marked species differences in response to the interactive effects of dietary n-3 PUFA and cholesterol.
Collapse
MESH Headings
- Animals
- Cholesterol/blood
- Cholesterol, Dietary/administration & dosage
- Cholesterol, Dietary/metabolism
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cholesterol, VLDL/blood
- Cricetinae
- Fatty Acids, Omega-3/administration & dosage
- Fatty Acids, Omega-3/metabolism
- Fatty Acids, Omega-6/administration & dosage
- Fatty Acids, Omega-6/metabolism
- Hypercholesterolemia/blood
- Hypercholesterolemia/etiology
- Hypercholesterolemia/metabolism
- Male
- Mesocricetus
- Random Allocation
- Rats
- Rats, Wistar
- Species Specificity
- Triglycerides/blood
Collapse
Affiliation(s)
- Mei-Huei Lin
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
7
|
Li J, Thorne LN, Punjabi NM, Sun CK, Schwartz AR, Smith PL, Marino RL, Rodriguez A, Hubbard WC, O'Donnell CP, Polotsky VY. Intermittent hypoxia induces hyperlipidemia in lean mice. Circ Res 2005; 97:698-706. [PMID: 16123334 DOI: 10.1161/01.res.0000183879.60089.a9] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obstructive sleep apnea, a syndrome leading to recurrent intermittent hypoxia (IH), has been associated previously with hypercholesterolemia, independent of underlying obesity. We examined the effects of experimentally induced IH on serum lipid levels and pathways of lipid metabolism in the absence and presence of obesity. Lean C57BL/6J mice and leptin-deficient obese C57BL/6J-Lep(ob) mice were exposed to IH for five days to determine changes in serum lipid profile, liver lipid content, and expression of key hepatic genes of lipid metabolism. In lean mice, exposure to IH increased fasting serum levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, phospholipids (PLs), and triglycerides (TGs), as well as liver TG content. These changes were not observed in obese mice, which had hyperlipidemia and fatty liver at baseline. In lean mice, IH increased sterol regulatory element binding protein 1 (SREBP-1) levels in the liver, increased mRNA and protein levels of stearoyl-coenzyme A desaturase 1 (SCD-1), an important gene of TG and PL biosynthesis controlled by SREBP-1, and increased monounsaturated fatty acid content in serum, which indicated augmented SCD-1 activity. In addition, in lean mice, IH decreased protein levels of scavenger receptor B1, regulating uptake of cholesterol esters and HDL by the liver. We conclude that exposure to IH for five days increases serum cholesterol and PL levels, upregulates pathways of TG and PL biosynthesis, and inhibits pathways of cholesterol uptake in the liver in the lean state but does not exacerbate the pre-existing hyperlipidemia and metabolic disturbances in leptin-deficient obesity.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Md, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Epidemiological and clinical studies have established that the n-6 fatty acid, linoleic acid (LA), and the n-3 fatty acids, linolenic acid (LNA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) collectively protect against coronary heart disease (CHD). LA is the major dietary fatty acid regulating low-density lipoprotein (LDL)-C metabolism by downregulating LDL-C production and enhancing its clearance. Further, the available mass of LA is a critical factor determining the hyperlipemic effects of other dietary fat components, such as saturated and trans fatty acids, as well as cholesterol. By contrast, n-3 fatty acids, especially EPA and DHA, are potent antiarryhthmic agents. EPA and DHA also improve vascular endothelial function and help lower blood pressure, platelet sensitivity, and the serum triglyceride level. The distinct functions of these two families make the balance between dietary n-6 and n-3 fatty acids an important consideration influencing cardiovascular health. Based on published literature describing practical dietary intakes, we suggest that consumption of ~6% en LA, 0.75% en LNA, and 0.25% en EPA + DHA represents adequate and achievable intakes for most healthy adults. This corresponds to an n-6/n-3 ratio of ~6:1. However, the absolute mass of essential fatty acids consumed, rather than their n-6/n-3 ratio, should be the first consideration when contemplating lifelong dietary habits affecting cardiovascular benefit from their intake.
Collapse
Affiliation(s)
- Vasuki Wijendran
- Foster Biomedical Research Lab, Brandeis University, Waltham, Massachusetts 02254, USA.
| | | |
Collapse
|