1
|
Song B, Sun L, Qin X, Fei J, Yu Q, Chang X, He Y, Liu Y, Shi M, Guo D, Shen O, Zhu Z. Associations of Lipid-Lowering Drugs With Blood Pressure and Fasting Glucose: A Mendelian Randomization Study. Hypertension 2025; 82:743-751. [PMID: 39902581 DOI: 10.1161/hypertensionaha.124.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Observational studies have linked LDL-C (low-density lipoprotein-cholesterol)-lowering drugs with lower blood pressure (BP) and higher fasting glucose, but the causality remains unclear. We conducted a drug target Mendelian randomization study to assess the causal associations of genetically proxied inhibition of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), PCSK9 (proprotein convertase subtilisin/kexin type 9), and NPC1L1 (Niemann-Pick C1-Like 1) with BP and fasting glucose. METHODS Single-nucleotide polymorphisms in HMGCR, NPC1L1, and PCSK9 associated with LDL-C in a genome-wide association study meta-analysis from the Global Lipid Genetics Consortium (173 082 European individuals) were used to proxy LDL-C-lowering drug targets. BP and fasting glucose data were obtained from genome-wide association studies conducted by the International Consortium of Blood Pressure (757 601 European participants) and the Glucose and Insulin-related Traits Consortium (58 074 European participants). We used the inverse-variance weighted method and a series of sensitivity analyses for assessment. RESULTS Genetically proxied inhibition of HMGCR was negatively associated with systolic BP (β, -0.81 [95% CI, -1.26 to -0.37 mm Hg]; P=3.72×10-4) and diastolic BP (β, -1.58 [95% CI, -2.24 to -0.91 mm Hg]; P=3.23×10-6). Conversely, we observed a positive association between genetically proxied inhibition of HMGCR and high fasting glucose (β, 0.13 [95% CI, 0.08-0.17 mmol/L]; P=4.25×10-8). However, there was no association of PCSK9 and NPC1L1 inhibition with BP or fasting glucose. CONCLUSIONS Genetically proxied inhibition of HMGCR was significantly associated with low BP and high fasting glucose, while there was no effect of PCSK9 and NPC1L1 inhibition on BP or fasting glucose.
Collapse
Affiliation(s)
- Beiping Song
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Lulu Sun
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Xiaoli Qin
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Jiawen Fei
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Quan Yu
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Xinyue Chang
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Yu He
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Yi Liu
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Mengyao Shi
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., Z.Z.)
| | - Daoxia Guo
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
| | - Ouxi Shen
- Department of Occupational Health, Suzhou Industrial Park Center for Disease Control and Prevention, China (O.S.)
| | - Zhengbao Zhu
- Department of Psychiatry, Affiliated Guangji Hospital of Soochow University, School of Public Health, Suzhou Medical College of Soochow University, Jiangsu Province, China (B.S., L.S., X.Q., J.F., Q.Y., X.C., Y.H., Y.L., M.S., D.G., Z.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., Z.Z.)
| |
Collapse
|
2
|
Purnamasari L, Cruz JFD, Kim CS, Hwang SG, Yi JK. Physicochemical and microbiological characteristics of pork meat exposed to SoRegen ® Technology. Vet World 2025; 18:484-490. [PMID: 40182814 PMCID: PMC11963575 DOI: 10.14202/vetworld.2025.484-490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/23/2025] [Indexed: 04/05/2025] Open
Abstract
Background and Aim Quantum entanglement has been explored as a novel approach in food technology to enhance the quality and nutritional properties of animal products. SoRegen® Technology applies quantum entanglement signals to food products, aiming to induce physicochemical modifications. This study investigates the effects of SoRegen® Technology on the physicochemical and microbiological characteristics of pork meat, focusing on meat quality attributes and cholesterol levels. Materials and Methods Pork meat samples were exposed to a quantum entanglement signal from a SoRegen® chip for 20 min in an electromagnetic field chamber. Physicochemical properties, including water-holding capacity (WHC), pH, drip loss, and cooking loss, were analyzed. Cholesterol levels, including total cholesterol and high-density lipoprotein (HDL) cholesterol, were measured using enzyme-linked immunosorbent assay kits. Microbiological analysis included total plate count (TPC), Escherichia coli, and Listeria monocytogenes enumeration. Data were statistically analyzed using an independent sample t-test with significance set at p < 0.05. Results Pork meat exposed to SoRegen® Technology exhibited significant improvements in physicochemical properties. WHC increased, indicating better moisture retention, while drip loss and cooking loss were reduced, suggesting improved meat texture and quality. Minor but statistically significant fluctuations in pH were observed at specific time points. Cholesterol analysis revealed a significant 35% reduction in total cholesterol levels, alongside a significant increase in HDL cholesterol levels, indicating potential health benefits. Microbiological analysis indicated no significant differences between exposed and unexposed pork samples in terms of E. coli, L. monocytogenes, and TPC, suggesting that the technology does not directly affect microbial contamination. Conclusion The application of SoRegen® Technology significantly improved the physicochemical and nutritional attributes of pork meat, particularly by enhancing WHC and reducing cholesterol levels. However, no significant changes were observed in microbiological characteristics. These findings highlight the potential of quantum entanglement technology in food science, though further research is required to elucidate the mechanisms underlying these effects and explore commercial applications.
Collapse
Affiliation(s)
- Listya Purnamasari
- Department of Animal Husbandry, Faculty of Agriculture, University of Jember, Jember, 68121, Indonesia
| | - Joseph Flores dela Cruz
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Banos, Laguna, 4031, Philippines
| | - Chang Soo Kim
- Research Council of SoRegen Convergence Science, Seoul, Republic of Korea
| | - Seong Gu Hwang
- School of Animal Life Convergence Science, Hankyong National University, Anseong, 17579, South Korea
| | - Jun Koo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong, 17579, South Korea
| |
Collapse
|
3
|
Lakhssassi K, Sarto MP, Lahoz B, Alabart JL, Folch J, Serrano M, Calvo JH. Blood transcriptome of Rasa Aragonesa rams with different sexual behavior phenotype reveals CRYL1 and SORCS2 as genes associated with this trait. J Anim Sci 2023; 101:skad098. [PMID: 36996265 PMCID: PMC10118393 DOI: 10.1093/jas/skad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Reproductive fitness of rams is seasonal, showing the highest libido during short days coinciding with the ovarian cyclicity resumption in the ewe. However, the remarkable variation in sexual behavior between rams impair farm efficiency and profitability. Intending to identify in vivo sexual behavior biomarkers that may aid farmers to select active rams, transcriptome profiling of blood was carried out by analyzing samples from 6 sexually active (A) and 6 nonactive (NA) Rasa Aragonesa rams using RNA-Seq technique. A total of 14,078 genes were expressed in blood but only four genes were differentially expressed (FDR < 0.10) in the A vs. NA rams comparison. The genes, acrosin inhibitor 1 (ENSOARG00020023278) and SORCS2, were upregulated (log2FC > 1) in active rams, whereas the CRYL1 and immunoglobulin lambda-1 light chain isoform X47 (ENSOARG00020025518) genes were downregulated (log2FC < -1) in this same group. Gene set Enrichment Analysis (GSEA) identified 428 signaling pathways, predominantly related to biological processes. The lysosome pathway (GO:0005764) was the most enriched, and may affect fertility and sexual behavior, given the crucial role played by lysosomes in steroidogenesis, being the SORCS2 gene related to this signaling pathway. Furthermore, the enriched positive regulation of ERK1 and ERK2 cascade (GO:0070374) pathway is associated with reproductive phenotypes such as fertility via modulation of hypothalamic regulation and GnRH-mediated production of pituitary gonadotropins. Furthermore, external side of plasma membrane (GO:0009897), fibrillar center (GO:0001650), focal adhesion (GO:0005925), and lamellipodium (GO:0030027) pathways were also enriched, suggesting that some molecules of these pathways might also be involved in rams' sexual behavior. These results provide new clues for understanding the molecular regulation of sexual behavior in rams. Further investigations will be needed to confirm the functions of SORCS2 and CRYL1 in relation to sexual behavior.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- INRA Instituts, 6356 Rabat, Morocco
| | - María Pilar Sarto
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Belén Lahoz
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Luis Alabart
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - José Folch
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
| | - Malena Serrano
- Department of Animal Breeding and Genetics, INIA-CSIC, 28040 Madrid, Spain
| | - Jorge Hugo Calvo
- Agrifood Research and Technology Centre of Aragon-IA2, 50059 Zaragoza, Spain
- ARAID, 50018 Zaragoza, Spain
| |
Collapse
|
4
|
Organ Weights in NPC1 Mutant Mice Partly Normalized by Various Pharmacological Treatment Approaches. Int J Mol Sci 2022; 24:ijms24010573. [PMID: 36614015 PMCID: PMC9820376 DOI: 10.3390/ijms24010573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick Type C1 (NPC1, MIM 257220) is a rare, progressive, lethal, inherited autosomal-recessive endolysosomal storage disease caused by mutations in the NPC1 leading to intracellular lipid storage. We analyzed mostly not jet known alterations of the weights of 14 different organs in the BALB/cNctr-Npc1m1N/-J Jackson Npc1 mice in female and male Npc1+/+ and Npc1-/- mice under various treatment strategies. Mice were treated with (i) no therapy, (ii) vehicle injection, (iii) a combination of miglustat, allopregnanolone, and 2-hydroxypropyl-ß-cyclodextrin (HPßCD), (iv) miglustat, and (v) HPßCD alone starting at P7 and repeated weekly throughout life. The 12 respective male and female wild-type mice groups were evaluated in parallel. In total, 351 mice (176 Npc1+/+, 175 Npc1-/-) were dissected at P65. In both sexes, the body weights of None and Sham Npc1-/- mice were lower than those of respective Npc1+/+ mice. The influence of the Npc1 mutation and/or sex on the weights of various organs, however, differed considerably. In males, Npc1+/+ and Npc1-/- mice had comparable absolute weights of lungs, spleen, and adrenal glands. In Npc1-/- mice, smaller weights of hearts, livers, kidneys, testes, vesicular, and scent glands were found. In female Npc1-/- mice, ovaries, and uteri were significantly smaller. In Npc1-/- mice, relative organ weights, i.e., normalized with body weights, were sex-specifically altered to different extents by the different therapies. The combination of miglustat, allopregnanolone, and the sterol chelator HPßCD partly normalized the weights of more organs than miglustat or HPßCD mono-therapies.
Collapse
|
5
|
Li H, Shen J, Ma S, Zhao F, Zhao W, Chen F, Fu Y, Li B, Cheng J, Deng Y. TGF-β1 suppresses de novo cholesterol biosynthesis in granulosa-lutein cells by down-regulating DHCR24 expression via the GSK-3β/EZH2/H3K27me3 signaling pathway. Int J Biol Macromol 2022; 224:1118-1128. [DOI: 10.1016/j.ijbiomac.2022.10.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
|
6
|
Abe A, Maekawa M, Sato T, Sato Y, Kumondai M, Takahashi H, Kikuchi M, Higaki K, Ogura J, Mano N. Metabolic Alteration Analysis of Steroid Hormones in Niemann-Pick Disease Type C Model Cell Using Liquid Chromatography/Tandem Mass Spectrometry. Int J Mol Sci 2022; 23:ijms23084459. [PMID: 35457276 PMCID: PMC9025463 DOI: 10.3390/ijms23084459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Niemann–Pick disease type C (NPC) is an autosomal recessive disease caused by a functional deficiency of cholesterol-transporting proteins in lysosomes, and exhibits various clinical symptoms. Since mitochondrial dysfunction in NPC has recently been reported, cholesterol catabolism to steroid hormones may consequently be impaired. In this study, we developed a comprehensive steroid hormone analysis method using liquid chromatography/tandem mass spectrometry (LC–MS/MS) and applied it to analyze changes in steroid hormone concentrations in NPC model cells. We investigated the analytical conditions for simultaneous LC–MS/MS analysis, which could be readily separated from each other and showed good reproducibility. The NPC phenotype was verified as an NPC model with mitochondrial abnormalities using filipin staining and organelle morphology observations. Steroid hormones in the cell suspension and cell culture medium were also analyzed. Steroid hormone analysis indicated that the levels of six steroid hormones were significantly decreased in the NPC model cell and culture medium compared to those in the wild-type cell and culture medium. These results indicate that some steroid hormones change during NPC pathophysiology and this change is accompanied by mitochondrial abnormalities.
Collapse
Affiliation(s)
- Ai Abe
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
- Correspondence: ; Tel.: +81-22-717-7541
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Hayato Takahashi
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Katsumi Higaki
- Division of Functional Genomics, Research Centre for Bioscience and Technology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Jiro Ogura
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (A.A.); (M.K.); (N.M.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (T.S.); (Y.S.); (M.K.); (H.T.); (J.O.)
| |
Collapse
|
7
|
Vuolo D, Do Nascimento CC, D’Almeida V. Reproduction in Animal Models of Lysosomal Storage Diseases: A Scoping Review. Front Mol Biosci 2021; 8:773384. [PMID: 34869599 PMCID: PMC8636128 DOI: 10.3389/fmolb.2021.773384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Lysosomal storage diseases (LSDs) are caused by a mutation in a specific gene. Enzymatic dysfunction results in a progressive storage of substrates that gradually affects lysosomal, cellular and tissue physiology. Their pathophysiological consequences vary according to the nature of the stored substrate, making LSDs complex and multisystemic diseases. Some LSDs result in near normal life expectancies, and advances in treatments mean that more people reach the age to have children, so considering the effects of LSDs on fertility and the risks associated with having children is of growing importance. Objectives: As there is a lack of clinical studies describing the effect of LSDs on the physiology of reproductivity, we undertook a scoping review of studies using animal models of LSDs focusing on reproductive parameters. Methods: We searched six databases: MEDLINE, LILACS, Scopus, Web of Science, Embase and SciELO, and identified 49 articles that met our inclusion criteria. Results: The majority of the studies used male animal models, and a number reported severe morphological and physiological damage in gametes and gonads in models of sphingolipidoses. Models of other LSDs, such as mucopolysaccharidoses, presented important morphological damage. Conclusion: Many of the models found alterations in reproductive systems. Any signs of subfertility or morphological damage in animal models are important, particularly in rodents which are extremely fertile, and may have implications for individuals with LSDs. We suggest the use of more female animal models to better understand the physiopathology of the diseases, and the use of clinical case studies to further explore the risks of individuals with LSDs having children.
Collapse
Affiliation(s)
- Daniela Vuolo
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Vânia D’Almeida
- Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Holzmann C, Witt M, Rolfs A, Antipova V, Wree A. Gender-Specific Effects of Two Treatment Strategies in a Mouse Model of Niemann-Pick Disease Type C1. Int J Mol Sci 2021; 22:ijms22052539. [PMID: 33802605 PMCID: PMC7962008 DOI: 10.3390/ijms22052539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
In a mouse model of Niemann-Pick disease type C1 (NPC1), a combination therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) has previously resulted in, among other things, significantly improved motor function. The present study was designed to compare the therapeutic effects of the COMBI therapy with that of MIGLU or HPßCD alone on body and brain weight and the behavior of NPC1−/− mice in a larger cohort, with special reference to gender differences. A total of 117 NPC1−/− and 123 NPC1+/+ mice underwent either COMBI, MIGLU only, HPßCD only, or vehicle treatment (Sham), or received no treatment at all (None). In male and female NPC1−/− mice, all treatments led to decreased loss of body weight and, partly, brain weight. Concerning motor coordination, as revealed by the accelerod test, male NPC1−/− mice benefited from COMBI treatment, whereas female mice benefited from COMBI, MIGLU, and HPßCD treatment. As seen in the open field test, the reduced locomotor activity of male and female NPC1−/− mice was not significantly ameliorated in either treatment group. Our results suggest that in NPC1−/− mice, each drug treatment scheme had a beneficial effect on at least some of the parameters evaluated compared with Sham-treated mice. Only in COMBI-treated male and female NPC+/+ mice were drug effects seen in reduced body and brain weights. Upon COMBI treatment, the increased dosage of drugs necessary for anesthesia in Sham-treated male and female NPC1−/− mice was almost completely reduced only in the female groups.
Collapse
Affiliation(s)
- Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, D-18057 Rostock, Germany;
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
| | - Martin Witt
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
| | - Arndt Rolfs
- Centogene AG, Rostock, Am Strande 7, 18055 Rostock, Germany;
- University of Rostock, 18055 Rostock, Germany
| | - Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Macroscopic and Clinical Anatomy, Medical University of Graz, A-8010 Graz, Austria
| | - Andreas Wree
- Centre of Transdisciplinary Neuroscience Rostock, D-18147 Rostock, Germany;
- Institute of Anatomy, Rostock University Medical Center, D-18057 Rostock, Germany;
- Correspondence: ; Tel.: +49-381-494-8429
| |
Collapse
|
9
|
Vishnyakova TG, Bocharov AV, Baranova IN, Kurlander R, Drake SK, Chen Z, Amar M, Sviridov D, Vaisman B, Poliakov E, Remaley AT, Eggerman TL, Patterson AP. SR-BI mediates neutral lipid sorting from LDL to lipid droplets and facilitates their formation. PLoS One 2020; 15:e0240659. [PMID: 33057430 PMCID: PMC7561250 DOI: 10.1371/journal.pone.0240659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
SR-BI binds various lipoproteins, including HDL, LDL as well as VLDL, and mediates selective cholesteryl ester (CE) uptake. HDL derived CE accumulates in cellular lipid droplets (LDs), which also store triacylglycerol (TAG). We hypothesized that SR-BI could significantly facilitate LD formation, in part, by directly transporting LDL derived neutral lipids (NL) such as CE and TAG into LDs without lipolysis and de novo lipid synthesis. SR-BI overexpression greatly increased LDL uptake and LD formation in stably transfected HeLa cells (SR-BI-HeLa). LDs isolated from SR-BI-HeLa contained 4- and 7-times more CE and TAG, respectively, than mock-transfected HeLa (Mock-HeLa). In contrast, LDL receptor overexpression in HeLa (LDLr-HeLa) greatly increased LDL uptake, degradation with moderate 1.5- and 2-fold increases of CE and TAG, respectively. Utilizing CE and TAG analogs, BODIPY-TAG (BP-TAG) and BODIPY-CE (BP-CE), for tracking LDL NL, we found that after initial binding of LDL to SR-BI-HeLa, apoB remained at the cell surface, while BP-CE and BP-TAG were sorted and simultaneously transported together to LDs. Both lipids demonstrated limited internalization to lysosomes or endoplasmic reticulum in SR-BI-HeLa. In LDLr-HeLa, NLs demonstrated clear lysosomal sequestration without their sorting to LDs. An inhibition of TAG and CE de novo synthesis by 90-95% only reduced TAG and CE LD content by 45-50%, and had little effect on BP-CE and BP-TAG transport to LDs in SR-BI HeLa. Furthermore, intravenous infusion of 1-2 mg of LDL increased liver LDs in normal (WT) but not in SR-BI KO mice. Mice transgenic for human SR-BI demonstrated higher liver LD accumulation than WT mice. Finally, Electro Spray Infusion Mass Spectrometry (ESI-MS) using deuterated d-CE found that LDs accumulated up to 40% of unmodified d-CE LDL. We conclude that SR-BI mediates LDL-induced LD formation in vitro and in vivo. In addition to cytosolic NL hydrolysis and de novo lipid synthesis, this process includes selective sorting and transport of LDL NL to LDs with limited lysosomal NL sequestration and the transport of LDL CE, and TAG directly to LDs independently of de novo synthesis.
Collapse
Affiliation(s)
- Tatyana G. Vishnyakova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Alexander V. Bocharov
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- * E-mail:
| | - Irina N. Baranova
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Roger Kurlander
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Steven K. Drake
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Zhigang Chen
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
| | - Marcelo Amar
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Denis Sviridov
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Boris Vaisman
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Eugenia Poliakov
- National Eye Institute, Bethesda, Maryland, United States of
America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| | - Thomas L. Eggerman
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda,
Maryland, United States of America
| | - Amy P. Patterson
- Clinical Center, The National Institutes of Health, Bethesda, Maryland,
United States of America
- National Heart, Lung and Blood Institute, Bethesda, Maryland, United
States of America
| |
Collapse
|
10
|
Barbosa Mendes A, do Nascimento CC, D’Almeida V. Sexual behaviour in a murine model of mucopolysaccharidosis type I (MPS I). PLoS One 2019; 14:e0220429. [PMID: 31834922 PMCID: PMC6910675 DOI: 10.1371/journal.pone.0220429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Mucopolysaccharidosis Type I (MPS I) is a rare genetic lysosomal storage disease caused by a mutation of IDUA gene. IDUA codes for α-L-iduronidase (IDUA), a lysosomal hydrolase that degrades glycosaminoglycans (GAGs): heparan sulphate and dermatan sulphate. GAGs are structural and signalling molecules that have a crucial role in controlling a variety of cell functions and their interaction with the extracellular matrix. Because of GAG's widespread action in cellular metabolism, MPS I is a progressive and disabling multisystemic disorder. Nowadays, the therapies available allowed patients to reach the adult life and the consequences of the disease in their reproductive system are mostly unknown. We aimed to investigate whether IDUA disruption influences sexual behaviour and sexual steroid production in male and female MPS I mice. We used 3 and 6-month-old male and 3-month-old female Idua+/_ and Idua-/- mice to evaluate typical rodent copulatory behaviours. In males we observed the frequency and latency of mounts, intromissions and ejaculations. In females, we evaluated the lordosis quotient. We also analysed the locomotor capacity of mice in the open field test, since mobility is essential for copulatory behaviour. We also quantified steroidal hormonal levels in plasmatic samples. We detected an increase in the latencies of intromissions in Idua-/- males when compared to Idua+/_. However, the number of intromissions was not statistically different between groups. No parameter of female sexual behaviour was statistically different between control and knockout females. In both sexes, we detected diminished mobility in Idua-/- mice. Plasma hormone levels did not differ between Idua+/_ and Idua-/- mice, both in males and females. Although the motor disability predicted to MPS I animals, we concluded that in the considered time point of MPS I progression studied, mice are able to perform sexual behaviour.
Collapse
Affiliation(s)
- Ana Barbosa Mendes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Vânia D’Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Huang Q, Liu Y, Yang Z, Xie Y, Mo Z. The Effects of Cholesterol Metabolism on Follicular Development and Ovarian Function. Curr Mol Med 2019; 19:719-730. [PMID: 31526349 DOI: 10.2174/1566524019666190916155004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
Cholesterol is an important substrate for the synthesis of ovarian sex hormones and has an important influence on follicular development. The cholesterol in follicular fluid is mainly derived from plasma. High-density lipoprotein (HDL) and lowdensity lipoprotein (LDL) play important roles in ovarian cholesterol transport. The knockout of related receptors in the mammalian HDL and LDL pathways results in the reduction or absence of fertility, leading us to support the importance of cholesterol homeostasis in the ovary. However, little is known about ovarian cholesterol metabolism and the complex regulation of its homeostasis. Here, we reviewed the cholesterol metabolism in the ovary and speculated that regardless of the functioning of cholesterol metabolism in the system or the ovarian microenvironment, an imbalance in cholesterol homeostasis is likely to have an adverse effect on ovarian structure and function.
Collapse
Affiliation(s)
- Qin Huang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yannan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, China
| | - Zhen Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Yuanjie Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical school, University of South China, Hengyang 421001, China
| |
Collapse
|
12
|
Do GWAS and studies of heterozygotes for NPC1 and/or NPC2 explain why NPC disease cases are so rare? J Appl Genet 2018; 59:441-447. [PMID: 30209687 DOI: 10.1007/s13353-018-0465-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Early onset Niemann-Pick C diseases are extremely rare, especially Niemann-Pick C2. Perhaps unusually for autosomal recessive diseases, heterozygotes for mutations in NPC1 manifest many biological variations. NPC2 deficiency has large effects on fertility. These features of NPC1 and NPC2 are reviewed in regard to possible negative selection for heterozygotes carrying null and hypomorphic alleles.
Collapse
|
13
|
Laufs U, Dent R, Kostenuik PJ, Toth PP, Catapano AL, Chapman MJ. Why is hypercholesterolaemia so prevalent? A view from evolutionary medicine. Eur Heart J 2018; 40:2825-2830. [DOI: 10.1093/eurheartj/ehy479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/07/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ulrich Laufs
- Klinik und Poliklinik für Kardiologie; Universitätsklinikum Leipzig, Liebigstr. 20, Leipzig, Germany
| | | | - Paul J Kostenuik
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Phylon Pharma Services, Newbury Park, CA, USA
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, USA
- Johns Hopkins University School of Medicine, Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, Milan, Italy
- Multimedica IRCCS Via Milanese, 300, Sesto San Giovanni, Milano, Italy
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), University of Pierre and Marie Curie, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
14
|
Lamri A, Pigeyre M, Garver WS, Meyre D. The Extending Spectrum of NPC1-Related Human Disorders: From Niemann-Pick C1 Disease to Obesity. Endocr Rev 2018; 39:192-220. [PMID: 29325023 PMCID: PMC5888214 DOI: 10.1210/er.2017-00176] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
Abstract
The Niemann-Pick type C1 (NPC1) protein regulates the transport of cholesterol and fatty acids from late endosomes/lysosomes and has a central role in maintaining lipid homeostasis. NPC1 loss-of-function mutations in humans cause NPC1 disease, a rare autosomal-recessive lipid-storage disorder characterized by progressive and lethal neurodegeneration, as well as liver and lung failure, due to cholesterol infiltration. In humans, genome-wide association studies and post-genome-wide association studies highlight the implication of common variants in NPC1 in adult-onset obesity, body fat mass, and type 2 diabetes. Heterozygous human carriers of rare loss-of-function coding variants in NPC1 display an increased risk of morbid adult obesity. These associations have been confirmed in mice models, showing an important interaction with high-fat diet. In this review, we describe the current state of knowledge for NPC1 variants in relationship to pleiotropic effects on metabolism. We provide evidence that NPC1 gene variations may predispose to common metabolic diseases by modulating steroid hormone synthesis and/or lipid homeostasis. We also propose several important directions of research to further define the complex roles of NPC1 in metabolism. This review emphasizes the contribution of NPC1 to obesity and its metabolic complications.
Collapse
Affiliation(s)
- Amel Lamri
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,INSERM 1190, European Genomics Institute for Diabetes, University of Lille, CHRU Lille, Lille, France
| | - William S Garver
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
15
|
Mutsuga M, Asaoka Y, Imura N, Miyoshi T, Togashi Y. Aminoglutethimide-induced lysosomal changes in adrenal gland in mice. ACTA ACUST UNITED AC 2017; 69:424-429. [DOI: 10.1016/j.etp.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
16
|
Afzali M, Hashemi M, Tabatabaei SP, Fakheri KT, Nakhaee A. Association between the rs1805081 polymorphism of Niemann-Pick type C1 gene and cardiovascular disease in a sample of an Iranian population. Biomed Rep 2017; 6:83-88. [PMID: 28123713 DOI: 10.3892/br.2016.802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/06/2016] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the association between a genetic variation, A+644G, in the Niemann-Pick type C1 (NPC1) gene and the risk of cardiovascular disease (CVD) in a Southeast Iranian population. A total of 320 individuals, including 200 patients with CVD and 120 healthy individuals, were involved in the present study. The polymorphism was determined using a polymerase chain reaction-restriction fragment length polymorphism method. The results indicated that the frequency of the GG genotype was markedly lower in patients with CVD compared with the control group (7 vs. 16.7%), and that the NPC1 rs1805081 polymorphism was associated with reduced risk of CVD [odds ratio (OR)=0.110; 95% confidence interval (CI)=0.017-0.715; P=0.021]. In addition, the prevalence of the minor allele (G) in patients with CVD differed from that of the control group with the frequency of 25.5 and 33.4% for the former and latter, respectively, and this difference reached statistical significance (OR=0.658; 95% CI=0.482-0.971; P=0.037). Furthermore, analysis of clinical characteristics of the individuals according to the NPC1 genotypes revealed an association between the lipid profile and NPC1 gene polymorphism. These findings demonstrated that the NPC1 A+644G variant was associated with reduced risk of CVD and serves a protective role against susceptibility to CVD in the Iranian population.
Collapse
Affiliation(s)
- Masoumeh Afzali
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran; Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Seyed Payman Tabatabaei
- Department of Cardiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Kourosh Tirgar Fakheri
- Department of Anesthesia, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| | - Alireza Nakhaee
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran; Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
| |
Collapse
|
17
|
Lin Y, Hou X, Shen WJ, Hanssen R, Khor VK, Cortez Y, Roseman AN, Azhar S, Kraemer FB. SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells. Mol Endocrinol 2016; 30:234-47. [PMID: 26771535 DOI: 10.1210/me.2015-1281] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vesicular transport involving soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins is known to be responsible for many major cellular activities. In steroidogenic tissues, chronic hormone stimulation results in increased expression of proteins involved in the steroidogenic pathway, whereas acute hormone stimulation prompts the rapid transfer of cholesterol to the inner mitochondrial membrane to be utilized as substrate for steroid hormone production. Several different pathways are involved in supplying cholesterol to mitochondria, but mobilization of stored cholesteryl esters appears to initially constitute the preferred source; however, the mechanisms mediating this cholesterol transfer are not fully understood. To study the potential contribution of SNARE proteins in steroidogenesis, we examined the expression levels of various SNARE proteins in response to hormone stimulation in steroidogenic tissues and cells and established an in vitro mitochondria reconstitution assay system to assess the contribution of various SNARE proteins on cholesterol delivery for steroidogenesis. Our results from reconstitution experiments along with knockdown studies in rat primary granulosa cells and in a Leydig cell line show that soluble N-ethylmaleimide sensitive factor attachment protein-α, synaptosomal-associated protein of 25 kDa, syntaxin-5, and syntaxin-17 facilitate the transport of cholesterol to mitochondria. Thus, although StAR is required for efficient cholesterol movement into mitochondria for steroidogenesis, specific SNAREs participate and are necessary to mediate cholesterol movement to mitochondria.
Collapse
Affiliation(s)
- Ye Lin
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Xiaoming Hou
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Ruth Hanssen
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Victor K Khor
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Yuan Cortez
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Ann N Roseman
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Salman Azhar
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology, and Metabolism (Y.L., X.H., W.-J.S., R.H., V.K.K., S.A., F.B.K.), Stanford University, and Veterans Affairs Palo Alto Health Care System (Y.L., X.H., W.-J.S., R.H., V.K.K., Y.C., A.N.R., S.A., F.B.K.), Palo Alto, California 94304
| |
Collapse
|
18
|
Abstract
The adrenal gland is one of the prominent sites for steroid hormone synthesis. Lipoprotein-derived cholesterol esters (CEs) delivered via SR-B1 constitute the dominant source of cholesterol for steroidogenesis, particularly in rodents. Adrenocorticotropic hormone (ACTH) stimulates steroidogenesis through downstream actions on multiple components involved in steroidogenesis. Both acute and chronic ACTH treatments can modulate SR-B1 function, including its transcription, posttranscriptional stability, phosphorylation and dimerization status, as well as the interaction with other protein partners, all of which result in changes in the ability of SR-B1 to mediate HDL-CE uptake and the supply of cholesterol for conversion to steroids. Here, we provide a review of the recent findings on the regulation of adrenal SR-B1 function by ACTH.
Collapse
Affiliation(s)
- Wen-Jun Shen
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Salman Azhar
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fredric B. Kraemer
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- *Correspondence: Fredric B. Kraemer,
| |
Collapse
|
19
|
PCSK9 inhibition in LDL cholesterol reduction: Genetics and therapeutic implications of very low plasma lipoprotein levels. Pharmacol Ther 2015; 145:58-66. [DOI: 10.1016/j.pharmthera.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
|
20
|
Akpovi CD, Murphy BD, Erickson RP, Pelletier RM. Dysregulation of testicular cholesterol metabolism following spontaneous mutation of the niemann-pick c1 gene in mice. Biol Reprod 2014; 91:42. [PMID: 25009206 DOI: 10.1095/biolreprod.114.119412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Niemann-Pick-type C1 (Npc1) protein mobilizes LDL-derived cholesterol from lysosomes. Npc1 deficiency disease is a panethnic autosomal recessive disorder of intracellular cholesterol trafficking, leading to accumulation of cholesterol in endosomes/lysosomes. This report assesses the effects of a spontaneous inactivating mutation of the Npc1 gene on spermatogenesis and cholesterol homeostasis in mice. We quantified 1) free and esterified cholesterol levels by enzymatic analysis, 2) cholesterol enzymes and transporter protein expression by Western blotting, and 3) the number of Apostain-labeled apoptotic germ cells and apoptosis levels by ELISA in seminiferous tubule-enriched fractions. In wild-type (WT) mice, esterified cholesterol was elevated when Npc1 expression was low during puberty, while in adulthood, the levels were low (P < 0.05) when Npc1 expression was high (P < 0.01). In Npc1-/- mice, free and esterified cholesterol were significantly elevated. The abundance of cholesterol regulatory proteins, HMGR ACAT1, ACAT2, SR-BI, and ABCA1 was significantly higher in Npc1-/- than in WT mice. The level of apoptosis determined by ELISA and the number of Apostain-labeled cells/tubule were higher in Npc1-/- than in WT mice. Circulating testosterone levels in the Npc1-/- males were threefold lower than those observed in the WT. Deleting the Npc1 gene is accompanied by an increase in germ cell apoptosis and compensatory imbalances in the expression of cholesterol enzymatic and transporter factors and is associated with esterified cholesterol accumulation in seminiferous tubules.
Collapse
Affiliation(s)
- Casimir D Akpovi
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Bruce D Murphy
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St.-Hyacinthe, Québec, Canada
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, Arizona
| | - R-Marc Pelletier
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
21
|
Afzali M, Nakhaee A, Tabatabaei SP, Tirgar-Fakheri K, Hashemi M. Aberrant promoter methylation profile of Niemann-pick type C1 gene in cardiovascular disease. IRANIAN BIOMEDICAL JOURNAL 2014; 17:77-83. [PMID: 23567849 DOI: 10.6091/ibj.11432.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). METHODS Fifty CVD patients and 50 healthy subjects as the control group were recruited in this study. Promoter methylation of NPC1 gene was defined using a nested-methylation specific polymerase chain reaction method. Statistical analyses were done using the chi-square, t-test or ANOVA tests. RESULTS Our study showed that the frequency of semi-methylated promoter (methylated/unmethylated status) was significantly higher in CVD patients than that in controls (OR = 6.521, 95% CI = 2.211-19.215, P = 0.008). However, a completely methylated promoter (methylated/methylated status) was not detected in any subjects in either of the two groups tested. Additionally, the analysis of clinical data according to the methylation status of NPC1 gene demonstrated that serum levels of total cholesterol, total triglycerides, high low-density lipoprotein cholesterol (LDL-C) and low high-density lipoprotein cholesterol (HDL-C) are influenced by NPC1 methylation, so that subjects with a completely unmethylated promoter (Unmethylated/unmethylated status) held lower levels of total triglycerides, total cholesterol, LDL-C and higher levels of HDL-C. CONCLUSION Our findings propose that the NPC1 promoter methylation is a probable mechanism that can result in reduced/impaired NPC1 expression/activity and may thus contribute to progression of CVD.
Collapse
Affiliation(s)
- Masoumeh Afzali
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Nakhaee
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Payman Tabatabaei
- Dept. of Cardiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kourosh Tirgar-Fakheri
- Dept. of Anesthesia, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Dept. of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
22
|
Erickson RP. Current controversies in Niemann-Pick C1 disease: steroids or gangliosides; neurons or neurons and glia. J Appl Genet 2013; 54:215-24. [PMID: 23292954 DOI: 10.1007/s13353-012-0130-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
Abstract
There has been a recent explosion in research on Niemann-Pick type C disease. Much of the work has used mouse models or cells in culture to elucidate the pathophysiological mechanisms resulting in the phenotype of the disease. This work has generated several contrasting views on the mechanism, which are labeled 'controversies' here. In this review, two of these controversies are explored. The first concerns which stored materials are causative in the disease: cholesterol, gangliosides and sphingolipids, or something else? The second concerns which cells in the body require Npc1 in order to function properly: somatic cells, neurons only, or neurons and glia? For the first controversy, a clear answer has emerged. More research will be needed in order to definitively solve the second controversy.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, Tucson, AZ 85724-5073, USA.
| |
Collapse
|
23
|
Soufi M, Ruppert V, Kurt B, Schaefer JR. The impact of severe LDL receptor mutations on SREBP-pathway regulation in homozygous familial hypercholesterolemia (FH). Gene 2012; 499:218-22. [DOI: 10.1016/j.gene.2012.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 11/26/2022]
|
24
|
Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond) 2010; 7:47. [PMID: 20515451 PMCID: PMC2890697 DOI: 10.1186/1743-7075-7-47] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022] Open
Abstract
Steroid hormones regulate diverse physiological functions such as reproduction, blood salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function and various metabolic processes. They are synthesized from cholesterol mainly in the adrenal gland and gonads in response to tissue-specific tropic hormones. These steroidogenic tissues are unique in that they require cholesterol not only for membrane biogenesis, maintenance of membrane fluidity and cell signaling, but also as the starting material for the biosynthesis of steroid hormones. It is not surprising, then, that cells of steroidogenic tissues have evolved with multiple pathways to assure the constant supply of cholesterol needed to maintain optimum steroid synthesis. The cholesterol utilized for steroidogenesis is derived from a combination of sources: 1) de novo synthesis in the endoplasmic reticulum (ER); 2) the mobilization of cholesteryl esters (CEs) stored in lipid droplets through cholesteryl ester hydrolase; 3) plasma lipoprotein-derived CEs obtained by either LDL receptor-mediated endocytic and/or SR-BI-mediated selective uptake; and 4) in some cultured cell systems from plasma membrane-associated free cholesterol. Here, we focus on recent insights into the molecules and cellular processes that mediate the uptake of plasma lipoprotein-derived cholesterol, events connected with the intracellular cholesterol processing and the role of crucial proteins that mediate cholesterol transport to mitochondria for its utilization for steroid hormone production. In particular, we discuss the structure and function of SR-BI, the importance of the selective cholesterol transport pathway in providing cholesterol substrate for steroid biosynthesis and the role of two key proteins, StAR and PBR/TSO in facilitating cholesterol delivery to inner mitochondrial membrane sites, where P450scc (CYP11A) is localized and where the conversion of cholesterol to pregnenolone (the common steroid precursor) takes place.
Collapse
|
25
|
Donohue C, Marion S, Erickson RP. Expression of Npc1 in glial cells corrects sterility in Npc1(-/-) mice. J Appl Genet 2010; 50:385-90. [PMID: 19875890 DOI: 10.1007/bf03195698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C1 (NPC) disease is an autosomal recessive neurodegenerative disorder. One feature of the mouse model of NPC1 is it's infertility. We have made transgenic mice which express the Npc1 protein exclusively in fibrillary astrocytes, using the glial fibrillary acidic protein (GFAP) promoter. This selective expression of Npc1 corrects sterility in GFAP-Npc1(-/-), Npc1(-/-) mice. Counts of acidophils in the pituitary of GFAP-Npc1E, Npc1(-/-) mice, as compared Npc1(-/-) mice, and measurements of dopamine D2 receptor (DRD2) mRNA in the pituitary, suggest mechanisms for fertility enhancement. We conclude that the correction of sterility in GFAP-Npc1E, Npc1(-/-) mice is a result of restoring hypothalamic control of the pituitary.
Collapse
Affiliation(s)
- C Donohue
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
26
|
Wu C, Ifa DR, Manicke NE, Cooks RG. Molecular imaging of adrenal gland by desorption electrospray ionization mass spectrometry. Analyst 2009; 135:28-32. [PMID: 20024177 DOI: 10.1039/b919816d] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subtle differences in the spatial distributions of closely related compounds including norepinephrine and epinephrine as well multiple lipids are easily distinguished in adult porcine (17 x 8 mm) and rabbit (7 x 4 mm) adrenal glands in a DESI-MS imaging experiment at atmospheric pressure with a spatial resolution of approximately 200 microm. Sensitive and specific detection in the course of DESI imaging discloses details of catecholamine distribution in porcine adrenal medulla and cortex; the average mass of epinephrine interrogated in each pixel is estimated to be about 150 pg. The distribution of ascorbic acid was revealed in the negative ion mode. In addition, the distribution of cholesterol, which cannot be observed using conventional DESI, was obtained using in situ reaction with betaine aldehyde added to the DESI spray while imaging the porcine adrenal gland tissue. Four characteristic types of distributions were observed, with major amounts of the components in the medulla, the cortex, the reticular zone or in the fourth case, being homogeneously distributed. The results agree with and extend information available from histological studies.
Collapse
Affiliation(s)
- Chunping Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
27
|
Dietschy JM. Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem 2009; 390:287-93. [PMID: 19166320 DOI: 10.1515/bc.2009.035] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The average amount of cholesterol in the whole animal equals approximately 2100 mg/kg body weight, and 15% and 23% of this sterol in the mouse and human, respectively, is found in the central nervous system. There is no detectable uptake across the blood-brain barrier of cholesterol carried in lipoproteins in the plasma, even in the newborn. However, high rates of de novo cholesterol synthesis in the glia and neurons provide the sterol necessary for early brain development. Once a stable brain size is achieved in the adult, cholesterol synthesis continues, albeit at a much lower rate, and this synthesis is just balanced by the excretion of an equal amount of sterol, either as 24(S)-hydroxycholesterol or, presumably, as cholesterol itself.
Collapse
Affiliation(s)
- John M Dietschy
- Department of Internal Medicine, University of TexasSouthwestern Medical School, Dallas, TX 75390-9151,USA.
| |
Collapse
|
28
|
Abstract
1. Niemann-Pick Type C disease (NPC) is an incurable cholesterol-storage disorder that stems from inherited deficiencies of lysosomal proteins involved in intracellular lipid-trafficking proteins. The condition manifests as progressive neurological impairment and leads to death at an early age. 2. To improve clinical recognization and investigate therapeutic strategies, recent studies using molecular and genetic approaches have led to significant advances in the creation of animal models of NPC, as well as in the understanding of the cellular and molecular mechanisms underlying the pathogenesis of NPC. 3. Patients with NPC are divided into four groups based on age at presentation, whereas the clinical features of NPC can be divided into five categories based on the severity of the disease. Progressive neuronal loss, especially of cerebellar Purkinje cells, is a hallmark of NPC. Ballooned neurons, axonal abnormalities and astroglyosis are among the pathological changes seen. Severe demyelination is also present in the mouse model of NPC. 4. Mutations in the NPC1 gene cause approximately 95% of cases of NPC, whereas mutations in the NPC2 gene account for the remainder of cases. NPC1 is a transmembrane protein and NPC2 is a soluble protein involved in lipid trafficking in lysosomes. Loss-of-function mutations in the NPC1 gene lead to a failure of the calcium-mediated fusion of endosomes with lysosomes, resulting in the accumulation of cholesterol and other lipids in late endosomes and lysosomes. 5. The present review updates the disorders of NPC from clinical features to animal models and molecular mechanisms.
Collapse
Affiliation(s)
- Ying Tang
- Department of Immunology, Molecular Signalling Laboratory, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
29
|
Akpovi CD, -Marc Pelletier R. A revised and improved method for the isolation of seminiferous tubule-enriched fractions that preserves the phosphorylated and glycosylated forms of proteins. Methods Mol Biol 2009; 550:159-167. [PMID: 19495702 DOI: 10.1007/978-1-60327-009-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
An improved technique to generate high yields of relatively pure seminiferous tubule-enriched fractions from mouse testis by manual isolation is described. Our laboratory had previously developed an isolation method based on mild enzymatic digestion to separate individual constituents of each compartment of the testis, namely, the interstitial tissue and the seminiferous tubules. Although the method had the advantage of allowing the production of seminiferous tubule-enriched fractions in large amounts, we show here that this approach does not allow optimal preservation of the integrity of the proteins in the samples, in particular of the phosphorylated and/or glycosylated forms of the proteins. In an attempt to solve this problem, we developed a novel mechanical approach to generate interstitial tissue- and seminiferous tubule-enriched fractions that does not require the use of enzymatic digestion. This approach has the advantages of providing relatively pure seminiferous tubule-enriched fractions in large quantities and in a short amount of time. In addition, and more significantly, the approach allows a more faithful detection of the phosphorylated and glycosylated forms of the proteins.
Collapse
Affiliation(s)
- Casimir D Akpovi
- Department of Pathology and Cell Biology, University of Montreal, Montréal, Québec, Canada
| | | |
Collapse
|
30
|
Abstract
The development of a single-celled fertilized egg, through the blastocyst stage of a ball of cells and the embryonic stage when almost all organ systems begin to develop, and finally to the fetal stage where growth and physiological maturation occurs, is a complex and multifaceted process. A change in metabolism during gestation, especially when organogenesis occurs, can lead to abnormal development and congenital defects. Although many studies have described the roles of specific proteins in development, the roles of specific lipids, such as sterols, have not been studied as intensely. Sterol's functions in development range from being a structural component of membranes to regulating the patterning of the forebrain through sonic hedgehog to regulating expression of key proteins involved in metabolic processes. This review focuses on the roles of sterols in embryonic and fetal development and metabolism. Potential sources of cholesterol for the fetus and embryo are also discussed.
Collapse
Affiliation(s)
- Laura A Woollett
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| |
Collapse
|
31
|
Erickson RP, Larson-Thomé K, Weberg L, Szybinska A, Mossakowska M, Styczynska M, Barcikowska M, Kuznicki J. Variation in NPC1, the gene encoding Niemann-Pick C1, a protein involved in intracellular cholesterol transport, is associated with Alzheimer disease and/or aging in the Polish population. Neurosci Lett 2008; 447:153-7. [PMID: 18834923 DOI: 10.1016/j.neulet.2008.09.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/09/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
There is abundant evidence that cholesterol metabolism, especially as mediated by the intercellular transporter APOE, is involved in the pathogenesis of sporadic, late-onset Alzheimer disease (SLAD). Identification of other genes involved in SLAD pathogenesis has been hampered since gene association studies, whether individual or genome-wide, experience difficulty in finding appropriate controls in as much as 25% or more of normal adults will develop SLAD. Using 152 centenarians as additional controls and 120 "regular", 65-75-year-old controls, we show an association of genetic variation in NPC1 with SLAD and/or aging. In this preliminary study, we find gradients of two non-synonymous SNP's allele frequencies in NPC1 from centenarians through normal controls to SLAD in this non-stratified Polish population. An intervening intronic SNP is not in Hardy-Weinberg equilibria and differs between centenarians and controls/SLAD. Haplotypes frequencies determined by fastPHASE were somewhat different, and the predicted genotype frequencies were very different between the three groups. These findings can also be interpreted as indicating a role for NPC1 in aging, a role also suggested by NPC1's role in Dauer formation (hibernation, a longevity state) in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Robert P Erickson
- Department of Pediatrics, University of Arizona, 1501N. Campbell Avenue, P.O. Box 245073, Tucson, AZ 85724-5073, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The identification of endogenous sterol derivatives that modulate the Hedgehog (Hh) signalling pathway has begun to suggest testable hypotheses for the cellular biological functions of Patched, and for the lipoprotein association of Hh. Progress in the field of intracellular sterol trafficking has emphasized how tightly the distribution of intracellular sterol is controlled, and suggests that the synthesis of sterol derivatives can be influenced by specific sterol-delivery pathways. The combination of this field with Hh studies will rapidly give us a more sophisticated understanding of both the Hh signal-transduction pathway and the cell biology of sterol metabolism.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
33
|
Li H, Turley SD, Liu B, Repa JJ, Dietschy JM. GM2/GD2 and GM3 gangliosides have no effect on cellular cholesterol pools or turnover in normal or NPC1 mice. J Lipid Res 2008; 49:1816-28. [PMID: 18450647 DOI: 10.1194/jlr.m800180-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
These studies investigated the role of gangliosides in governing the steady-state concentration and turnover of unesterified cholesterol in normal tissues and in those of mice carrying the NPC1 mutation. In animals lacking either GM2/GD2 or GM3 synthase, tissue cholesterol concentrations and synthesis rates were normal in nearly all organs, and whole-animal sterol pools and turnover also were not different from control animals. Mice lacking both synthases, however, had small elevations in cholesterol concentrations in several organs, and the whole-animal cholesterol pool was marginally elevated. None of these three groups, however, had changes in any parameter of cholesterol homeostasis in the major regions of the central nervous system. When either the GM2/GD2 or GM3 synthase activity was deleted in mice lacking NPC1 function, the clinical phenotype was not changed, but lifespan was shortened. However, the abnormal cholesterol accumulation seen in the tissues of the NPC1 mouse was unaffected by loss of either synthase, and clinical and molecular markers of hepatic and cerebellar disease also were unchanged. These studies demonstrate that hydrophobic interactions between cholesterol and various gangliosides do not play an important role in determining cellular cholesterol concentrations in the normal animal or in the mouse with the NPC1 mutation.
Collapse
Affiliation(s)
- Hao Li
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | | | | | |
Collapse
|
34
|
Liu B, Li H, Repa JJ, Turley SD, Dietschy JM. Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J Lipid Res 2007; 49:663-9. [PMID: 18077828 DOI: 10.1194/jlr.m700525-jlr200] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a multisystem disorder caused primarily by a mutation in the npc1 gene. These studies evaluated the effect of genetic background, deletion of additional genes, and administration of several agents on the age at death in a murine model of this disorder. Such factors as differing strain background or genetic drift within a given background in the npc1(-/-) mouse significantly altered the age at death and the degree of organ disease. Genetic deletion of Siat9 (GM3 synthetase) or Nr1h2 [liver X receptor (LXR)beta] shortened the life of the npc1(-/-) animals. Daily treatment of the npc1(-/-) mice with an LXR agonist or administration of a single dose of cyclodextrin, with or without the neurosteroid allopregnanolone, significantly slowed neurodegeneration and increased the lifespan of these animals. These data illustrate that the age at death of the npc1(-/-) mouse can be significantly influenced by many factors, including differences in strain background, other inactivating gene mutations (Siat9 and lxrbeta), and administration of agents such as LXR agonists and, particularly, cyclodextrin. It is currently not clear which of these effects is nonspecific or which might relate directly to the molecular defect present in the NPC1 syndrome.
Collapse
Affiliation(s)
- Benny Liu
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | | | | | |
Collapse
|
35
|
Miranda-Jiménez L, Murphy BD. Lipoprotein receptor expression during luteinization of the ovarian follicle. Am J Physiol Endocrinol Metab 2007; 293:E1053-61. [PMID: 17698983 DOI: 10.1152/ajpendo.00554.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian follicles luteinize after ovulation, requiring structural and molecular remodeling along with exponential increases in steroidogenesis. Cholesterol substrates for luteal steroidogenesis are imported via scavenger receptor-BI (SR-BI) and the low-density lipoprotein (LDL) receptor from circulating high-density lipoproteins and LDL. SR-BI mRNA is expressed in pig ovaries at all stages of folliculogenesis and in the corpus luteum (CL). An 82-kDa form of SR-BI predominates throughout, is weakly present in granulosa cells, and is robustly expressed in the CL, along with the less abundant 57-kDa form. Digestion of N-linked carbohydrates substantially reduced the SR-BI mass in luteal cells, indicating that differences between forms is attributable to glycosylation. Immunohistochemistry revealed SR-BI to be concentrated in the cytoplasm of follicular granulosa cells, although found mostly at the periphery of luteal cells. To examine receptor dynamics during gonadotropin-induced luteinization, pigs were treated with an ovulatory stimulus, and ovaries were collected at intervals to ovulation. SR-BI in granulosa cell cytoplasm increased through the periovulatory period, with migration to the cell periphery as the CL matured. In vitro culture of follicles with human chorionic gonadotropin induced time-dependent upregulation of 82-kDa SR-BI in granulosa cells. SR-BI and LDL receptor were reciprocally expressed, with the latter highest in follicular granulosa cells, declining precipitously with CL formation. We conclude that luteinization causes upregulation of SR-BI expression, its posttranslational maturation by glycosylation, and insertion into luteal cell membranes. Expression of the LDL receptor is extinguished during luteinization, indicating dynamic regulation of cholesterol importation to maintain elevated steroid output by the CL.
Collapse
Affiliation(s)
- Leonor Miranda-Jiménez
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec, Canada J2S7C6
| | | |
Collapse
|
36
|
Liu B, Xie C, Richardson JA, Turley SD, Dietschy JM. Receptor-mediated and bulk-phase endocytosis cause macrophage and cholesterol accumulation in Niemann-Pick C disease. J Lipid Res 2007; 48:1710-23. [PMID: 17476031 DOI: 10.1194/jlr.m700125-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
These studies explored the roles of receptor-mediated and bulk-phase endocytosis as well as macrophage infiltration in the accumulation of cholesterol in the mouse with Niemann-Pick type C (NPC) disease. Uptake of LDL-cholesterol varied from 514 microg/day in the liver to zero in the central nervous system. In animals lacking LDL receptors, liver uptake remained about the same (411 microg/day), but more cholesterol was taken up in extrahepatic organs. This uptake was unaffected by the reductive methylation of LDL and consistent with bulk-phase endocytosis. All tissues accumulated cholesterol in mice lacking NPC1 function, but this accumulation was decreased in adrenal, unchanged in liver, and increased in organs like spleen and lung when LDL receptor function was also deleted. Over 56 days, the spleen and lung accumulated amounts of cholesterol greater than predicted, and these organs were heavily infiltrated with macrophages. This accumulation of both cholesterol and macrophages was increased by deleting LDL receptor function. These observations indicate that both receptor-mediated and bulk-phase endocytosis of lipoproteins, as well as macrophage infiltration, contribute to the cholesterol accumulation seen in NPC disease. These macrophages may also play a role in parenchymal cell death in this syndrome.
Collapse
Affiliation(s)
- Benny Liu
- Department of Internal Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390-9151, USA
| | | | | | | | | |
Collapse
|
37
|
Garver WS, Jelinek D, Oyarzo JN, Flynn J, Zuckerman M, Krishnan K, Chung BH, Heidenreich RA. Characterization of liver disease and lipid metabolism in the Niemann-Pick C1 mouse. J Cell Biochem 2007; 101:498-516. [PMID: 17216601 DOI: 10.1002/jcb.21200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Niemann-Pick type C1 (NPC1) disease is an autosomal-recessive cholesterol-storage disorder characterized by liver dysfunction, hepatosplenomegaly, and progressive neurodegeneration. The NPC1 gene is expressed in every tissue of the body, with liver expressing the highest amounts of NPC1 mRNA and protein. A number of studies have now indicated that the NPC1 protein regulates the transport of cholesterol from late endosomes/lysosomes to other cellular compartments involved in maintaining intracellular cholesterol homeostasis. The present study characterizes liver disease and lipid metabolism in NPC1 mice at 35 days of age before the development of weight loss and neurological symptoms. At this age, homozygous affected (NPC1(-/-)) mice were characterized with mild hepatomegaly, an elevation of liver enzymes, and an accumulation of liver cholesterol approximately four times that measured in normal (NPC1(+/+)) mice. In contrast, heterozygous (NPC1(+/-)) mice were without hepatomegaly and an elevation of liver enzymes, but the livers had a significant accumulation of triacylglycerol. With respect to apolipoprotein and lipoprotein metabolism, the results indicated only minor alterations in NPC1(-/-) mouse serum. Finally, compared to NPC1(+/+) mouse livers, the amount and processing of SREBP-1 and -2 proteins were significantly increased in NPC1(-/-) mouse livers, suggesting a relative deficiency of cholesterol at the metabolically active pool of cholesterol located at the endoplasmic reticulum. The results from this study further support the hypothesis that an accumulation of lipoprotein-derived cholesterol within late endosomes/lysosomes, in addition to altered intracellular cholesterol homeostasis, has a key role in the biochemical and cellular pathophysiology associated with NPC1 liver disease.
Collapse
Affiliation(s)
- William S Garver
- Department of Pediatrics, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Voght SP, Fluegel ML, Andrews LA, Pallanck LJ. Drosophila NPC1b promotes an early step in sterol absorption from the midgut epithelium. Cell Metab 2007; 5:195-205. [PMID: 17339027 DOI: 10.1016/j.cmet.2007.01.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/04/2006] [Accepted: 01/23/2007] [Indexed: 11/20/2022]
Abstract
The NPC1 family of proteins plays crucial roles in the intestinal absorption and intracellular trafficking of sterols. The Drosophila genome encodes two NPC1 homologs, one of which, NPC1a, is required for intracellular sterol trafficking in many tissues. Here we show that the other Drosophila NPC1 family member, NPC1b, is expressed in the midgut epithelium and that NPC1b is essential for growth during the early larval stages of development. NPC1b mutants are severely defective in sterol absorption, and the midgut epithelium of NPC1b mutants is deficient in sterols and sterol trafficking intermediates. By contrast, NPC1a mutants absorb sterols more efficiently than wild-type animals, and, unexpectedly, NPC1b;NPC1a double mutants absorb sterols as efficiently as wild-type animals. Together, these findings suggest that NPC1b plays an early role in sterol absorption, although sterol absorption continues at high efficiency through an NPC1a- and NPC1b-independent mechanism under conditions of impaired intracellular sterol trafficking.
Collapse
Affiliation(s)
- Stephen P Voght
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|