1
|
Peng H, Xu Q, Zhang T, Zhu J, Pan J, Guan X, Feng S, Wu J, Hu Q. Molecular determinants for the association of human hormone-sensitive lipase with lipid droplets. Nat Commun 2025; 16:3497. [PMID: 40221426 PMCID: PMC11993637 DOI: 10.1038/s41467-025-58887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Lipid droplets (LDs) are the main cellular storage sites for triacylglycerols (TAGs), playing an important role in energy homeostasis and cell signaling. Hydrolysis of the stored TAGs begins with conversion of TAGs into diacylglycerols (DAGs) by adipose triglyceride lipase (ATGL), followed by hydrolysis of DAGs by hormone-sensitive lipase (HSL). Despite the central role of HSL in lipolysis, the molecular determinants for its LD association have remained elusive. Here, we report the cryo-EM structure of human HSL at 3.4 Å. Combining this with hydrogen-deuterium exchange mass spectrometry, biochemical and cellular assays, we identify residues 489-538, referred to as the "H-motif", and the N-terminal 4-helix bundle of HSL as LD-binding motifs mediating direct interaction of HSL with LDs. LD binding mediated by the LD-binding motifs is independent of HSL phosphorylation catalyzed by the cAMP-dependent kinase PKA. Our findings provide insight into the LD binding mechanism of HSL, advancing our understanding of the regulation of lipolysis.
Collapse
Affiliation(s)
- Han Peng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Qikui Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ting Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jiakai Zhu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Jinheng Pan
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, Biomedical Research Center, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoyu Guan
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shan Feng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry & Metabolomics Core Facility, Biomedical Research Center, Westlake University, Hangzhou, Zhejiang, China
| | - Jianping Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Qi Hu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wei M, Wang Y, Zhang Y, Qiao Y. Plin5: A potential therapeutic target for type 2 diabetes mellitus. Diabetol Metab Syndr 2025; 17:114. [PMID: 40176076 PMCID: PMC11963521 DOI: 10.1186/s13098-025-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a kind of metabolic disease characterized by aberrant insulin secretion as a result of -cell loss or injury, or by impaired insulin sensitivity of peripheral tissues, which finally results in insulin resistance and a disturbance of glucose and lipid metabolism. Among them, lipid metabolism disorders lead to lipotoxicity through oxidative stress and inflammatory response, destroying the structure and function of tissues and cells. Abnormal lipid metabolism can lead to abnormal insulin signaling and disrupt glucose metabolism through a variety of pathways. Therefore, emphasizing lipid metabolism may be a crucial step in the prevention and treatment of T2DM. Plin5 is a lipid droplet surface protein, which can bi-directionally regulate lipid metabolism and plays an important role in lipolysis and fat synthesis. Plin5 can simultaneously decrease the buildup of free fatty acids in the cytoplasm, improve mitochondrial uptake of free fatty acids, speed up fatty acid oxidation through lipid drops-mitochondria interaction, and lessen lipotoxicity. In oxidative tissues like the heart, liver, and skeletal muscle, Plin5 is extensively expressed. And Plin5 is widely involved in β-cell apoptosis, insulin resistance, oxidative stress, inflammatory response and other pathological processes, which has important implications for exploring the pathogenesis of T2DM. In addition, recent studies have found that Plin5 is also closely related to T2DM and cancer, which provides a new perspective for exploring the relationship between T2DM and cancer.
Collapse
Affiliation(s)
- Mengjuan Wei
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Chen M, Wu Y, Yang H, Liu T, Han T, Dai W, Cen J, Ouyang F, Chen J, Liu J, Zhou L, Hu X. Effects of fermented Arctium lappa L. root by Lactobacillus casei on hyperlipidemic mice. Front Pharmacol 2024; 15:1447077. [PMID: 39529876 PMCID: PMC11551023 DOI: 10.3389/fphar.2024.1447077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction This study aimed to establish a fermentation system based on Lactobacillus casei (LC) and Arctium lappa L. root (AR) to investigate its effects. The objectives included comparing metabolite profiles pre- and post-fermentation using untargeted metabolomics and evaluating the impact of LC-AR in high-fat diet-induced hyperlipidemic mice. Methods Untargeted metabolomics was used to analyze differences in metabolites before and after fermentation. In vitro antioxidant activity, liver injury, lipid levels, pro-inflammatory cytokine levels, and cholesterol-related mRNA expression were assessed. 16S rRNA sequencing was conducted to evaluate changes in gut microbiota composition. Results LC-AR exhibited stronger antioxidant activity and higher metabolite levels than AR. It also improved liver injury as well as better regulation of lipid levels, pro-inflammatory cytokine levels, and cholesterol-related mRNA. 16S rRNA analysis revealed that LC-AR decreased the Firmicutes/Bacteroidetes ratio, which correlated negatively with triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. Discussion These findings suggest that LC-AR may serve as a promising functional food and drug raw material for improving hyperlipidemia, particularly through its beneficial effects on gut microbiota and lipid regulation.
Collapse
Affiliation(s)
- MingJu Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yuxiao Wu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hongxuan Yang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfeng Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tongkun Han
- Shenzhen Bao’an District Songgang People’s Hospital, Shenzhen, Guangdong, China
| | - Wangqiang Dai
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Junyue Cen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Fan Ouyang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jingjing Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jianxin Liu
- School of Pharmaceutical Sciences, China-Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xuguang Hu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Smith JAB, Murach KA, Dyar KA, Zierath JR. Exercise metabolism and adaptation in skeletal muscle. Nat Rev Mol Cell Biol 2023; 24:607-632. [PMID: 37225892 PMCID: PMC10527431 DOI: 10.1038/s41580-023-00606-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/26/2023]
Abstract
Viewing metabolism through the lens of exercise biology has proven an accessible and practical strategy to gain new insights into local and systemic metabolic regulation. Recent methodological developments have advanced understanding of the central role of skeletal muscle in many exercise-associated health benefits and have uncovered the molecular underpinnings driving adaptive responses to training regimens. In this Review, we provide a contemporary view of the metabolic flexibility and functional plasticity of skeletal muscle in response to exercise. First, we provide background on the macrostructure and ultrastructure of skeletal muscle fibres, highlighting the current understanding of sarcomeric networks and mitochondrial subpopulations. Next, we discuss acute exercise skeletal muscle metabolism and the signalling, transcriptional and epigenetic regulation of adaptations to exercise training. We address knowledge gaps throughout and propose future directions for the field. This Review contextualizes recent research of skeletal muscle exercise metabolism, framing further advances and translation into practice.
Collapse
Affiliation(s)
- Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Kevin A Murach
- Molecular Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Laber S, Strobel S, Mercader JM, Dashti H, dos Santos FR, Kubitz P, Jackson M, Ainbinder A, Honecker J, Agrawal S, Garborcauskas G, Stirling DR, Leong A, Figueroa K, Sinnott-Armstrong N, Kost-Alimova M, Deodato G, Harney A, Way GP, Saadat A, Harken S, Reibe-Pal S, Ebert H, Zhang Y, Calabuig-Navarro V, McGonagle E, Stefek A, Dupuis J, Cimini BA, Hauner H, Udler MS, Carpenter AE, Florez JC, Lindgren C, Jacobs SB, Claussnitzer M. Discovering cellular programs of intrinsic and extrinsic drivers of metabolic traits using LipocyteProfiler. CELL GENOMICS 2023; 3:100346. [PMID: 37492099 PMCID: PMC10363917 DOI: 10.1016/j.xgen.2023.100346] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/22/2022] [Accepted: 05/26/2023] [Indexed: 07/27/2023]
Abstract
A primary obstacle in translating genetic associations with disease into therapeutic strategies is elucidating the cellular programs affected by genetic risk variants and effector genes. Here, we introduce LipocyteProfiler, a cardiometabolic-disease-oriented high-content image-based profiling tool that enables evaluation of thousands of morphological and cellular profiles that can be systematically linked to genes and genetic variants relevant to cardiometabolic disease. We show that LipocyteProfiler allows surveillance of diverse cellular programs by generating rich context- and process-specific cellular profiles across hepatocyte and adipocyte cell-state transitions. We use LipocyteProfiler to identify known and novel cellular mechanisms altered by polygenic risk of metabolic disease, including insulin resistance, fat distribution, and the polygenic contribution to lipodystrophy. LipocyteProfiler paves the way for large-scale forward and reverse deep phenotypic profiling in lipocytes and provides a framework for the unbiased identification of causal relationships between genetic variants and cellular programs relevant to human disease.
Collapse
Affiliation(s)
- Samantha Laber
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sophie Strobel
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Josep M. Mercader
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Hesam Dashti
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Felipe R.C. dos Santos
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phil Kubitz
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maya Jackson
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alina Ainbinder
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Julius Honecker
- Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Saaket Agrawal
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Garrett Garborcauskas
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R. Stirling
- Imaging Platform, Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aaron Leong
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Katherine Figueroa
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nasa Sinnott-Armstrong
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Stanford University, San Francisco, CA, USA
| | - Maria Kost-Alimova
- Imaging Platform, Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Giacomo Deodato
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alycen Harney
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gregory P. Way
- Imaging Platform, Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alham Saadat
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sierra Harken
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Saskia Reibe-Pal
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
| | - Hannah Ebert
- Institute of Nutritional Science, University Hohenheim, 70599 Stuttgart, Germany
| | - Yixin Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Virtu Calabuig-Navarro
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute of Nutritional Science, University Hohenheim, 70599 Stuttgart, Germany
| | - Elizabeth McGonagle
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adam Stefek
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 1G1, Canada
| | - Beth A. Cimini
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hans Hauner
- Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
- Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Miriam S. Udler
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Anne E. Carpenter
- Imaging Platform, Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jose C. Florez
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Cecilia Lindgren
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Suzanne B.R. Jacobs
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Melina Claussnitzer
- Programs in Metabolism and Medical and Population Genetics, Type 2 Diabetes Systems Genomics Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Fachada V, Silvennoinen M, Sahinaho UM, Rahkila P, Kivelä R, Hulmi JJ, Kujala U, Kainulainen H. Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1 α. Int J Mol Sci 2023; 24:ijms24054282. [PMID: 36901715 PMCID: PMC10002284 DOI: 10.3390/ijms24054282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.
Collapse
|
7
|
Branched-Chain Amino Acid Deprivation Decreases Lipid Oxidation and Lipogenesis in C2C12 Myotubes. Metabolites 2022; 12:metabo12040328. [PMID: 35448515 PMCID: PMC9031053 DOI: 10.3390/metabo12040328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Impaired lipid metabolism is a common risk factor underlying several metabolic diseases such as metabolic syndrome and type 2 diabetes. Branched-chain amino acids (BCAAs) that include valine, leucine and isoleucine have been proven to share a role in lipid metabolism and hence in maintaining metabolic health. We have previously introduced a hypothesis suggesting that BCAA degradation mechanistically connects to lipid oxidation and storage in skeletal muscle. To test our hypothesis, the present study examined the effects of BCAA deprivation and supplementation on lipid oxidation, lipogenesis and lipid droplet characteristics in murine C2C12 myotubes. In addition, the role of myotube contractions on cell metabolism was studied by utilizing in vitro skeletal-muscle-specific exercise-like electrical pulse stimulation (EPS). Our results showed that the deprivation of BCAAs decreased both lipid oxidation and lipogenesis in C2C12 myotubes. BCAA deprivation further diminished the number of lipid droplets in the EPS-treated myotubes. EPS decreased lipid oxidation especially when combined with high BCAA supplementation. Similar to BCAA deprivation, high BCAA supplementation also decreased lipid oxidation. The present results highlight the role of an adequate level of BCAAs in healthy lipid metabolism.
Collapse
|
8
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2021; 154:347-354. [PMID: 32984928 DOI: 10.1007/s00418-020-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
9
|
The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules 2020; 10:biom10121699. [PMID: 33371437 PMCID: PMC7767423 DOI: 10.3390/biom10121699] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
Since the lipid profile is altered by physical activity, the study of lipid metabolism is a remarkable element in understanding if and how physical activity affects the health of both professional athletes and sedentary subjects. Although not fully defined, it has become clear that resistance exercise uses fat as an energy source. The fatty acid oxidation rate is the result of the following processes: (a) triglycerides lipolysis, most abundant in fat adipocytes and intramuscular triacylglycerol (IMTG) stores, (b) fatty acid transport from blood plasma to muscle sarcoplasm, (c) availability and hydrolysis rate of intramuscular triglycerides, and (d) transport of fatty acids through the mitochondrial membrane. In this review, we report some studies concerning the relationship between exercise and the aforementioned processes also in light of hormonal controls and molecular regulations within fat and skeletal muscle cells.
Collapse
|
10
|
Seibert JT, Najt CP, Heden TD, Mashek DG, Chow LS. Muscle Lipid Droplets: Cellular Signaling to Exercise Physiology and Beyond. Trends Endocrinol Metab 2020; 31:928-938. [PMID: 32917515 PMCID: PMC7704552 DOI: 10.1016/j.tem.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
Conventionally viewed as energy storage depots, lipid droplets (LDs) play a central role in muscle lipid metabolism and intracellular signaling, as recognized by recent advances in our biological understanding. Specific subpopulations of muscle LDs, defined by location and associated proteins, are responsible for distinct biological functions. In this review, the traditional view of muscle LDs is examined, and the emerging role of LDs in intracellular signaling is highlighted. The effects of chronic and acute exercise on muscle LD metabolism and signaling is discussed. In conclusion, future directions for muscle LD research are identified. The primary focus will be on human studies, with inclusion of select animal/cellular/non-muscle studies as appropriate, to provide the underlying mechanisms driving the observed findings.
Collapse
Affiliation(s)
- Jacob T Seibert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy D Heden
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lisa S Chow
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Strauss JA, Shepherd DA, Macey M, Jevons EFP, Shepherd SO. Divergence exists in the subcellular distribution of intramuscular triglyceride in human skeletal muscle dependent on the choice of lipid dye. Histochem Cell Biol 2020; 154:369-382. [PMID: 32627050 PMCID: PMC7532971 DOI: 10.1007/s00418-020-01898-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2020] [Indexed: 01/19/2023]
Abstract
Despite over 50 years of research, a comprehensive understanding of how intramuscular triglyceride (IMTG) is stored in skeletal muscle and its contribution as a fuel during exercise is lacking. Immunohistochemical techniques provide information on IMTG content and lipid droplet (LD) morphology on a fibre type and subcellular-specific basis, and the lipid dye Oil Red O (ORO) is commonly used to achieve this. BODIPY 493/503 (BODIPY) is an alternative lipid dye with lower background staining and narrower emission spectra. Here we provide the first quantitative comparison of BODIPY and ORO for investigating exercise-induced changes in IMTG content and LD morphology on a fibre type and subcellular-specific basis. Estimates of IMTG content were greater when using BODIPY, which was predominantly due to BODIPY detecting a larger number of LDs, compared to ORO. The subcellular distribution of intramuscular lipid was also dependent on the lipid dye used; ORO detects a greater proportion of IMTG in the periphery (5 μm below cell membrane) of the fibre, whereas IMTG content was higher in the central region using BODIPY. In response to 60 min moderate-intensity cycling exercise, IMTG content was reduced in both the peripheral (− 24%) and central region (− 29%) of type I fibres (P < 0.05) using BODIPY, whereas using ORO, IMTG content was only reduced in the peripheral region of type I fibres (− 31%; P < 0.05). As well as highlighting some methodological considerations herein, our investigation demonstrates that important differences exist between BODIPY and ORO for detecting and quantifying IMTG on a fibre type and subcellular-specific basis.
Collapse
Affiliation(s)
- Juliette A Strauss
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Daisy A Shepherd
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Royal Children's Hospital, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Victoria, 3010, Australia
| | - Myfanwy Macey
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Emily F P Jevons
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
12
|
Lopez P, Crosby BJ, Robetti BP, Turella DJP, Weber TAS, de Oliveira ML, Rech A. Effects of an 8-week resistance training intervention on plantar flexor muscle quality and functional capacity in older women: A randomised controlled trial. Exp Gerontol 2020; 138:111003. [PMID: 32562747 DOI: 10.1016/j.exger.2020.111003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/13/2020] [Indexed: 01/11/2023]
Abstract
The present study examined 8 weeks of resistance training and its effects on muscle quality measures, plantar flexor muscle strength, muscle thickness and functional capacity in older women. Moreover, we tested if changes in muscle quality were associated with functional capacity. Twenty-four older women (66.3 ± 5.8 years; 69.0 ± 3.0 kg; 25.3 ± 1.4 kg·m-2) were recruited to the study. After completion of the baseline assessment, participants were randomly assigned to either the resistance training (RET, n = 12) or an active control group (CTR, n = 12). Muscle quality was evaluated through muscle echo intensity (MQEI) and specific tension (MQST). Muscle thickness, unilateral plantar flexor muscle strength and functional tests were evaluated at baseline and after the training period. After 8 weeks, both MQEI and MQST did not respond to the intervention. Furthermore, significant changes in stair climb performance (P < 0.05) were not associated with plantar flexor-derived muscle quality (P > 0.05). Finally, significant gains in muscle hypertrophy were observed in the RET group (P < 0.01), while muscle strength failed to change significantly (P > 0.05). In conclusion, a resistance training program provided significant benefits in the stair climb test, unrelated to plantar flexor-derived muscle quality measures as previously demonstrated in quadriceps femoris.
Collapse
Affiliation(s)
- Pedro Lopez
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia.
| | - Brendan James Crosby
- Exercise Medicine Research Institute, Edith Cowan University, Perth, Western Australia, Australia
| | | | | | | | | | - Anderson Rech
- Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Shaw CS, Swinton C, Morales-Scholz MG, McRae N, Erftemeyer T, Aldous A, Murphy RM, Howlett KF. Impact of exercise training status on the fiber type-specific abundance of proteins regulating intramuscular lipid metabolism. J Appl Physiol (1985) 2020; 128:379-389. [PMID: 31917629 DOI: 10.1152/japplphysiol.00797.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Endurance training enhances the capacity for fat oxidation during exercise due to increased utilization of intramuscular lipid (IMCL). This study quantitatively investigated the impact of exercise training status on muscle fiber type-specific abundance of regulatory proteins involved in IMCL utilization. Endurance-trained [n = 7 subjects, peak oxygen consumption (V̇o2peak) 62.6 ± 4.1 (SD) mL·min-1·kg-1] and non-endurance-trained (n = 8 subjects, V̇o2peak 44.9 ± 5.3 mL·min-1·kg-1) young men completed an incremental exercise test to determine maximal fat oxidation (MFO) and maximal oxygen uptake. Fiber type-specific IMCL content and protein abundance were assessed with immunofluorescence microscopy and immunoblot analysis of pooled single muscle fibers and whole muscle. Endurance-trained individuals displayed a higher MFO rate (0.45 ± 0.15 vs. 0.19 ± 0.07 g/min, P < 0.05), a greater proportion of type I muscle fibers, and higher IMCL content compared with untrained individuals (P < 0.05). Adipose triglyceride lipase, hormone-sensitive lipase, perilipin 2, perilipin 5, and hydroxyacyl-coenzyme A dehydrogenase abundances were ~2-3-fold higher in type I muscle fibers compared with type IIa fibers (P < 0.05). Correspondingly, these lipid proteins and oxidative enzymes were higher in endurance-trained individuals when assessed in whole muscle. MFO rate was strongly related to the proportion of type I fibers (R = 0.81, P < 0.01). The abundance of proteins involved in the regulation of IMCL storage and oxidation is highly muscle fiber type specific. The increased capacity for fat oxidation in endurance-trained individuals corresponded with increased IMCL content and elevated abundance of lipolytic and oxidative enzymes in combination with a greater proportion of type I muscle fibers.NEW & NOTEWORTHY We have utilized contemporary techniques to compare the fiber type-specific characteristics of skeletal muscle from endurance-trained athletes and untrained individuals. We show that type I muscle fibers have a coordinated upregulation of proteins controlling intramuscular lipid storage, mobilization, and oxidation. Furthermore, the enhanced capacity for intramuscular lipid storage and utilization in endurance-trained individuals is related to the increased expression of lipid regulatory proteins combined with a greater proportion of type I muscle fibers.
Collapse
Affiliation(s)
- C S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - C Swinton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - M G Morales-Scholz
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - N McRae
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - T Erftemeyer
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - A Aldous
- Olympic Park Sports Medicine Centre, Melbourne, Victoria, Australia
| | - R M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - K F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
14
|
Muscle quality and functionality in older women improve similarly with muscle power training using one or three sets. Exp Gerontol 2019; 128:110745. [DOI: 10.1016/j.exger.2019.110745] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/21/2022]
|
15
|
|
16
|
Jensen CF, Bartels ED, Braunstein TH, Nielsen LB, Holstein‐Rathlou N, Axelsen LN, Nielsen MS. Acute intramyocardial lipid accumulation in rats does not slow cardiac conduction per se. Physiol Rep 2019; 7:e14049. [PMID: 30968589 PMCID: PMC6456446 DOI: 10.14814/phy2.14049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Diabetic patients suffer from both cardiac lipid accumulation and an increased risk of arrhythmias and sudden cardiac death. This correlation suggests a link between diabetes induced cardiac steatosis and electrical abnormalities, however, the underlying mechanism remains unknown. We previously showed that cardiac conduction velocity slows in Zucker diabetic fatty rats and in fructose-fat fed rats, models that both exhibit prominent cardiac steatosis. The aim of this study was to investigate whether acute cardiac lipid accumulation reduces conduction velocity per se. Cardiac lipid accumulation was induced acutely by perfusing isolated rat hearts with palmitate-glucose buffer, or subacutely by fasting rats overnight. Subsequently, longitudinal cardiac conduction velocity was measured in right ventricular tissue strips, and intramyocardial triglyceride and lipid droplet content was determined by thin layer chromatography and BODIPY staining, respectively. Perfusion with palmitate-glucose buffer significantly increased intramyocardial triglyceride levels compared to perfusion with glucose (2.16 ± 0.17 (n = 10) vs. 0.92 ± 0.33 nmol/mg WW (n = 9), P < 0.01), but the number of lipid droplets was very low in both groups. Fasting of rats, however, resulted in both significantly elevated intramyocardial triglyceride levels compared to fed rats (3.27 ± 0.43 (n = 10) vs. 1.45 ± 0.24 nmol/mg WW (n = 10)), as well as a larger volume of lipid droplets (0.60 ± 0.13 (n = 10) vs. 0.21 ± 0.06% (n = 10), P < 0.05). There was no significant difference in longitudinal conduction velocity between palmitate-glucose perfused and control hearts (0.77 ± 0.025 (n = 10) vs. 0.75 m/sec ± 0.029 (n = 9)), or between fed and fasted rats (0.75 ± 0.042 m/sec (n = 10) vs. 0.79 ± 0.047 (n = 10)). In conclusion, intramyocardial lipid accumulation does not slow cardiac longitudinal conduction velocity per se. This is true for both increased intramyocardial triglyceride content, induced by palmitate-glucose perfusion, and increased intramyocardial triglyceride and lipid droplet content, generated by fasting.
Collapse
Affiliation(s)
- Christa F. Jensen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Emil D. Bartels
- Department of Clinical BiochemistryCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Thomas H. Braunstein
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars B. Nielsen
- Department of Clinical BiochemistryCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | | | - Lene N. Axelsen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schak Nielsen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
17
|
Lund J, Helle SA, Li Y, Løvsletten NG, Stadheim HK, Jensen J, Kase ET, Thoresen GH, Rustan AC. Higher lipid turnover and oxidation in cultured human myotubes from athletic versus sedentary young male subjects. Sci Rep 2018; 8:17549. [PMID: 30510272 PMCID: PMC6277406 DOI: 10.1038/s41598-018-35715-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
In this study we compared fatty acid (FA) metabolism in myotubes established from athletic and sedentary young subjects. Six healthy sedentary (maximal oxygen uptake (VO2max) ≤ 46 ml/kg/min) and six healthy athletic (VO2max > 60 ml/kg/min) young men were included. Myoblasts were cultured and differentiated to myotubes from satellite cells isolated from biopsy of musculus vastus lateralis. FA metabolism was studied in myotubes using [14C]oleic acid. Lipid distribution was assessed by thin layer chromatography, and FA accumulation, lipolysis and re-esterification were measured by scintillation proximity assay. Gene and protein expressions were studied. Myotubes from athletic subjects showed lower FA accumulation, lower incorporation of FA into total lipids, triacylglycerol (TAG), diacylglycerol and cholesteryl ester, higher TAG-related lipolysis and re-esterification, and higher complete oxidation and incomplete β-oxidation of FA compared to myotubes from sedentary subjects. mRNA expression of the mitochondrial electron transport chain complex III gene UQCRB was higher in cells from athletic compared to sedentary. Myotubes established from athletic subjects have higher lipid turnover and oxidation compared to myotubes from sedentary subjects. Our findings suggest that cultured myotubes retain some of the phenotypic traits of their donors.
Collapse
Affiliation(s)
- Jenny Lund
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.
| | - Siw A Helle
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nils G Løvsletten
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Hans K Stadheim
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Eili T Kase
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - G Hege Thoresen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Arild C Rustan
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Kristensen MD, Petersen SM, Møller KE, Lund MT, Hansen M, Hansen CN, Courraud J, Helge JW, Dela F, Prats C. Obesity leads to impairments in the morphology and organization of human skeletal muscle lipid droplets and mitochondrial networks, which are resolved with gastric bypass surgery-induced improvements in insulin sensitivity. Acta Physiol (Oxf) 2018; 224:e13100. [PMID: 29791782 DOI: 10.1111/apha.13100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
AIMS Skeletal muscle lipid stores and mitochondrial function have been appointed as key players in obesity-induced insulin resistance. However, there are conflicting reports in the literature based on in vitro quantitative measurements. Here, we test the hypothesis that it is not the quantity but the quality that matters. METHODS This study combines quantitative and qualitative structural measurements of lipid stores and mitochondrial dynamics in skeletal muscle from lean subjects, and subjects with morbid obesity, with and without type 2 diabetes, before and after gastric bypass surgery. RESULTS The structural organization of muscle mitochondrial networks in type II muscle fibres from subjects with morbid obesity is impaired. In addition, the amount of skeletal muscle perilipin 2 protein per intramyocellular lipid is reduced in subjects with morbid obesity, resulting in qualitative alterations in perilipin 2 coat around some lipid droplets. Gastric bypass surgery-induced weight loss and insulin resistance remission were associated with decreases in intramyocellular lipid stores and, qualitative improvements in lipid droplets' morphology, perilipin 2 coat and mitochondrial dynamics. CONCLUSION Morbid obesity leads to severe qualitative alterations of both skeletal muscle lipid stores and mitochondrial networks. The degree of structural improvements after gastric bypass surgery was proportional to the improvements in whole body insulin sensitivity, suggesting an association between these events.
Collapse
Affiliation(s)
- M. D. Kristensen
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - S. M. Petersen
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - K. E. Møller
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - M. T. Lund
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - M. Hansen
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - C. N Hansen
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - J. Courraud
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - F. Dela
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Department of Geriatrics; Bispebjerg University Hospital; Copenhagen Denmark
| | - C. Prats
- X-lab, Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- Core Facility for Integrated Microscopy; Department of Biomedical Sciences; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
19
|
Hargreaves M, Spriet LL. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029744. [PMID: 28533314 DOI: 10.1101/cshperspect.a029744] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During exercise, the supply of adenosine triphosphate (ATP) is essential for the energy-dependent processes that underpin ongoing contractile activity. These pathways involve both substrate-level phosphorylation, without any need for oxygen, and oxidative phosphorylation that is critically dependent on oxygen delivery to contracting skeletal muscle by the respiratory and cardiovascular systems and on the supply of reducing equivalents from the degradation of carbohydrate, fat, and, to a limited extent, protein fuel stores. The relative contribution of these pathways is primarily determined by exercise intensity, but also modulated by training status, preceding diet, age, gender, and environmental conditions. Optimal substrate availability and utilization before, during, and after exercise is critical for maintaining exercise performance. This review provides a brief overview of exercise metabolism, with expanded discussion of the regulation of muscle glucose uptake and fatty acid uptake and oxidation.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
20
|
Whytock KL, Shepherd SO, Wagenmakers AJM, Strauss JA. Hormone-sensitive lipase preferentially redistributes to lipid droplets associated with perilipin-5 in human skeletal muscle during moderate-intensity exercise. J Physiol 2018. [PMID: 29527681 DOI: 10.1113/jp275502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) are the key enzymes involved in intramuscular triglyceride (IMTG) lipolysis. In isolated rat skeletal muscle, HSL translocates to IMTG-containing lipid droplets (LDs) following electrical stimulation, but whether HSL translocation occurs in human skeletal muscle during moderate-intensity exercise is currently unknown. Perilipin-2 (PLIN2) and perilipin-5 (PLIN5) proteins have been implicated in regulating IMTG lipolysis by interacting with HSL and ATGL in cell culture and rat skeletal muscle studies. This study investigated the hypothesis that HSL (but not ATGL) redistributes to LDs during moderate-intensity exercise in human skeletal muscle, and whether the localisation of these lipases with LDs was affected by the presence of PLIN proteins on the LDs. HSL preferentially redistributed to PLIN5-associated LDs whereas ATGL distribution was not altered with exercise; this is the first study to illustrate the pivotal step of HSL redistribution to PLIN5-associated LDs following moderate-intensity exercise in human skeletal muscle. ABSTRACT Hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) control skeletal muscle lipolysis. ATGL is present on the surface of lipid droplets (LDs) containing intramuscular triglyceride (IMTG) in both the basal state and during exercise. HSL translocates to LD in ex vivo electrically stimulated rat skeletal muscle. Perilipin-2- and perilipin-5-associated lipid droplets (PLIN2+ and PLIN5+ LDs) are preferentially depleted during exercise in humans, indicating that these PLINs may control muscle lipolysis. We aimed to test the hypothesis that in human skeletal muscle in vivo HSL (but not ATGL) is redistributed to PLIN2+ and PLIN5+ LDs during moderate-intensity exercise. Muscle biopsies from 8 lean trained males (age 21 ± 1 years, BMI 22.6 ± 1.2 kg m-2 and V̇O2 peak 48.2 ± 5.0 ml min-1 kg-1 ) were obtained before and immediately following 60 min of cycling exercise at ∼59% V̇O2 peak . Cryosections were stained using antibodies targeting ATGL, HSL, PLIN2 and PLIN5. LDs were stained using BODIPY 493/503. Images were obtained using confocal immunofluorescence microscopy and object-based colocalisation analyses were performed. Following exercise, HSL colocalisation to LDs increased (P < 0.05), and was significantly greater to PLIN5+ LDs (+53%) than to PLIN5- LDs (+34%) (P < 0.05), while the increases in HSL colocalisation to PLIN2+ LDs (+16%) and PLIN2- LDs (+28%) were not significantly different. Following exercise, the fraction of LDs colocalised with ATGL (0.53 ± 0.04) did not significantly change (P < 0.05) and was not affected by PLIN association to the LDs. This study presents the first evidence of exercise-induced HSL redistribution to LDs in human skeletal muscle and identifies PLIN5 as a facilitator of this mechanism.
Collapse
Affiliation(s)
- Katie L Whytock
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Juliette A Strauss
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
21
|
Lundsgaard AM, Fritzen AM, Kiens B. Molecular Regulation of Fatty Acid Oxidation in Skeletal Muscle during Aerobic Exercise. Trends Endocrinol Metab 2018; 29:18-30. [PMID: 29221849 DOI: 10.1016/j.tem.2017.10.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023]
Abstract
This review summarizes how fatty acid (FA) oxidation is regulated in skeletal muscle during exercise. From the available evidence it seems that acetyl-CoA availability in the mitochondrial matrix adjusts FA oxidation to exercise intensity and duration. This is executed at the step of mitochondrial fatty acyl import, as the extent of acetyl group sequestration by carnitine determines the availability of carnitine for the carnitine palmitoyltransferase 1 (CPT1) reaction. The rate of glycolysis seems therefore to be central to the amount of β-oxidation-derived acetyl-CoA that is oxidized in the tricarboxylic acid (TCA) cycle. FA oxidation during exercise is also determined by FA availability to mitochondria, dependent on trans-sarcolemmal FA uptake via cluster of differentiation 36/SR-B2 (CD36) and FAs mobilized from myocellular lipid droplets.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mæchel Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Shepherd SO, Strauss JA, Wang Q, Dube JJ, Goodpaster B, Mashek DG, Chow LS. Training alters the distribution of perilipin proteins in muscle following acute free fatty acid exposure. J Physiol 2017; 595:5587-5601. [PMID: 28560826 PMCID: PMC5556155 DOI: 10.1113/jp274374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/17/2017] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS The lipid droplet (LD)-associated perilipin (PLIN) proteins promote intramuscular triglyceride (IMTG) storage, although whether the abundance and association of the PLIN proteins with LDs is related to the diverse lipid storage in muscle between trained and sedentary individuals is unknown. We show that lipid infusion augments IMTG content in type I fibres of both trained and sedentary individuals. Most importantly, despite there being no change in PLIN protein content, lipid infusion did increase the number of LDs connected with PLIN proteins in trained individuals only. We conclude that trained individuals are able to redistribute the pre-existing pool of PLIN proteins to an expanded LD pool during lipid infusion and, via this adaptation, may support the storage of fatty acids in IMTG. ABSTRACT Because the lipid droplet (LD)-associated perilipin (PLIN) proteins promote intramuscular triglyceride (IMTG) storage, we investigated the hypothesis that differential protein content of PLINs and their distribution with LDs may be linked to the diverse lipid storage in muscle between trained and sedentary individuals. Trained (n = 11) and sedentary (n = 10) subjects, matched for age, sex and body mass index, received either a 6 h lipid or glycerol infusion in the setting of a concurrent hyperinsulinaemic-euglycaemic clamp. Sequential muscle biopsies (0, 2 and 6 h) were analysed using confocal immunofluorescence microscopy for fibre type-specific IMTG content and PLIN associations with LDs. In both groups, lipid infusion increased IMTG content in type I fibres (trained: +62%, sedentary: +79%; P < 0.05) but did not affect PLIN protein content. At baseline, PLIN2 (+65%), PLIN3 (+105%) and PLIN5 (+53%; all P < 0.05) protein content was higher in trained compared to sedentary individuals. In trained individuals, lipid infusion increased the number of LDs associated with PLIN2 (+27%), PLIN3 (+73%) and PLIN5 (+40%; all P < 0.05) in type I fibres. By contrast, in sedentary individuals, lipid infusion only increased the number of LDs not associated with PLIN proteins. Acute free fatty acid elevation therefore induces a redistribution of PLIN proteins to an expanded LD pool in trained individuals only and this may be part of the mechanism that enables fatty acids to be stored in IMTG.
Collapse
Affiliation(s)
- S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Q Wang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J J Dube
- Department of Biology, Chatham University, Pittsburgh, PA, USA
| | - B Goodpaster
- Translational Research Institute for Metabolism & Diabetes, Florida Hospital, Orlando, FL, USA
| | - D G Mashek
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - L S Chow
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Watt MJ, Cheng Y. Triglyceride metabolism in exercising muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1250-1259. [PMID: 28652193 DOI: 10.1016/j.bbalip.2017.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Triglycerides are stored within lipid droplets in skeletal muscle and can be hydrolyzed to produce fatty acids for energy production through β-oxidation and oxidative phosphorylation. While there was some controversy regarding the quantitative importance of intramyocellular triglyceride (IMTG) as a metabolic substrate, recent advances in proton magnetic resonance spectroscopy and confocal microscopy support earlier tracer and biopsy studies demonstrating a substantial contribution of IMTG to energy production, particularly during moderate-intensity endurance exercise. This review provides an update on the understanding of IMTG utilization during exercise, with a focus on describing the key regulatory proteins that control IMTG breakdown and how these proteins respond to acute exercise and in the adaptation to exercise training. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Matthew J Watt
- Metabolic Disease and Obesity program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Yunsheng Cheng
- Metabolic Disease and Obesity program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Laurens C, Moro C. Intramyocellular fat storage in metabolic diseases. Horm Mol Biol Clin Investig 2017; 26:43-52. [PMID: 26741351 DOI: 10.1515/hmbci-2015-0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/18/2015] [Indexed: 12/13/2022]
Abstract
Over the past decades, obesity and its metabolic co-morbidities such as type 2 diabetes (T2D) developed to reach an endemic scale. However, the mechanisms leading to the development of T2D are still poorly understood. One main predictor for T2D seems to be lipid accumulation in "non-adipose" tissues, best known as ectopic lipid storage. A growing body of data suggests that these lipids may play a role in impairing insulin action in metabolic tissues, such as liver and skeletal muscle. This review aims to discuss recent literature linking ectopic lipid storage and insulin resistance, with emphasis on lipid deposition in skeletal muscle. The link between skeletal muscle lipid content and insulin sensitivity, as well as the mechanisms of lipid-induced insulin resistance and potential therapeutic strategies to alleviate lipotoxic lipid pressure in skeletal muscle will be discussed.
Collapse
|
25
|
Morales PE, Bucarey JL, Espinosa A. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J Diabetes Res 2017; 2017:1789395. [PMID: 28676863 PMCID: PMC5476901 DOI: 10.1155/2017/1789395] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA) availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR). In this scenario, the "isolation" of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN) family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.
Collapse
Affiliation(s)
- Pablo Esteban Morales
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jose Luis Bucarey
- CIDIS-AC, Escuela de Medicina, Universidad de Valparaiso, Valparaiso, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Alejandra Espinosa:
| |
Collapse
|
26
|
Qi Z, Ding S. Obesity-associated sympathetic overactivity in children and adolescents: the role of catecholamine resistance in lipid metabolism. J Pediatr Endocrinol Metab 2016; 29:113-25. [PMID: 26488603 DOI: 10.1515/jpem-2015-0182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/27/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obesity in children and adolescents is characterized by chronic sympathetic overdrive and reduced epinephrine-stimulated lipolysis. This resistance to catecholamines occurs during the dynamic phase of fat accumulation. This review will focus on the relationship between sympathetic-adrenal activity and lipid metabolism, thereby highlighting the role of catecholamine resistance in the development of childhood obesity. RESULTS AND CONCLUSIONS Catecholamine resistance causes lipid accumulation in adipose tissue by reducing lipolysis, increasing lipogenesis and impeding free fatty acid (FFA) transportation. Exercise improves catecholamine resistance, as evidenced by attenuated systemic sympathetic activity, reduced circulating catecholamine levels and enhanced β-adrenergic receptor signaling. Insulin resistance is mostly a casual result rather than a cause of childhood obesity. Therefore, catecholamine resistance in childhood obesity may promote insulin signaling in adipose tissue, thereby increasing lipogenesis. This review outlines a series of evidence for the role of catecholamine resistance as an upstream mechanism leading to childhood obesity.
Collapse
|
27
|
Covington JD, Noland RC, Hebert RC, Masinter BS, Smith SR, Rustan AC, Ravussin E, Bajpeyi S. Perilipin 3 Differentially Regulates Skeletal Muscle Lipid Oxidation in Active, Sedentary, and Type 2 Diabetic Males. J Clin Endocrinol Metab 2015; 100:3683-92. [PMID: 26171795 PMCID: PMC4596049 DOI: 10.1210/jc.2014-4125] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT The role of perilipin 3 (PLIN3) on lipid oxidation is not fully understood. OBJECTIVE We aimed to 1) determine whether skeletal muscle PLIN3 protein content is associated with lipid oxidation in humans, 2) understand the role of PLIN3 in lipid oxidation by knocking down PLIN3 protein content in primary human myotubes, and 3) compare PLIN3 content and its role in lipid oxidation in human primary skeletal muscle cultures established from sedentary, healthy lean (leans), type 2 diabetic (T2D), and physically active donors. DESIGN, PARTICIPANTS, AND INTERVENTION This was a clinical investigation of 29 healthy, normoglycemic males and a cross-sectional study using primary human myotubes from five leans, four T2D, and four active donors. Energy expenditure, whole-body lipid oxidation, PLIN3 protein content in skeletal muscle tissue, and ex vivo muscle palmitate oxidation were measured. Myotubes underwent lipolytic stimulation (palmitate, forskolin, inomycin [PFI] cocktail), treatment with brefeldin A (BFA), and knockdown of PLIN3 using siRNA. SETTING Experiments were performed in a Biomedical Research Institute. MAIN OUTCOME MEASURES Protein content, 24-hour respiratory quotient (RQ), and ex vivo/in vitro lipid oxidations. RESULTS PLIN3 protein content was associated with 24-h RQ (r = -0.44; P = .02) and skeletal muscle-specific ex vivo palmitate oxidation (r = 0.61; P = .02). PLIN3 knockdown showed drastic reductions in lipid oxidation in myotubes from leans. Lipolytic stimulation increased PLIN3 protein in cells from leans over T2Ds with little expression in active participants. Furthermore, treatment with BFA, known to inhibit coatomers that associate with PLIN3, reduced lipid oxidation in cells from lean and T2D, but not in active participants. CONCLUSIONS Differential expression of PLIN3 and BFA sensitivity may explain differential lipid oxidation efficiency in skeletal muscle among these cohorts.
Collapse
Affiliation(s)
- Jeffrey D Covington
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| | - Robert C Noland
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| | - R Caitlin Hebert
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| | - Blaine S Masinter
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| | - Steven R Smith
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| | - Arild C Rustan
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| | - Eric Ravussin
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| | - Sudip Bajpeyi
- Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968
| |
Collapse
|
28
|
Amrutkar M, Cansby E, Chursa U, Nuñez-Durán E, Chanclón B, Ståhlman M, Fridén V, Mannerås-Holm L, Wickman A, Smith U, Bäckhed F, Borén J, Howell BW, Mahlapuu M. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes 2015; 64:2791-804. [PMID: 25845663 PMCID: PMC4876789 DOI: 10.2337/db15-0060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Understanding the molecular networks controlling ectopic lipid deposition, glucose tolerance, and insulin sensitivity is essential to identifying new pharmacological approaches to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a negative regulator of glucose and insulin homeostasis based on observations in myoblasts with acute depletion of STK25 and in STK25-overexpressing transgenic mice. Here, we challenged Stk25 knockout mice and wild-type littermates with a high-fat diet and showed that STK25 deficiency suppressed development of hyperglycemia and hyperinsulinemia, improved systemic glucose tolerance, reduced hepatic gluconeogenesis, and increased insulin sensitivity. Stk25(-/-) mice were protected from diet-induced liver steatosis accompanied by decreased protein levels of acetyl-CoA carboxylase, a key regulator of both lipid oxidation and synthesis. Lipid accumulation in Stk25(-/-) skeletal muscle was reduced, and expression of enzymes controlling the muscle oxidative capacity (Cpt1, Acox1, Cs, Cycs, Ucp3) and glucose metabolism (Glut1, Glut4, Hk2) was increased. These data are consistent with our previous study of STK25 knockdown in myoblasts and reciprocal to the metabolic phenotype of Stk25 transgenic mice, reinforcing the validity of the results. The findings suggest that STK25 deficiency protects against the metabolic consequences of chronic exposure to dietary lipids and highlight the potential of STK25 antagonists for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emmelie Cansby
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Urszula Chursa
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Esther Nuñez-Durán
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Belén Chanclón
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Vincent Fridén
- Center for Physiology and Bio-Imaging, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Mannerås-Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anna Wickman
- Center for Physiology and Bio-Imaging, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Brian W Howell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY
| | - Margit Mahlapuu
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Ramos SV, Turnbull PC, MacPherson REK, LeBlanc PJ, Ward WE, Peters SJ. Changes in mitochondrial perilipin 3 and perilipin 5 protein content in rat skeletal muscle following endurance training and acute stimulated contraction. Exp Physiol 2015; 100:450-62. [PMID: 25663294 DOI: 10.1113/expphysiol.2014.084434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/27/2015] [Indexed: 01/15/2023]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to determine whether mitochondrial protein content of perilipin 3 (PLIN3) and perilipin 5 (PLIN5) is increased following endurance training and whether mitochondrial PLIN5 protein is increased to a greater extent in endurance-trained rats when compared with sedentary rats following acute contraction. What is the main finding and its importance? Mitochondrial PLIN3 but not PLIN5 protein was increased in endurance-trained compared with sedentary rats, suggesting a mitochondrial role for PLIN3 due to chronic exercise. Contrary to our hypothesis, acute mitochondrial PLIN5 protein was similar in both sedentary and endurance-trained rats. Endurance training results in an increased association between skeletal muscle lipid droplets and mitochondria. This association is likely to be important for the expected increase in intramuscular fatty acid oxidation that occurs with endurance training. The perilipin family of lipid droplet proteins, PLIN(2-5), are thought to play a role in skeletal muscle lipolysis. Recently, results from our laboratory demonstrated that skeletal muscle mitochondria contain PLIN3 and PLIN5 protein. Furthermore, 30 min of stimulated contraction induces an increased mitochondrial PLIN5 content. To determine whether mitochondrial content of PLIN3 and PLIN5 is altered with endurance training, Sprague-Dawley rats were randomized into sedentary or endurance-trained groups for 8 weeks of treadmill running followed by an acute (30 min) sciatic nerve stimulation to induce lipolysis. Mitochondrial PLIN3 protein was ∼1.5-fold higher in red gastrocnemius of endurance-trained rats compared with sedentary animals, with no change in mitochondrial PLIN5 protein. In addition, there was an increase in plantaris intramuscular lipid storage. Acute electrically stimulated contraction in red gastrocnemius from sedentary and endurance-trained rats resulted in a similar increase of mitochondrial PLIN5 between these two groups, with no net change in PLIN3 in either group. Plantaris intramuscular lipid content decreased to a similar extent in sedentary and endurance-trained rats. These results suggest that while total mitochondrial PLIN5 content is not altered by endurance training, PLIN5 does have an acute role in the mitochondrial fraction during muscle contraction. Conversely, mitochondrial PLIN3 does not change acutely with muscle contraction, but PLIN3 content was increased following endurance training, indicating a role in chronic adaptations of skeletal muscle.
Collapse
Affiliation(s)
- S V Ramos
- Center for Bone and Muscle Health, Brock University, St Catharines, Ontario, Canada; Department of Kinesiology, Brock University, St Catharines, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
MacPherson REK, Peters SJ. Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis. Appl Physiol Nutr Metab 2015; 40:641-51. [PMID: 25971423 DOI: 10.1139/apnm-2014-0485] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regulation of skeletal muscle lipolysis and fat oxidation is a complex process involving multiple proteins and enzymes. Emerging work indicates that skeletal muscle PLIN proteins likely play a role in the hydrolysis of triglycerides stored in lipid droplets and the passage of fatty acids to the mitochondria for oxidation. In adipocytes, PLIN1 regulates lipolysis by interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. The focus of this review is on the PLIN family proteins expressed in skeletal muscle: PLIN2, PLIN3, and PLIN5. To date, most studies involving these PLIN proteins have used nonmuscle tissues and cell cultures to determine their potential roles. Results from work in these models support a role for PLIN proteins in sequestering lipases during basal conditions and in potentially working together for lipase translocation and activity during lipolysis. In skeletal muscle, PLIN2 tends to mirror the lipid content and may play a role in lipid droplet growth and stability through lipase interactions on the lipid droplet surface, whereas the skeletal muscle roles of both PLIN3 and PLIN5 seem to be more complex because they are found not only on the lipid droplet, but also at the mitochondria. Clearly, further work is needed to fully understand the intricate mechanisms by which PLIN proteins contribute to skeletal muscle lipid metabolism.
Collapse
Affiliation(s)
- Rebecca E K MacPherson
- a Center for Bone and Muscle Health, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,b Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sandra J Peters
- a Center for Bone and Muscle Health, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
31
|
Muscle Quality in Aging: a Multi-Dimensional Approach to Muscle Functioning with Applications for Treatment. Sports Med 2015; 45:641-58. [DOI: 10.1007/s40279-015-0305-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Covington JD, Bajpeyi S, Moro C, Tchoukalova YD, Ebenezer PJ, Burk DH, Ravussin E, Redman LM. Potential effects of aerobic exercise on the expression of perilipin 3 in the adipose tissue of women with polycystic ovary syndrome: a pilot study. Eur J Endocrinol 2015; 172:47-58. [PMID: 25342854 PMCID: PMC4247800 DOI: 10.1530/eje-14-0492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is associated with reduced adipose tissue lipolysis that can be rescued by aerobic exercise. We aimed to identify differences in the gene expression of perilipins and associated targets in adipose tissue in women with PCOS before and after exercise. DESIGN AND METHODS We conducted a cross-sectional study in eight women with PCOS and eight women matched for BMI and age with normal cycles. Women with PCOS also completed a 16-week prospective aerobic exercise-training study. Abdominal subcutaneous adipose tissue biopsies were collected, and primary adipose-derived stromal/stem cell cultures were established from women with PCOS before 16 weeks of aerobic exercise training (n=5) and controls (n=5). Gene expression was measured using real-time PCR, in vitro lipolysis was measured using radiolabeled oleate, and perilipin 3 (PLIN3) protein content was measured by western blotting analysis. RESULTS The expression of PLIN1, PLIN3, and PLIN5, along with coatomers ARF1, ARFRP1, and βCOP was ∼ 80% lower in women with PCOS (all P<0.05). Following exercise training, PLIN3 was the only perilipin to increase significantly (P<0.05), along with coatomers ARF1, ARFRP1, βCOP, and SEC23A (all P<0.05). Furthermore, PLIN3 protein expression was undetectable in the cell cultures from women with PCOS vs controls. Following exercise training, in vitro adipose oleate oxidation, glycerol secretion, and PLIN3 protein expression were increased, along with reductions in triglyceride content and absence of large lipid droplet morphology. CONCLUSIONS These findings suggest that PLIN3 and coatomer GTPases are important regulators of lipolysis and triglyceride storage in the adipose tissue of women with PCOS.
Collapse
Affiliation(s)
- Jeffrey D Covington
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| | - Sudip Bajpeyi
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| | - Cedric Moro
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| | - Yourka D Tchoukalova
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| | - Philip J Ebenezer
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| | - David H Burk
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| | - Eric Ravussin
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| | - Leanne M Redman
- Laboratory of Reproductive Endocrinology and Woman's HealthPennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USADepartment of KinesiologyUniversity of Texas in El Paso, 500 University Avenue, El Paso, Texas 79968, USAInserm UMR 1048Institute of Metabolic and Cardiovascular Diseases and Paul Sabatier University, Toulouse, France
| |
Collapse
|
33
|
MacPherson REK, Castelli LM, Miotto PM, Frendo-Cumbo S, Milburn A, Roy BD, LeBlanc PJ, Ward WE, Peters SJ. A maternal high fat diet has long-lasting effects on skeletal muscle lipid and PLIN protein content in rat offspring at young adulthood. Lipids 2015; 50:205-17. [PMID: 25552350 DOI: 10.1007/s11745-014-3985-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023]
Abstract
A maternal high fat diet (HFD) can have adverse effects on skeletal muscle development. Skeletal muscle PLIN proteins (PLIN2, 3 and 5) are thought to play critical roles in lipid metabolism, however effects of HFD on PLIN and lipases (HSL, ATGL, CGI-58) in mothers as well as their offspring have yet to be investigated. The primary objective of this study was to determine whether maternal HFD would influence skeletal muscle lipase and PLIN protein content in offspring at weaning (19 d) and young adulthood (3 mo). Female rats (28 d old, n = 9/group) were fed control (CON, AIN93G, 7% soybean oil) or HFD (AIN93G, 20% lard) for 10 weeks prior to mating and throughout pregnancy and lactation. All offspring were weaned to CON [n = 18/group, 1 female and 1 male pup per litter were studied at weaning (19 d) and 3 mo of age]. There was no effect of sex for the main outcomes measured in plantaris, therefore male and female data was combined. Maternal HFD resulted in higher triacylglycerol content in pups at 3 mo (p < 0.05), as well as in the dams (p = 0.015). Maternal HFD resulted in higher PLIN5 content in pups at weaning and 3 mo (p = 0.05). PLIN2 and PLIN5 content decreased at 3 mo versus weaning (p < 0.001). HFD dams had a higher PLIN3 content (p = 0.016). Diet had no effect on ATGL, CGI-58, or HSL content. In conclusion, exposure to a maternal HFD resulted in higher skeletal muscle lipid and PLIN5 content in plantaris of offspring through to young adulthood.
Collapse
Affiliation(s)
- Rebecca E K MacPherson
- Faculty of Applied Health Sciences, Center for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada,
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Andreas Børsting Jordy
- Section of Molecular Physiology; August Krogh Centre; Department of Nutrition; Exercise and Sports (NEXS); University of Copenhagen Copenhagen Denmark
| | - Bente Kiens
- Section of Molecular Physiology; August Krogh Centre; Department of Nutrition; Exercise and Sports (NEXS); University of Copenhagen Copenhagen Denmark
| |
Collapse
|
35
|
Ramos SV, MacPherson REK, Turnbull PC, Bott KN, LeBlanc P, Ward WE, Peters SJ. Higher PLIN5 but not PLIN3 content in isolated skeletal muscle mitochondria following acute in vivo contraction in rat hindlimb. Physiol Rep 2014; 2:2/10/e12154. [PMID: 25318747 PMCID: PMC4254090 DOI: 10.14814/phy2.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Contraction-mediated lipolysis increases the association of lipid droplets and mitochondria, indicating an important role in the passage of fatty acids from lipid droplets to mitochondria in skeletal muscle. PLIN3 and PLIN5 are of particular interest to the lipid droplet-mitochondria interaction because PLIN3 is able to move about within cells and PLIN5 associates with skeletal muscle mitochondria. This study primarily investigated: 1) if PLIN3 is detected in skeletal muscle mitochondrial fraction; and 2) if mitochondrial protein content of PLIN3 and/or PLIN5 changes following stimulated contraction. A secondary aim was to determine if PLIN3 and PLIN5 associate and whether this changes following contraction. Male Long Evans rats (n = 21; age, 52 days; weight = 317 ± 6 g) underwent 30 min of hindlimb stimulation (10 msec impulses, 100 Hz/3 sec at 10-20 V; train duration 100 msec). Contraction induced a ~50% reduction in intramuscular lipid content measured by oil red-O staining of red gastrocnemius muscle. Mitochondria were isolated from red gastrocnemius muscle by differential centrifugation and proteins were detected by western blotting. Mitochondrial PLIN5 content was ~1.6-fold higher following 30 min of contraction and PLIN3 content was detected in the mitochondrial fraction, and unchanged following contraction. An association between PLIN3 and PLIN5 was observed and remained unaltered following contraction. PLIN5 may play a role in mitochondria during lipolysis, which is consistent with a role in facilitating/regulating mitochondrial fatty acid oxidation. PLIN3 and PLIN5 may be working together on the lipid droplet and mitochondria during contraction-induced lipolysis.
Collapse
Affiliation(s)
- Sofhia V Ramos
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Rebecca E K MacPherson
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Patrick C Turnbull
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Kirsten N Bott
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Paul LeBlanc
- Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Department of Health Science, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada Center for Bone and Muscle Health, Brock University, 500 Glenridge Ave, St Catharines, L2S 3A1, Ontario, Canada
| |
Collapse
|
36
|
Shaw CS, Clark JA, Shepherd SO. HSL and ATGL: the movers and shakers of muscle lipolysis. J Physiol 2014; 591:6137-8. [PMID: 24339152 DOI: 10.1113/jphysiol.2013.265199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
37
|
Shepherd SO, Cocks M, Tipton KD, Witard OC, Ranasinghe AM, Barker TA, Wagenmakers AJM, Shaw CS. Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males. Exp Physiol 2014; 99:894-908. [DOI: 10.1113/expphysiol.2014.078014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- S. O. Shepherd
- Research Institute for Sport & Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - M. Cocks
- Research Institute for Sport & Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - K. D. Tipton
- Health and Exercise Sciences Research Group; University of Stirling; Stirling UK
| | - O. C. Witard
- Health and Exercise Sciences Research Group; University of Stirling; Stirling UK
| | - A. M. Ranasinghe
- School of Clinical and Experimental Medicine; Cardiovascular and Respiratory Sciences; University of Birmingham; Birmingham UK
| | - T. A. Barker
- School of Clinical and Experimental Medicine; Cardiovascular and Respiratory Sciences; University of Birmingham; Birmingham UK
| | - A. J. M. Wagenmakers
- Research Institute for Sport & Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - C. S. Shaw
- Institute of Sport, Exercise & Active Living; Victoria University; Melbourne Victoria Australia
| |
Collapse
|
38
|
Grounds MD, Terrill JR, Radley-Crabb HG, Robertson T, Papadimitriou J, Spuler S, Shavlakadze T. Lipid accumulation in dysferlin-deficient muscles. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1668-76. [PMID: 24685690 DOI: 10.1016/j.ajpath.2014.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 02/01/2023]
Abstract
Dysferlin is a membrane associated protein involved in vesicle trafficking and fusion. Defects in dysferlin result in limb-girdle muscular dystrophy type 2B and Miyoshi myopathy in humans and myopathy in A/J(dys-/-) and BLAJ mice, but the pathomechanism of the myopathy is not understood. Oil Red O staining showed many lipid droplets within the psoas and quadriceps muscles of dysferlin-deficient A/J(dys-/-) mice aged 8 and 12 months, and lipid droplets were also conspicuous within human myofibers from patients with dysferlinopathy (but not other myopathies). Electron microscopy of 8-month-old A/J(dys-/-) psoas muscles confirmed lipid droplets within myofibers and showed disturbed architecture of myofibers. In addition, the presence of many adipocytes was confirmed, and a possible role for dysferlin in adipocytes is suggested. Increased expression of mRNA for a gene involved in early lipogenesis, CCAAT/enhancer binding protein-δ, in 3-month-old A/J(dys-/-) quadriceps (before marked histopathology is evident), indicates early induction of lipogenesis/adipogenesis within dysferlin-deficient muscles. Similar results were seen for dysferlin-deficient BLAJ mice. These novel observations of conspicuous intermyofibrillar lipid and progressive adipocyte replacement in dysferlin-deficient muscles present a new focus for investigating the mechanisms that result in the progressive decline of muscle function in dysferlinopathies.
Collapse
Affiliation(s)
- Miranda D Grounds
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia.
| | - Jessica R Terrill
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - Hannah G Radley-Crabb
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia; CHIRI Biosciences Research Precinct, School of Biomedical Sciences, Curtin University, Perth, Australia
| | - Terry Robertson
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - John Papadimitriou
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Berlin, Germany
| | - Tea Shavlakadze
- Schools of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
39
|
Skeletal muscle perilipin 3 and coatomer proteins are increased following exercise and are associated with fat oxidation. PLoS One 2014; 9:e91675. [PMID: 24632837 PMCID: PMC3954790 DOI: 10.1371/journal.pone.0091675] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/14/2014] [Indexed: 12/19/2022] Open
Abstract
Lipid droplet-associated proteins such as perilipin 3 (PLIN3) and coatomer GTPase proteins (GBF1, ARF1, Sec23a, and ARFRP1) are expressed in skeletal muscle but little is known so far as to their regulation of lipolysis. We aimed here to explore the effects of lipolytic stimulation in vitro in primary human myotubes as well as in vivo following an acute exercise bout. In vitro lipolytic stimulation by epinephrine (100 μM) or by a lipolytic cocktail (30 μM palmitate, 4 μM forskolin, and 0.5 μM ionomycin, PFI) resulted in increases in PLIN3 protein content. Coatomer GTPases such as GBF1, ARF1, Sec23a, and ARFRP1 also increased in response to lipolytic stimuli. Furthermore, a long duration endurance exercise bout (20 males; age 24.0±4.5 y; BMI 23.6±1.8 kg/m2) increased PLIN3 protein in human skeletal muscle (p = 0.03) in proportion to ex vivo palmitate oxidation (r = 0.45, p = 0.04) and whole body in vivo fat oxidation (r = 0.52, p = 0.03). Protein content of ARF1 was increased (p = 0.04) while mRNA expression was increased for several other coatomers (GBF1, ARF1, and Sec23a, all p<0.05). These data provide novel observational insight into the possible relationships between lipolysis and PLIN3 along with these coatomoer GTPase proteins in human skeletal muscle.
Collapse
|
40
|
Badin PM, Langin D, Moro C. Dynamics of skeletal muscle lipid pools. Trends Endocrinol Metab 2013; 24:607-15. [PMID: 23988586 DOI: 10.1016/j.tem.2013.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/22/2013] [Accepted: 08/03/2013] [Indexed: 11/20/2022]
Abstract
Intramyocellular triacylglycerol (IMTG) is emerging as an important energy fuel source during muscle contraction and are adaptively increased in response to exercise, without adverse physiological effects. Paradoxically, elevated IMTG content in obese and type 2 diabetics has been linked to insulin resistance, highlighting the importance of IMTG pools in physiology and pathology. Two separate views suggest that IMTG dynamics are determinant for skeletal muscle fat oxidation, and that disruption of IMTG dynamics facilitates the accumulation of lipotoxic intermediates such as diacylglycerols and ceramides that interfere with insulin signaling. Thus, understanding the factors that control IMTG dynamics is crucial. Here we discuss recent literature describing the regulation of IMTG pools with a particular emphasis on lipases and lipid droplet (LD)-associated proteins.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Obesity Research Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1048, Institute of Metabolic and Cardiovascular Diseases (I2MC), Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | | | | |
Collapse
|
41
|
Macpherson REK, Vandenboom R, Roy BD, Peters SJ. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physiol Rep 2013; 1:e00084. [PMID: 24303154 PMCID: PMC3831900 DOI: 10.1002/phy2.84] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 08/11/2013] [Indexed: 02/06/2023] Open
Abstract
In adipose tissue, access of adipose triglyceride and hormone-sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN-to-lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P < 0.05). PLIN2, 3, and 5 all interact with HSL and ATGL, but these interactions were unchanged following treatments. Our results show that in skeletal muscle, PLIN2 is not serine phosphorylated at rest or with lipolytic stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation.
Collapse
Affiliation(s)
- Rebecca E K Macpherson
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University St Catharines, Ontario, L2S 3A1, Canada
| | | | | | | |
Collapse
|
42
|
Alsted TJ, Ploug T, Prats C, Serup AK, Høeg L, Schjerling P, Holm C, Zimmermann R, Fledelius C, Galbo H, Kiens B. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle. J Physiol 2013; 591:5141-55. [PMID: 23878361 DOI: 10.1113/jphysiol.2013.260794] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P < 0.001). In response to contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P < 0.05). In vitro TG hydrolase activity data revealed that adipose triglyceride lipase (ATGL) and HSL collectively account for ∼98% of the TG hydrolase activity in mouse skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.
Collapse
Affiliation(s)
- Thomas J Alsted
- B. Kiens: Section of Molecular Physiology, Department of Nutrition, Exercise and Sport, University of Copenhagen, Universitetsparken 13, DK, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wohlers LM, Powers BL, Chin ER, Spangenburg EE. Using a novel coculture model to dissect the role of intramuscular lipid load on skeletal muscle insulin responsiveness under reduced estrogen conditions. Am J Physiol Endocrinol Metab 2013; 304:E1199-212. [PMID: 23548610 PMCID: PMC3680679 DOI: 10.1152/ajpendo.00617.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reductions in estrogen function lead to adiposity and peripheral insulin resistance. Significant metabolic changes have been found in adipocytes and skeletal muscle with disruptions in the estrogen-signaling axis; however, it is unclear if intercellular communication exists between these tissues. The purpose of this study was to examine the impact of isolated adipocytes cocultured with single adult skeletal muscle fibers (SMF) collected from control female (SHAM) and ovariectomized female (OVX) mice. In addition, a second purpose was to compare differential effects of primary adipocytes from omental and inguinal adipose depots on SMF from these same groups. OVX SMF displayed greater lipid content, impaired insulin signaling, and lower insulin-induced glucose uptake compared with SHAM SMF without coculture. In the SHAM group, regardless of the adipose depot of origin, coculture induced greater intracellular lipid content compared with control SHAM SMF. The increased lipid in the SMF was associated with impaired insulin-induced glucose uptake when adipocytes were of omental, but not inguinal, origin. Coculture of OVX SMF with omental or inguinal adipocytes resulted in higher lipid content but no further reduction in insulin-induced glucose uptake compared with control OVX SMF. The data indicate that, in the OVX condition, there is a threshold for lipid accumulation in skeletal muscle beyond which there is no further impairment in insulin responsiveness. These results also demonstrate depot-specific effects of adipocyte exposure on skeletal muscle glucose uptake and further implicate a role for increased intracellular lipid storage in the pathogenesis of insulin resistance when estrogen levels are reduced.
Collapse
Affiliation(s)
- Lindsay M Wohlers
- Department of Kinesiology, University of Maryland, School of Public Health, College Park, MD 21045, USA
| | | | | | | |
Collapse
|
44
|
Badin PM, Vila IK, Louche K, Mairal A, Marques MA, Bourlier V, Tavernier G, Langin D, Moro C. High-fat diet-mediated lipotoxicity and insulin resistance is related to impaired lipase expression in mouse skeletal muscle. Endocrinology 2013; 154:1444-53. [PMID: 23471217 DOI: 10.1210/en.2012-2029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated expression/activity of adipose triglyceride lipase (ATGL) and/or reduced activity of hormone-sensitive lipase (HSL) in skeletal muscle are causally linked to insulin resistance in vitro. We investigated here the effect of high-fat feeding on skeletal muscle lipolytic proteins, lipotoxicity, and insulin signaling in vivo. Five-week-old C3H mice were fed normal chow diet (NCD) or 45% kcal high-fat diet (HFD) for 4 weeks. Wild-type and HSL knockout mice fed NCD were also studied. Whole-body and muscle insulin sensitivity, as well as lipolytic protein expression, lipid levels, and insulin signaling in skeletal muscle, were measured. HFD induced whole-body insulin resistance and glucose intolerance and reduced skeletal muscle glucose uptake compared with NCD. HFD increased skeletal muscle total diacylglycerol (DAG) content, protein kinase Cθ and protein kinase Cε membrane translocation, and impaired insulin signaling as reflected by a robust increase of basal Ser1101 insulin receptor substrate 1 phosphorylation (2.8-fold, P < .05) and a decrease of insulin-stimulated v-Akt murine thymoma viral oncogene homolog Ser473 (-37%, P < .05) and AS160 Thr642 (-47%, P <.01) phosphorylation. We next showed that HFD strongly reduced HSL phosphorylation at Ser660. HFD significantly up-regulated the muscle protein content of the ATGL coactivator comparative gene identification 58 and triacylglycerol hydrolase activity, despite a lower ATGL protein content. We further show a defective skeletal muscle insulin signaling and DAG accumulation in HSL knockout compared with wild-type mice. Together, these data suggest a pathophysiological link between altered skeletal muscle lipase expression and DAG-mediated insulin resistance in mice.
Collapse
Affiliation(s)
- Pierre-Marie Badin
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
MacPherson REK, Ramos SV, Vandenboom R, Roy BD, Peters SJ. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. Am J Physiol Regul Integr Comp Physiol 2013; 304:R644-50. [PMID: 23408028 DOI: 10.1152/ajpregu.00418.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Evidence indicates that skeletal muscle lipid droplet-associated proteins (PLINs) regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN1 is thought to regulate lipolysis by directly interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to fully activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. Our purpose was to examine interactions between PLIN2, PLIN3, and PLIN5, with ATGL and its coactivator CGI-58 at rest and following contraction. Isolated rat solei were incubated for 30 min at rest or during 30 min of intermittent tetanic stimulation [150-ms volleys at 60 Hz with a train rate of 20 tetani/min (25°C)] to maximally stimulate intramuscular lipid breakdown. Results show that the interaction between ATGL and CGI-58 increased 128% following contraction (P = 0.041). Further, ATGL interacts with PLIN2, PLIN3, and PLIN5 at rest and following contraction. The PLIN2-ATGL interaction decreased significantly by 21% following stimulation (P = 0.013). Both PLIN3 and PLIN5 coprecipitated with CGI-58 at rest and following contraction, while there was no detectable interaction between PLIN2 and CGI-58 in either condition. Therefore, our findings indicate that in skeletal muscle, during contraction-induced muscle lipolysis, ATGL and CGI-58 strongly associate and that the PLIN proteins work together to regulate lipolysis, in part, by preventing ATGL and CGI-58 interactions at rest.
Collapse
Affiliation(s)
- Rebecca E K MacPherson
- Brock University, Department of Kinesiology, Centre for Bone and Muscle Health, St. Catharines, Canada.
| | | | | | | | | |
Collapse
|
46
|
Olsen KB, Axelsen LN, Braunstein TH, Sørensen CM, Andersen CB, Ploug T, Holstein-Rathlou NH, Nielsen MS. Myocardial impulse propagation is impaired in right ventricular tissue of Zucker diabetic fatty (ZDF) rats. Cardiovasc Diabetol 2013; 12:19. [PMID: 23327647 PMCID: PMC3561236 DOI: 10.1186/1475-2840-12-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/14/2013] [Indexed: 01/31/2023] Open
Abstract
Background Diabetes increases the risk of cardiovascular complications including arrhythmias, but the underlying mechanisms remain to be established. Decreased conduction velocity (CV), which is an independent risk factor for re-entry arrhythmias, is present in models with streptozotocin (STZ) induced type 1 diabetes. Whether CV is also disturbed in models of type 2 diabetes is currently unknown. Methods We used Zucker Diabetic Fatty (ZDF) rats, as a model of type 2 diabetes, and their lean controls Zucker Diabetic Lean (ZDL) rats to investigate CV and its response to the anti-arrhythmic peptide analogue AAP10. Gap junction remodeling was examined by immunofluorescence and western blotting. Cardiac histomorphometry was examined by Masson`s Trichrome staining and intracellular lipid accumulation was analyzed by Bodipy staining. Results CV was significantly slower in ZDF rats (56±1.9 cm/s) compared to non-diabetic controls (ZDL, 66±1.6 cm/s), but AAP10 did not affect CV in either group. The total amount of Connexin43 (C×43) was identical between ZDF and ZDL rats, but the amount of lateralized C×43 was significantly increased in ZDF rats (42±12 %) compared to ZDL rats (30±8%), p<0.04. Judged by electrophoretic mobility, C×43 phosphorylation was unchanged between ZDF and ZDL rats. Also, no differences in cardiomyocyte size or histomorphometry including fibrosis were observed between groups, but the volume of intracellular lipid droplets was 4.2 times higher in ZDF compared to ZDL rats (p<0.01). Conclusion CV is reduced in type 2 diabetic ZDF rats. The CV disturbance may be partly explained by increased lateralization of C×43, but other factors are likely also involved. Our data indicates that lipotoxicity potentially may play a role in development of conduction disturbances and arrhythmias in type 2 diabetes.
Collapse
Affiliation(s)
- Kristine Boisen Olsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia and Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen DK-2200, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Shepherd SO, Cocks M, Tipton KD, Ranasinghe AM, Barker TA, Burniston JG, Wagenmakers AJM, Shaw CS. Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 2012; 591:657-75. [PMID: 23129790 DOI: 10.1113/jphysiol.2012.240952] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intramuscular triglyceride (IMTG) utilization is enhanced by endurance training (ET) and is linked to improved insulin sensitivity. This study first investigated the hypothesis that ET-induced increases in net IMTG breakdown and insulin sensitivity are related to increased expression of perilipin 2 (PLIN2) and perilipin 5 (PLIN5). Second, we hypothesized that sprint interval training (SIT) also promotes increases in IMTG utilization and insulin sensitivity. Sixteen sedentary males performed 6 weeks of either SIT (4-6, 30 s Wingate tests per session, 3 days week(-1)) or ET (40-60 min moderate-intensity cycling, 5 days week(-1)). Training increased resting IMTG content (SIT 1.7-fold, ET 2.4-fold; P < 0.05), concomitant with parallel increases in PLIN2 (SIT 2.3-fold, ET 2.8-fold; P < 0.01) and PLIN5 expression (SIT 2.2-fold, ET 3.1-fold; P < 0.01). Pre-training, 60 min cycling at ∼65% pre-training decreased IMTG content in type I fibres (SIT 17 ± 10%, ET 15 ± 12%; P < 0.05). Following training, a significantly greater breakdown of IMTG in type I fibres occurred during exercise (SIT 27 ± 13%, ET 43 ± 6%; P < 0.05), with preferential breakdown of PLIN2- and particularly PLIN5-associated lipid droplets. Training increased the Matsuda insulin sensitivity index (SIT 56 ± 15%, ET 29 ± 12%; main effect P < 0.05). No training × group interactions were observed for any variables. In conclusion, SIT and ET both increase net IMTG breakdown during exercise and increase in PLIN2 and PLIN5 protein expression. The data are consistent with the hypothesis that increases in PLIN2 and PLIN5 are related to the mechanisms that promote increased IMTG utilization during exercise and improve insulin sensitivity following 6 weeks of SIT and ET.
Collapse
Affiliation(s)
- S O Shepherd
- School of Sport & Exercise Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Shaw CS, Shepherd SO, Wagenmakers AJM, Hansen D, Dendale P, van Loon LJC. Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2012; 303:E1158-65. [PMID: 22949030 PMCID: PMC3492857 DOI: 10.1152/ajpendo.00272.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to investigate changes in intramuscular triglyceride (IMTG) content and perilipin 2 expression in skeletal muscle tissue following 6 mo of endurance-type exercise training in type 2 diabetes patients. Ten obese male type 2 diabetes patients (age 62 ± 1 yr, body mass index BMI 31 ± 1 kg/m²) completed three exercise sessions/week consisting of 40 min of continuous endurance-type exercise at 75% V(O₂ peak) for a period of 6 mo. Muscle biopsies collected at baseline and after 2 and 6 mo of intervention were analyzed for IMTG content and perilipin 2 expression using fiber type-specific immunofluorescence microscopy. Endurance-type exercise training reduced trunk body fat by 6 ± 2% and increased whole body oxygen uptake capacity by 13 ± 7% (P < 0.05). IMTG content increased twofold in response to the 6 mo of exercise training in both type I and type II muscle fibers (P < 0.05). A threefold increase in perilipin 2 expression was observed from baseline to 2 and 6 mo of intervention in the type I muscle fibers only (1.1 ± 0.3, 3.4 ± 0.6, and 3.6 ± 0.6% of fibers stained, respectively, P < 0.05). Exercise training induced a 1.6-fold increase in mitochondrial content after 6 mo of training in both type I and type II muscle fibers (P < 0.05). In conclusion, this is the first study to report that prolonged endurance-type exercise training increases the expression of perilipin 2 alongside increases in IMTG content in a type I muscle fiber-type specific manner in type 2 diabetes patients.
Collapse
MESH Headings
- Abdominal Fat/pathology
- Adiposity
- Body Mass Index
- Cohort Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Exercise
- Humans
- Insulin Resistance
- Lipid Metabolism
- Male
- Membrane Proteins/metabolism
- Middle Aged
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Overweight/complications
- Oxygen Consumption
- Perilipin-2
- Quadriceps Muscle/metabolism
- Quadriceps Muscle/pathology
- Time Factors
- Triglycerides/metabolism
Collapse
Affiliation(s)
- C. S. Shaw
- 1School of Sport and Exercise Sciences, The University of Birmingham, Birmingham, United Kingdom;
- 2Institute of Sport, Exercise, and Active Living, Victoria University, Melbourne, Australia;
| | - S. O. Shepherd
- 1School of Sport and Exercise Sciences, The University of Birmingham, Birmingham, United Kingdom;
| | - A. J. M. Wagenmakers
- 1School of Sport and Exercise Sciences, The University of Birmingham, Birmingham, United Kingdom;
| | - D. Hansen
- 3Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium;
- 4Faculty of Medicine, Hasselt University, Diepenbeek, Belgium; and
| | - P. Dendale
- 3Jessa Hospital, Heart Centre Hasselt, Hasselt, Belgium;
- 4Faculty of Medicine, Hasselt University, Diepenbeek, Belgium; and
| | - L. J. C. van Loon
- 5Department of Human Movement Sciences, Nutrition and Toxicology Research Institute, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
49
|
Turcotte LP, Abbott MJ. Contraction-induced signaling: evidence of convergent cascades in the regulation of muscle fatty acid metabolism. Can J Physiol Pharmacol 2012. [PMID: 23181271 DOI: 10.1139/y2012-124] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The regulation of fatty acid utilization during muscle contraction and exercise remains to be fully elucidated. Evidence suggests that the metabolic responses of skeletal muscle induced by the contraction-induced changes in energy demand are mediated by the activation of a multitude of intracellular signaling cascades. This review addresses the roles played by 3 intracellular signaling cascades of interest in the regulation of fatty acid uptake and oxidation in contracting skeletal muscle; namely, the AMP-activated protein kinase (AMPK), calcium/calmodulin-dependent protein kinases (CaMKs), and the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling cascades. Data delineating the potential role of AMPK in cross-talk with CaMKII, CaMK kinase (CaMKK), and ERK1/2 are presented. Collectively, data show that in perfused rodent muscle, regulation of fatty acid uptake and oxidation occurs via (i) CaMKII signaling via both AMPK-dependent and -independent cascades, (ii) CaMKK signaling via both AMPK-dependent and -independent cascades, (iii) AMPK signaling in a time- and intensity-dependent manner, and (iv) ERK1/2 signaling in an intensity-dependent manner.
Collapse
Affiliation(s)
- Lorraine P Turcotte
- Department of Biological Sciences, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0652, USA.
| | | |
Collapse
|
50
|
Nevalainen M, Kaakinen M, Rahkila P, Metsikkö K. Reversible stress-induced lipid body formation in fast twitch rat myofibers. Exp Cell Res 2012; 318:2191-9. [PMID: 22771721 DOI: 10.1016/j.yexcr.2012.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/21/2012] [Accepted: 06/23/2012] [Indexed: 11/16/2022]
Abstract
We analyzed the existence of lipid bodies (LBs) in the fast twitch rat flexor digitorum brevis (FDB) myofibers and found that these structures were scarce. However, isolation procedure of the myofibers, heath shock, viral infection or the glycosylation inhibitor tunicamycin induced formation of the LBs, which were stationary structures flanking Z lines. We next infected FDB myofibers with recombinant Semliki Forest virus expressing caveolin 3-yellow fluorescent protein (cav3-YFP) since this chimeric protein was targeted to the LBs facilitating their further analysis. Photobleaching experiments showed that the LBs recovered cav 3-YFP extremely slowly, indicating that they were not continuous with the endoplasmic/sarcoplasmic reticulum. We found, however, that cav3-YFP could move from the LBs to the sarcolemma and this phenomenon was sensitive to Brefeldin A, suggesting that the chimeric protein could be returned from the LBs to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Mika Nevalainen
- Department of Anatomy and Cell Biology, Institute of Biomedicine, P.O. Box 5000, Aapistie 7, FI 90014 University of Oulu, Finland
| | | | | | | |
Collapse
|