1
|
Shin S, Park S, Lim Y, Han SN. Dietary supplementation with Korean pine nut oil decreases body fat accumulation and dysregulation of the appetite-suppressing pathway in the hypothalamus of high-fat diet-induced obese mice. Nutr Res Pract 2022; 16:285-297. [PMID: 35663443 PMCID: PMC9149321 DOI: 10.4162/nrp.2022.16.3.285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/OBJECTIVES Korean pine nut oil (PNO) has been reported to suppress appetite by increasing satiety hormone release. However, previous studies have rendered inconsistent results and there is lack of information on whether dietary Korean PNO affects the expression of satiety hormone receptors and hypothalamic neuropeptides. Therefore, our study sought to evaluate the chronic effects of Korean PNO on the long-term regulation of energy balance. MATERIALS/METHODS Five-week-old male C57BL/6 mice were fed with control diets containing 10% kcal fat from Korean PNO or soybean oil (SBO) (PC or SC) or high-fat diets (HFDs) containing 35% kcal fat from lard and 10% kcal fat from Korean PNO or SBO (PHFD or SHFD) for 12 weeks. The expression of gastrointestinal satiety hormone receptors, hypothalamic neuropeptides, and genes related to intestinal lipid absorption and adipose lipid metabolism was then measured. RESULTS There was no difference in the daily food intake between PNO- and SBO-fed mice; however, the PC and PHFD groups accumulated 30% and 18% less fat compared to SC and SHFD, respectively. Korean PNO-fed mice exhibited higher messenger RNA (mRNA) expression of Ghsr (ghrelin receptor) and Agrp (agouti-related peptide) (P < 0.05), which are expressed when energy consumption is low to induce appetite as well as the appetite-suppressing neuropeptides Pomc and Cartpt (P = 0.079 and 0.056, respectively). Korean PNO downregulated jejunal Cd36 and epididymal Lpl mRNA expressions, which could suppress intestinal fatty acid absorption and fat storage in white adipose tissue. Consistent with these findings, Korean PNO-fed mice had higher levels of fecal non-esterified fatty acid excretion. Korean PNO also tended to downregulate jejunal Apoa4 and upregulate epididymal Adrb3 mRNA levels, suggesting that PNO may decrease chylomicron synthesis and induce lipolysis. CONCLUSIONS In summary, Korean PNO attenuated body fat accumulation, and appeared to prevent HFD-induced dysregulation of the hypothalamic appetite-suppressing pathway.
Collapse
Affiliation(s)
- Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women's University, Seoul 01797, Korea
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Soyoung Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Yeseo Lim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
2
|
Taavela J, Viiri K, Välimäki A, Sarin J, Salonoja K, Mäki M, Isola J. Apolipoprotein A4 Defines the Villus-Crypt Border in Duodenal Specimens for Celiac Disease Morphometry. Front Immunol 2021; 12:713854. [PMID: 34394117 PMCID: PMC8358775 DOI: 10.3389/fimmu.2021.713854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 12/18/2022] Open
Abstract
Histological evaluation of the small intestinal mucosa is the cornerstone of celiac disease diagnostics and an important outcome in scientific studies. Gluten-dependent injury can be evaluated either with quantitative morphometry or grouped classifications. A drawback of mucosal readings is the subjective assessment of the border where the crypt epithelium changes to the differentiated villus epithelium. We studied potential immunohistochemical markers for the detection of the villus-crypt border: apolipoprotein A4 (APOA4), Ki-67, glucose transporter 2, keratin 20, cytochrome P450 3A4 and intestinal fatty-acid binding protein. Among these, villus-specific APOA4 was chosen as the best candidate for further studies. Hematoxylin-eosin (H&E)- and APOA4 stained duodenal biopsy specimens from 74 adult patients were evaluated by five observers to determine the villus-to-crypt ratio (VH : CrD). APOA4 delineated the villus to crypt epithelium transition clearly, and the correlation coefficient of VH : CrD values between APOA4 and H&E was excellent (r=0.962). The VH : CrD values were lower in APOA4 staining (p<0.001) and a conversion factor of 0.2 in VH : CrD measurements was observed to make the two methods comparable to each other. In the intraobserver analysis, the doubled standard deviations, representing the error ranges, were 0.528 for H&E and 0.388 for APOA4 staining, and the ICCs were 0.980 and 0.971, respectively. In the interobserver analysis, the average error ranges were 1.017 for H&E and 0.847 for APOA4 staining, and the ICCs were better for APOA4 than for H&E staining in all analyses. In conclusion, the reliability and reproducibility of morphometrical VH : CrD readings are improved with the use of APOA4 staining.
Collapse
Affiliation(s)
- Juha Taavela
- Central Finland Central Hospital, Jyväskylä, Finland.,Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Välimäki
- Fimlab Laboratories Inc, Tampere, Finland.,Jilab Inc, Tampere, Finland
| | | | | | - Markku Mäki
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| | - Jorma Isola
- Jilab Inc, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Roque A, Ruiz-González R, Pineda-López E, Torner L, Lajud N. Prenatal immobilization stress and postnatal maternal separation cause differential neuroendocrine responses to fasting stress in adult male rats. Dev Psychobiol 2019; 62:737-748. [PMID: 31886525 DOI: 10.1002/dev.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023]
Abstract
Prenatal immobilization stress (PNS) and postnatal maternal separation (MS180) are two widely used rodent models of early-life stress (ELS) that affect the hypothalamus-pituitary-adrenal (HPA) axis, cause behavioral alterations, and affect glucose tolerance in adults. We compared anxiety-like behavior, coping strategies, and HPA axis activity in PNS and MS180 adult (4-month-old) male rats and assessed their glucose tolerance and HPA axis response after mild fasting stress. Both PNS and MS180 induced a passive coping strategy in the forced swimming test, without affecting anxiety-like behavior in the elevated plus-maze. Moreover, both PNS and MS180 increased the hypothalamic corticotropin-releasing hormone expression; however, only MS180 increased the circulating corticosterone levels. Both early life stressors increased fasting glucose levels and this effect was significantly higher in PNS rats. MS180 rats showed impaired glucose tolerance 120 min after intravenous glucose administration, whereas PNS rats displayed an efficient homeostatic response. Moreover, MS180 rats showed higher circulating corticosteroid levels in response to fasting stress (overnight fasting, 12 hr), which were restored after glucose administration. In conclusion, early exposure to postnatal MS180, unlike PNS, increases the HPA axis response to moderate fasting stress, indicating a differential perception of fasting as a stressor in these two ELS models.
Collapse
Affiliation(s)
- Angélica Roque
- Laboratorio de Neurobiología del Desarrollo, División de Neurociencias, Centro de Investigación Biomédica de - Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| | - Roberto Ruiz-González
- Laboratorio de Neurobiología del Desarrollo, División de Neurociencias, Centro de Investigación Biomédica de - Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| | - Edel Pineda-López
- Laboratorio de Neurobiología del Desarrollo, División de Neurociencias, Centro de Investigación Biomédica de - Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| | - Luz Torner
- Laboratorio de Neuroendocrinología, División de Neurociencias, Centro de Investigación Biomédica de - Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| | - Naima Lajud
- Laboratorio de Neurobiología del Desarrollo, División de Neurociencias, Centro de Investigación Biomédica de - Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| |
Collapse
|
4
|
Peng J, Li XP. Apolipoprotein A-IV: A potential therapeutic target for atherosclerosis. Prostaglandins Other Lipid Mediat 2018; 139:87-92. [PMID: 30352313 DOI: 10.1016/j.prostaglandins.2018.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Apolipoprotein A-IV is lipid-binding protein, which is synthesized by the intestine and secreted into mesenteric lymph. ApoA-IV is correlated with chylomicrons and high density lipoprotein, but a large portion is free-lipoprotein, in circulation. Studies showed that apoA-IV has anti-inflammatory and anti-oxidative properties, and is able to mediate reverse cholesterol transport, which suggest that it may has anti-atherosclerotic effects and be related to protection from atherosclerotic cardiovascular disease. This article focus on current studies and the possible anti-atherogenic mechanism related to apoA-IV, in order to provide a new therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Peng
- Department of Cardiovascular Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xiang-Ping Li
- Department of Cardiovascular Diseases, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
CREBH Regulates Systemic Glucose and Lipid Metabolism. Int J Mol Sci 2018; 19:ijms19051396. [PMID: 29738435 PMCID: PMC5983805 DOI: 10.3390/ijms19051396] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 12/23/2022] Open
Abstract
The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H (CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.
Collapse
|
6
|
Yada T, Mekuchi M, Ojima N. Molecular biology and functional genomics of immune-endocrine interactions in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 2018; 257:272-279. [PMID: 29108728 DOI: 10.1016/j.ygcen.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 10/03/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Immune-endocrine interactions are an important pathogen resistance mechanism in fish. We review the immune-endocrine interactions in the Japanese eel, Anguilla japonica, with special reference to high throughput gene sequencing. These data may be relevant to the significant decrease in the eel harvest in recent years and will aid in the selection of appropriate disease-resistant strains for aquaculture. More than 1000 sequences that whose expression in elvers responded to air exposure were identified through comprehensive gene expression analysis using next-generation sequencing. These included transcription factors within the MAPK pathway. Significant changes in expression after air exposure were detected by quantitative polymerase chain reaction analysis in many genes related to disease resistance. These factors include innate immune system factors and cytokines that interact with the endocrine system during the stress response. Other applications of immune-endocrine interactions in eel culture are discussed.
Collapse
Affiliation(s)
- Takashi Yada
- Freshwater Fisheries Research Center, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Nikko, Japan.
| | - Miyuki Mekuchi
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Nobuhiko Ojima
- Research Center for Bioinformatics and Biosciences, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
7
|
Skibiel AL, Zachut M, do Amaral BC, Levin Y, Dahl GE. Liver proteomic analysis of postpartum Holstein cows exposed to heat stress or cooling conditions during the dry period. J Dairy Sci 2018; 101:705-716. [DOI: 10.3168/jds.2017-13258] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/19/2017] [Indexed: 12/25/2022]
|
8
|
Maternal obesity heritably perturbs offspring metabolism for three generations without serial programming. Int J Obes (Lond) 2017; 42:911-914. [PMID: 28984844 DOI: 10.1038/ijo.2017.247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/17/2017] [Accepted: 09/24/2017] [Indexed: 02/05/2023]
Abstract
Maternal obesity can program offspring metabolism across multiple generations. It is not known whether multigenerational effects reflect true inheritance of the induced phenotype, or are due to serial propagation of the phenotype through repeated exposure to a compromised gestational milieu. Here we sought to distinguish these possibilities, using the Avy mouse model of maternal obesity. In this model, F1 sons of obese dams display a predisposition to hepatic insulin resistance, which remains latent unless the offspring are challenged with a Western diet. We find that F2 grandsons and F3 great grandsons of obese dams also carry the latent predisposition to metabolic dysfunction, but remain metabolically normal on a healthy diet. Given that the breeding animals giving rise to F2 and F3 were maintained on a healthy diet, the latency of the phenotype permits exclusion of serial programming; we also confirmed that F1 females remained metabolically healthy during pregnancy. Molecular analyses of male descendants identified upregulation of hepatic Apoa4 as a consistent signature of the latent phenotype across all generations. Our results exclude serial programming as a factor in transmission of the metabolic phenotype induced by ancestral maternal obesity, and indicate inheritance through the germline, probably via some form of epigenetic inheritance.
Collapse
|
9
|
Cheng D, Xu X, Simon T, Boudyguina E, Deng Z, VerHague M, Lee AH, Shelness GS, Weinberg RB, Parks JS. Very Low Density Lipoprotein Assembly Is Required for cAMP-responsive Element-binding Protein H Processing and Hepatic Apolipoprotein A-IV Expression. J Biol Chem 2016; 291:23793-23803. [PMID: 27655915 DOI: 10.1074/jbc.m116.749283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatic apolipoprotein A-IV (apoA-IV) expression is correlated with hepatic triglyceride (TG) content in mouse models of chronic hepatosteatosis, and steatosis-induced hepatic apoA-IV gene expression is regulated by nuclear transcription factor cAMP-responsive element-binding protein H (CREBH) processing. To define what aspects of TG homeostasis regulate hepatic CREBH processing and apoA-IV gene expression, several mouse models of attenuated VLDL particle assembly were subjected to acute hepatosteatosis induced by an overnight fast or short term ketogenic diet feeding. Compared with chow-fed C57BL/6 mice, fasted or ketogenic diet-fed mice displayed increased hepatic TG content, which was highly correlated (r2 = 0.95) with apoA-IV gene expression, and secretion of larger, TG-enriched VLDL, despite a lower rate of TG secretion and a similar or reduced rate of apoB100 secretion. When VLDL particle assembly and secretion was inhibited by hepatic shRNA-induced apoB silencing or genetic or pharmacologic reduction in microsomal triglyceride transfer protein (MTP) activity, hepatic TG content increased dramatically; however, CREBH processing and apoA-IV gene expression were attenuated compared with controls. Adenovirus-mediated reconstitution of MTP expression proportionately restored CREBH processing and apoA-IV expression in liver-specific MTP knock-out mice. These results reveal that hepatic TG content, per se, does not regulate CREBH processing. Instead, TG mobilization into the endoplasmic reticulum for nascent VLDL particle assembly activates CREBH processing and enhances apoA-IV gene expression in the setting of acute steatosis. We conclude that VLDL assembly and CREBH activation play key roles in the response to hepatic steatosis by up-regulating apoA-IV and promoting assembly and secretion of larger, more TG-enriched VLDL particles.
Collapse
Affiliation(s)
- Dongmei Cheng
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Xu Xu
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Trang Simon
- Internal Medicine-Section on Gastroenterology
| | - Elena Boudyguina
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | | | - Melissa VerHague
- From the Departments of Internal Medicine-Section on Molecular Medicine
| | - Ann-Hwee Lee
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | | | | | - John S Parks
- From the Departments of Internal Medicine-Section on Molecular Medicine, .,Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| |
Collapse
|
10
|
Lamina C, Friedel S, Coassin S, Rueedi R, Yousri NA, Seppälä I, Gieger C, Schönherr S, Forer L, Erhart G, Kollerits B, Marques-Vidal P, Ried J, Waeber G, Bergmann S, Dähnhardt D, Stöckl A, Kiechl S, Raitakari OT, Kähönen M, Willeit J, Kedenko L, Paulweber B, Peters A, Meitinger T, Strauch K, Lehtimäki T, Hunt SC, Vollenweider P, Kronenberg F. A genome-wide association meta-analysis on apolipoprotein A-IV concentrations. Hum Mol Genet 2016; 25:3635-3646. [PMID: 27412012 PMCID: PMC5179953 DOI: 10.1093/hmg/ddw211] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a major component of HDL and chylomicron particles and is involved in reverse cholesterol transport. It is an early marker of impaired renal function. We aimed to identify genetic loci associated with apoA-IV concentrations and to investigate relationships with known susceptibility loci for kidney function and lipids. A genome-wide association meta-analysis on apoA-IV concentrations was conducted in five population-based cohorts (n = 13,813) followed by two additional replication studies (n = 2,267) including approximately 10 M SNPs. Three independent SNPs from two genomic regions were significantly associated with apoA-IV concentrations: rs1729407 near APOA4 (P = 6.77 × 10 - 44), rs5104 in APOA4 (P = 1.79 × 10-24) and rs4241819 in KLKB1 (P = 5.6 × 10-14). Additionally, a look-up of the replicated SNPs in downloadable GWAS meta-analysis results was performed on kidney function (defined by eGFR), HDL-cholesterol and triglycerides. From these three SNPs mentioned above, only rs1729407 showed an association with HDL-cholesterol (P = 7.1 × 10 - 07). Moreover, weighted SNP-scores were built involving known susceptibility loci for the aforementioned traits (53, 70 and 38 SNPs, respectively) and were associated with apoA-IV concentrations. This analysis revealed a significant and an inverse association for kidney function with apoA-IV concentrations (P = 5.5 × 10-05). Furthermore, an increase of triglyceride-increasing alleles was found to decrease apoA-IV concentrations (P = 0.0078). In summary, we identified two independent SNPs located in or next the APOA4 gene and one SNP in KLKB1 The association of KLKB1 with apoA-IV suggests an involvement of apoA-IV in renal metabolism and/or an interaction within HDL particles. Analyses of SNP-scores indicate potential causal effects of kidney function and by lesser extent triglycerides on apoA-IV concentrations.
Collapse
Affiliation(s)
- Claudia Lamina
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Salome Friedel
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Noha A Yousri
- Department of Physiology and Biophysics, Weill Cornell Medical College - Qatar, Doha, Qatar.,Department of Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health.,Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Kollerits
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Janina Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health
| | - Gerard Waeber
- Department of Medicine, Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Doreen Dähnhardt
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Stöckl
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Olli T Raitakari
- Department of Clinical Physiology, Turku University Hospital, Turku, Finland.,Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ludmilla Kedenko
- First Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Private Medical University, Salzburg, Austria
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Munich Cluster for Systems Neurology (SyNergy)
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Steven C Hunt
- Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Sugimachi K, Yamaguchi R, Eguchi H, Ueda M, Niida A, Sakimura S, Hirata H, Uchi R, Shinden Y, Iguchi T, Morita K, Yamamoto K, Miyano S, Mori M, Maehara Y, Mimori K. 8q24 Polymorphisms and Diabetes Mellitus Regulate Apolipoprotein A-IV in Colorectal Carcinogenesis. Ann Surg Oncol 2016; 23:546-551. [PMID: 27387680 DOI: 10.1245/s10434-016-5374-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Here, we explored the genetic interactions between diabetes and oncogenic single-nucleotide polymorphisms (SNPs) that determine colorectal cancer (CRC) morbidity. METHODS 8q24 rs6983267 polymorphism analysis and cDNA microarray were performed in 107 CRCs to identify the genes associated with diabetes and the oncogenic SNP. Then clinical significance of the gene was validated in 132 CRCs. Meta-analysis of microarray data and diabetic comorbidity was performed. RESULTS Of genes associated with a minor SNP allele at 8q24, diabetes, and MYC overexpression, apolipoprotein A-IV (ApoA-IV) was associated with oncogenesis and poor prognosis in CRC patients. Patients with high ApoA-IV expression showed significantly poorer prognosis by univariate and multivariate analysis. Meta-analysis revealed lipid metabolism was associated with ApoA-IV-related oncogenesis in diabetic patients. CONCLUSIONS Changes in lipid metabolism associated with aberrant expression of ApoA-IV were risks for CRC oncogenesis.
Collapse
Affiliation(s)
- Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Surgery, Fukuoka City Hospital, Fukuoka, Japan
| | - Rui Yamaguchi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Masami Ueda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Atsushi Niida
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shotaro Sakimura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidenari Hirata
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Ryutaro Uchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yoshiaki Shinden
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Tomohiro Iguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kazutoyo Morita
- Department of Surgery, Fukuoka City Hospital, Fukuoka, Japan
| | - Ken Yamamoto
- Department of Medical Chemistry, Kurume University School of Medicine, Kurume, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.
| |
Collapse
|
12
|
Świątkiewicz M, Oczkowicz M, Ropka-Molik K, Hanczakowska E. The effect of dietary fatty acid composition on adipose tissue quality and expression of genes related to lipid metabolism in porcine livers. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
The expression of genes involved in jejunal lipogenesis and lipoprotein synthesis is altered in morbidly obese subjects with insulin resistance. J Transl Med 2015; 95:1409-17. [PMID: 26367490 DOI: 10.1038/labinvest.2015.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/03/2015] [Accepted: 07/28/2015] [Indexed: 12/28/2022] Open
Abstract
The dyslipidemia associated with type 2 diabetes mellitus (T2DM) is an important risk factor for atherosclerotic cardiovascular disease. However, until now little attention has been paid to the role that the intestine might have. The aim of this research was to determine the relation between insulin resistance and intestinal de novo lipogenesis/lipoprotein synthesis in morbidly obese subjects and to study the effect of insulin on these processes. Jejunal mRNA expression of the different genes involved in the intestinal de novo lipogenesis/lipoprotein synthesis was analyzed in three groups of morbidly obese subjects: Group 1 with low insulin resistance (MO-low-IR), group 2 with high insulin resistance (MO-high-IR), and group 3 with T2DM and treatment with metformin (MO-metf-T2DM). In addition, intestinal epithelial cells (IECs) from MO-low-IR were incubated with different doses of insulin/glucose. In Group 2 (MO-high-IR), the jejunal mRNA expression levels of apo A-IV, ATP-citrate lyase (ACLY), pyruvate dehydrogenase (lipoamide) beta (PDHB), and sterol regulatory element-binding protein-1c (SREBP-1c) were significantly higher and acetyl-CoA carboxylase alpha (ACC1) and fatty-acid synthase lower than in Group 1 (MO-low-IR). In Group 3 (MO-metf-T2DM), only the ACLY and PDHB mRNA expressions were significantly higher than in Group 1 (MO-low-IR). The mRNA expression of most of the genes studied was significantly linked to insulin and glucose levels. The incubation of IEC with different doses of insulin and glucose produced a higher expression of diacylglycerol acyltransferase 2, microsomal triglyceride transfer protein, apo A-IV, SREBP-1c, and ACC1 when both, glucose and insulin, were at a high concentration. However, with only high insulin levels, there were higher apo A-IV, PDHB and SREBP-1c expressions, and a lower ACLY expression. In conclusion, the jejunum of MO-high-IR has a decreased mRNA expression of genes involved in de novo fatty-acid synthesis and an increase of genes involved in acetyl-CoA and lipoprotein synthesis. This effect is attenuated by metformin. In addition, the expression of most of the genes studied was found to be regulated by insulin.
Collapse
|
14
|
Otis JP, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-Davidi I, Tempelhof H, Yaniv K, Farber SA. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 2015; 8:295-309. [PMID: 25633982 PMCID: PMC4348566 DOI: 10.1242/dmm.018754] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and serves as a springboard for future investigations to elucidate their roles in development and disease in the larval zebrafish model.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erin M Zeituni
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - James H Thierer
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Alexandria C Brown
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erica D Boehm
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Derek M Cerchione
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Alexis M Ceasrine
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Inbal Avraham-Davidi
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Hanoch Tempelhof
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Karina Yaniv
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Wang F, Kohan AB, Lo CM, Liu M, Howles P, Tso P. Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 2015; 56:1403-18. [PMID: 25640749 DOI: 10.1194/jlr.r052753] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Alison B Kohan
- Department of Nutritional Sciences, University of Connecticut Advanced Technology Laboratory, Storrs, CT 06269
| | - Chun-Min Lo
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Philip Howles
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
16
|
Proteomic Identification of Serum Proteins Associated with Stress-Induced Gastric Ulcers in Fasted Rats. Biosci Biotechnol Biochem 2014; 74:812-8. [DOI: 10.1271/bbb.90897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Xu X, Park JG, So JS, Hur KY, Lee AH. Transcriptional regulation of apolipoprotein A-IV by the transcription factor CREBH. J Lipid Res 2014; 55:850-9. [PMID: 24598141 DOI: 10.1194/jlr.m045104] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
cAMP responsive element-binding protein H (CREBH) is an endoplasmic reticulum (ER) anchored transcription factor that is highly expressed in the liver and small intestine and implicated in nutrient metabolism and proinflammatory response. ApoA-IV is a glycoprotein secreted primarily by the intestine and to a lesser degree by the liver. ApoA-IV expression is suppressed in CREBH-deficient mice and strongly induced by enforced expression of the constitutively active form of CREBH, indicating that CREBH is the major transcription factor regulating Apoa4 gene expression. Here, we show that CREBH directly controls Apoa4 expression through two tandem CREBH binding sites (5'-CCACGTTG-3') located on the promoter, which are conserved between human and mouse. Chromatin immunoprecipitation and electrophoretic mobility-shift assays demonstrated specific association of CREBH with the CREBH binding sites. We also demonstrated that a substantial amount of CREBH protein was basally processed to the active nuclear form in normal mouse liver, which was further increased in steatosis induced by high-fat diet or fasting, increasing apoA-IV expression. However, we failed to find significant activation of CREBH in response to ER stress, arguing against the critical role of CREBH in ER stress response.
Collapse
Affiliation(s)
- Xu Xu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | | | | | | | | |
Collapse
|
18
|
Safdar H, Cleuren ACA, Cheung KL, Gonzalez FJ, Vos HL, Inoue Y, Reitsma PH, van Vlijmen BJM. Regulation of the F11, Klkb1, Cyp4v3 gene cluster in livers of metabolically challenged mice. PLoS One 2013; 8:e74637. [PMID: 24066149 PMCID: PMC3774739 DOI: 10.1371/journal.pone.0074637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 08/05/2013] [Indexed: 01/01/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) in a 4q35.2 locus that harbors the coagulation factor XI (F11), prekallikrein (KLKB1), and a cytochrome P450 family member (CYP4V2) genes are associated with deep venous thrombosis (DVT). These SNPs exert their effect on DVT by modifying the circulating levels of FXI. However, SNPs associated with DVT were not necessarily all in F11, but also in KLKB1 and CYP4V2. Here, we searched for evidence for common regulatory elements within the 4q35.2 locus, outside the F11 gene, that might control FXI plasma levels and/or DVT risk. To this end, we investigated the regulation of the orthologous mouse gene cluster under several metabolic conditions that impact mouse hepatic F11 transcription. In livers of mice in which HNF4α, a key transcription factor controlling F11, was ablated, or reduced by siRNA, a strong decrease in hepatic F11 transcript levels was observed that correlated with Cyp4v3 (mouse orthologue of CYP4V2), but not by Klkb1 levels. Estrogens induced hepatic F11 and Cyp4v3, but not Klkb1 transcript levels, whereas thyroid hormone strongly induced hepatic F11 transcript levels, and reduced Cyp4v3, leaving Klkb1 levels unaffected. Mice fed a high-fat diet also had elevated F11 transcription, markedly paralleled by an induction of Klkb1 and Cyp4v3 expression. We conclude that within the mouse F11, Klkb1, Cyp4v3 gene cluster, F11 and Cyp4v3 frequently display striking parallel transcriptional responses suggesting the presence of shared regulatory elements.
Collapse
Affiliation(s)
- Huma Safdar
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Audrey C. A. Cleuren
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Ka Lei Cheung
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Hans L. Vos
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Yusuke Inoue
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma, Japan
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J. M. van Vlijmen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Hepatocyte nuclear factor 4α regulates the expression of the murine pyruvate carboxylase gene through the HNF4-specific binding motif in its proximal promoter. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:987-99. [PMID: 23665043 DOI: 10.1016/j.bbagrm.2013.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/18/2013] [Accepted: 05/02/2013] [Indexed: 11/20/2022]
Abstract
Pyruvate carboxylase (PC) is the first regulatory enzyme of gluconeogenesis. Here we report that the proximal promoter of the murine PC gene contains three binding sites for hepatocyte nuclear factor 4α (HNF4α). These sites include the classical direct repeat 1 (DR1) (-386/-374), non-perfect DR1 (-118/-106) and HNF4α-specific binding motif (H4-SBM) (-26/-14). Under basal conditions, mutation of the non-perfect DR1 decreased promoter activity by 50%, whereas mutation of neither the DR1 nor the H4-SBM had any effect. In marked contrast, only mutation of the H4-SBM decreased HNF4α-transactivation of the promoter activity by 65%. EMSA revealed that HNF4α binds to the DR1site and H4-SBM with similar affinity while it binds poorly to the non-perfect DR1. Interestingly, this non-perfect DR1 also coincides with two E-boxes. Mutation of the non-perfect DR1 together with the nearby E-box reduced USF1- but not USF2-transactivation of promoter activity, suggesting that USF1 partly contributes to the basal activity of the promoter. Substitution of the H4-SBM with the DR1 marginally reduced the basal promoter activity but did not eliminate HNF4α-transactivation, suggesting that HNF4α can exert its effect via DR1 within this promoter context. ChIP-assay confirmed that HNF4α is associated with the H4-SBM. Suppression of HNF4α expression in AML12 cells down-regulated PC mRNA and PC protein by 60% and 50%, respectively, confirming that PC is a target of HNF4α. We also propose a model for differential regulation of P1 promoter of PC gene in adipose tissue and liver.
Collapse
|
20
|
Hoekstra M, van der Sluis RJ, Van Eck M, Van Berkel TJ. Adrenal-Specific Scavenger Receptor BI Deficiency Induces Glucocorticoid Insufficiency and Lowers Plasma Very-Low-Density and Low-Density Lipoprotein Levels in Mice. Arterioscler Thromb Vasc Biol 2013. [DOI: 10.1161/atvbaha.112.300784] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
We determined the physiological consequences of adrenocortical-specific deletion of scavenger receptor BI (SR-BI) function in C57BL/6 wild-type mice.
Methods and Results—
One adrenal from 10-day-old SR-BI knockout (KO) mice or wild-type controls was transplanted under the renal capsule of adrenalectomized C57BL/6 recipient mice. The fasting plasma corticosterone level increased over time in transplanted mice. Corticosterone values in SR-BI KO transplanted mice remained ≈50% lower (
P
<0.001) as compared with wild-type transplanted mice, which coincided with adrenocortical lipid depletion. A 6.5-fold higher (
P
<0.01) plasma adrenocorticotropic hormone level was present in SR-BI KO transplanted mice reminiscent of primary glucocorticoid insufficiency. On feeding with cholic acid-containing high cholesterol/high fat diet, SR-BI KO transplanted mice exhibited a 26% (
P
<0.05) reduction in their liver triglyceride level. Hepatic myosin regulatory light chain interacting protein/inducible degrader of the low-density lipoprotein receptor mRNA expression was 48% (
P
<0.01) decreased in adrenal-specific SR-BI KO mice, which was paralleled by a marked decrease (–46%;
P
<0.01) in proatherogenic very-low-density and low-density lipoprotein levels.
Conclusion—
Adrenal-specific disruption of SR-BI function induces glucocorticoid insufficiency and lowers plasma very-low-density and low-density lipoprotein levels in atherogenic diet-fed C57BL/6 mice. These findings further highlight the interaction between adrenal high-density lipoprotein-cholesterol uptake by SR-BI, adrenal steroidogenesis, and the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Menno Hoekstra
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Ronald J. van der Sluis
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Miranda Van Eck
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Theo J.C. Van Berkel
- From the Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| |
Collapse
|
21
|
Chen Z, Gropler MC, Mitra MS, Finck BN. Complex interplay between the lipin 1 and the hepatocyte nuclear factor 4 α (HNF4α) pathways to regulate liver lipid metabolism. PLoS One 2012; 7:e51320. [PMID: 23236470 PMCID: PMC3517414 DOI: 10.1371/journal.pone.0051320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/31/2012] [Indexed: 01/18/2023] Open
Abstract
Lipin 1 is a bifunctional protein that serves as a metabolic enzyme in the triglyceride synthesis pathway and regulates gene expression through direct protein-protein interactions with DNA-bound transcription factors in liver. Herein, we demonstrate that lipin 1 is a target gene of the hepatocyte nuclear factor 4α (HNF4α), which induces lipin 1 gene expression in cooperation with peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) through a nuclear receptor response element in the first intron of the lipin 1 gene. The results of a series of gain-of-function and loss-of-function studies demonstrate that lipin 1 coactivates HNF4α to activate the expression of a variety of genes encoding enzymes involved in fatty acid catabolism. In contrast, lipin 1 reduces the ability of HNF4α to induce the expression of genes encoding apoproteins A4 and C3. Although the ability of lipin to diminish HNF4α activity on these promoters required a direct physical interaction between the two proteins, lipin 1 did not occupy the promoters of the repressed genes and enhances the intrinsic activity of HNF4α in a promoter-independent context. Thus, the induction of lipin 1 by HNF4α may serve as a mechanism to affect promoter selection to direct HNF4α to promoters of genes encoding fatty acid oxidation enzymes.
Collapse
Affiliation(s)
- Zhouji Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew C. Gropler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mayurranjan S. Mitra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hoekstra M, Korporaal SJA, van der Sluis RJ, Hirsch-Reinshagen V, Bochem AE, Wellington CL, Van Berkel TJC, Kuivenhoven JA, Van Eck M. LCAT deficiency in mice is associated with a diminished adrenal glucocorticoid function. J Lipid Res 2012. [PMID: 23178225 DOI: 10.1194/jlr.m030080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In vitro studies have suggested that HDL and apoB-containing lipoproteins can provide cholesterol for synthesis of glucocorticoids. Here we assessed adrenal glucocorticoid function in LCAT knockout (KO) mice to determine the specific contribution of HDL-cholesteryl esters to adrenal glucocorticoid output in vivo. LCAT KO mice exhibit an 8-fold higher plasma free cholesterol-to-cholesteryl ester ratio (P < 0.001) and complete HDL-cholesteryl ester deficiency. ApoB-containing lipoprotein and associated triglyceride levels are increased in LCAT KO mice as compared with C57BL/6 control mice (44%; P < 0.05). Glucocorticoid-producing adrenocortical cells within the zona fasciculata in LCAT KO mice are devoid of neutral lipids. However, adrenal weights and basal corticosterone levels are not significantly changed in LCAT KO mice. In contrast, adrenals of LCAT KO mice show compensatory up-regulation of genes involved in cholesterol synthesis (HMG-CoA reductase; 516%; P < 0.001) and acquisition (LDL receptor; 385%; P < 0.001) and a marked 40-50% lower glucocorticoid response to adrenocorticotropic hormone exposure, endotoxemia, or fasting (P < 0.001 for all). In conclusion, our studies show that HDL-cholesteryl ester deficiency in LCAT KO mice is associated with a 40-50% lower adrenal glucocorticoid output. These findings further highlight the important novel role for HDL as cholesterol donor for the synthesis of glucocorticoids by the adrenals.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Patent Highlights. Pharm Pat Anal 2012. [DOI: 10.4155/ppa.12.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Snapshot of recent key developments in the patent literature of relevance to the advancement of pharmaceutical and medical R&D
Collapse
|
24
|
Song XQ, Chen EQ, Wang YB, Zhou TY, Liu L, Liu C, Cheng X, Tang H. Construction of a plasmid vector for liver-specific inhibition of hepatocyte nuclear factor 4 alpha expression. Plasmid 2012; 67:60-66. [PMID: 21907733 DOI: 10.1016/j.plasmid.2011.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 12/30/2022]
Abstract
Hepatocyte nuclear factor-4alpha (HNF-4a) is an important transcription factor in the liver, and regulates a large number of genes involved in many aspects of hepatocyte functions. In this study, a liver-specific transcriptional regulatory element comprised of albumin promoter (ALBp) and alpha-fetoprotein enhancer (AFPe) was obtained and cloned into the plasmid pHNF4sh-CMV(short hairpin RNA targeting HNF4α) with original CMV promoter removed, resulting to pHNF4sh-EP for liver-specific knockdown of HNF4α expression. In an attempt to verify its characteristics, pHNF4sh-EP was transfected to L02, HepG2, and COS1 cell lines in vitro and delivered into mice in vivo. pHNF4sh-CMV and pNCsh-EP were used as controls. For in vitro, the level of HNF4α mRNA and protein was decreased in all cell lines transfected with pHNF4sh-CMV whereas HNF4α mRNA and protein decreasing was only observed in L02 and HepG2 cell lines upon transfection with pHNF4sh-EP, and this decreasing was more significant as compared with pHNF4sh-CMV transfected cells. For in vivo, the decreasing of HNF4α mRNA and protein was observed in both liver and kidney tissues upon transfection with pHNF4sh-CMV. After transfection with pHNF4sh-EP, decreasing of HNF4α mRNA and protein was only found in liver tissue and this decreasing was more significant. No obvious HNF4α mRNA and protein decreasing was detected either in vitro or in vivo after transfected with pNCsh-EP. In conclusion, pHNF4sh-EP could highly-active and liver-specific knockdown of HNF4α expression liver and it will be useful for further study of the funcitions of HNF4α in liver.
Collapse
Affiliation(s)
- Xue-Qin Song
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mass spectrometry-based plasma peptide profiling of acute exacerbation in HBeAg-positive chronic hepatitis B. Clin Chim Acta 2011; 412:2174-82. [PMID: 21867694 DOI: 10.1016/j.cca.2011.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 01/16/2023]
|
26
|
Ueda K, Saichi N, Takami S, Kang D, Toyama A, Daigo Y, Ishikawa N, Kohno N, Tamura K, Shuin T, Nakayama M, Sato TA, Nakamura Y, Nakagawa H. A comprehensive peptidome profiling technology for the identification of early detection biomarkers for lung adenocarcinoma. PLoS One 2011; 6:e18567. [PMID: 21533267 PMCID: PMC3075260 DOI: 10.1371/journal.pone.0018567] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/04/2011] [Indexed: 12/19/2022] Open
Abstract
The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000–5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273–283, FIBA 5–16, and LBN 306–313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens.
Collapse
Affiliation(s)
- Koji Ueda
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
- * E-mail: (KU); (HN)
| | - Naomi Saichi
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
| | | | - Daechun Kang
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsuhiko Toyama
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Shimadzu Corporation, Kyoto, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nobuhisa Ishikawa
- Department of Molecular and Internal Medicine, Hiroshima University, Hiroshima, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenji Tamura
- Department of Urology, Kochi University School of Medicine, Nankoku, Japan
| | - Taro Shuin
- Department of Urology, Kochi University School of Medicine, Nankoku, Japan
| | | | | | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hidewaki Nakagawa
- Laboratory for Biomarker Development, Center for Genomic Medicine, RIKEN, Yokohama, Japan
- * E-mail: (KU); (HN)
| |
Collapse
|
27
|
Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4α. BMC Genomics 2011; 12:128. [PMID: 21352552 PMCID: PMC3053261 DOI: 10.1186/1471-2164-12-128] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 02/25/2011] [Indexed: 12/17/2022] Open
Abstract
Background Hepatocyte nuclear factor 4α (HNF4α), a liver-specific transcription factor, plays a significant role in liver-specific functions. However, its functions are poorly understood in the regulation of the inflammatory response. In order to obtain a genomic view of HNF4α in this context, microarray analysis was used to probe the expression profile of an inflammatory response induced by cytokine stimulation in a model of HNF4α knock-down in HepG2 cells. Results The expression of over five thousand genes in HepG2 cells is significantly changed with the dramatic reduction of HNF4α concentration compared to the cells with native levels of HNF4α. Over two thirds (71%) of genes that exhibit differential expression in response to cytokine treatment also reveal differential expression in response to HNF4α knock-down. In addition, we found that a number of HNF4α target genes may be indirectly mediated by an ETS-domain transcription factor ELK1, a nuclear target of mitogen-activated protein kinase (MAPK). Conclusion The results indicate that HNF4α has an extensive impact on the regulation of a large number of the liver-specific genes. HNF4α may play a role in regulating the cytokine-induced inflammatory response. This study presents a novel function for HNF4α, acting not only as a global player in many cellular processes, but also as one of the components of inflammatory response in the liver.
Collapse
|
28
|
Xu W, Guo T, Zhang Y, Jiang X, Zhang Y, Zen K, Yu B, Zhang CY. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1α expression. Exp Cell Res 2010; 317:1083-92. [PMID: 20955697 DOI: 10.1016/j.yexcr.2010.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 09/15/2010] [Accepted: 10/09/2010] [Indexed: 11/29/2022]
Abstract
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Soriguer F, García-Serrano S, Garrido-Sánchez L, Gutierrez-Repiso C, Rojo-Martínez G, Garcia-Escobar E, García-Arnés J, Gallego-Perales JL, Delgado V, García-Fuentes E. Jejunal wall triglyceride concentration of morbidly obese persons is lower in those with type 2 diabetes mellitus. J Lipid Res 2010; 51:3516-23. [PMID: 20855567 DOI: 10.1194/jlr.m007815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The overproduction of intestinal lipoproteins may contribute to the dyslipidemia found in diabetes. We studied the influence of diabetes on the fasting jejunal lipid content and its association with plasma lipids and the expression of genes involved in the synthesis and secretion of these lipoproteins. The study was undertaken in 27 morbidly obese persons, 12 of whom had type 2 diabetes mellitus (T2DM). The morbidly obese persons with diabetes had higher levels of chylomicron (CM) triglycerides (P < 0.001) and apolipoprotein (apo)B48 (P = 0.012). The jejunum samples obtained from the subjects with diabetes had a lower jejunal triglyceride content (P = 0.012) and angiopoietin-like protein 4 (ANGPTL4) mRNA expression (P = 0.043). However, the apoA-IV mRNA expression was significantly greater (P = 0.036). The jejunal triglyceride content correlated negatively with apoA-IV mRNA expression (r = -0.587, P = 0.027). The variables that explained the jejunal triglyceride content in a multiple linear regression model were the insulin resistance state and the apoA-IV mRNA expression. Our results show that the morbidly obese subjects with diabetes had lower jejunal lipid content and that this correlated negatively with apoA-IV mRNA expression. These findings show that the jejunum appears to play an active role in lipid homeostasis in the fasting state.
Collapse
Affiliation(s)
- F Soriguer
- Servicios de Endocrinología y Nutrición y Cirugía General, Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
A comparative proteomic study of nephrogenesis in intrauterine growth restriction. Pediatr Nephrol 2010; 25:1063-72. [PMID: 20130919 DOI: 10.1007/s00467-009-1437-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/17/2009] [Accepted: 12/29/2009] [Indexed: 12/26/2022]
Abstract
Nephrogenesis requires a fine balance of many factors that can be disturbed by intrauterine growth restriction (IUGR), leading to a low nephron endowment. The aim of this study was to test the hypothesis that IUGR affects expression of key proteins that regulate nephrogenesis, by a comparative proteomic approach. IUGR was induced in Sprague-Dawley (SD) rats by isocaloric protein restriction in pregnant dams. A series of methods, including two-dimensional gel electrophoresis (2-DE), silver staining, mass spectrometry and database searching was used. After silver staining, 2-DE image analysis detected an average 730 + or - 58 spots in the IUGR group and 711 + or - 73 spots in the control group. The average matched rate was 86% and 81%, respectively. The differential proteomic expression analysis found that 11 protein spots were expressed only in the IUGR group and one in the control group. Seven protein spots were up-regulated more than fivefold and two were down-regulated more than fivefold in the IUGR group compared with those in control group. These 21 protein spots were preliminarily identified and were structural molecules, including vimentin, perlecan, gamma-actin and cytokeratin 10, transcription regulators, transporter proteins, enzymes, and so on. These proteins were involved primarily in energy metabolism, oxidation and reduction, signal transduction, cell proliferation and apoptosis. Data from this study may provide, at least partly, evidence that abnormality of metabolism, imbalance of redox and apoptosis, and disorder of cellular signal and cell proliferation may be the major mechanisms responsible for abnormal nephrogenesis in IUGR.
Collapse
|
31
|
Takano K, Hasegawa G, Jiang S, Kurosaki I, Hatakeyama K, Iwanari H, Tanaka T, Hamakubo T, Kodama T, Naito M. Immunohistochemical staining for P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha may complement mucin phenotype of differentiated-type early gastric carcinoma. Pathol Int 2009; 59:462-70. [PMID: 19563409 DOI: 10.1111/j.1440-1827.2009.02394.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) isoforms in the human stomach have not been fully investigated. The purpose of the present study was to evaluate the expression of P1 and P2 promoter-driven HNF4alpha (P1 and P2-HNF4alpha) in differentiated-type early gastric carcinomas (DEGC). P1- and P2-HNF4alpha expression was examined immunohistochemically both in non-neoplastic mucosa and carcinoma from surgical specimens. In all samples of non-neoplastic mucosa, foveolar, cardiac, fundic and pyloric gland epithelium was negative for P1-HNF4alpha, but was positive for P2-HNF4alpha. Intestinal metaplasia was positive for P1 and P2-HNF4alpha in all cases. Gastric carcinomas were classified into four mucin phenotypes based on the pattern of mucin expression: gastric, intestinal, mixed and null type. DEGC showed striking differences in the staining pattern for P1-HNF4alpha according to the mucin phenotype. Gastric carcinomas of intestinal, mixed and null type showed high positivity for P1-HNF4alpha, but the gastric type was negative for P1-HNF4alpha in all but one tumor. In contrast, P2-HNF4alpha was expressed in all tumors regardless of the mucin phenotype. Negative expression of P1-HNF4alpha was indicated as one of the useful immunohistochemical markers in the classification of mucin phenotype of both non-neoplastic mucosa and cancers of gastric phenotype.
Collapse
Affiliation(s)
- Kabuto Takano
- Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol Pharmacol 2009; 76:215-28. [PMID: 19483103 PMCID: PMC2713118 DOI: 10.1124/mol.109.056705] [Citation(s) in RCA: 535] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/29/2009] [Indexed: 12/26/2022] Open
Abstract
Sex differences in pharmacokinetics and pharmacodynamics characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Sex-based differences in drug metabolism are the primary cause of sex-dependent pharmacokinetics and reflect underlying sex differences in the expression of hepatic enzymes active in the metabolism of drugs, steroids, fatty acids and environmental chemicals, including cytochromes P450 (P450s), sulfotransferases, glutathione transferases, and UDP-glucuronosyltransferases. Studies in the rat and mouse liver models have identified more than 1000 genes whose expression is sex-dependent; together, these genes impart substantial sexual dimorphism to liver metabolic function and pathophysiology. Sex differences in drug metabolism and pharmacokinetics also occur in humans and are due in part to the female-predominant expression of CYP3A4, the most important P450 catalyst of drug metabolism in human liver. The sexually dimorphic expression of P450s and other liver-expressed genes is regulated by the temporal pattern of plasma growth hormone (GH) release by the pituitary gland, which shows significant sex differences. These differences are most pronounced in rats and mice, where plasma GH profiles are highly pulsatile (intermittent) in male animals versus more frequent (nearly continuous) in female animals. This review discusses key features of the cell signaling and molecular regulatory mechanisms by which these sex-dependent plasma GH patterns impart sex specificity to the liver. Moreover, the essential role proposed for the GH-activated transcription factor signal transducer and activator of transcription (STAT) 5b, and for hepatic nuclear factor (HNF) 4alpha, as mediators of the sex-dependent effects of GH on the liver, is evaluated. Together, these studies of the cellular, molecular, and gene regulatory mechanisms that underlie sex-based differences in liver gene expression have provided novel insights into the physiological regulation of both xenobiotic and endobiotic metabolism.
Collapse
Affiliation(s)
- David J Waxman
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
33
|
Xie X, Liao H, Dang H, Pang W, Guan Y, Wang X, Shyy JYJ, Zhu Y, Sladek FM. Down-regulation of hepatic HNF4alpha gene expression during hyperinsulinemia via SREBPs. Mol Endocrinol 2009; 23:434-43. [PMID: 19179483 DOI: 10.1210/me.2007-0531] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the coding region of hepatocyte nuclear factor 4alpha (HNF4alpha), and its upstream promoter (P2) that drives expression in the pancreas, are known to lead to maturity-onset diabetes of the young 1 (MODY1). HNF4alpha also controls gluconeogenesis and lipid metabolism in the liver, where the proximal promoter (P1) predominates. However, very little is known about the role of hepatic HNF4alpha in diabetes. Here, we examine the expression of hepatic HNF4alpha in two diabetic mouse models, db/db mice (type 2, insulin resistant) and streptozotocin-treated mice (type 1, insulin deficient). We found that the level of HNF4alpha protein and mRNA was decreased in the liver of db/db mice but increased in streptozotocin-treated mice. Because insulin increases the activity of sterol regulatory element-binding proteins (SREBP)-1c and -2, we also examined the effect of SREBPs on hepatic HNF4alpha gene expression and found that, like insulin, ectopic expression of SREBPs decreases the level of hepatic HNF4alpha protein and mRNA both in vitro in primary hepatocytes and in vivo in the liver of C57BL/6 mice. Finally, we use gel shift, chromatin immunoprecipitation, small interfering RNA, and reporter gene analysis to show that SREBP2 binds the human HNF4alpha P1 promoter and negatively regulates its expression. These data indicate that hyperinsulinemia down-regulates HNF4alpha in the liver through the up-regulation of SREBPs, thereby establishing a link between these two critical transcription factor pathways that regulate lipid and glucose metabolism in the liver. These findings also provide new insights into diabetes-associated complications such as fatty liver disease.
Collapse
Affiliation(s)
- Xuefen Xie
- Department of Physiology and Pathophysiology, Peking University, Health Sciences Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim KY, Cho YS, Bang IC, Nam YK. Isolation and characterization of the apolipoprotein multigene family in Hemibarbus mylodon (Teleostei: Cypriniformes). Comp Biochem Physiol B Biochem Mol Biol 2009; 152:38-46. [DOI: 10.1016/j.cbpb.2008.09.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/15/2022]
|
35
|
Holloway MG, Miles GD, Dombkowski AA, Waxman DJ. Liver-specific hepatocyte nuclear factor-4alpha deficiency: greater impact on gene expression in male than in female mouse liver. Mol Endocrinol 2008; 22:1274-86. [PMID: 18276827 PMCID: PMC2366185 DOI: 10.1210/me.2007-0564] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/05/2008] [Indexed: 01/18/2023] Open
Abstract
Hepatocyte nuclear factor (HNF)-4alpha is a liver-enriched transcription factor that regulates numerous liver-expressed genes including several sex-specific cytochrome P450 genes. Presently, a liver-specific HNF4alpha-deficient mouse model was used to characterize the impact of liver HNF4alpha deficiency on a global scale using 41,174 feature microarrays. A total of 4994 HNF4alpha-dependent genes were identified, of which about 1000 fewer genes responded to the loss of HNF4alpha in female liver as compared with male liver. Sex differences in the impact of liver HNF4alpha deficiency were even more dramatic when genes showing sex-specific expression were examined. Thus, 372 of the 646 sex-specific genes characterized by a dependence on HNF4alpha responded to the loss of HNF4alpha in males only, as compared with only 61 genes that responded in females only. Moreover, in male liver, 78% of 508 male-specific genes were down-regulated and 42% of 356 female-specific genes were up-regulated in response to the loss of HNF4alpha, with sex specificity lost for 90% of sex-specific genes. This response to HNF4alpha deficiency is similar to the response of male mice deficient in the GH-activated transcription factor signal transducer and activator of transcription 5b (STAT5b), where 90% of male-specific genes were down-regulated and 61% of female-specific genes were up-regulated, suggesting these two factors cooperatively regulate liver sex specificity by mechanisms that are primarily active in males. Finally, 203 of 648 genes previously shown to bind HNF4alpha near the transcription start site in mouse hepatocytes were affected by HNF4alpha deficiency in mouse liver, with the HNF4alpha-bound gene set showing a 5-fold enrichment for genes positively regulated by HNF4alpha. Thus, a substantial fraction of the HNF4alpha-dependent genes reported here are likely to be direct targets of HNF4alpha.
Collapse
Affiliation(s)
- Minita G Holloway
- Division of Cell and Molecular Biology, Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
36
|
Hoekstra M, Meurs I, Koenders M, Out R, Hildebrand RB, Kruijt JK, Van Eck M, Van Berkel TJ. Absence of HDL cholesteryl ester uptake in mice via SR-BI impairs an adequate adrenal glucocorticoid-mediated stress response to fasting. J Lipid Res 2008; 49:738-745. [DOI: 10.1194/jlr.m700475-jlr200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
37
|
Bibliography. Current world literature. Growth and development. Curr Opin Endocrinol Diabetes Obes 2008; 15:79-101. [PMID: 18185067 DOI: 10.1097/med.0b013e3282f4f084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 2007; 275:43-61. [PMID: 17624658 DOI: 10.1016/j.mce.2007.05.015] [Citation(s) in RCA: 349] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 12/14/2022]
Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids (GC) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical components of the delicate hormonal control system that determines energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, excessive GC action has been tied to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Highlighted by its importance for human health, the investigation of molecular mechanisms of GC/GR action has become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the GC-GR pathway has been proven to be of substantial value for the identification of novel therapeutic options in the treatment of severe metabolic disorders. Therefore, this review focuses on the role of the GC-GR axis for metabolic homeostasis and dysregulation, emphasizing tissue-specific functions of GCs in the control of energy metabolism.
Collapse
|
39
|
Leng S, Lu S, Yao Y, Kan Z, Morris GS, Stair BR, Cherny MA, Black DD. Hepatocyte nuclear factor-4 mediates apolipoprotein A-IV transcriptional regulation by fatty acid in newborn swine enterocytes. Am J Physiol Gastrointest Liver Physiol 2007; 293:G475-83. [PMID: 17556588 DOI: 10.1152/ajpgi.00072.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor-4alpha (HNF-4alpha) regulates transcription of several genes involved in lipid metabolism, including that of apolipoprotein (apo) A-IV, which is tightly regulated by lipid absorption and enhances enterocyte chylomicron secretion. Studies were performed to define the role of HNF-4alpha in the regulation of apo A-IV gene transcription by dietary fatty acid in neonatal swine small intestine. HNF-4alpha mRNA was expressed in liver > intestine > kidney in suckling, weanling, and weaned pigs. Jejunal HNF-4alpha mRNA and protein and apo A-IV and swine microsomal triglyceride transfer protein (MTP) large subunit mRNA expression were induced in parallel in 2-day-old swine by a 24-h high-fat intraduodenal infusion. In IPEC-1 cells, incubation with oleic acid (OA) resulted in coordinate induction of both HNF-4alpha, apo A-IV, and MTP mRNA, similar to that observed in vivo. When HNF-4alpha expression was driven by doxycycline by using the TET-On system in the absence of OA to observe the effect of HNF-4alpha directly on apo A-IV and MTP mRNA levels in the absence of other factors that might be concomitantly induced by fatty acid absorption, apo A-IV and MTP expression were increased. In luciferase reporter gene assays in IPEC-1 cells using apo A-IV/C-III intergenic region constructs, TET-On-regulated HNF-4alpha expression without OA increased luciferase activity, and incubation with OA did not further increase activity. These data suggest that acute induction of the apo A-IV and MTP genes by dietary lipid in newborn intestine occurs, at least in part, via ligand-independent transactivation by HNF-4alpha that is itself induced by a lipid-mediated mechanism.
Collapse
Affiliation(s)
- Shuangying Leng
- Children's Foundation Research Center of Memphis, Le Bonheur Children's Medical Center, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | | | | | | | | | | | | | | |
Collapse
|