1
|
Kisar Tunca S, Unal R. Adipocyte-derived fatty acid uptake induces obesity-related breast cancer progression: a review. Mol Biol Rep 2024; 52:39. [PMID: 39644365 DOI: 10.1007/s11033-024-10139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Obesity is a metabolic disorder that occurs when excess energy taken into the body is stored as fat. It is known that this metabolic imbalance affects the development of other diseases such as cancer, cardiovascular diseases, insulin resistance, and diabetes. The main cellular component of adipose tissue is adipocytes, and the environmental interactions of adipocytes are important to study the mechanism of disorder formation. Breast tissue is rich in adipose tissue and obesity is known to be an important risk factor in the development of breast cancer. Altered adipogenesis and lipogenesis processes in adipocytes in breast tissue support tumor development through the transfer of fatty acids released from adipocytes. We believe that blending adipocyte biology with breast cancer development is important for investigating the mechanisms that regulate breast tumor malignant behavior and providing new targets for treatment. Fatty acids, which are an energy source for breast cancer cells, are discussed from molecular perspectives in this review.
Collapse
Affiliation(s)
- Selin Kisar Tunca
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
| | - Resat Unal
- Faculty of Science, Department of Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey.
| |
Collapse
|
2
|
Zhong W, Chen C, Tan S, He X, Wen X, Wang S, Tocher DR, Waiho K, Chen C. Identification and Functional Characterization of the FATP1 Gene from Mud Crab, Scylla paramamosain. Animals (Basel) 2024; 14:2969. [PMID: 39457899 PMCID: PMC11506284 DOI: 10.3390/ani14202969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In mammals, fatty acid transport protein 1 (FATP1) plays important roles in cellular uptake and activation of long-chain fatty acid (LCFA), especially in processes of transportation, oxidation and triacylglycerol synthesis. However, the role of FATP1 in invertebrates, especially decapod crustaceans, is still poorly understood. In this study, the cDNA of a FATP1 gene from a decapod crustacean, mud crab Scylla paramamosain, was cloned and functionally characterized. The FATP1 gene encoded a polypeptide consisting of 643 amino acids that exhibits all the typical features of the FATP family and shares high homology with the other FATP orthologs of crustaceans. The relative mRNA expression levels of FATP1 were observed to be higher in metabolically active tissues such as hepatopancreas, stomach and gill than in other crab parts. Knockdown of the FATP1 mRNA in vivo significantly reduced triacylglycerols and total lipid levels in the hepatopancreas, accompanied by an increase in the expression of genes related to fatty acid transportation, allocation and hydrolysis, including long-chain acyl-CoA synthetase 3/4 (ACSL3/4) and carnitine palmitoyl transferase 1 (CPT1), and a decrease in the expression of genes related to fatty acid synthesis such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) in the hepatopancreas. Furthermore, increased dietary n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels resulted in the up-regulation of the FATP1 expression in the hepatopancreas, accompanied by an increase in LC-PUFA content, especially eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), in both polar (PLs) and neutral lipids (NLs) in the hepatopancreas and muscles of crabs. These findings suggested that the FATP1 gene identified in S. paramamosain might play important roles in regulating long-chain fatty acid metabolism and deposition in crustaceans.
Collapse
Affiliation(s)
- Wenjie Zhong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Chuangsi Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Senyue Tan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xianda He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| | - Douglas R. Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, University Malaysia Terengganu, Kuala Terengganu 21300, Malaysia;
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (W.Z.); (C.C.); (S.T.); (X.H.); (S.W.); (D.R.T.)
| |
Collapse
|
3
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
4
|
Tang D, Liu Y, Duan R, Lin R, Li Z, Liu X, Huang J, Zhao M. COL6A6 Peptide Vaccine Alleviates Atherosclerosis through Inducing Immune Response and Regulating Lipid Metabolism in Apoe-/- Mice. Cells 2024; 13:1589. [PMID: 39329770 PMCID: PMC11429512 DOI: 10.3390/cells13181589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Atherosclerosis is an autoimmune disease characterized by lipid imbalances and chronic inflammation within blood vessels, with limited preventive and treatment options currently available. In this study, a vaccine prepared with COL6A6 peptide (named the Pep_A6 vaccine) was administered to immunize Apoe-/- mice, and the immune mechanism of the Pep_A6 vaccine against atherosclerosis was first investigated. The results of arterial oil red O staining demonstrated that the Pep_A6 vaccine significantly reduced the atherosclerotic plaque area in Apoe-/- mice fed with a high-fat diet for 20 weeks. A flow cytometry analysis revealed that the Pep_A6 vaccine inhibited Th1 cell differentiation and increased the proportion of Treg cells. Furthermore, there was a significant increase in Ly6Clow monocytes observed in the vaccinated group. The ELISA results showed that the Pep_A6 vaccine induced a significant expression of Pep_A6-specific antibody IgG and IgG1 in mouse serum. Additionally, we found that the Pep_A6 vaccine significantly decreased serum LDL-C content and regulated the expression of genes related to liver lipid metabolism. Together, our findings suggest that the Pep_A6 vaccine alleviates atherosclerosis by inducing a positive immune response and regulating lipid metabolism, providing new insights into potential prevention strategies for atherosclerosis as an innovative vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (D.T.)
| |
Collapse
|
5
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
6
|
Gulisano M, Consoli V, Sorrenti V, Vanella L. Red Oranges and Olive Leaf Waste-Derived Bioactive Extracts Promote Adipocyte Functionality In Vitro. Nutrients 2024; 16:1959. [PMID: 38931313 PMCID: PMC11206959 DOI: 10.3390/nu16121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity is increasingly prevalent worldwide and is linked to metabolic diseases, such as insulin resistance (IR) and type 2 diabetes mellitus (T2DM), due to excessive free fatty acids (FFAs). Although lifestyle changes are effective, they often prove to be insufficient as initial treatments for obesity. Additionally, while surgical and pharmacological interventions are available, they are not entirely safe or effective. Recently, interest has grown in utilizing food waste and plant-derived phenolic compounds for their health benefits, presenting a promising avenue for managing obesity and its related disorders. Indeed, many studies have examined the potential inhibitory effects of the natural extract on adipocyte differentiation and lipid accumulation. This study focused on the evaluation of the effects of standardized extracts obtained from red oranges and olive leaf waste on 3T3-L1 murine pre-adipocyte and adipocyte functionality. Red orange extract (ROE) and olive leaf extract (OLE), alone and in combination, were tested to assess their anti-obesity and anti-inflammatory effects, as well as their potential therapeutic benefits. Three in vitro models were established to investigate the effects of the extracts on (I) adipocyte differentiation; (II) mature and hypertrophic adipocytes challenged with palmitic acid (PA) and erastin (ER), respectively; and (III) erastin-induced cytotoxicity on pre-adipocytes.
Collapse
Affiliation(s)
- Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
- CERNUT—Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
- CERNUT—Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (M.G.); (V.C.); (L.V.)
- CERNUT—Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
7
|
Ding H, Liu J, Chen Z, Huang S, Yan C, Kwek E, He Z, Zhu H, Chen ZY. Protocatechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating inflammation, regulating lipid metabolism, and reshaping gut microbiota. Food Funct 2024; 15:881-893. [PMID: 38165856 DOI: 10.1039/d3fo04396g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Trimethylamine-N-oxide (TMAO) is a risk factor for atherosclerosis. As a natural phenolic acid, protocatechuic acid (PCA) is abundant in various plant foods. The present study investigated the effect of PCA on TMAO-aggravated atherosclerosis in ApoE-/- mice. The mice were randomly divided into five groups and fed one of the following five diets for 12 weeks: namely a low-fat diet (LFD), a western diet (WD), a WD + 0.2% TMAO diet (WDT), a WDT + 0.5% PCA diet (WDT + LPCA), and a WDT + 1.0% PCA diet (WDT + HPCA). Results demonstrated that dietary TMAO exacerbated the development of atherosclerosis by eliciting inflammation and disturbing lipid metabolism. The diet with PCA at 1% reduced TMAO-induced aortic plaque by 30% and decreased the levels of plasma pro-inflammatory cytokines. PCA also improved lipid metabolism by up-regulating the hepatic gene expression of peroxisome proliferator-activated receptor alpha (PPARα). In addition, PCA supplementation enhanced fecal excretion of fatty acids and decreased hepatic fat accumulation. PCA supplementation favorably modulated gut microbiota by increasing the α-diversity with an increase in the abundance of beneficial genera (Rikenella, Turicibacter, Clostridium_sensu_stricto and Bifidobacterium) and a decrease in the abundance of the harmful Helicobacter genus. In summary, PCA could alleviate the TMAO-exacerbated atherosclerosis and inflammation, improve the lipid metabolism, and modulate gut microbiota.
Collapse
Affiliation(s)
- Huafang Ding
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Jianhui Liu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, Nanjing 210023, China
| | - Zixing Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Shouhe Huang
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Chi Yan
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Erika Kwek
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Zouyan He
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Hanyue Zhu
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
8
|
Li H, Seessle J, Staffer S, Tuma-Kellner S, Poschet G, Herrmann T, Chamulitrat W. FATP4 deletion in liver cells induces elevation of extracellular lipids via metabolic channeling towards triglycerides and lipolysis. Biochem Biophys Res Commun 2023; 687:149161. [PMID: 37931418 DOI: 10.1016/j.bbrc.2023.149161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Evidence from mice with global deletion of fatty-acid transport protein4 (FATP4) indicates its role on β-oxidation and triglycerides (TG) metabolism. We reported that plasma glycerol and free fatty acids (FA) were increased in liver-specific Fatp4 deficient (L-FATP4-/-) mice under dietary stress. We hypothesized that FATP4 may mediate hepatocellular TG lipolysis. Here, we demonstrated that L-FATP4-/- mice showed an increase in these blood lipids, liver TG, and subcutaneous fat weights. We therefore studied TG metabolism in response to oleate treatment in two experimental models using FATP4-knockout HepG2 (HepKO) cells and L-FATP4-/- hepatocytes. Both FATP4-deificient liver cells showed a significant decrease in β-oxidation products by ∼30-35% concomitant with marked upregulation of CD36, FATP2, and FATP5 as well as lipoprotein microsomal-triglyceride-transfer protein genes. By using 13C3D5-glycerol, HepKO cells displayed an increase in metabolically labelled TG species which were further increased with oleate treatment. This increase was concomitant with a step-wise elevation of TG in cells and supernatants as well as the secretion of cholesterol very low-density and high-density lipoproteins. Upon analyzing TG lipolytic enzymes, both mutant liver cells showed marked upregulated expression of hepatic lipase, while that of hormone-sensitive lipase and adipose-triglyceride lipase was downregulated. Lipolysis measured by extracellular glycerol and free FA was indeed increased in mutant cells, and this event was exacerbated by oleate treatment. Taken together, FATP4 deficiency in liver cells led to a metabolic shift from β-oxidation towards lipolysis-directed TG and lipoprotein secretion, which is in line with an association of FATP4 polymorphisms with blood lipids.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
| | - Jessica Seessle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Hong S, Park SK, Lee J, Park SH, Kim YS, Park JH, Yu S, Lee YG. Patulin Ameliorates Hypertrophied Lipid Accumulation and Lipopolysaccharide-Induced Inflammatory Response by Modulating Mitochondrial Respiration. Antioxidants (Basel) 2023; 12:1750. [PMID: 37760053 PMCID: PMC10526082 DOI: 10.3390/antiox12091750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Patulin (PAT) is a natural mycotoxin found in decaying pome fruits. Although some toxicological studies have been conducted on PAT, recent research has highlighted its anticancer and antifungal effects. However, studies have yet to examine the effects and molecular mechanisms of PAT in other metabolic diseases. Obesity is a chronic disease caused by excessive food intake and abnormal lifestyle, leading to low-grade inflammation. Therefore, this study aimed to elucidate the effect of PAT on obesity at the cellular level. PAT treatment reduced lipid accumulation, suppressed glucose and LDL uptake, inhibited lipid deposition and triglyceride synthesis, upregulated fatty acid oxidation-related genes (Pgc1α), and downregulated adipogenic/lipogenic genes (Pparγ and C/ebpα) in hypertrophied 3T3-L1 adipocytes. Additionally, PAT treatment enhanced mitochondrial respiration and mass in differentiated adipocytes and alleviated inflammatory response in activated RAW 264.7 macrophages. Moreover, PAT treatment downregulated pro-inflammatory genes (il-6, Tnf-α, Cox-2, and inos), suppressed lipopolysaccharide (LPS)-induced increase in inflammatory mediators (IL-6, TNF-α, and NO), and restored mitochondrial oxidative function in LPS-stimulated macrophages by improving oxygen consumption and mitochondrial integrity and suppressing ROS generation. Overall, these findings suggest a potential for PAT in the prevention of lipid accumulation and inflammation-related disorders.
Collapse
Affiliation(s)
- Seulmin Hong
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (S.H.); (S.K.P.); (J.L.); (S.H.P.); (J.-H.P.)
- Department of Food Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Seon Kyeong Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (S.H.); (S.K.P.); (J.L.); (S.H.P.); (J.-H.P.)
| | - Jangho Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (S.H.); (S.K.P.); (J.L.); (S.H.P.); (J.-H.P.)
| | - Soo Hyun Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (S.H.); (S.K.P.); (J.L.); (S.H.P.); (J.-H.P.)
| | - Young-Soo Kim
- Department of Food Science & Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jae-Ho Park
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (S.H.); (S.K.P.); (J.L.); (S.H.P.); (J.-H.P.)
| | - Seungmin Yu
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (S.H.); (S.K.P.); (J.L.); (S.H.P.); (J.-H.P.)
| | - Yu Geon Lee
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (S.H.); (S.K.P.); (J.L.); (S.H.P.); (J.-H.P.)
| |
Collapse
|
10
|
Miner GE, So CM, Edwards W, Ragusa JV, Wine JT, Wong Gutierrez D, Airola MV, Herring LE, Coleman RA, Klett EL, Cohen S. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev Cell 2023; 58:1250-1265.e6. [PMID: 37290445 PMCID: PMC10525032 DOI: 10.1016/j.devcel.2023.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
Cells adjust their metabolism by remodeling membrane contact sites that channel metabolites to different fates. Lipid droplet (LD)-mitochondria contacts change in response to fasting, cold exposure, and exercise. However, their function and mechanism of formation have remained controversial. We focused on perilipin 5 (PLIN5), an LD protein that tethers mitochondria, to probe the function and regulation of LD-mitochondria contacts. We demonstrate that efficient LD-to-mitochondria fatty acid (FA) trafficking and ß-oxidation during starvation of myoblasts are promoted by phosphorylation of PLIN5 and require an intact PLIN5 mitochondrial tethering domain. Using human and murine cells, we further identified the acyl-CoA synthetase, FATP4 (ACSVL4), as a mitochondrial interactor of PLIN5. The C-terminal domains of PLIN5 and FATP4 constitute a minimal protein interaction capable of inducing organelle contacts. Our work suggests that starvation leads to phosphorylation of PLIN5, lipolysis, and subsequent channeling of FAs from LDs to FATP4 on mitochondria for conversion to fatty-acyl-CoAs and subsequent oxidation.
Collapse
Affiliation(s)
- Gregory E Miner
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina M So
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joey V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan T Wine
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Wong Gutierrez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarah Cohen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Korbecki J, Kojder K, Jeżewski D, Simińska D, Tomasiak P, Tarnowski M, Chlubek D, Baranowska-Bosiacka I. Reduced Expression of Very-Long-Chain Acyl-CoA Synthetases SLC27A4 and SLC27A6 in the Glioblastoma Tumor Compared to the Peritumoral Area. Brain Sci 2023; 13:brainsci13050771. [PMID: 37239243 DOI: 10.3390/brainsci13050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to analyze solute carrier family 27 (SLC27) in glioblastoma tumors. The investigation of these proteins will provide insight into how and to what extent fatty acids are taken up from the blood in glioblastoma tumors, as well as the subsequent fate of the up-taken fatty acids. Tumor samples were collected from a total of 28 patients and analyzed using quantitative real-time polymerase chain reaction (qRT-PCR). The study also sought to explore the relationship between SLC27 expression and patient characteristics (age, height, weight, body mass index (BMI), and smoking history), as well as the expression levels of enzymes responsible for fatty acid synthesis. The expression of SLC27A4 and SLC27A6 was lower in glioblastoma tumors compared to the peritumoral area. Men had a lower expression of SLC27A5. Notably, a positive correlation was observed between the expression of SLC27A4, SLC27A5, and SLC27A6 and smoking history in women, whereas men exhibited a negative correlation between these SLC27s and BMI. The expression of SLC27A1 and SLC27A3 was positively correlated with the expression of ELOVL6. In comparison to healthy brain tissue, glioblastoma tumors take up fewer fatty acids. The metabolism of fatty acids in glioblastoma is dependent on factors such as obesity and smoking.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, Unii Lubelska 1, 71-252 Szczecin, Poland
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Patrycja Tomasiak
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
12
|
Ramírez-Zamudio GD, Ganga MJG, Pereira GL, Nociti RP, Chiaratti MR, Cooke RF, Chardulo LAL, Baldassini WA, Machado-Neto OR, Curi RA. Effect of Cow-Calf Supplementation on Gene Expression, Processes, and Pathways Related to Adipogenesis and Lipogenesis in Longissimus thoracis Muscle of F1 Angus × Nellore Cattle at Weaning. Metabolites 2023; 13:metabo13020160. [PMID: 36837780 PMCID: PMC9962728 DOI: 10.3390/metabo13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to identify differentially expressed genes, biological processes, and metabolic pathways related to adipogenesis and lipogenesis in calves receiving different diets during the cow-calf phase. Forty-eight uncastrated F1 Angus × Nellore males were randomly assigned to two treatments from thirty days of age to weaning: no creep feeding (G1) or creep feeding (G2). The creep feed offered contained ground corn (44.8%), soybean meal (40.4%), and mineral core (14.8%), with 22% crude protein and 65% total digestible nutrients in dry matter. After weaning, the animals were feedlot finished for 180 days and fed a single diet containing 12.6% forage and 87.4% corn-based concentrate. Longissimus thoracis muscle samples were collected by biopsy at weaning for transcriptome analysis and at slaughter for the measurement of intramuscular fat content (IMF) and marbling score (MS). Animals of G2 had 17.2% and 14.0% higher IMF and MS, respectively (p < 0.05). We identified 947 differentially expressed genes (log2 fold change 0.5, FDR 5%); of these, 504 were upregulated and 443 were downregulated in G2. Part of the genes upregulated in G2 were related to PPAR signaling (PPARA, SLC27A1, FABP3, and DBI), unsaturated fatty acid synthesis (FADS1, FADS2, SCD, and SCD5), and fatty acid metabolism (FASN, FADS1, FADS2, SCD, and SCD5). Regarding biological processes, the genes upregulated in G2 were related to cholesterol biosynthesis (EBP, CYP51A1, DHCR24, and LSS), unsaturated fatty acid biosynthesis (FADS2, SCD, SCD5, and FADS1), and insulin sensitivity (INSIG1 and LPIN2). Cow-calf supplementation G2 positively affected energy metabolism and lipid biosynthesis, and thus favored the deposition of marbling fat during the postweaning period, which was shown here in an unprecedented way, by analyzing the transcriptome, genes, pathways, and enriched processes due to the use of creep feeding.
Collapse
Affiliation(s)
| | - Maria Júlia Generoso Ganga
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Guilherme Luis Pereira
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Ricardo Perecin Nociti
- College of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCAR), São Carlos 13565-905, SP, Brazil
| | | | - Luis Artur Loyola Chardulo
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Welder Angelo Baldassini
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Otávio Rodrigues Machado-Neto
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Rogério Abdallah Curi
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
- Correspondence:
| |
Collapse
|
13
|
Kolieb E, Maher SA, Shalaby MN, Alsuhaibani AM, Alharthi A, Hassan WA, El-Sayed K. Vitamin D and Swimming Exercise Prevent Obesity in Rats under a High-Fat Diet via Targeting FATP4 and TLR4 in the Liver and Adipose Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13740. [PMID: 36360622 PMCID: PMC9656563 DOI: 10.3390/ijerph192113740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
The prevalence of obesity has risen in the last decades, and it has caused massive health burdens on people's health, especially metabolic and cardiovascular issues. The risk of vitamin D insufficiency is increased by obesity, because adipose tissue alters both the requirements for and bioavailability of vitamin D. Exercise training is acknowledged as having a significant and long-term influence on body weight control; the favorable impact of exercise on obesity and obesity-related co-morbidities has been demonstrated via various mechanisms. The current work illustrated the effects of vitamin D supplementation and exercise on obesity induced by a high-fat diet (HFD) and hepatic steatosis in rats and explored how fatty acid transport protein-4 (FATP4) and Toll-like receptor-4 antibodies (TLR4) might be contributing factors to obesity and related hepatic steatosis. Thirty male albino rats were divided into five groups: group 1 was fed a normal-fat diet, group 2 was fed an HFD, group 3 was fed an HFD and given vitamin D supplementation, group 4 was fed an HFD and kept on exercise, and group 5 was fed an HFD, given vitamin D, and kept on exercise. The serum lipid profile adipokines, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were analyzed, and the pathological changes in adipose and liver tissues were examined. In addition, the messenger-ribonucleic acid (mRNA) expression of FATP4 and immunohistochemical expression of TLR4 in adipose and liver tissues were evaluated. Vitamin D supplementation and exercise improved HFD-induced weight gain and attenuated hepatic steatosis, along with improving the serum lipid profile, degree of inflammation, and serum adipokine levels. The expression of FATP4 and TLR4 in both adipose tissue and the liver was downregulated; it was noteworthy that the group that received vitamin D and was kept on exercise showed also improvement in the histopathological picture of this group. According to the findings of this research, the protective effect of vitamin D and exercise against obesity and HFD-induced hepatic steatosis is associated with the downregulation of FATP4 and TLR4, as well as a reduction in inflammation.
Collapse
Affiliation(s)
- Eman Kolieb
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa Ahmed Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia 41522, Egypt
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wael A. Hassan
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Basic Sciences, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah 52726, Saudi Arabia
| | - Karima El-Sayed
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
14
|
Huang J, Guo D, Zhu R, Feng Y, Li R, Yang X, Shi D. FATP1 Exerts Variable Effects on Adipogenic Differentiation and Proliferation in Cells Derived From Muscle and Adipose Tissue. Front Vet Sci 2022; 9:904879. [PMID: 35898540 PMCID: PMC9310014 DOI: 10.3389/fvets.2022.904879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In livestock, intramuscular adipose tissue is highly valued whereas adipose tissue in other depots is considered as waste. Thus, genetic factors that favor fat deposition in intramuscular compartments over that in other adipose depots are highly desirable in meat-producing animals. Fatty acid transport 1 (FATP1) has been demonstrated to promote cellular fatty acid uptake and metabolism; however, whether it also influences cellular lipid accumulation remains unclear. In the present study, we investigated the effects of FATP1 on the differentiation and proliferation of adipocytes in five types of cells derived from muscle and adipose tissue and estimated the effects of FATP1 on intramuscular fat (IMF) deposition. We showed that FATP1 is mainly expressed in heart and muscle tissue in buffaloes as well as cells undergoing adipogenic differentiation. Importantly, we found that FATP1 promoted the adipogenic differentiation of muscle-derived cells (buffalo myocytes and intramuscular preadipocytes and mouse C2C12 cells) but did not affect, or even inhibited, that of adipose-derived cells (buffalo subcutaneous preadipocytes and mouse 3T3-L1 cells, respectively). Correspondingly, our results further indicated that FATP1 promotes IMF deposition in mice in vivo. Meanwhile, FATP1 was found to enhance the proliferative activity of all the assessed cells, except murine 3T3-L1 cells. These results provide new insights into the potential effects of FATP1 on IMF deposition, especially regarding its positive effects on meat quality in buffaloes and other livestock.
Collapse
|
15
|
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease. Biosci Rep 2022; 42:BSR20211854. [PMID: 35583196 PMCID: PMC9160530 DOI: 10.1042/bsr20211854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
Li F, Hu G, Long X, Cao Y, Li Q, Guo W, Wang J, Liu J, Fu S. Stearic Acid Activates the PI3K-mTOR-4EBP1/S6K and mTOR-SREBP-1 Signaling Axes through FATP4-CDK1 To Promote Milk Synthesis in Primary Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4007-4018. [PMID: 35333520 DOI: 10.1021/acs.jafc.2c00208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stearic acid (SA), an 18-carbon long-chain saturated fatty acid, has great potential for promoting lactation. Therefore, this study investigates the effects and mechanism of SA on milk synthesis in primary bovine mammary epithelial cells (BMECs). In our study, we found that SA significantly increased β-casein and triglycerides, and the effect was most significant at 100 μM. Signaling pathway studies have found that SA affects milk synthesis by upregulating cyclin-dependent kinase 1 (CDK1) to activate PI3K-mTOR-4EBP1/S6K and mTOR-SREBP-1 pathways. Furthermore, we detected fatty acid transport proteins (FATPs) when BMECs were treated with SA; the mRNA levels of FATP3 (3.713 ± 0.583) and FATP4 (40.815 ± 8.959) were significantly upregulated at 100 μM. Subsequently, we constructed FATP4-siRNA and found that SA was transported by FATP4 into BMECs, promoting milk synthesis. Collectively, these results revealed that SA activated PI3K-mTOR-4EBP1/S6K and mTOR-SREBP-1 signaling axes through FATP4-CDK1 to promote milk synthesis in BMECs.
Collapse
Affiliation(s)
- Feng Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoyu Long
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qianqian Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
17
|
Wade G, McGahee A, Ntambi JM, Simcox J. Lipid Transport in Brown Adipocyte Thermogenesis. Front Physiol 2021; 12:787535. [PMID: 35002769 PMCID: PMC8733649 DOI: 10.3389/fphys.2021.787535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Non-shivering thermogenesis is an energy demanding process that primarily occurs in brown and beige adipose tissue. Beyond regulating body temperature, these thermogenic adipocytes regulate systemic glucose and lipid homeostasis. Historically, research on thermogenic adipocytes has focused on glycolytic metabolism due to the discovery of active brown adipose tissue in adult humans through glucose uptake imaging. The importance of lipids in non-shivering thermogenesis has more recently been appreciated. Uptake of circulating lipids into thermogenic adipocytes is necessary for body temperature regulation and whole-body lipid homeostasis. A wide array of circulating lipids contribute to thermogenic potential including free fatty acids, triglycerides, and acylcarnitines. This review will summarize the mechanisms and regulation of lipid uptake into brown adipose tissue including protein-mediated uptake, lipoprotein lipase activity, endocytosis, vesicle packaging, and lipid chaperones. We will also address existing gaps in knowledge for cold induced lipid uptake into thermogenic adipose tissue.
Collapse
Affiliation(s)
| | | | | | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Zhu L, Fu J, Xiao X, Wang F, Jin M, Fang W, Wang Y, Zong X. Faecal microbiota transplantation-mediated jejunal microbiota changes halt high-fat diet-induced obesity in mice via retarding intestinal fat absorption. Microb Biotechnol 2021; 15:337-352. [PMID: 34704376 PMCID: PMC8719817 DOI: 10.1111/1751-7915.13951] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 10/06/2021] [Indexed: 01/21/2023] Open
Abstract
Faecal Microbiota Transplantation (FMT) is considered as a promising technology to fight against obesity. Wild boar has leanermuscle and less fat in comparison to the domestic pig, which were thought to be related with microbiota. To investigate the function and mechanism of the wild boar microbiota on obesity, we first analysed the wild boar microbiota composition via 16S rDNA sequencing, which showed that Firmicutes and Proteobacteria were the dominant bacteria. Then, we established a high‐fat diet (HFD)‐induced obesity model, and transfer low and high concentrations of wild boar faecal suspension in mice for 9 weeks. The results showed that FMT prevented HFD‐induced obesity and lipid metabolism disorders, and altered the jejunal microbiota composition especially increasing the abundance of the Lactobacillus and Romboutsia, which were negatively correlated with obesity‐related indicators. Moreover, we found that the anti‐obesity effect of wild boar faecal suspension was associated with jejunal N6‐methyladenosine (m6A) levels. Overall, these results suggest that FMT has a mitigating effect on HFD‐induced obesity, which may be due to the impressive effects of FMT on the microbial composition and structure of the jejunum. These changes further alter intestinal lipid metabolism and m6A levels to achieve resistance to obesity.
Collapse
Affiliation(s)
- Luoyi Zhu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Jie Fu
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Xiao Xiao
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Fengqin Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Mingliang Jin
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Weihuan Fang
- Zhejiang University Institute of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yizhen Wang
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| | - Xin Zong
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, 310058, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
19
|
Liu X, Li S, Wang L, Zhang W, Wang Y, Gui L, Zan L, Zhao C. The Effect of FATP1 on Adipocyte Differentiation in Qinchuan Beef Cattle. Animals (Basel) 2021; 11:ani11102789. [PMID: 34679811 PMCID: PMC8532991 DOI: 10.3390/ani11102789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Previous research found that FATP1 plays an important role in the regulation of fatty acid metabolism and lipid accumulation in pig and chicken, but its function has not been explored in bovine adipocyte yet. In this study, we investigated the effect of FATP1 expression on preadipocyte differentiation in Qinchuan cattle using overexpression and interference assays. Our results reveal that FATP1 overexpression promoted preadipocyte differentiation, lipid droplet formation, and the expression of LPL and PPARγ, while FATP1 interference had the opposite effects on adipocyte differentiation and fat deposition. Following FATP1 overexpression and FATP1 interference in adipocytes, RNA-seq analysis identified that SLPI, STC1, SEMA6A, TNFRSF19, SLN, PTGS2, ADCYP1, FADS2, and SCD genes were differentially expressed. Pathway analysis revealed that the PPAR signaling pathway, AMPK signal pathway, and Insulin signaling pathway were enriched with differentially expressed genes. We propose that the FATP1 gene may affect the beef quality by involving adipocyte differentiation and lipid deposition, and may shed new light on the formation mechanisms of adipose tissues. Abstract FATP1 plays an important role in the regulation of fatty acid metabolism and lipid accumulation. In this study, we investigated the patterns of FATP1 expression in various tissues obtained from calf and adult Qinchuan cattle, and in differentiating adipocytes. Next, we investigated the effect of FATP1 expression on preadipocyte differentiation in Qinchuan cattle using overexpression and interference assays. We also identified the differentially expressed genes (DEGs) and pathways associated with FATP1 overexpression/interference. Our results reveal that FATP1 was broadly expressed in heart, kidney, muscle, small intestine, large intestine, and perirenal fat tissues. While FATP1 overexpression promoted preadipocyte differentiation, fat deposition, and the expression of several genes involved in fat metabolism, FATP1 interference had the opposite effects on adipocyte differentiation. Following FATP1 overexpression and FATP1 interference in adipocytes, RNA-seq analysis was performed to identify DEGs related to fat metabolism. The DEGs identified include SLPI, STC1, SEMA6A, TNFRSF19, SLN, PTGS2, ADCYP1, FADS2, and SCD. Pathway analysis revealed that the DEGs were enriched in the PPAR signaling pathway, AMPK signal pathway, and Insulin signaling pathway. Our results provide an in-depth understanding of the function and regulation mechanism of FAPT1 in fat metabolism.
Collapse
Affiliation(s)
- Xuchun Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Shijun Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Liyun Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Weiyi Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Yujuan Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
| | - Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (X.L.); (S.L.); (L.W.); (W.Z.); (Y.W.); (L.Z.)
- Correspondence: ; Tel.: +86-29-8709-1247; Fax: +86-29-8709-1148
| |
Collapse
|
20
|
Jin SC, Kim MH, Choi LY, Nam YK, Yang WM. Fat regulatory mechanisms of pine nut oil based on protein interaction network analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153557. [PMID: 33852976 DOI: 10.1016/j.phymed.2021.153557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pine nut oil (PNO), a standardized and well-defined extract of Pinus koraiensis (Korean pine), has beneficial effects on wound healing, inflammatory diseases, and cancer. However, the explanation for the mechanism by which PNO reduces body fat remains uncertain. We performed a protein-protein interaction network (PPIN) analysis to explore the genes associated with pinolenic acid using the MEDILINE database from PubChem and PubMed. It was concluded through the PPIN analysis that PNO was involved in a neutral lipid biosynthetic process. PURPOSE This study evaluated the effects of PNO predicted by the network analysis of fat accumulation in chronic obesity mouse models established by feeding a high fat diet (HFD) to C57BL/6J mice and explored potential mechanisms. METHODS HFD mice were fed only HFD or HFD with PNO at 822 and 1644 mg/kg. After an oral administration of 7 weeks, several body weight and body fat-related parameters were examined, including the following: adipose weight, adipocyte size, serum lipid profiles, adipocyte expression of PPAR-γ, sterol regulatory element binding protein (SREBP)-1c, lipoprotein lipase (LPL) and leptin. RESULTS We showed that oral administration of PNO to HFD mice reduces body fat weight, fat in tissue, white adipose tissue weight, and adipocyte size. The serum cholesterol was improved in the HFD mice treated with PNO. Additionally, PNO has significantly attenuated the HFD-induced changes in the adipose tissue expression of PPAR-γ, SREBP-1c, LPL, and leptin. CONCLUSIONS The findings from this study based on the PPIN analysis suggest that PNO has potential as drug to reduce body fat through fat regulatory mechanisms by PPAR-γ and SREBP-1c.
Collapse
Affiliation(s)
- Seong Chul Jin
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Kyung Nam
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Xu H, Jiang Y, Miao XM, Tao YX, Xie L, Li Y. A Model Construction of Starvation Induces Hepatic Steatosis and Transcriptome Analysis in Zebrafish Larvae. BIOLOGY 2021; 10:92. [PMID: 33513687 PMCID: PMC7911188 DOI: 10.3390/biology10020092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023]
Abstract
Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD), has been a research topic of human clinical and animal experiments. To understand the molecular mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions, the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More importantly, we detected that the expression of numerous apolipoprotein genes was downregulated and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Yu Jiang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Xiao-Min Miao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Yi-Xi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing 400715, China; (H.X.); (Y.J.); (X.-M.M.); (Y.-X.T.); (L.X.)
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
The role of FATP1 in lipid accumulation: a review. Mol Cell Biochem 2021; 476:1897-1903. [PMID: 33486652 DOI: 10.1007/s11010-021-04057-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Lipid accumulation in mammals has been widely studied for decades due to its significant association with obesity in humans and meat quality in livestock animals. Fatty acid transport 1 (FATP1) is an evolutionarily conserved protein that localizes to the plasma membrane to enhance the transportation of fatty acids (FAs). In line with this function, FATP1 is involved in the metabolism of FAs, including their esterification and oxidation. In addition, the expression of FATP1 can be regulated by several energy-related factors, such as insulin and PPAR activators and transcription factors. These events connect FATP1 with cellular lipid accumulation. Recently, several studies have suggested that FATP1 acts as a facilitator in cellular lipid accumulation, whereas others hold a contrary view. Here, we will review these data and probe the possibility that FATP1 acts as a regulator in lipid accumulation, which will provide effective information for studies on the relationship between FATP1 and obesity in humans and meat quality in livestock animals.
Collapse
|
23
|
Alghamdi F, Alshuweishi Y, Salt IP. Regulation of nutrient uptake by AMP-activated protein kinase. Cell Signal 2020; 76:109807. [DOI: 10.1016/j.cellsig.2020.109807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
|
24
|
Cheng Y, Gan-Schreier H, Seeßle J, Staffer S, Tuma-Kellner S, Khnykin D, Stremmel W, Merle U, Herrmann T, Chamulitrat W. Methionine- and Choline-Deficient Diet Enhances Adipose Lipolysis and Leptin Release in aP2-Cre Fatp4-Knockout Mice. Mol Nutr Food Res 2020; 64:e2000361. [PMID: 32991778 DOI: 10.1002/mnfr.202000361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/22/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Inadequate intake of choline commonly leads to liver diseases. Methionine- and choline-deficient diets (MCDD) induce fatty liver in mice which is partly mediated by triglyceride (TG) lipolysis in white adipose tissues (WATs). Because Fatp4 knockdown has been shown to increase adipocyte lipolysis in vitro, here, the effects of MCDD on WAT lipolysis in aP2-Cre Fatp4-knockout (Fatp4A-/- ) mice are determined. METHODS AND RESULTS Isolated WATs of Fatp4A-/- mice exposed to MCD medium show an increase in lipolysis, and the strongest effect is noted on glycerol release from subcutaneous fat. Fatp4A-/- mice fed with MCDD for 4 weeks show an increase in serum glycerol, TG, and leptin levels associated with the activation of hormone-sensitive lipase in subcutaneous fat. Chow-fed Fatp4A-/- mice also show an increase in serum leptin and very-low-density lipoproteins as well as liver phosphatidylcholine and sphingomyelin levels. Both chow- and MCDD-fed Fatp4A-/- mice show a decrease in serum ketone and WAT sphingomyelin levels which supports a metabolic shift to TG for subsequent WAT lipolysis CONCLUSIONS: Adipose Fatp4 deficiency leads to TG lipolysis and leptin release, which are exaggerated by MCDD. The data imply hyperlipidemia risk by a low dietary choline intake and gene mutations that increase adipose TG levels.
Collapse
Affiliation(s)
- Yuting Cheng
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Denis Khnykin
- Department of Pathology and Center for Immune Regulation, Rikshospitalet University Hospital, 0424, Oslo, Norway
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Genome-Wide Identification and Analysis of Variants in Domestic and Wild Bactrian Camels Using Whole-Genome Sequencing Data. Int J Genomics 2020; 2020:2430846. [PMID: 32724789 PMCID: PMC7381958 DOI: 10.1155/2020/2430846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The population size of Bactrian camels is smaller than dromedary, and they are distributed in cold and mountain regions and are also at the risk of extinction in some countries such as Iran. To identify and investigate the genome-wide variations, whole-genome sequencing of two Iranian Bactrian camels were performed with 37.4- and 42.6-fold coverage for the first time. Along with Iranian Bactrian camels, sequencing data from two Mongolian domestic and two wild Bactrian camels deposited in the NCBI were reanalyzed. The analysis eventuated to the identification of 4,908,998, 4,485,725, and 4,706,654 SNPs for Iranian, Mongolian domestic, and wild Bactrian camels, respectively. Also, INDEL variations ranged from 358,311 to 533,188 in all six camels. Results of variants annotation in all samples revealed that more than 88 percent of SNPs and INDELs were located in the intergenic and intronic regions. We found that 800,530 SNPs were common among all studied camels, containing 4,046 missense variants that affected 2,428 genes. Investigation of common genes among all camels containing the missense SNPs showed that there are 98 zinc finger and 4 fertility-related genes (ZP1, ZP2, ZP4, and ZPBP) in this set.
Collapse
|
26
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
27
|
Cai M, Hu JY, Liu BB, Li JJ, Li F, Lou S. The Molecular Mechanisms of Excessive Hippocampal Endoplasmic Reticulum Stress Depressing Cognition-related Proteins Expression and the Regulatory Effects of Nrf2. Neuroscience 2020; 431:152-165. [DOI: 10.1016/j.neuroscience.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
|
28
|
Limsuwat N, Boonarkart C, Phakaratsakul S, Suptawiwat O, Auewarakul P. Influence of cellular lipid content on influenza A virus replication. Arch Virol 2020; 165:1151-1161. [PMID: 32227307 PMCID: PMC7223680 DOI: 10.1007/s00705-020-04596-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
Influenza A virus (IAV) depends on the metabolism of its cellular host to provide energy and essential factors, including lipids, for viral replication. Previous studies have shown that fatty acids (FAs) play an important role in IAV replication and that inhibition of FA biosynthesis can diminish viral replication. However, cellular lipids can either be synthesized intracellularly or be imported from the extracellular environment. Interfering with FA import mechanisms may reduce the cellular lipid content and inhibit IAV replication. To test this hypothesis, MDCK and Detroit 562 cells were infected with IAV followed by exposure to palmitic acid and inhibitors of FA import. Replication of IAV significantly increased when infected cells were supplied with palmitic acid. This enhancement could be reduced by adding an FA import inhibitor. The addition of palmitic acid significantly increased the cellular lipid content, and this increased level was reduced by treatment with an FA import inhibitor. These results show that reducing the cellular lipid level might be an approach for IAV therapy.
Collapse
Affiliation(s)
- Nattavatchara Limsuwat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand
| | - Supinya Phakaratsakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok, 10700, Thailand.
| |
Collapse
|
29
|
Lei CX, Li MM, Tian JJ, Wen JK, Li YY. Transcriptome analysis of golden pompano (Trachinotus ovatus) liver indicates a potential regulatory target involved in HUFA uptake and deposition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100633. [PMID: 31733535 DOI: 10.1016/j.cbd.2019.100633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Promoting highly unsaturated fatty acid (HUFA) uptake and deposition can improve nutritional value of farmed fish and reduce dietary fish oil addition. Previously, we found that the golden pompano Trachinotus ovatus liver HUFA content increased with the increasing of dietary HUFA. Therefore, we examined the common genes and pathways responsible for HUFA uptake and deposition in T. ovatus liver using transcriptome sequencing technology after feeding with either 1.0% or 2.1% HUFA for 8 weeks. Results showed that a total of 140 and 147 genes were significantly upregulated and downregulated, respectively. Five bile acid synthesis-related genes (CYP7A1, CYP8B1, AKR1D1, SCP2 and ACOT8), which are related to dietary fat emulsification were downregulated in 2.1% HUFA group, implying that the cholate synthesized through the classical pathway might be the main bile acid form in fat emulsification. Moreover, fatty acid transport protein (FATP)-6, fatty acid binding protein (FABP)-1, -4, and -6 increased with HUFA deposition, especially FATP6 and FABP4, suggesting that the two genes may be important mediators involved in HUFA uptake and deposition. KEGG analysis showed that most of the differential genes described above were involved in peroxisome proliferator activator receptor (PPAR) signaling pathway, and PPARγ increased with HUFA deposition, indicating that PPARγ might be a key regulator of HUFA uptake and deposition by regulating the genes involved in fatty acid emulsification and transport. This study focused on the liver, which is the center of intermediary metabolism, providing a comprehensive understanding of the molecular regulation of HUFA uptake and deposition in T. ovatus, which should be further investigated to develop potential measures to improve HUFA content.
Collapse
Affiliation(s)
- Cai-Xia Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Meng-Meng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Jing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ji-Kai Wen
- College of Life Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yuan-You Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
30
|
Mendes C, Lopes-Coelho F, Ramos C, Martins F, Santos I, Rodrigues A, Silva F, André S, Serpa J. Unraveling FATP1, regulated by ER-β, as a targeted breast cancer innovative therapy. Sci Rep 2019; 9:14107. [PMID: 31575907 PMCID: PMC6773857 DOI: 10.1038/s41598-019-50531-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
The biochemical demands associated with tumor proliferation prompt neoplastic cells to augment the import of nutrients to sustain their survival and fuel cell growth, with a consequent metabolic remodeling. Fatty acids (FA) are crucial in this process, since they have a dual role as energetic coins and building blocks. Recently, our team has shown that FATP1 has a pivotal role in FA transfer between breast cancer cells (BCCs) and non-cancerous cells in the microenvironment. We aimed to investigate the role of FATP1 in BCCs and also to explore if FATP1 inhibition is a promising therapeutic strategy. In patients’ data, we showed a higher expression of FATP1/SLC27A1 in TNBC, which correlated with a significant decreased overall survival (OS). In vitro, we verified that FA and estradiol stimulated FATP1/SLC27A1 expression in BCCs. Additionally, experiments with estradiol and PHTPP (ER-β antagonist) showed that estrogen receptor-β (ER-β) regulates FATP1/SLC27A1 expression, the uptake of FA and cell viability, in four BCC lines. Furthermore, the inhibition of FATP1 with arylpiperazine 5k (DS22420314) interfered with the uptake of FA and cell viability. Our study, unraveled FATP1 as a putative therapeutic target in breast cancer (BC).
Collapse
Affiliation(s)
- Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Filipa Lopes-Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Cristiano Ramos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Filipa Martins
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Inês Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Fernanda Silva
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Saudade André
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal. .,Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
31
|
Josephrajan A, Hertzel AV, Bohm EK, McBurney MW, Imai SI, Mashek DG, Kim DH, Bernlohr DA. Unconventional Secretion of Adipocyte Fatty Acid Binding Protein 4 Is Mediated By Autophagic Proteins in a Sirtuin-1-Dependent Manner. Diabetes 2019; 68:1767-1777. [PMID: 31171562 PMCID: PMC6702637 DOI: 10.2337/db18-1367] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Fatty acid binding protein 4 (FABP4) is a leaderless lipid carrier protein primarily expressed by adipocytes and macrophages that not only functions intracellularly but is also secreted. The secretion is mediated via unconventional mechanism(s), and in a variety of species, metabolic dysfunction is correlated with elevated circulating FABP4 levels. In diabetic animals, neutralizing antibodies targeting serum FABP4 increase insulin sensitivity and attenuate hepatic glucose output, suggesting the functional importance of circulating FABP4. Using animal and cell-based models, we show that FABP4 is secreted from white, but not brown, adipose tissue in response to lipolytic stimulation in a sirtuin-1 (SIRT1)-dependent manner via a mechanism that requires some, but not all, autophagic components. Silencing of early autophagic genes such as Ulk1/2, Fip200, or Beclin-1 or chemical inhibition of ULK1/2 or VPS34 attenuated secretion, while Atg5 knockdown potentiated FABP4 release. Genetic knockout of Sirt1 diminished secretion, and serum FABP4 levels were undetectable in Sirt1 knockout mice. In addition, blocking SIRT1 by EX527 attenuated secretion while activating SIRT1 by resveratrol-potentiated secretion. These studies suggest that FABP4 secretion from adipocytes is regulated by SIRT1 and requires early autophagic components.
Collapse
Affiliation(s)
- Ajeetha Josephrajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Ellie K Bohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael W McBurney
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Ottawa, Ontario, Canada
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
32
|
Zong X, Cao X, Wang H, Xiao X, Wang Y, Lu Z. Cathelicidin-WA Facilitated Intestinal Fatty Acid Absorption Through Enhancing PPAR-γ Dependent Barrier Function. Front Immunol 2019; 10:1674. [PMID: 31379865 PMCID: PMC6650583 DOI: 10.3389/fimmu.2019.01674] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
The molecular mechanisms underlying the cellular uptake of long-chain fatty acids and the regulation of this process have been debated in recent decades. Here, we established an intestinal barrier dysfunction model in mice and Caco2 cell line by Lipopolysaccharide (LPS), and evaluated the fatty acid uptake capacity of the intestine. We found that LPS stimulation restricted the absorption of long chain fatty acid (LCFA), while Cathelicidin-WA (CWA) pretreatment facilitated this physiological process. At the molecular level, our results demonstrated that the stimulatory effects of CWA on intestinal lipid absorption were dependent on cluster determinant 36 and fatty acid transport protein 4, but not fatty acid–binding protein. Further, an enhanced intestinal barrier was observed in vivo and in vitro when CWA alleviated the fatty acid absorption disorder induced by LPS stimulation. Mechanistically, peroxisome proliferator-activated receptor (PPAR-γ) signaling was considered as a key pathway for CWA to enhance LCFA absorption and barrier function. Treatment with a PPAR-γ inhibitor led to impaired intestinal barrier function and suppressed LCFA uptake. Moreover, once PPAR-γ signaling was blocked, CWA pretreatment could not maintain the stability of the intestinal epithelial cell barrier or LCFA uptake after LPS stimulation. Collectively, these findings suggested that PPAR-γ may serve as a target for specific therapies aimed at alleviating fatty acid uptake disorder, and CWA showed considerable potential as a new PPAR-γ agonist to strengthen intestinal barrier function against fatty acid malabsorption.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxuan Cao
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hong Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiao Xiao
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Seessle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Compositional Changes Among Triglycerides and Phospholipids During FATP4 Sensitization with Palmitate Lead to ER Stress in Cultured Cells. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory MedicineUniversity of RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Wolfgang Stremmel
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| | - Walee Chamulitrat
- Department of Internal Medicine IVGastroenterology and Infectious DiseaseIm Neuenheimer Feld 41069120HeidelbergGermany
| |
Collapse
|
34
|
Moreno-Méndez E, Hernández-Vázquez A, Fernández-Mejía C. Effect of biotin supplementation on fatty acid metabolic pathways in 3T3-L1 adipocytes. Biofactors 2019; 45:259-270. [PMID: 30575140 DOI: 10.1002/biof.1480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
Abstract
Several studies have shown that pharmacological concentrations of biotin decrease serum lipid concentrations and the expression of lipogenic genes. Previous studies on epididymal adipose tissue in mice revealed that 8 weeks of dietary biotin supplementation increased the protein abundance of the active form of AMPK and the inactive forms acetyl CoA carboxylase (ACC)-1 and - 2, and decreased serum free fatty acid concentrations but did not affect lipolysis. These data suggest that pharmacological concentrations of the vitamin might affect fatty acid metabolism. In this work, we investigated the effects of pharmacological biotin concentrations on fatty acid synthesis, oxidation, and uptake in 3T3-L1 adipocytes. Similar to observations in mice, biotin-supplemented 3T3-L1 adipose cells increased the protein abundance of active T172 -AMPK and inactive ACC-1 and -2 forms. No changes were observed in the expression of the transcriptional factor PPARα and carnitine-palmitoyltransferase-1 (CPT-1). Radiolabeled assays indicated a decrease in fatty acid synthesis; an increase in fatty acid oxidation and fatty acid incorporation rate into the lipid fraction between control cells and biotin-supplemented cells. The data revealed an increase in the mRNA abundance of the fatty acid transport proteins Fatp1 and Acsl1 but not Cd36 or Fatp4 mRNA. Furthermore, the abundance of glycerol phosphate acyl transferase-3 protein was increased. Triglyceride content was not affected. Lipid droplet numbers showed an increase and their areas were smaller in the biotin-supplemented group. In conclusion, these data indicate that biotin supplementation causes a decrease in fatty acid synthesis and an increase in its oxidation and uptake. © 2018 BioFactors, 45(2):259-270, 2019.
Collapse
Affiliation(s)
- Ericka Moreno-Méndez
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Instituto Nacional de Pediatria, Unidad de Genética de la Nutrición, Ciudad de México, Mexico
| | - Alain Hernández-Vázquez
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Instituto Nacional de Pediatria, Unidad de Genética de la Nutrición, Ciudad de México, Mexico
| | - Cristina Fernández-Mejía
- Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Instituto Nacional de Pediatria, Unidad de Genética de la Nutrición, Ciudad de México, Mexico
| |
Collapse
|
35
|
Ye G, Gao H, Wang Z, Lin Y, Liao X, Zhang H, Chi Y, Zhu H, Dong S. PPARα and PPARγ activation attenuates total free fatty acid and triglyceride accumulation in macrophages via the inhibition of Fatp1 expression. Cell Death Dis 2019; 10:39. [PMID: 30674874 PMCID: PMC6426939 DOI: 10.1038/s41419-018-1135-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Lipid accumulation in macrophages interacts with microenvironment signals and accelerates diabetic atherosclerosis. However, the molecular mechanisms by which macrophage metabolism interacts with microenvironment signals during lipid accumulation are not clearly understood. Accordingly, an untargeted metabolomics approach was employed to characterize the metabolic reprogramming, and to identify potential regulatory targets related to lipid accumulation in macrophages treated with oleate, an important nutrient. The metabolomics approach revealed that multiple metabolic pathways were significantly disturbed in oleate-treated macrophages. We discovered that amino acids, nucleosides, lactate, monoacylglycerols, total free fatty acids (FFAs), and triglycerides (TGs) accumulated in oleate-treated macrophages, but these effects were effectively attenuated or even abolished by resveratrol. Notably, 1-monooleoylglycerol and 2-monooleoylglycerol showed the largest fold changes in the levels among the differential metabolites. Subsequently, we found that oleate triggered total FFA and TG accumulation in macrophages by accelerating FFA influx through the activation of Fatp1 expression, but this effect was attenuated by resveratrol via the activation of PPARα and PPARγ signaling. We verified that the activation of PPARα and PPARγ by WY14643 and pioglitazone, respectively, attenuated oleate triggered total FFA and TG accumulation in macrophages by repressing FFA import via the suppression of Fatp1 expression. Furthermore, the inhibition of Fatp1 by tumor necrosis factor α alleviated oleate-induced total FFA and TG accumulation in macrophages. This study provided the first demonstration that accumulation of amino acids, nucleosides, lactate, monoacylglycerols, total FFAs, and TGs in oleate-treated macrophages is effectively attenuated or even abolished by resveratrol, and that the activation of PPARα and PPARγ attenuates oleate-induced total FFA and TG accumulation via suppression of Fatp1 expression in macrophages. Therapeutic strategies aim to activate PPAR signaling, and to repress FFA import and triglyceride synthesis are promising approaches to reduce the risk of obesity, diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Han Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zhichao Wang
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yi Lin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xu Liao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Han Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Yulang Chi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Huimin Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Sijun Dong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
36
|
Li J, Zhao Z, Xiang D, Zhang B, Ning T, Duan T, Rao J, Yang L, Zhang X, Xiong F. Expression of APOB, ADFP and FATP1 and their correlation with fat deposition in Yunnan's top six famous chicken breeds. Br Poult Sci 2018; 59:494-505. [PMID: 30004246 DOI: 10.1080/00071668.2018.1490494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
1. Adipose differentiation related protein (ADFP), fatty acid transport protein 1 (FATP1) and apolipoprotein B (APOB) are suspected to play an important role in determining intramuscular fat and in overall meat quality. 2. Yunnan's top six famous chicken breeds (the Daweishan Mini, Yanjin Black-bone, Chahua, Wuding, Wuliangshan Black-bone and Piao chicken) are known for the high quality of their meat, but little is known about their expression of these three genes. 3. The present study aimed to examine the ADFP, FATP1 and APOB genes in different tissues of these six breeds at different development stages. The subcutaneous fat from the back midline and front, abdominal fat, liver and muscle tissue was sampled at 28, 49, 70, 91 and 112 days. The expression of ADFP, FATP1 and APOB was measured by real-time PCR. 4. The results showed that the expression of the three genes differed depending on age, tissue types and breeds. However, the expression of the three genes correlated with fat traits. In conclusion, the expression of the ADFP, FATP1 and APOB genes is associated with the fat traits of Yunnan's top six chicken breeds. These results could help with molecular marker screening and marker-assisted breeding to improve the quality of poultry for meat production.
Collapse
Affiliation(s)
- J Li
- a Agricultural College , Kunming University , Kunming , China.,b Engineering Research Centre for Urban Modern Agriculture of Higher Education in Yunnan Province , Kunming University , Kunming , China
| | - Z Zhao
- c Institute of Pig and A Nutrition , Yunnan Animal Science and Veterinary Institute , Kunming , China
| | - D Xiang
- c Institute of Pig and A Nutrition , Yunnan Animal Science and Veterinary Institute , Kunming , China
| | - B Zhang
- c Institute of Pig and A Nutrition , Yunnan Animal Science and Veterinary Institute , Kunming , China
| | - T Ning
- a Agricultural College , Kunming University , Kunming , China.,b Engineering Research Centre for Urban Modern Agriculture of Higher Education in Yunnan Province , Kunming University , Kunming , China
| | - T Duan
- d Chuxiong City Animal Husbandry and Veterinary Services , Chuxiong , China
| | - J Rao
- e Zhaotong City Animal Husbandry and Veterinary Technology Promotion Workstation , Zhaotong , China
| | - L Yang
- f Puer City Animal Husbandry Workstation , Puer , China
| | - X Zhang
- g Agricultural Environmental Protection Monitoring Station of Yunnan Province , China
| | - F Xiong
- h Animal Husbandry and Technology Promotion Workstation , Xishuangbanna Dai Autonomous Prefecture , China
| |
Collapse
|
37
|
Hu CJ, Jiang QY, Zhang T, Yin YL, Li FN, Su JY, Wu GY, Kong XF. Dietary supplementation with arginine and glutamic acid enhances key lipogenic gene expression in growing pigs. J Anim Sci 2018; 95:5507-5515. [PMID: 29293787 DOI: 10.2527/jas2017.1703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Our previous study showed dietary supplementation with Arg and Glu increased intramuscular fat deposition and decreased back fat thickness in pigs, suggesting that the genes involved in lipid metabolism might be regulated differently in muscle and s.c. adipose (SA) tissues. Sixty Duroc × Large White × Landrace pigs with an average initial BW of 77.1 ± 1.3 kg were randomly assigned to 1 of 5 treatment groups (castrated male to female ratio = 1:1). Pigs in the control group were fed a basic diet, and those in experimental groups were fed the basic diet supplemented with 2.05% alanine (isonitrogenous group), 1.00% arginine (Arg group), 1.00% glutamic acid + 1.44% alanine (Glu group), or 1.00% arginine + 1.00% glutamic acid (Arg+Glu group). Fatty acid percentages and mRNA expression levels of the genes involved in lipid metabolism in muscle and SA tissues were examined. The percentages of C14:0 and C16:0 in the SA tissue of Glu group pigs and C14:0 in the longissimus dorsi (LD) muscle of Glu and Arg+Glu groups decreased ( < 0.05) compared to the basic diet group. The Arg+Glu group showed the highest ( < 0.05) hormone-sensitive lipase expression level in SA tissue and higher ( < 0.05) mRNA levels of in the LD muscle than the basic diet and isonitrogenous groups. Additionally, the mRNA level of fatty acid synthase in the Arg+Glu group was more upregulated ( < 0.05) than that of the Arg group. An increase in the mRNA level of in the biceps femoris muscle was also observed in the Arg+Glu group ( < 0.05) compared with the basic diet and isonitrogenous groups. Collectively, these findings suggest that dietary supplementation with Arg and Glu upregulates the expression of genes involved in adipogenesis in muscle tissues and lipolysis in SA tissues.
Collapse
|
38
|
Du D, Gu H, Djukovic D, Bettcher L, Gong M, Zheng W, Hu L, Zhang X, Zhang R, Wang D, Raftery D. Multiplatform Metabolomics Investigation of Antiadipogenic Effects on 3T3-L1 Adipocytes by a Potent Diarylheptanoid. J Proteome Res 2018; 17:2092-2101. [PMID: 29688022 PMCID: PMC6289581 DOI: 10.1021/acs.jproteome.8b00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Obesity is fast becoming a serious health problem worldwide. Of the many possible antiobesity strategies, one interesting approach focuses on blocking adipocyte differentiation and lipid accumulation to counteract the rise in fat storage. However, there is currently no drug available for the treatment of obesity that works by inhibiting adipocyte differentiation. Here we use a broad-based metabolomics approach to interrogate and better understand metabolic changes that occur during adipocyte differentiation. In particular, we focus on changes induced by the antiadipogenic diarylheptanoid, which was isolated from a traditional Chinese medicine Dioscorea zingiberensis and identified as (3 R,5 R)-3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane (1). Targeted aqueous metabolic profiling indicated that a total of 14 metabolites involved in the TCA cycle, glycolysis, amino acid metabolism, and purine catabolism participate in regulating energy metabolism, lipogenesis, and lipolysis in adipocyte differentiation and can be modulated by diarylheptanoid 1. As indicated by lipidomics analysis, diarylheptanoid 1 restored the quantity and degree of unsaturation of long-chain free fatty acids and restored the levels of 171 lipids mainly from 10 lipid classes in adipocytes. In addition, carbohydrate metabolism in diarylheptanoid-1-treated adipocytes further demonstrated the delayed differentiation process by flux analysis. Our results provide valuable information for further understanding the metabolic adjustment in adipocytes subjected to diarylheptanoid 1 treatment. Moreover, this study offers new insight into developing antiadipogenic leading compounds based on metabolomics.
Collapse
Affiliation(s)
- Dan Du
- West China-Washington Mitochondria and Metabolism Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan Province 610041, China
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Haiwei Gu
- West China-Washington Mitochondria and Metabolism Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan Province 610041, China
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
- Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004, United States
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Lisa Bettcher
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Meng Gong
- West China-Washington Mitochondria and Metabolism Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Wen Zheng
- West China-Washington Mitochondria and Metabolism Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Liqiang Hu
- West China-Washington Mitochondria and Metabolism Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Xinyu Zhang
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Renke Zhang
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Dongfang Wang
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
39
|
Steensels S, Ersoy BA. Fatty acid activation in thermogenic adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:79-90. [PMID: 29793055 DOI: 10.1016/j.bbalip.2018.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/10/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Channeling carbohydrates and fatty acids to thermogenic tissues, including brown and beige adipocytes, have garnered interest as an approach for the management of obesity-related metabolic disorders. Mitochondrial fatty acid oxidation (β-oxidation) is crucial for the maintenance of thermogenesis. Upon cellular fatty acid uptake or following lipolysis from triglycerides (TG), fatty acids are esterified to coenzyme A (CoA) to form active acyl-CoA molecules. This enzymatic reaction is essential for their utilization in β-oxidation and thermogenesis. The activation and deactivation of fatty acids are regulated by two sets of enzymes called acyl-CoA synthetases (ACS) and acyl-CoA thioesterases (ACOT), respectively. The expression levels of ACS and ACOT family members in thermogenic tissues will determine the substrate availability for β-oxidation, and consequently the thermogenic capacity. Although the role of the majority of ACS and ACOT family members in thermogenesis remains unclear, recent proceedings link the enzymatic activities of ACS and ACOT family members to metabolic disorders and thermogenesis. Elucidating the contributions of specific ACS and ACOT family members to trafficking of fatty acids towards thermogenesis may reveal novel targets for modulating thermogenic capacity and treating metabolic disorders.
Collapse
Affiliation(s)
- Sandra Steensels
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Baran A Ersoy
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
40
|
Lopes-Coelho F, André S, Félix A, Serpa J. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol 2018; 462:93-106. [PMID: 28119133 DOI: 10.1016/j.mce.2017.01.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022]
Abstract
The cellular components of microenvironment are partners of cancer cells, sharing soluble factors and organic molecules to accomplish tumor energy and biomass demands. We tested the role of fibroblasts in fatty acids metabolism in breast cancer, addressing fatty acid synthase (FASN) expression and activity, the expression of lipids chaperons (FABPs) and transporters (FATPs) and lipids cellular content. We showed that the amount of lipids increased in cancer cells exposed to fibroblasts conditioned media, showing that lipids transfer is crucial in this metabolic cross-talk. Accordingly, it was seen in those cancer cells a concomitant decrease in the expression of FABP2 and FABP3 and an increase in FATP1 expression, whose function is independent of FABPs. The in vivo experiment corroborates the role of CAFs in tumor growth. Our study is one more step toward the understanding of metabolic dynamics between cancer cells and CAFs, disclosing FATP1 as a putative target to disturb the transfer of lipids between CAFs and breast cancer cells.
Collapse
Affiliation(s)
- Filipa Lopes-Coelho
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Saudade André
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Ana Félix
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Pathology Department, IPOLFG, Rua Prof Lima Basto, 1099-023, Lisbon, Portugal
| | - Jacinta Serpa
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisbon, Portugal; Unidade de Investigação Em Patobiologia Molecular Do Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisbon, Portugal.
| |
Collapse
|
41
|
Seo C, Kim Y, Lee HS, Kim SZ, Paik MJ. Metabolic Profiling of Aliphatic, hydroxy, and Methyl-Branched Fatty Acids in Human Plasma by Gas Chromatography–Mass Spectrometry. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1363769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chan Seo
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Youngbae Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hyeon-Seong Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Sook Za Kim
- Kim Sook Za’s Children Hospital and Korea Genetic Research Center, Cheongju, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
42
|
Olson DH, Burrill JS, Kuzmicic J, Hahn WS, Park JM, Kim DH, Bernlohr DA. Down regulation of Peroxiredoxin-3 in 3T3-L1 adipocytes leads to oxidation of Rictor in the mammalian-target of rapamycin complex 2 (mTORC2). Biochem Biophys Res Commun 2017; 493:1311-1317. [PMID: 28986255 DOI: 10.1016/j.bbrc.2017.09.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 10/18/2022]
Abstract
Mitochondrially-derived oxidative stress has been implicated in the development of obesity-induced insulin resistance and is correlated with down regulation of Peroxiredoxin-3 (Prdx3). Prdx3 knockout mice exhibit whole-body insulin resistance, while Prdx3 transgenic animals remain insulin sensitive when placed on a high fat diet. To define the molecular events linking mitochondrial oxidative stress to insulin action, Prdx3 was silenced in 3T3-L1 adipocytes (Prdx3 KD) and the resultant cells evaluated for mitochondrial function, endoplasmic reticulum stress (ER stress), mitochondrial unfolded protein response (mtUPR) and insulin signaling. Prdx3 KD cells exhibit a two-fold increase in H2O2, reduced insulin-stimulated glucose transport and attenuated S473 phosphorylation of the mTORC2 substrate, Akt. Importantly, the decrease in glucose uptake can be rescued by pre-treatment with the antioxidant N-acetyl-cysteine (NAC). The changes in insulin sensitivity occur independently from activation of the ER stress or mtUPR pathways. Analysis of mTORC2, the complex responsible for phosphorylating Akt at S473, reveals increased cysteine oxidation of Rictor in Prdx3 KD cells that can be rescued with NAC. Taken together, these data suggest mitochondrial dysfunction in adipocytes may attenuate insulin signaling via oxidation of the mammalian-target of rapamycin complex 2 (mTORC2).
Collapse
Affiliation(s)
- Dalay H Olson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joel S Burrill
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jovan Kuzmicic
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy S Hahn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ji-Man Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Qiu F, Xie L, Ma JE, Luo W, Zhang L, Chao Z, Chen S, Nie Q, Lin Z, Zhang X. Lower Expression of SLC27A1 Enhances Intramuscular Fat Deposition in Chicken via Down-Regulated Fatty Acid Oxidation Mediated by CPT1A. Front Physiol 2017; 8:449. [PMID: 28706492 PMCID: PMC5489693 DOI: 10.3389/fphys.2017.00449] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/14/2017] [Indexed: 01/11/2023] Open
Abstract
Intramuscular fat (IMF) is recognized as the predominant factor affecting meat quality due to its positive correlation with tenderness, juiciness, and flavor. Chicken IMF deposition depends on the balance among lipid synthesis, transport, uptake, and subsequent metabolism, involving a lot of genes and pathways, however, its precise molecular mechanisms remain poorly understood. In the present study, the breast muscle tissue of female Wenchang chickens (WC) (higher IMF content, 1.24 in D120 and 1.62 in D180) and female White Recessive Rock chickens (WRR; lower IMF content, 0.53 in D120 and 0.90 in D180) were subjected to RNA-sequencing (RNA-seq) analysis. Results showed that many genes related to lipid catabolism, such as SLC27A1, LPL, ABCA1, and CPT1A were down-regulated in WC chickens, and these genes were involved in the PPAR signaling pathway and formed an IPA® network related to lipid metabolism. Furthermore, SLC27A1 was more down-regulated in WRR.D180.B than in WRR.D120.B. Decreased cellular triglyceride (TG) and up-regulated CPT1A were observed in the SLC27A1 overexpression QM-7 cells, and increased cellular triglyceride (TG) and down-regulated CPT1A were observed in the SLC27A1 knockdown QM-7 cells. These results suggest that lower lipid catabolism exists in WC chickens but not in WRR chickens, and lower expression of SLC27A1 facilitate IMF deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. These findings indicate that reduced lipid catabolism, rather than increased lipid anabolism, contributes to chicken IMF deposition.
Collapse
Affiliation(s)
- Fengfang Qiu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China.,School of Chemistry, Biology and Material Science, East China University of TechnologyNanchang, China
| | - Liang Xie
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Jing-E Ma
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Wen Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Li Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Zhe Chao
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Shaohao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Qinghua Nie
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| | - Zhemin Lin
- Department of Poultry Science, Institute of Animal Science and Veterinary, Hainan Academy of Agricultural SciencesHaikou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
44
|
Decai X, Zhiyong Z, Bin Z, Zhongcheng H, Quanshu W, Jing L. Correlation Analysis of Relative Expression of Apob, Adfp and Fatp1 with Lipid Metabolism in Daweishan Mini Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- X Decai
- Yunnan Animal Science and Veterinary Institute, China
| | - Z Zhiyong
- Yunnan Animal Science and Veterinary Institute, China
| | - Z Bin
- Yunnan Animal Science and Veterinary Institute, China
| | - H Zhongcheng
- Husbandry and Veterinary Bureau of Pingbian Country, China
| | - W Quanshu
- Husbandry and Veterinary Bureau of Pingbian Country, China
| | - L Jing
- Kunming University, China; Kunming University, China
| |
Collapse
|
45
|
Arif A, Terenzi F, Potdar AA, Jia J, Sacks J, China A, Halawani D, Vasu K, Li X, Brown JM, Chen J, Kozma SC, Thomas G, Fox PL. EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice. Nature 2017; 542:357-361. [PMID: 28178239 PMCID: PMC5480610 DOI: 10.1038/nature21380] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/11/2017] [Indexed: 12/26/2022]
Abstract
Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing. Phosphorylation of EPRS at Ser999 by mTORC1-S6K1 induces its release from the aminoacyl tRNA multisynthetase complex, which is required for execution of noncanonical functions of EPRS beyond protein synthesis. To investigate the physiological function of EPRS phosphorylation, we generated Eprs knock-in mice bearing phospho-deficient Ser999-to-Ala (S999A) and phospho-mimetic (S999D) mutations. Homozygous S999A mice exhibited low body weight, reduced adipose tissue mass, and increased lifespan, similar to S6K1-deficient mice and mice with adipocyte-specific deficiency of raptor, an mTORC1 constituent. Substitution of the EprsS999D allele in S6K1-deficient mice normalized body mass and adiposity, indicating that EPRS phosphorylation mediates S6K1-dependent metabolic responses. In adipocytes, insulin stimulated S6K1-dependent EPRS phosphorylation and release from the multisynthetase complex. Interaction screening revealed that phospho-EPRS binds SLC27A1 (that is, fatty acid transport protein 1, FATP1), inducing its translocation to the plasma membrane and long-chain fatty acid uptake. Thus, EPRS and FATP1 are terminal mTORC1-S6K1 axis effectors that are critical for metabolic phenotypes.
Collapse
Affiliation(s)
- Abul Arif
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Fulvia Terenzi
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Alka A Potdar
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | - Jie Jia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jessica Sacks
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Arnab China
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Dalia Halawani
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Kommireddy Vasu
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - Sara C Kozma
- Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona, 08908 Barcelona, Spain
| | - George Thomas
- Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona, 08908 Barcelona, Spain.,Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
46
|
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.
Collapse
|
47
|
Duan Y, Duan Y, Li F, Li Y, Guo Q, Ji Y, Tan B, Li T, Yin Y. Effects of supplementation with branched-chain amino acids to low-protein diets on expression of genes related to lipid metabolism in skeletal muscle of growing pigs. Amino Acids 2016; 48:2131-44. [PMID: 27156063 DOI: 10.1007/s00726-016-2223-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
Branched-chain amino acids (BCAA), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in energy homeostasis and lipid metabolism in addition to their other functions, such as in protein metabolism. This study investigated the effects of different dietary BCAA ratios on the intramuscular fat (IMF) content and fatty acid composition in different location of skeletal muscles, including the longissimus dorsi (LD), biceps femoris (BF), and psoas major (PM) muscles of growing pigs, and also examined the mRNA expression levels of genes involved in lipid metabolism in these muscle tissues. The experiment was performed on 40 growing pigs (Large White × Landrace) with a similar initial weight (9.85 ± 0.35 kg). The pigs were randomly assigned to one of five diets: diet A was a positive control and contained 20 % crude protein (CP) with a Leu:Ile:Val ratio of 1:0.51:0.63 according to the recommendation of the National Research Council (NRC); for diets B to E, the CP level was reduced to 17 %, and the Leu:Ile:Val ratios were 1:1:1, 1:0.75:0.75, 1:0.51:0.63, and 1:0.25:0.25, respectively. No significant difference was observed in the average feed intake and feed efficiency of the pigs fed the low protein diet (17 % CP) with BCAA treatments relative to the positive control. However, there was a tendency for increased feed efficiency of the 1:0.75:0.75 group compared with the 1:1:1 group (P = 0.09). The BCAA ratio of 1:0.75:0.75 (17 % CP) increased the IMF content of BF muscle (P < 0.01). Moreover, varied dietary BCAA supplementation with a reduced protein level had different effects on the fatty acid composition of the LD, BF, and PM muscles. The BCAA ratio of 1:0.51:0.63-1:0.75:0.75 (17 % CP) significantly lowered the ratio of n-6 to n-3 polyunsaturated fatty acid in these muscles compared with the positive control group (20 % CP). This effect was associated with an increase in mRNA expression levels of acetyl-CoA carboxylase, lipoprotein lipase, fatty acid transport protein, and fatty acid binding protein 4 in the muscles (P < 0.05). The results indicated that the reduced protein diet (17 % CP) with the BCAA ratio within 1:0.25:0.25-1:0.75:0.75 could increase the IMF content in BF muscle and significantly improve the fatty acid composition in different skeletal muscles accompanied by changes in the expression of genes involved in lipid metabolism, compared with those in the pigs that received adequate dietary protein (20 %), which might result in improved eating quality and nutritional value of the meat.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yangmiao Duan
- University of Chinese Academy of Sciences, Beijing, 100039, China.,Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengna Li
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China. .,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, 410125, China.
| | - Yinghui Li
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiuping Guo
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yujiao Ji
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China
| | - Bie Tan
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety (CICAPS), Changsha, 410125, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128, China
| | - Tiejun Li
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China
| | - Yulong Yin
- Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Research Center for Healthy Breeding Livestock and Poultry, Hunan Engineering and Research Center for Animal and Poultry Science, Institute of Subtropical Agriculture, Ministry of Agriculture, Chinese Academy of Science, No. 644 Yuanda Road, Furong District, Changsha, 410125, Hunan, China. .,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, 410128, China. .,School of Biology, Hunan Normal University, Changsha, 410018, China.
| |
Collapse
|
48
|
Bou M, Todorčević M, Torgersen J, Škugor S, Navarro I, Ruyter B. De novo lipogenesis in Atlantic salmon adipocytes. Biochim Biophys Acta Gen Subj 2016; 1860:86-96. [DOI: 10.1016/j.bbagen.2015.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/14/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
|
49
|
Fatty acid transport proteins in disease: New insights from invertebrate models. Prog Lipid Res 2015; 60:30-40. [PMID: 26416577 DOI: 10.1016/j.plipres.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022]
Abstract
The dysregulation of lipid metabolism has been implicated in various diseases, including diabetes, cardiopathies, dermopathies, retinal and neurodegenerative diseases. Mouse models have provided insights into lipid metabolism. However, progress in the understanding of these pathologies is hampered by the multiplicity of essential cellular processes and genes that modulate lipid metabolism. Drosophila and Caenorhabditis elegans have emerged as simple genetic models to improve our understanding of these metabolic diseases. Recent studies have characterized fatty acid transport protein (fatp) mutants in Drosophila and C. elegans, establishing new models of cardiomyopathy, retinal degeneration, fat storage disease and dermopathies. These models have generated novel insights into the physiological role of the Fatp protein family in vivo in multicellular organisms, and are likely to contribute substantially to progress in understanding the etiology of various metabolic disorders. Here, we describe and discuss the mechanisms underlying invertebrate fatp mutant models in the light of the current knowledge relating to FATPs and lipid disorders in vertebrates.
Collapse
|
50
|
Yu Y, Wang J, Kang R, Dong J, Zhang Y, Liu F, Yan Y, Zhu R, Xia L, Peng X, Zhang L, He D, Gaisano HY, Herbert G, Chen Z, He Y. Association of KCNB1 polymorphisms with lipid metabolisms and insulin resistance: a case-control design of population-based cross-sectional study in Chinese Han population. Lipids Health Dis 2015; 14:112. [PMID: 26377690 PMCID: PMC4574025 DOI: 10.1186/s12944-015-0115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Background In our previous study, we had assessed in the Chinese Han population the association of KCNB1 rs1051295 with metabolic traits indicating metabolic syndrome, and showed that KCNB1 rs1051295 genotype TT was associated with increase of waist to hip ratio (WHR), fasting insulin (FINS), triglycerides (TG) and decreased insulin sensitivity at basal condition. Here, we aimed at detecting whether there were associations between other tag SNPs of KCNB1 and favorable or unfavorable metabolic traits. Methods We conducted a case–control design of population-based cross-sectional study to investigate the association between each of the 22 candidates tag SNPs of KCNB1 and metabolic traits in a population of 733 Chinese Han individuals. The association was assessed by multiple linear regression analysis or unconditional logistic regression analysis. Results We found that among the 22 selected tag SNPs, four were associated with an increase (rs3331, rs16994565) or decrease (rs237460, rs802950) in serum cholesterol levels; two of these (rs237460, rs802590) further associated or were associated with reduced serum LDL-cholesterol. Two novel tag SNPs (rs926672, rs1051295) were associated with increased serum TG levels. We also showed that KCNB1 rs926672 associated with insulin resistance by a case–control study, and two tag SNPs (rs2057077and rs4810952) of KCNB1 were associated with the measure of insulin resistance (HOMA-IR) in a cross-section study. Conclusion These results indicate that KCNB1 is likely associated with metabolic traits that may either predispose or protect from progression to metabolic syndrome. This study provides initial evidence that the gene variants of KCNB1, encoding Kv2.1 channel, is associated with perturbation of lipid metabolism and insulin resistance in Chinese Han population.
Collapse
Affiliation(s)
- Yuncui Yu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Jing Wang
- Departments of Emergency, Beijing Xuanwu Hospital, Capital Medical University, No.45Changchun Street, Xuanwu District, Beijing, 100053, Beijing, PR China.
| | - Ruiying Kang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Jing Dong
- Departments of Emergency, Beijing Xuanwu Hospital, Capital Medical University, No.45Changchun Street, Xuanwu District, Beijing, 100053, Beijing, PR China.
| | - Yuxiang Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Fen Liu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Yuxiang Yan
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Rong Zhu
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Lili Xia
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Xiaoxia Peng
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Ling Zhang
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Dian He
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, 315 Bloor Street West, Toronto, Ontario, Canada.
| | | | - Zhenwen Chen
- School of Basic Medicine, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| | - Yan He
- School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen, Fengtai District, Beijing, 100069, PR China.
| |
Collapse
|