1
|
Xiong Y, Huang X, Li Y, Nie Y, Yu H, Shi Y, Xue J, Ji Z, Rong K, Zhang X. Integrating larval zebrafish model and network pharmacology for screening and identification of edible herbs with therapeutic potential for MAFLD: A promising drug Smilax glabra Roxb. Food Chem 2025; 464:141470. [PMID: 39406145 DOI: 10.1016/j.foodchem.2024.141470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 11/21/2024]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is becoming a prevalent chronic liver disease. Many medicinal and edible herbs exhibit remarkable biological activities in ameliorating MAFLD but lack a comprehensive assessment of their therapeutic efficacy. This study determined total phenolic and flavonoid contents and in vitro antioxidant properties of 34 edible herbs. Smilax glabra Roxb. (SGR), Coreopsis tinctoria Nutt., and Smilax china L. were obtained with the best bioactivity and antioxidant capacity. The high-cholesterol diet-induced larval zebrafish model was established to compare the anti-MAFLD activity of the three herb extracts mentioned above. In vivo experiments revealed that SGR intervention significantly decreased lipid accumulation, alleviated oxidative stress, and modulated intestinal microbiota composition in zebrafish. Furthermore, three potential active components in SGR and their possible mechanisms were explored through network pharmacology and molecular docking. Our study suggested that SGR is a potential candidate for developing new drugs or dietary supplements for MAFLD therapy.
Collapse
Affiliation(s)
- Yinjuan Xiong
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xixuan Huang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuxin Li
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yaqi Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiajie Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhehui Ji
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Keming Rong
- Research Institute of Huanong-Tianchen, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Research Institute of Huanong-Tianchen, Wuhan 430070, China.
| |
Collapse
|
2
|
Rajeswari JJ, Faught E, Santos H, Vijayan MM. Mineralocorticoid receptor activates postnatal adiposity in zebrafish lacking proopiomelanocortin. J Cell Physiol 2024; 239:e31428. [PMID: 39238189 PMCID: PMC11649959 DOI: 10.1002/jcp.31428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The proopiomelanocortin (Pomc)-derived peptides, including adrenocorticotropic hormone and α-melanocyte stimulating hormone (α-Msh), play both a central and a peripheral role in modulating the stress response. The central role is predominantly associated with nutrient homeostasis, while peripherally they play an important role in the synthesis of glucocorticoids (GCs) in response to stress. Pomc mutations are a major risk factor in the development of early-onset childhood obesity in humans. This is attributed primarily to their central effects on melanocortin receptor dysfunction leading to hyperphagia and reduced energy expenditure, while the peripheral mechanism contributing to obesity has largely been unexplored. Here, we tested the hypothesis that Pomc mutation-mediated adrenal insufficiency and the associated changes in GC signaling contribute to postnatal adiposity using zebrafish as a model. We generated a ubiquitous Pomc knockout zebrafish that mimicked the mammalian mutant phenotype of adrenal insufficiency and enhanced adiposity. The loss of Pomc inhibited stress-induced cortisol production and reprogrammed GC signaling by reducing glucocorticoid receptor responsiveness, whereas the mineralocorticoid receptor (Mr) signaling was enhanced. Larval feeding led to enhanced growth and adipogenesis in the Pomc mutants, and this was inhibited by eplerenone, an Mr antagonist. Altogether, our results underscore a key role for Mr signaling in early developmental adipogenesis and a possible target for therapeutic intervention for early-onset childhood obesity due to Pomc dysfunction.
Collapse
Affiliation(s)
| | - Erin Faught
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Institute of BiologyLeiden UniversityLeidenThe Netherlands
| | - Helio Santos
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Present address:
Laboratório de Processamento de TecidosUniversidade Federal de São João Del Rei, Avenida Sebastião Gonçalves CoelhoDivinópolisBrazil
| | | |
Collapse
|
3
|
Guggeri L, Sosa-Redaelli I, Cárdenas-Rodríguez M, Alonso M, González G, Naya H, Prieto-Echagüe V, Lepanto P, Badano JL. Follistatin like-1 ( Fstl1) regulates adipose tissue development in zebrafish. Adipocyte 2024; 13:2435862. [PMID: 39644214 PMCID: PMC11633180 DOI: 10.1080/21623945.2024.2435862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
Collapse
Affiliation(s)
- Lucía Guggeri
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ileana Sosa-Redaelli
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Martina Alonso
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gisell González
- Zebrafish Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
4
|
Khan N, Mohd Salmi T, Karamalakis AP, Ramdas Nair A, Sadler KC, Cox AG. Optimized methods to image hepatic lipid droplets in zebrafish larvae. Dis Model Mech 2024; 17:dmm050786. [PMID: 39373223 PMCID: PMC11625896 DOI: 10.1242/dmm.050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024] Open
Abstract
The optical transparency of zebrafish larvae enables visualization of subcellular structures in intact organs, and these vertebrates are widely used to study lipid biology and liver disease. Lipid droplet (LD) presence is a prevalent feature of healthy cells, but, under conditions such as nutrient excess, toxicant exposure or metabolic imbalance, LD accumulation in hepatocytes can be a harbinger of more severe forms of liver disease. We undertook a comprehensive analysis of approaches useful to investigate LD distribution and dynamics in physiological and pathological conditions in the liver of zebrafish larvae. This comparative analysis of the lipid dyes Oil Red O, Nile Red, LipidTox and LipidSpot, as well as transgenic LD reporters that rely on EGFP fusions of the LD-decorating protein perilipin 2 (PLIN2), demonstrates the strengths and limitations of each approach. These protocols are amenable to detection methods ranging from low-resolution stereomicroscopy to confocal imaging, which enables measurements of hepatic LD size, number and dynamics at cellular resolution in live and fixed animals. This resource will benefit investigators studying LD biology in zebrafish disease models.
Collapse
Affiliation(s)
- Nouf Khan
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Talhah Mohd Salmi
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anthony P. Karamalakis
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C. Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Andrew G. Cox
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Rosell-Moll E, My NTK, Balbuena-Pecino S, Montblanch M, Rodríguez I, Gutiérrez J, Garcia de la Serrana D, Capilla E, Navarro I. Morphofunctional characterization of the three main adipose tissue depots in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111039. [PMID: 39396638 DOI: 10.1016/j.cbpb.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Visceral adipose tissue (VAT) is the primary fat reservoir and energy source in fish. Other relevant fat depots include subcutaneous adipose tissue (SAT), located under epithelial layers, and intramuscular adipose tissue (IMAT), found between the myotomes. The present study investigates the morphological, gene expression and functional characteristics of these different depots in rainbow trout (Oncorhynchus mykiss). Commercial rainbow trout of two different average weights were sampled for histology, lipid quantification and fatty acids profile. Mature adipocytes were isolated for gene expression analyses of lipid metabolic markers. Both VAT and SAT showed large adipocytes, and high total lipid content, suggesting hypertrophic growth. Adipocytes in IMAT were consistently smaller regardless of fish size. While fatty acid composition was similar across depots, SAT had lower levels of palmitic acid and higher levels of polyunsaturated fatty acids that act as precursors of phospholipids and eicosanoids such as eicosapentaenoic acid, compared to VAT and IMAT. Gene expression analyses revealed higher levels of fatty acid transporters, lipolysis and β-oxidation markers in VAT and SAT compared to IMAT, suggesting a more active lipid metabolism. These data support the role of VAT as the main energy depot, while SAT may act as a secondary reservoir, and IMAT potentially serves as an occasional energy source for muscles. This study provides valuable insights into the distinct properties of the different fat depots in fish, which may help to optimize strategies to modulate adiposity for improved health, metabolism, and product quality.
Collapse
Affiliation(s)
- E Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - N T K My
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - M Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Rodríguez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - D Garcia de la Serrana
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - E Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Jin Y, Kozan D, Young ED, Hensley MR, Shen MC, Wen J, Moll T, Anderson JL, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver steatosis. J Lipid Res 2024; 65:100637. [PMID: 39218217 PMCID: PMC11913794 DOI: 10.1016/j.jlr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. Unlike murine models, to which various standardized high lipid diets such as a high-cholesterol diet (HCD) are available, there has yet to be a uniformly adopted zebrafish HCD protocol. In this study, we have developed an improved HCD protocol and thoroughly tested its impact on zebrafish lipid deposition and lipoprotein regulation in a dose- and time-dependent manner. The diet stability, reproducibility, and fish palatability were also validated. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LPs) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae for 8 days produced hepatic steatosis that became more stable and sever after 1 day of fasting and was associated with an opaque liver phenotype (dark under transmitted light). Unlike larvae, adult fish fed HCD for 14 days followed by a 3-day fast did not develop a stable fatty liver phenotype, though the fish had higher ApoB-LP levels in plasma and an upregulated lipogenesis gene fasn in adipose tissue. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eric D Young
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Division of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Monica R Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Peppi PF, Faria CA, Machado JPC, Virote BCR, Carneiro WF, Solis-Murgas LD, Portz L, Santos CR, Campos LRS, Lira GA, Lima EMM, Bicudo AJA, Barreto-Vianna ARC. The effects of isocaloric diets derived from different lipid sources on zebrafish. BRAZ J BIOL 2024; 84:e280948. [PMID: 39230077 DOI: 10.1590/1519-6984.280948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/06/2024] [Indexed: 09/05/2024] Open
Abstract
Characterizing the effects of saturated fat intake on metabolic health and its changes remains a major challenge. Lipid diets, from different sources, vary widely in their physiological effects on health; therefore, it is important to consider the specific lipid source consumed. The objective of the study was to evaluate the effect of the imposition of isocaloric diets with different lipid sources in zebrafish (fish oil/pork lard). Depicting how metabolic, morphological and behavioral parameters might express themselves in these fishes. Forty adult female fishes were used for the experiment. The animals were divided into a control group (C), fed with unsaturated fatty acid diet, and a saturated fatty acid group (Sat). They received food three times a day, during the 11-week period. The results showed that animals in the Sat group had increased body weight, with a difference relative to the C group, from the third week of diet until the end of the experiment. At the end of the last week, the Sat group had a body weight 32% higher (P=0.0182) than the body weight of the control group. The consumption of a diet rich in saturated fatty acids did not generate signs related to stress and anxiety in zebrafish. There was an increase in glycemia at T60 and T120, with a statistically significant difference between the two moments. Animals in the Sat group showed an increase (P=0.0086) in hepatic steatosis compared to animals in the control group. The results obtained on the relationship between diet and metabolic changes are fundamental to ensure the understanding and appropriate treatment of these problems.
Collapse
Affiliation(s)
- P F Peppi
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - C A Faria
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - J P C Machado
- Universidade Federal do Paraná - UFPR, Palotina, PR, Brasil
| | - B C R Virote
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - W F Carneiro
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - L D Solis-Murgas
- Universidade Federal de Lavras - UFLA, Departamento de Medicina Veterinária, Lavras, MG, Brasil
| | - L Portz
- Universidade Federal do Paraná - UFPR, Departamento de Zootecnia, Palotina, PR, Brasil
| | - C R Santos
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - L R S Campos
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - G A Lira
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - E M M Lima
- Universidade de Brasília - UnB, Faculdade de Agronomia e Medicina Veterinária, Brasília, DF, Brasil
| | - A J A Bicudo
- Universidade Federal do Paraná - UFPR, Departamento de Zootecnia, Palotina, PR, Brasil
| | | |
Collapse
|
8
|
Freeburg SH, Shwartz A, Kemény LV, Smith CJ, Weeks O, Miller BM, PenkoffLidbeck N, Fisher DE, Evason KJ, Goessling W. Hepatocyte vitamin D receptor functions as a nutrient sensor that regulates energy storage and tissue growth in zebrafish. Cell Rep 2024; 43:114393. [PMID: 38944835 PMCID: PMC11708751 DOI: 10.1016/j.celrep.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/20/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Vitamin D receptor (VDR) has been implicated in fatty liver pathogenesis, but its role in the regulation of organismal energy usage remains unclear. Here, we illuminate the evolutionary function of VDR by demonstrating that zebrafish Vdr coordinates hepatic and organismal energy homeostasis through antagonistic regulation of nutrient storage and tissue growth. Hepatocyte-specific Vdr impairment increases hepatic lipid storage, partially through acsl4a induction, while simultaneously diminishing fatty acid oxidation and liver growth. Importantly, Vdr impairment exacerbates the starvation-induced hepatic storage of systemic fatty acids, indicating that loss of Vdr signaling elicits hepatocellular energy deficiency. Strikingly, hepatocyte Vdr impairment diminishes diet-induced systemic growth while increasing hepatic and visceral fat in adult fish, revealing that hepatic Vdr signaling is required for complete adaptation to food availability. These data establish hepatocyte Vdr as a regulator of organismal energy expenditure and define an evolutionary function for VDR as a transcriptional effector of environmental nutrient supply.
Collapse
Affiliation(s)
- Scott H Freeburg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arkadi Shwartz
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; HCEMM-SU Translational Dermatology Research Group, Department of Physiology, Semmelweis University, 1085 Budapest Hungary; Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, 1085 Budapest Hungary
| | - Colton J Smith
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Weeks
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bess M Miller
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nadia PenkoffLidbeck
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kimberley J Evason
- Huntsman Cancer Institute and Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Mora I, Puiggròs F, Serras F, Gil-Cardoso K, Escoté X. Emerging models for studying adipose tissue metabolism. Biochem Pharmacol 2024; 223:116123. [PMID: 38484851 DOI: 10.1016/j.bcp.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain.
| |
Collapse
|
10
|
Thompson WA, Rajeswari JJ, Holloway AC, Vijayan MM. Excess feeding increases adipogenesis but lowers leptin transcript abundance in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109816. [PMID: 38061616 DOI: 10.1016/j.cbpc.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Although fish exposed to municipal wastewater effluents (MWWE) show higher lipid accumulation, whether this is due to adipogenesis is unclear. The objective here was to identify molecular markers of adipogenesis in zebrafish (Danio rerio) larvae for use as high throughput screening tools for environmental contaminants, including obesogens in MWWE. Zebrafish larvae were fed a commercial diet at a maintenance level (5 % body mass) or in excess (25 or 50 % body mass) from day 6 to 30 days post-fertilization (dpf) to stimulate adipogenesis. We monitored fat accumulation and markers of lipid metabolism, including peroxisome proliferator-activated receptor γ (ppar γ), fatty acid synthase (fas), ELOVL fatty acid elongase 2 (elovl2), diacylglycerol O-acyltransferase 2 (dgat2), leptin (lepa and lepb), leptin receptor (lepr), and lipoprotein lipase (lpl). Excess feeding led to a higher growth rate, protein content and an increase in igf1 transcript abundance. Also, these larvae had higher triglyceride levels and accumulated lipids droplets in the abdominal cavity and viscera. The molecular markers of adipogenesis, including fas, elovl2, and dgat2, were upregulated, while the transcript abundance of lpl, a lipolytic gene, was transiently lower due to excess feeding. The increased adiposity seen at 30 dpf due to excess feeding coincided with a lower lep but not lepr transcript abundance in zebrafish. Our results demonstrate that excess feeding alters the developmental programming of key genes involved in lipid homeostasis, leading to excess lipid accumulation in zebrafish larvae. Overall, fas, elovl2, lpl, and dgat2, but not lep or ppar γ, have the potential to be biomarkers of adipogenesis in zebrafish larvae.
Collapse
Affiliation(s)
- William Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jithine Jayakumar Rajeswari
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
11
|
Jin Y, Kozan D, Anderson JL, Hensley M, Shen MC, Wen J, Moll T, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565134. [PMID: 37961364 PMCID: PMC10635069 DOI: 10.1101/2023.11.01.565134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Monica Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
12
|
Xu D, Gong Y, Xiang X, Liu Y, Mai K, Ai Q. Discovery, characterization, and adipocyte differentiation regulation in perirenal adipose tissue of large yellow croaker (Larimichthys crocea). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:627-639. [PMID: 37341909 DOI: 10.1007/s10695-023-01208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Adipose tissue is an essential tissue for lipid deposition in fish and is associated with excess lipid accumulation in aquaculture. However, the knowledge of the distribution and characterization of adipose tissue in fish still needs further investigation. This study for the first time discovered perirenal adipose tissue (PAT) in large yellow croaker by MRI and CT technologies. Then, the morphological and cytological characteristics of PAT were observed, showing a typical characteristic of white adipose tissue. Meanwhile, the mRNA expression of marker genes of white adipose tissue was highly expressed in PAT compared with the liver and muscle in large yellow croaker. Moreover, based on the discovery of PAT, preadipocytes from PAT were isolated, and the differentiation system of preadipocytes was established. The lipid droplet and TG content of cell were gradually increased during adipocyte differentiation. In addition, mRNA expressions of lipoprotein lipase, adipose triglyceride lipase, and transcription factors related to adipogenesis (cebpα, srebp1, pparα, and pparγ) were quantified to explain the regulation mechanism during the differentiation process. In summary, the present study first discovered perirenal adipose tissue in fish, then explored the characterization of PAT, and revealed the regulation of adipocyte differentiation. These results could advance the understanding of adipose tissue in fish and provide a novel idea for the study of the mechanism of lipid accumulation.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Ye Gong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Xiaojun Xiang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, 266003, Qingdao, Shandong, People's Republic of China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, 266237, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Konadu B, Cox CK, Garrett MR, Gibert Y. Excess glucose or fat differentially affects metabolism and appetite-related gene expression during zebrafish embryogenesis. iScience 2023; 26:107063. [PMID: 37534154 PMCID: PMC10391732 DOI: 10.1016/j.isci.2023.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023] Open
Abstract
Zebrafish embryos use their yolk sac reserve as the sole nutrient source during embryogenesis. The two main forms of energy fuel can be found in the form of glucose or fat. Zebrafish embryos were exposed to glucose or injected with free fatty acid/Triacylglycerol (FFA/TAG) into the yolk sac at 24 hpf. At 72 hpf, glucose exposed or FFA/TAG injected had differential effects on gene expression in embryos, with fat activating lipolysis and β-oxidation and glucose activating the insulin pathway. Bulk RNA-seq revealed that more gene expression was affected by glucose exposure compared to FFA/TAGs injection. Appetite-controlling genes were also differently affected by glucose exposure or FFA/TAG injections. Because the embryo did not yet feed itself at the time of our analysis, gene expression changes occurred in absence of actual hunger and revealed how the embryo manages its nutrient intake before active feeding.
Collapse
Affiliation(s)
- Bridget Konadu
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Carol K. Cox
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Michael R. Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
14
|
Haridevamuthu B, Seenivasan B, Priya PS, Muthuraman S, Kumar RS, Manikandan K, Almutairi BO, Almutairi MH, Arokiyaraj S, Gopinath P, Arockiaraj J. Hepatoprotective effect of dihydroxy piperlongumine in high cholesterol-induced non-alcoholic fatty liver disease zebrafish via antioxidant activity. Eur J Pharmacol 2023; 945:175605. [PMID: 36822456 DOI: 10.1016/j.ejphar.2023.175605] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are a growing epidemic and the most common liver diseases. Consumption of a western diet with high fats alters redox status, induces inflammation, and impairs the physiological function of hepatocytes. However, the pharmacological market lacks anti-NAFLD/NASH drugs. Long pepper (Piper longum L) is used in traditional Mongolian medicine for treating hyperlipidemia. Piperlongumine (PL) is a bioactive compound of Piper longum L, which usually possesses anticancer activities due to its ROS elevation property. However, when PL was demethylated they behave as an antioxidant. Previously, we found dihydroxy piperlongumine (DHPL) possesses high antioxidant activity among the hydroxy piperlongumines, which makes us curious to reveal the anti-NAFLD effect. A high-cholesterol diet (HCD) was chosen to induce NAFLD zebrafish model, and the antioxidant and lipid-lowering effects of DHPL were evaluated. Histological alterations of NAFLD were also scored along with gene expression to explore the molecular mechanism. DHPL reduced lipid accumulation in both short-term and long-term feeding trials. DHPL increases antioxidant activity and lipid-lowering gene expression and decreases hepatic triglyceride, oxidative stress, and lipogenic genes. In conclusion, DHPL halted the progression of HCD-induced NAFLD in the zebrafish model.
Collapse
Affiliation(s)
- B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - P Snega Priya
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Subramani Muthuraman
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai, 600 127, Tamil Nadu, India
| | - Rajendran Saravana Kumar
- Chemistry Division, School of Advanced Sciences, VIT University Chennai Campus, Chennai, 600 127, Tamil Nadu, India
| | - K Manikandan
- Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
15
|
LeFauve MK, Bérubé R, Heldman S, Chiang YTT, Kassotis CD. Cetyl Alcohol Polyethoxylates Disrupt Metabolic Health in Developmentally Exposed Zebrafish. Metabolites 2023; 13:359. [PMID: 36984799 PMCID: PMC10057089 DOI: 10.3390/metabo13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Alcohol polyethoxylates (AEOs), such as cetyl alcohol ethoxylates (CetAEOs), are high-production-volume surfactants used in laundry detergents, hard-surface cleaners, pesticide formulations, textile production, oils, paints, and other products. AEOs have been suggested as lower toxicity replacements for alkylphenol polyethoxylates (APEOs), such as the nonylphenol and octylphenol polyethoxylates. We previously demonstrated that nonylphenol polyethoxylates induced triglyceride accumulation in several in vitro adipogenesis models and promoted adiposity and increased body weights in developmentally exposed zebrafish. We also demonstrated that diverse APEOs and AEOs were able to increase triglyceride accumulation and/or pre-adipocyte proliferation in a murine pre-adipocyte model. As such, the goals of this study were to assess the potential of CetAEOs to promote adiposity and alter growth and/or development (toxicity, length, weight, behavior, energy expenditure) of developmentally exposed zebrafish (Danio rerio). We also sought to expand our understanding of ethoxylate chain-length dependent effects through interrogation of varying chain-length CetAEOs. We demonstrated consistent adipogenic effects in two separate human bone-marrow-derived mesenchymal stem cell models as well as murine pre-adipocytes. Immediately following chemical exposures in zebrafish, we reported disrupted neurodevelopment and aberrant behavior in light/dark activity testing, with medium chain-length CetAEO-exposed fish exhibiting hyperactivity across both light and dark phases. By day 30, we demonstrated that cetyl alcohol and CetAEOs disrupted adipose deposition in developmentally exposed zebrafish, despite no apparent impacts on standard length or gross body weight. This research suggests metabolic health concerns for these common environmental contaminants, suggesting further need to assess molecular mechanisms and better characterize environmental concentrations for human health risk assessments.
Collapse
Affiliation(s)
| | | | | | | | - Christopher D. Kassotis
- Institute of Environmental Health Sciences, Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
16
|
Loss of pex5 sensitizes zebrafish to fasting due to deregulated mitochondria, mTOR, and autophagy. Cell Mol Life Sci 2023; 80:69. [PMID: 36821008 PMCID: PMC9950184 DOI: 10.1007/s00018-023-04700-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023]
Abstract
Animal models have been utilized to understand the pathogenesis of Zellweger spectrum disorders (ZSDs); however, the link between clinical manifestations and molecular pathways has not yet been clearly established. We generated peroxin 5 homozygous mutant zebrafish (pex5-/-) to gain insight into the molecular pathogenesis of peroxisome dysfunction. pex5-/- display hallmarks of ZSD in humans and die within one month after birth. Fasting rapidly depletes lipids and glycogen in pex5-/- livers and expedites their mortality. Mechanistically, deregulated mitochondria and mechanistic target of rapamycin (mTOR) signaling act together to induce metabolic alterations that deplete hepatic nutrients and accumulate damaged mitochondria. Accordingly, chemical interventions blocking either the mitochondrial function or mTOR complex 1 (mTORC1) or a combination of both improve the metabolic imbalance shown in the fasted pex5-/- livers and extend the survival of animals. In addition, the suppression of oxidative stress by N-acetyl L-cysteine (NAC) treatment rescued the apoptotic cell death and early mortality observed in pex5-/-. Furthermore, an autophagy activator effectively ameliorated the early mortality of fasted pex5-/-. These results suggest that fasting may be detrimental to patients with peroxisome dysfunction, and that modulating the mitochondria, mTORC1, autophagy activities, or oxidative stress may provide a therapeutic option to alleviate the symptoms of peroxisomal diseases associated with metabolic dysfunction.
Collapse
|
17
|
Grepper D, Tabasso C, Aguettaz AKF, Martinotti A, Ebrahimi A, Lagarrigue S, Amati F. Methodological advancements in organ-specific ectopic lipid quantitative characterization: Effects of high fat diet on muscle and liver intracellular lipids. Mol Metab 2023; 68:101669. [PMID: 36642092 PMCID: PMC9938329 DOI: 10.1016/j.molmet.2023.101669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Ectopic lipid accumulation is a hallmark of metabolic diseases, linking obesity to non-alcoholic fatty liver disease, insulin resistance and diabetes. The use of zebrafish as a model of obesity and diabetes is raising due to the conserved properties of fat metabolism between humans and zebrafish, the homologous genes regulating lipid uptake and transport, the implementation of the '3R's principle and their cost-effectiveness. To date, a method allowing the conservation of lipid droplets (LDs) and organs in zebrafish larvae to image ectopic lipids is not available. Our objectives were to develop a novel methodology to quantitatively evaluate organ-specific LDs, in skeletal muscle and liver, in response to a nutritional perturbation. METHODS We developed a novel embedding and cryosectioning protocol allowing the conservation of LDs and organs in zebrafish larvae. To establish the quantitative measures, we used a three-arm parallel nutritional intervention design. Zebrafish larvae were fed a control diet containing 14% of nutritional fat or two high fat diets (HFDs) containing 25 and 36% of dietary fats. In muscle and liver, LDs were characterized using immunofluorescence confocal microscopy. In liver, intrahepatocellular lipids were discriminated from intrasinusoid lipids. To complete liver characteristics, fibrosis was identified with Masson's Trichrome staining. Finally, to confirm the conservation and effect of HFD, molecular players of fat metabolism were evaluated by RT-qPCR. RESULTS The cryosections obtained after setting up the embedding and cryopreservation method were of high quality, preserving tissue morphology and allowing the visualization of ectopic lipids. Both HFDs were obesogenic, without modifying larvae survival or development. Neutral lipid content increased with time and augmented dietary fat. Intramuscular LD volume density increased and was explained by an increase in LDs size but not in numbers. Intrahepatocellular LD volume density increased and was explained by an increased number of LDs, not by their increased size. Sinusoid area and lipid content were both increased. Hepatic fibrosis appeared with both HFDs. We observed alterations in the expression of genes associated with LD coating proteins, LD dynamics, lipogenesis, lipolysis and fatty acid oxidation. CONCLUSIONS In this study, we propose a reproducible and fast method to image zebrafish larvae without losing LD quality and organ morphology. We demonstrate the impact of HFD on LD characteristics in liver and skeletal muscle accompanied by alterations of key players of fat metabolism. Our observations confirm the evolutionarily conserved mechanisms in lipid metabolism and reveal organ specific adaptations. The methodological advancements proposed in this work open the doors to study organelle adaptations in obesity and diabetes related research such as lipotoxicity, organelle contacts and specific lipid depositions.
Collapse
Affiliation(s)
- Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Cassandra Tabasso
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Axel K F Aguettaz
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adrien Martinotti
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Switzerland; Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Xu H, Wang W, Nie Z, Miao X, Li Y. Delayed First Feeding Chronically Impairs Larval Fish Growth Performance, Hepatic Lipid Metabolism, and Visceral Lipid Deposition at the Mouth-Opening Stage. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:140-149. [PMID: 36510098 DOI: 10.1007/s10126-022-10187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
During the mouth-opening stage, fish larvae are susceptible to delayed first feeding (DFF). In this study, we explored the effects of DFF for two days on later growth and energy metabolism in larval fish. Results showed that DFF chronically impaired larval growth performance, thereby reducing the efficiency of feed utilization by larvae. In DFF larvae, the mRNA levels of growth inhibitors (i.e., igfbp1a and igfbp1b) were significantly upregulated and consistently maintained at high expression levels, which may be an important attribution of larval growth retardation. Concomitantly, DFF retarded the growth of adipose tissue and reduced lipid deposition in larval viscera, suggesting lipid metabolism is disordered in DFF larvae and generates inefficient lipid reserves. In the liver, we observed that DFF resulted in a significant accumulation of neutral lipids, and this phenotype did not disappear rapidly after DFF larvae received exogenous nutrition. As to the transcript analyses, we found that the expression of genes related to hepatic lipid synthesis (e.g., srebf1, srebf2, dgat1a, dgat1b, fasn, and scdb) in DFF larvae was consistently upregulated, while the expression of genes involved in lipid transport (e.g., apoa2, apoa4b.1, and apoa4b.3) was downregulated. Therefore, it appears that the inefficient lipid reserves in DFF larvae are associated with their hepatic lipid transport dysfunction. Taken together, our findings contribute to understanding the impairments to fish larvae caused by delayed first feeding during the mouth-opening stage and to aiding larval management in the aquaculture industry.
Collapse
Affiliation(s)
- Hao Xu
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing, 401329, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Wenbo Wang
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Zhentao Nie
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Xiaomin Miao
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing, 400715, China.
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Chongqing, 401329, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Gómez de la Torre Canny S, Nordgård CT, Mathisen AJH, Degré Lorentsen E, Vadstein O, Bakke I. A novel gnotobiotic experimental system for Atlantic salmon ( Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Front Cell Infect Microbiol 2023; 12:1068302. [PMID: 36817693 PMCID: PMC9929952 DOI: 10.3389/fcimb.2022.1068302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
Gnotobiotic models have had a crucial role in studying the effect that commensal microbiota has on the health of their animal hosts. Despite their physiological and ecological diversity, teleost fishes are still underrepresented in gnotobiotic research. Moreover, a better understanding of host-microbe interactions in farmed fish has the potential to contribute to sustainable global food supply. We have developed a novel gnotobiotic experimental system that includes the derivation of fertilized eggs of farmed and wild Atlantic salmon, and gnotobiotic husbandry of fry during the yolk sac stage. We used a microscopy-based approach to estimate the barrier function of the skin mucus layer and used this measurement to select the derivation procedure that minimized adverse effects on the skin mucosa. We also used this method to demonstrate that the mucus barrier was reduced in germ-free fry when compared to fry colonized with two different bacterial communities. This alteration in the mucus barrier was preceded by an increase in the number of cells containing neutral mucosubstances in the anterior segment of the body, but without changes in the number of cells containing acidic substances in any of the other segments studied along the body axis. In addition, we showed how the microbial status of the fry temporarily affected body size and the utilization of internal yolk stores during the yolk sac stage. Finally, we showed that the presence of bacterial communities associated with the fry, as well as their composition, affected the size of adipose tissue. Fry colonized with water from a lake had a larger visceral adipose tissue depot than both conventionally raised and germ-free fry. Together, our results show that this novel gnotobiotic experimental system is a useful tool for the study of host-microbe interactions in this species of aquacultural importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ingrid Bakke
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
20
|
Effects of Nutritionally Induced Obesity on Metabolic Pathways of Zebrafish. Int J Mol Sci 2023; 24:ijms24031850. [PMID: 36768175 PMCID: PMC9914946 DOI: 10.3390/ijms24031850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Human obesity has become a global epidemic that can lead to many metabolic diseases, including insulin resistance, type 2 diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver. The development of obesity is closely associated with excess food intake and energy imbalance, family history, lifestyle, psychology and other factors, but molecular mechanisms underlying the induction and development of obesity remain to be intensively studied under a variety of internal and external pathogenesis conditions. In this study, we generated two obesity models of zebrafish that were treated with a high-fat diet (HFD) or an overfeeding diet (DIO). Both HFD and DIO zebrafish exhibited higher levels of lipid accumulation, fat distribution, microvascular steatosis and ectopic accumulation of lipid droplets in liver and muscle than normal diet (NOD) fish. The comparison of transcriptome sequencing data for the livers of HFD, DIO and NOD groups identified common and specific genes and signaling pathways that are potentially associated with zebrafish obesity induced by HFD and/or DIO. These findings provide clues for further understanding the mechanisms of obesity development and preventing nutritionally induced obesity through targeting the common signaling pathways and biological processes.
Collapse
|
21
|
Zhang ZF, Song TT, Chen JF, Lv GY. Recovery of a hypolipidemic polysaccharide from artificially cultivated Sanghuangporus vaninii with an effective method. Front Nutr 2023; 9:1095556. [PMID: 36712537 PMCID: PMC9880258 DOI: 10.3389/fnut.2022.1095556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
In this study, an effective method was developed to extract the polysaccharide from Sanghuangporus vaninii (PFSV) by destroying the cell wall. Box-Behnken design was employed to determine the optimal processing conditions as follows: processing temperature (80°C), processing time (0.81 h) and amount of HCl (1.5 ml). Under these conditions, the yield of PFSV reached 5.94 ± 0.16%. The purified polysaccharide (PFSV-2) was found to be a hetero-polysaccharide with an average molecular weight of 20.377 kDa. The backbone of PFSV-2 was composed of an →6)-α-Galp-(1→ and →2,6)-β-Manp-(1→ and →2)-α-Fucp-(1→ and was branched of t-α-Manp-(1→ at position 2 of residue B. PFSV-2 showed hypolipidemic activity by decreasing lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Furthermore, PFSV-2 downregulated the pparg, fasn, and HMGCRb genes and upregulated the pparab and acaca genes. These findings suggested PFSV-2 may be a promising candidate in lipid regulation therapy.
Collapse
|
22
|
Li X, Zhao F, Fu C, Yang Y, Xu Q, Hao Y, Shi X, Chen D, Bi X, Gong Z, Wu S, Zhang H. Early- and whole-life exposures to florfenicol disrupts lipid metabolism and induces obesogenic effects in zebrafish (Danio rerio). CHEMOSPHERE 2022; 308:136429. [PMID: 36115475 DOI: 10.1016/j.chemosphere.2022.136429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/13/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Florfenicol (FF), a widely used veterinary antibiotic, has been frequently detected in both aquatic environments and human body fluids. As a result, there is a growing concern on its health risks. Previous studies have revealed various toxicities of FF on animals, while there are relatively limited researches on its metabolic toxicity. Herein, by employing zebrafish as an in vivo model, endpoints at multiple levels of biological organization were measured to investigate the metabolic toxicity, especially disturbances on lipid metabolism, of this emerging pollutant. Our results indicated that early-life exposure (from 2 h past fertilization (hpf) to 15 days past fertilization (dpf)) to FF significantly increased body mass index (BMI) values, staining areas of visceral lipids, and triacylglycerol (TAG) and total cholesterol (TC) contents of larvae. Further, by analyzing expression patterns of genes encoding key proteins regulating lipid metabolism, our data suggested that promoted intestinal absorption and hepatic de novo synthesis of lipids, suppressed TAG decomposition, and inhibited FFA oxidation all contributed to TAG accumulation in larvae. Following whole-life exposure (from 2 hpf to 120 dpf), BMI values, TAG and TC contents all increased significantly in males, and significant increases of hepatic TAG levels were also observed in females. Moreover, FF exposure interfered with lipid homeostasis of males and females in a gender-specific pattern. Our study revealed the obesogenic effects of FF at environmentally relevant concentrations (1, 10, and 100 μg/L) and therefore will benefit assessment of its health risks. Additionally, our results showed that FF exposure caused a more pronounced obesogenic effect in zebrafish larvae than adults, as suggested by significant increases of all endpoints at individual, tissular, and molecular levels in larvae. Therefore, our study also advances the application of zebrafish larval model in assessing metabolic toxicity of chemicals, due to the higher susceptibility of larvae than adults.
Collapse
Affiliation(s)
- Xinhui Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China.
| | - Chen Fu
- Chengdu Academy of Environmental Sciences, Chengdu 610072, PR China
| | - Yanyu Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Qianru Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Yinfei Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Xueqing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Zhilin Gong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Shujian Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| | - Haifeng Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, PR China
| |
Collapse
|
23
|
Wang J, Wang L, Shi S, Cao Y, Feng J, Liu C, Zheng L. Probiotic coated with glycol chitosan/alginate relieves oxidative damage and gut dysmotility induced by oxytetracycline in zebrafish larvae. Food Funct 2022; 13:10476-10490. [PMID: 36134479 DOI: 10.1039/d2fo01511k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Probiotic-based therapy is a promising approach, which can positively modulate bacterial composition and maintain homeostasis. However, exogenous probiotics are easily destroyed by harsh conditions in vivo; thus, their application prospects have been severely limited. Specifically, oxytetracycline (OTC), a broad-spectrum antibiotic widely used in aquaculture, results in adverse intestinal environments, such as dysbacteriosis, oxidative damage, and gut dysmotility. Here, we describe a facile method to apply glycol chitosan/alginate as armor on the surface of probiotics to effectively protect them from the changed enteric environments induced by OTC. The results demonstrated that the coated Lacticaseibacillus rhamnosus GG (LGG) for only 2 h administration could significantly improve the colonization rate of LGG, and the relative abundance of Lacticaseibacillus can reach 80% in OTC-treated larvae intestines. We also explored the specific mechanisms of the coated LGG to diminish reactive oxygen species (ROS) generation and rescue gut dysmotility for OTC treatment, including enhancing the activity of antioxidative enzymes (CAT, SOD and GPx) and increasing 5-HT synthesis. The mitigation effect of the coated LGG for 2 h administration was comparable to that of uncoated LGG for 24 h administration. Encapsulation of LGG with polysaccharides provides a unique application example for generating useful bacterial therapeutics in harsh intestinal environments.
Collapse
Affiliation(s)
- Ju Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Shengnan Shi
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yaqi Cao
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Junmei Feng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Changhong Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Zheng
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China. .,Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
24
|
Lactobacillus rhamnosus GG normalizes gut dysmotility induced by environmental pollutants via affecting serotonin level in zebrafish larvae. World J Microbiol Biotechnol 2022; 38:222. [PMID: 36100774 DOI: 10.1007/s11274-022-03409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Abstract
Intestinal peristalsis is essential for gastrointestinal function, which could maintain the appropriate progression and digestion of food and reduce bacterial aggregation through mixing function. Even though certain ingredients of foodstuff are known to increase or decrease intestinal peristalsis, the role of environmental pollutants on intestinal peristalsis is relatively unknown. Therefore, the effects of four typical environmental pollutants (oxytetracycline, arsenic, polychlorinated biphenyls and chlorpyrifos) on intestinal peristalsis in the zebrafish model and then tested the recovery effect of the constipation-resistant probiotic. The results showed that 4-day environmental pollutants exposures on the zebrafish embryos at 1 day post fertilization clearly decreased the intestinal peristalsis through decreasing the serotonin (5-HT) production and down-regulating the expression of key genes involved in 5-HT synthesis. Pollutants-evoked change of gut motility could be normalized in the presence of Lactobacillus rhamnosus GG (LGG) via increasing 5-HT secretion. Exogenous 5-hydroxytryptophan (100 µg/L) could also rescue the dysfunction of gut motility in pollutants-treated zebrfish. The data identified that LGG normalized disorder of intestinal peristalsis induced by environmental pollutants through increasing 5-HT level. The stimulant effect of LGG on peristalsis may be associated with 5-HT system, which could provide references for the application of probiotics in regulation of gut dysmotility.
Collapse
|
25
|
Guo W, Gao B, Zhang X, Ren Q, Xie D, Liang J, Li H, Wang X, Zhang Y, Liu S, Nie G. Distinct responses from triglyceride and cholesterol metabolism in common carp (Cyprinus carpio) upon environmental cadmium exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106239. [PMID: 35863253 DOI: 10.1016/j.aquatox.2022.106239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Due to high persistence and bioavailability, Cadmium (Cd) is one of the most prevalent environmental contaminants, posing an elevating threat to the ecosystems. It has been evidenced that high-dose Cd elicits deleterious effects on aquatic organisms, but the potential toxicities of Cd at environmentally relevant concentrations remains underappreciated. In this study, we used common carp to investigate how environmental Cd exposure affects triglyceride (TG) and cholesterol metabolism and underlying mechanisms. The data indicated that Cd resulted in the shift of TG from the liver to blood and the movement of cholesterol in the opposite direction, ultimately giving rise to the storage of crude lipid in liver and muscle, especially hepatic cholesterol retention. Cholesterol, instead of TG, became the principal cause during the progression of hepatic lipid accumulation. Mechanistic investigations at transcriptional and translational levels further substantiated that Cd blocked hepatic biosynthesis of TG and enhanced TG efflux out of the liver and fatty acid β-oxidation, which collectively led to the compromised TG metabolism in the liver and accelerated TG export to the serum. Additionally, strengthened synthesis, retarded export and oxidation of cholesterol detailed the hepatic prominent cholesterol retention. Taken together, our results demonstrated that environmental exposure to Cd perturbed lipid metabolism through triggering distinct responses from hepatic TG and cholesterol homeostasis. These indicated that environmental factors (such as waterborne Cd) could be a potential contributor to the prevalence of non-alcoholic fatty-liver disease in aquaculture and more efforts should be devoted to the ecological risk assessment of pollutants under environmental scenarios.
Collapse
Affiliation(s)
- Wenli Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Beibei Gao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xiaoqian Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Junping Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Hui Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
26
|
Iwasaki M, Kawakami K, Wada H. Remodeling of the hyomandibular skeleton and facial nerve positioning during embryonic and postembryonic development of teleost fish. Dev Biol 2022; 489:134-145. [PMID: 35750208 DOI: 10.1016/j.ydbio.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate skeleton changes its shape during development through the activities of chondrocytes, osteoblasts and osteoclasts. Although much is known about the mechanisms for differentiation in these cells, it is less understood how they behave in a region-specific manner to acquire unique bone shapes. To address this question, we investigated the development of the hyomandibular (Hm) system in zebrafish. The Hm originates as cartilage carrying a single foramen (the Hm foramen), through which the facial (VII) nerve passes. We reveal that Schwann cells, which myelinate the VII nerve, regulate rearrangement of the chondrocytes to enlarge the Hm foramen. The Hm cartilage then becomes ossified in the perichondrium, where the marrow chondrocytes are replaced by adipocytes. Then, the bone matrix along the VII nerve is resorbed by osteoclasts, generating a gateway to the bone marrow. Subsequent movement of the VII nerve into the marrow, followed by deposition of new bone matrix, isolates the nerve from the jaw muscle insertion. Genetic ablation of osteoblasts and osteoclasts reveals specific roles of these cells during remodeling processes. Interestingly, the VII nerve relocation does not occur in medaka; instead, bone deposition distinct from those in zebrafish separates the VII nerve from the muscle insertion. Our results define novel mechanisms for skeletal remodeling, by which the bone shapes in a region- and species-specific manner.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Koichi Kawakami
- National Institute of Genetics; Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
27
|
Xiong S, Wang W, Kenzior A, Olsen L, Krishnan J, Persons J, Medley K, Peuß R, Wang Y, Chen S, Zhang N, Thomas N, Miles JM, Alvarado AS, Rohner N. Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity. Curr Biol 2022; 32:2272-2280.e6. [PMID: 35390280 PMCID: PMC9133166 DOI: 10.1016/j.cub.2022.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
Nutrient availability varies seasonally and spatially in the wild. While many animals, such as hibernating animals or migrating birds, evolved strategies to overcome periods of nutrient scarcity,1,2 the cellular mechanisms of these strategies are poorly understood. Cave environments represent an example of nutrient-deprived environments, since the lack of sunlight and therefore primary energy production drastically diminishes the nutrient availability.3 Here, we used Astyanax mexicanus, which includes river-dwelling surface fish and cave-adapted cavefish populations, to study the genetic adaptation to nutrient limitations.4-9 We show that cavefish populations store large amounts of fat in different body regions when fed ad libitum in the lab. We found higher expression of lipogenesis genes in cavefish livers when fed the same amount of food as surface fish, suggesting an improved ability of cavefish to use lipogenesis to convert available energy into triglycerides for storage into adipose tissue.10-12 Moreover, the lipid metabolism regulator, peroxisome proliferator-activated receptor γ (Pparγ), is upregulated at both transcript and protein levels in cavefish livers. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that Pparγ binds cavefish promoter regions of genes to a higher extent than surface fish and inhibiting Pparγ in vivo decreases fat accumulation in A. mexicanus. Finally, we identified nonsense mutations in per2, a known repressor of Pparγ, providing a possible regulatory mechanism of Pparγ in cavefish. Taken together, our study reveals that upregulated Pparγ promotes higher levels of lipogenesis in the liver and contributes to higher body fat accumulation in cavefish populations, an important adaptation to nutrient-limited environments.
Collapse
Affiliation(s)
- Shaolei Xiong
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Kansas City, MO 64110, USA; National Institute of Biological Sciences, Beijing 102206, China
| | | | - Luke Olsen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jenna Persons
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Kyle Medley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Nancy Thomas
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - John M Miles
- Department of Medicine, Division of Metabolism, Endocrinology & Genetics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Howard Hughes Medical Institute, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
28
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
29
|
Kassotis CD, Vom Saal FS, Babin PJ, Lagadic-Gossmann D, Le Mentec H, Blumberg B, Mohajer N, Legrand A, Munic Kos V, Martin-Chouly C, Podechard N, Langouët S, Touma C, Barouki R, Kim MJ, Audouze K, Choudhury M, Shree N, Bansal A, Howard S, Heindel JJ. Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochem Pharmacol 2022; 199:115014. [PMID: 35393121 PMCID: PMC9050906 DOI: 10.1016/j.bcp.2022.115014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/11/2022]
Abstract
There is increasing evidence of a role for environmental contaminants in disrupting metabolic health in both humans and animals. Despite a growing need for well-understood models for evaluating adipogenic and potential obesogenic contaminants, there has been a reliance on decades-old in vitro models that have not been appropriately managed by cell line providers. There has been a quick rise in available in vitro models in the last ten years, including commercial availability of human mesenchymal stem cell and preadipocyte models; these models require more comprehensive validation but demonstrate real promise in improved translation to human metabolic health. There is also progress in developing three-dimensional and co-culture techniques that allow for the interrogation of a more physiologically relevant state. While diverse rodent models exist for evaluating putative obesogenic and/or adipogenic chemicals in a physiologically relevant context, increasing capabilities have been identified for alternative model organisms such as Drosophila, C. elegans, zebrafish, and medaka in metabolic health testing. These models have several appreciable advantages, including most notably their size, rapid development, large brood sizes, and ease of high-resolution lipid accumulation imaging throughout the organisms. They are anticipated to expand the capabilities of metabolic health research, particularly when coupled with emerging obesogen evaluation techniques as described herein.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States.
| | - Frederick S Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, United States
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Helene Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Nicole Mohajer
- Department of Developmental and Cell Biology, The University of California, Irvine, Irvine CA 92697, United States
| | - Antoine Legrand
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Corinne Martin-Chouly
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Normand Podechard
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Charbel Touma
- Univ Rennes, Inserm, EHESP, Irset (Research Institute for Environmental and Occupational Health) - UMR_S 1085, 35 000 Rennes, France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, Paris, France
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Nitya Shree
- Department of Pharmaceutical Sciences, Texas A & M University, College Station, TX 77843, United States
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, ACT, 2611, Australia
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| |
Collapse
|
30
|
Jawahar J, McCumber AW, Lickwar CR, Amoroso CR, de la Torre Canny SG, Wong S, Morash M, Thierer JH, Farber SA, Bohannan BJM, Guillemin K, Rawls JF. Starvation causes changes in the intestinal transcriptome and microbiome that are reversed upon refeeding. BMC Genomics 2022; 23:225. [PMID: 35317738 PMCID: PMC8941736 DOI: 10.1186/s12864-022-08447-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ability of animals and their microbiomes to adapt to starvation and then restore homeostasis after refeeding is fundamental to their continued survival and symbiosis. The intestine is the primary site of nutrient absorption and microbiome interaction, however our understanding of intestinal adaptations to starvation and refeeding remains limited. Here we used RNA sequencing and 16S rRNA gene sequencing to uncover changes in the intestinal transcriptome and microbiome of zebrafish subjected to long-term starvation and refeeding compared to continuously fed controls. RESULTS Starvation over 21 days led to increased diversity and altered composition in the intestinal microbiome compared to fed controls, including relative increases in Vibrio and reductions in Plesiomonas bacteria. Starvation also led to significant alterations in host gene expression in the intestine, with distinct pathways affected at early and late stages of starvation. This included increases in the expression of ribosome biogenesis genes early in starvation, followed by decreased expression of genes involved in antiviral immunity and lipid transport at later stages. These effects of starvation on the host transcriptome and microbiome were almost completely restored within 3 days after refeeding. Comparison with published datasets identified host genes responsive to starvation as well as high-fat feeding or microbiome colonization, and predicted host transcription factors that may be involved in starvation response. CONCLUSIONS Long-term starvation induces progressive changes in microbiome composition and host gene expression in the zebrafish intestine, and these changes are rapidly reversed after refeeding. Our identification of bacterial taxa, host genes and host pathways involved in this response provides a framework for future investigation of the physiological and ecological mechanisms underlying intestinal adaptations to food restriction.
Collapse
Affiliation(s)
- Jayanth Jawahar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alexander W McCumber
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Caroline R Amoroso
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - Sol Gomez de la Torre Canny
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sandi Wong
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Margaret Morash
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - James H Thierer
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
31
|
Guru A, Velayutham M, Arockiaraj J. Lipid-Lowering and Antioxidant Activity of RF13 Peptide From Vacuolar Protein Sorting-Associated Protein 26B (VPS26B) by Modulating Lipid Metabolism and Oxidative Stress in HFD Induced Obesity in Zebrafish Larvae. Int J Pept Res Ther 2022; 28:74. [DOI: 10.1007/s10989-022-10376-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 01/30/2022] [Indexed: 12/28/2022]
|
32
|
Kassotis CD, LeFauve MK, Chiang YTT, Knuth MM, Schkoda S, Kullman SW. Nonylphenol Polyethoxylates Enhance Adipose Deposition in Developmentally Exposed Zebrafish. TOXICS 2022; 10:99. [PMID: 35202285 PMCID: PMC8879477 DOI: 10.3390/toxics10020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/05/2022]
Abstract
Alkylphenol polyethoxylates (APEOs), such as nonylphenol ethoxylates (NPEOs), are high-production-volume surfactants used in laundry detergents, hard-surface cleaners, pesticide formulations, textile production, oils, paints, and other products. NPEOs comprise -80% of the total production of APEOs and are widely reported across diverse environmental matrices. Despite a growing push for replacement products, APEOs continue to be released into the environment through wastewater at significant levels. Research into related nonionic surfactants from varying sources has reported metabolic health impacts, and we have previously demonstrated that diverse APEOs and alcohol polyethoxylates promote adipogenesis in the murine 3T3-L1 pre-adipocyte model. These effects appeared to be independent of the base alkylphenol and related to the ethoxylate chain length, though limited research has evaluated NPEO exposures in animal models. The goals of this study were to assess the potential of NPEOs to promote adiposity (Nile red fluorescence quantification) and alter growth and/or development (toxicity, length, weight, and energy expenditure) of developmentally exposed zebrafish (Danio rerio). We also sought to expand our understanding of the ability to promote adiposity through evaluation in human mesenchymal stem cells. Herein, we demonstrated consistent adipogenic effects in two separate human bone-marrow-derived mesenchymal stem cell models, and that nonylphenol and its ethoxylates promoted weight gain and increased adipose deposition in developmentally exposed zebrafish. Notably, across both cell and zebrafish models we report increasing adipogenic/obesogenic activity with increasing ethoxylate chain lengths up to maximums around NPEO-6 and then decreasing activity with the longest ethoxylate chain lengths. This research suggests metabolic health concerns for these common obesogens, suggesting further need to assess molecular mechanisms and better characterize environmental concentrations for human health risk assessments.
Collapse
Affiliation(s)
- Christopher D. Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA; (M.K.L.); (Y.-T.T.C.)
| | - Matthew K. LeFauve
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA; (M.K.L.); (Y.-T.T.C.)
| | - Yu-Ting Tiffany Chiang
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA; (M.K.L.); (Y.-T.T.C.)
| | - Megan M. Knuth
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA;
- Department of Genetics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Stacy Schkoda
- Toxicology Program, North Carolina State University, Raleigh, NC 27695, USA; (S.S.); (S.W.K.)
| | - Seth W. Kullman
- Toxicology Program, North Carolina State University, Raleigh, NC 27695, USA; (S.S.); (S.W.K.)
| |
Collapse
|
33
|
Wu A, Yu Q, Lu H, Lou Z, Zhao Y, Luo T, Fu Z, Jin Y. Developmental toxicity of procymidone to larval zebrafish based on physiological and transcriptomic analysis. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109081. [PMID: 34004283 DOI: 10.1016/j.cbpc.2021.109081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022]
Abstract
As a broad-spectrum with low toxicity, procymidone (PCM), is widely used in agriculture and frequently observed in aquatic system, which may cause some impacts on aquatic organisms. Here, to determine the developmental toxicity of PCM, embryonic and larval zebrafish were exposed to PCM at 0, 1, 10, 100 μg/L in dehydrogenated natural water containing 0.01% acetone for 7 days. The results showed that high concentration of PCM could cause the pericardial edema and increase the heart rates in larval zebrafish, suggesting that PCM had developmental toxicity to zebrafish. We also observed that PCM exposure not only changed the physiological parameters including TBA, GLU and pyruvic acid, but also changed the transcriptional levels of glycolipid metabolism related genes. In addition, after transcriptomics analysis, a total of 1065 differentially expressed genes, including 456 up-regulated genes and 609 down-regulated genes, changed significantly in 100 μg/L PCM treated larval zebrafish. Interestingly, after GO (Gene Ontology) analysis, the different expression genes (DEGs) were mainly enriched to the three different biology processes including GABA-nervous, lipid Metabolism and response to drug. We also observed that the levels of GABA receptor related genes including gabrg2, gabbr1α, gabbr1 and gabra6α were inhibited by PCM exposure. Interestingly, the swimming distance of larval zebrafish had the tendency to decrease after PCM exposure, indicating that the nervous system was affected by PCM. Taken together, the results confirmed that the fungicide PCM could cause developmental toxicity by influencing the lipid metabolism and GABA mediated nervous system and behavior in larval zebrafish. We believed that the results could provide an important data for the influence of PCM on aquatic animals.
Collapse
Affiliation(s)
- Anyi Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qianxuan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huahui Lu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ze Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
34
|
Lepanto P, Levin-Ferreyra F, Koziol U, Malacrida L, Badano JL. Insights into in vivo adipocyte differentiation through cell-specific labeling in zebrafish. Biol Open 2021; 10:271875. [PMID: 34409430 PMCID: PMC8443861 DOI: 10.1242/bio.058734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
White adipose tissue hyperplasia has been shown to be crucial for handling excess energy in healthy ways. Though adipogenesis mechanisms have been underscored in vitro, we lack information on how tissue and systemic factors influence the differentiation of new adipocytes. While this could be studied in zebrafish, adipocyte identification currently relies on neutral lipid labeling, thus precluding access to cells in early stages of differentiation. Here we report the generation and analysis of a zebrafish line with the transgene fabp4a(-2.7):EGFPcaax. In vivo confocal microscopy of the pancreatic and abdominal visceral depots of transgenic larvae, revealed the presence of labeled mature adipocytes as well as immature cells in earlier stages of differentiation. Through co-labeling for blood vessels, we observed a close interaction of differentiating adipocytes with endothelial cells through cell protrusions. Finally, we implemented hyperspectral imaging and spectral phasor analysis in Nile Red-labeled transgenic larvae and revealed the lipid metabolic transition towards neutral lipid accumulation of differentiating adipocytes. Altogether our work presents the characterization of a novel adipocyte-specific label in zebrafish and uncovers previously unknown aspects of in vivo adipogenesis. This article has an associated First Person interview with the first author of the paper. Summary: Analysis of the differentiation of adipocytes in vivo through cell-specific labeling in zebrafish, revealed their early interaction with blood vessels as well as early lipid metabolic changes.
Collapse
Affiliation(s)
- Paola Lepanto
- Human Molecular Genetics Lab, Institut Pasteur de Montevideo, Montevideo, Mataojo 2020, CP11400, Uruguay
| | - Florencia Levin-Ferreyra
- Human Molecular Genetics Lab, Institut Pasteur de Montevideo, Montevideo, Mataojo 2020, CP11400, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Igua 4225, CP11400, Uruguay
| | - Leonel Malacrida
- Advanced Bioimaging Unit, Institut Pasteur de Montevideo and Universidad de la República, Montevideo, Mataojo 2020, CP11400, Uruguay.,Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Av. Italia s/n, CP11600, Uruguay
| | - José L Badano
- Human Molecular Genetics Lab, Institut Pasteur de Montevideo, Montevideo, Mataojo 2020, CP11400, Uruguay
| |
Collapse
|
35
|
Sonochemical synthesis of rosuvastatin based novel 3-methyleneisoindolin-1-one derivatives as potential anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
O'Gorman M, Thakur S, Imrie G, Moran RL, Choy S, Sifuentes-Romero I, Bilandžija H, Renner KJ, Duboué E, Rohner N, McGaugh SE, Keene AC, Kowalko JE. Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Curr Biol 2021; 31:3694-3701.e4. [PMID: 34293332 DOI: 10.1016/j.cub.2021.06.077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/22/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
Adaptation to novel environments often involves the evolution of multiple morphological, physiological, and behavioral traits. One striking example of multi-trait evolution is the suite of traits that has evolved repeatedly in cave animals, including regression of eyes, loss of pigmentation, and enhancement of non-visual sensory systems.1,2 The Mexican tetra, Astyanax mexicanus, consists of fish that inhabit at least 30 caves in Mexico and ancestral-like surface fish that inhabit the rivers of Mexico and southern Texas.3 Cave A. mexicanus are interfertile with surface fish and have evolved a number of traits, including reduced pigmentation, eye loss, and alterations to behavior.4-6 To define relationships between different cave-evolved traits, we phenotyped 208 surface-cave F2 hybrid fish for numerous morphological and behavioral traits. We found differences in sleep between pigmented and albino hybrid fish, raising the possibility that these traits share a genetic basis. In cavefish and other species, mutations in oculocutaneous albinism 2 (oca2) cause albinism.7-12 Surface fish with mutations in oca2 displayed both albinism and reduced sleep. Further, this mutation in oca2 fails to complement sleep loss when surface fish harboring this engineered mutation are crossed to independently evolved populations of albino cavefish with naturally occurring mutations in oca2. Analysis of the oca2 locus in wild-caught cave and surface fish suggests that oca2 is under positive selection in 3 cave populations. Taken together, these findings identify oca2 as a novel regulator of sleep and suggest that a pleiotropic function of oca2 underlies the adaptive evolution of albinism and sleep loss.
Collapse
Affiliation(s)
- Morgan O'Gorman
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Sunishka Thakur
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Gillian Imrie
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Rachel L Moran
- Department of Ecology, Evolution, and Behavior. University of Minnesota, St. Paul, MN 55108, USA
| | - Stefan Choy
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
| | | | - Helena Bilandžija
- Department of Molecular Biology, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Erik Duboué
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | | | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior. University of Minnesota, St. Paul, MN 55108, USA
| | - Alex C Keene
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Department of Biology Science, Florida Atlantic University, Jupiter, FL 33458, USA.
| | - Johanna E Kowalko
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, FL 33458, USA; Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA.
| |
Collapse
|
37
|
Ivanovics B, Gazsi G, Reining M, Berta I, Poliska S, Toth M, Domokos A, Nagy B, Staszny A, Cserhati M, Csosz E, Bacsi A, Csenki-Bakos Z, Acs A, Urbanyi B, Czimmerer Z. Embryonic exposure to low concentrations of aflatoxin B1 triggers global transcriptomic changes, defective yolk lipid mobilization, abnormal gastrointestinal tract development and inflammation in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125788. [PMID: 33838512 DOI: 10.1016/j.jhazmat.2021.125788] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxin B1-contaminated feeds and foods induce various health problems in domesticated animals and humans, including tumor development and hepatotoxicity. Aflatoxin B1 also has embryotoxic effects in different livestock species and humans. However, it is difficult to distinguish between the indirect, maternally-mediated toxic effects and the direct embryotoxicity of aflatoxin B1 in mammals. In the present study, we investigated the aflatoxin B1-induced direct embryotoxic effects in a zebrafish embryo model system combining toxicological, transcriptomic, immunological, and biochemical approaches. Embryonic exposure to aflatoxin B1 induced significant changes at the transcriptome level resulting in elevated expression of inflammatory gene network and repression of lipid metabolism and gastrointestinal tract development-related gene sets. According to the gene expression changes, massive neutrophil granulocyte influx, elevated nitric oxide production, and yolk lipid accumulation were observed in the abdominal region of aflatoxin B1-exposed larvae. In parallel, aflatoxin B1-induced defective gastrointestinal tract development and reduced L-arginine level were found in our model system. Our results revealed the complex direct embryotoxic effects of aflatoxin B1, including inhibited lipid utilization, defective intestinal development, and inflammation.
Collapse
Affiliation(s)
- Bence Ivanovics
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Gyongyi Gazsi
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Marta Reining
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Izabella Berta
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marta Toth
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Apolka Domokos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; Molecular Cell and Immunobiology Doctoral School, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary
| | - Bela Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Adam Staszny
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Matyas Cserhati
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Eva Csosz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Bacsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsolt Csenki-Bakos
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Andras Acs
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary
| | - Bela Urbanyi
- Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, H-2100 Godollo, Hungary.
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| |
Collapse
|
38
|
Bootorabi F, Saadat F, Falak R, Manouchehri H, Changizi R, Mohammadi H, Safavifar F, Khorramizadeh MR. Gut micobiota alteration by Lactobacillus rhamnosus reduces pro-inflammatory cytokines and glucose level in the adult model of Zebrafish. BMC Res Notes 2021; 14:302. [PMID: 34372916 PMCID: PMC8351095 DOI: 10.1186/s13104-021-05706-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) is still a challenge for physicians to manage patient’s circumstances. It is assumed that alterations in the normal flora may be involved in the pathogenesis of T2DM through inducing chronic inflammation. To investigate the effect of Lactobacillus rhamnosus as a common probiotic on T2DM, we induced an experimental model of T2DM in adult male Zebrafish by gradient hyper-glucose accumulation methodology. Results In this trial 3-month old male adult Zebrafish were divided in to four groups including two control groups and T2DM induced groups with or without probiotic treatment. After 5 days of acclimation, T2DM was induced by a gradient hyper-glucose accumulation methodology. Diabetic fishes had statistically abnormal blood glucose and pro-inflammatory cytokine levels compared to control group (p = 0.0001). These results suggest that probiotic intervention decreased the blood glucose level in the T2DM-P group by decreasing pro-inflammatory cytokines responsible for signaling in T2DM therapeutic modalities. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05706-5.
Collapse
Affiliation(s)
- Fatemeh Bootorabi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran
| | - Farshid Saadat
- Department of Immunology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Manouchehri
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Reza Changizi
- Department of Aquaculture, Babol Branch of Islamic Azad University, 47134, Babol, Iran
| | - Hasan Mohammadi
- Zebrafish Core Facility, Endocrinology and Metabolism Research Institute (EMRI), Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Safavifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Endocrinology and Metabolism Research Institute (EMRI), Next to Dr. Shariati Hospital,#10 Jalal Al-E-Ahmad Expy, 1411713119, Tehran, Iran. .,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Nogueira N, Canada P, Caboz J, Andrade C, Cordeiro N. Effect of different levels of synthetic astaxanthin on growth, skin color and lipid metabolism of commercial sized red porgy (Pagrus pagrus). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Zebrafish and Flavonoids: Adjuvants against Obesity. Molecules 2021; 26:molecules26103014. [PMID: 34069388 PMCID: PMC8158719 DOI: 10.3390/molecules26103014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity is a pathological condition, defined as an excessive accumulation of fat, primarily caused by an energy imbalance. The storage of excess energy in the form of triglycerides within the adipocyte leads to lipotoxicity and promotes the phenotypic switch in the M1/M2 macrophage. These changes induce the development of a chronic state of low-grade inflammation, subsequently generating obesity-related complications, commonly known as metabolic syndromes. Over the past decade, obesity has been studied in many animal models. However, due to its competitive aspects and unique characteristics, the use of zebrafish has begun to gain traction in experimental obesity research. To counteract obesity and its related comorbidities, several natural substances have been studied. One of those natural substances reported to have substantial biological effects on obesity are flavonoids. This review summarizes the results of studies that examined the effects of flavonoids on obesity and related diseases and the emergence of zebrafish as a model of diet-induced obesity.
Collapse
|
41
|
Ambient temperature regulates uncoupling protein 1 expression but fails to induce adipocyte browning in zebrafish. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00580-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Sant KE, Annunziato K, Conlin S, Teicher G, Chen P, Venezia O, Downes GB, Park Y, Timme-Laragy AR. Developmental exposures to perfluorooctanesulfonic acid (PFOS) impact embryonic nutrition, pancreatic morphology, and adiposity in the zebrafish, Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116644. [PMID: 33581636 PMCID: PMC8101273 DOI: 10.1016/j.envpol.2021.116644] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/13/2021] [Accepted: 01/30/2021] [Indexed: 05/17/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent environmental contaminant previously found in consumer surfactants and industrial fire-fighting foams. PFOS has been widely implicated in metabolic dysfunction across the lifespan, including diabetes and obesity. However, the contributions of the embryonic environment to metabolic disease remain uncharacterized. This study seeks to identify perturbations in embryonic metabolism, pancreas development, and adiposity due to developmental and subchronic PFOS exposures and their persistence into later larval and juvenile periods. Zebrafish embryos were exposed to 16 or 32 μM PFOS developmentally (1-5 days post fertilization; dpf) or subchronically (1-15 dpf). Embryonic fatty acid and macronutrient concentrations and expression of peroxisome proliferator-activated receptor (PPAR) isoforms were quantified in embryos. Pancreatic islet morphometry was assessed at 15 and 30 dpf, and adiposity and fish behavior were assessed at 15 dpf. Concentrations of lauric (C12:0) and myristic (C14:0) saturated fatty acids were increased by PFOS at 4 dpf, and PPAR gene expression was reduced. Incidence of aberrant islet morphologies, principal islet areas, and adiposity were increased in 15 dpf larvae and 30 dpf juvenile fish. Together, these data suggest that the embryonic period is a susceptible window of metabolic programming in response to PFOS exposures, and that these early exposures alone can have persisting effects later in the lifecourse.
Collapse
Affiliation(s)
- Karilyn E Sant
- Division of Environmental Health, San Diego State University School of Public Health, San Diego, CA, 92182, USA; Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA.
| | - Kate Annunziato
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Sarah Conlin
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gregory Teicher
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Phoebe Chen
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Olivia Venezia
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| | - Gerald B Downes
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts School of Public Health and Health Sciences, Amherst, MA, 01003, USA
| |
Collapse
|
43
|
Generation of a Novel Transgenic Zebrafish for Studying Adipocyte Development and Metabolic Control. Int J Mol Sci 2021; 22:ijms22083994. [PMID: 33924375 PMCID: PMC8069137 DOI: 10.3390/ijms22083994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/10/2023] Open
Abstract
Zebrafish have become a popular animal model for studying various biological processes and human diseases. The metabolic pathways and players conserved among zebrafish and mammals facilitate the use of zebrafish to understand the pathological mechanisms underlying various metabolic disorders in humans. Adipocytes play an important role in metabolic homeostasis, and zebrafish adipocytes have been characterized. However, a versatile and reliable zebrafish model for long-term monitoring of adipose tissues has not been reported. In this study, we generated stable transgenic zebrafish expressing enhanced green fluorescent protein (EGFP) in adipocytes. The transgenic zebrafish harbored adipose tissues that could be detected using GFP fluorescence and the morphology of single adipocyte could be investigated in vivo. In addition, we demonstrated the applicability of this model to the long-term in vivo imaging of adipose tissue development and regulation based on nutrition. The transgenic zebrafish established in this study may serve as an excellent tool to advance the characterization of white adipose tissue in zebrafish, thereby aiding the development of therapeutic interventions to treat metabolic diseases in humans.
Collapse
|
44
|
Inhibition of Intestinal Lipid Absorption by Cyanobacterial Strains in Zebrafish Larvae. Mar Drugs 2021; 19:md19030161. [PMID: 33803803 PMCID: PMC8003170 DOI: 10.3390/md19030161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity is a complex metabolic disease, which is increasing worldwide. The reduction of dietary lipid intake is considered an interesting pathway to reduce fat absorption and to affect the chronic energy imbalance. In this study, zebrafish larvae were used to analyze effects of cyanobacteria on intestinal lipid absorption in vivo. In total, 263 fractions of a cyanobacterial library were screened for PED6 activity, a fluorescent reporter of intestinal lipases, and 11 fractions reduced PED6 activity > 30%. Toxicity was not observed for those fractions, considering mortality, malformations or digestive physiology (protease inhibition). Intestinal long-chain fatty acid uptake (C16) was reduced, but not short-chain fatty acid uptake (C5). Alteration of lipid classes by high-performance thin-layer chromatography (HPTLC) or lipid processing by fluorescent HPTLC was analyzed, and 2 fractions significantly reduced the whole-body triglyceride level. Bioactivity-guided feature-based molecular networking of LC-MS/MS data identified 14 significant bioactive mass peaks (p < 0.01, correlation > 0.95), which consisted of 3 known putative and 11 unknown compounds. All putatively identified compounds were known to be involved in lipid metabolism and obesity. Summarizing, some cyanobacterial strains repressed intestinal lipid absorption without any signs of toxicity and could be developed in the future as nutraceuticals to combat obesity.
Collapse
|
45
|
Zebrafish as an animal model for biomedical research. Exp Mol Med 2021; 53:310-317. [PMID: 33649498 PMCID: PMC8080808 DOI: 10.1038/s12276-021-00571-5] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish have several advantages compared to other vertebrate models used in modeling human diseases, particularly for large-scale genetic mutant and therapeutic compound screenings, and other biomedical research applications. With the impactful developments of CRISPR and next-generation sequencing technology, disease modeling in zebrafish is accelerating the understanding of the molecular mechanisms of human genetic diseases. These efforts are fundamental for the future of precision medicine because they provide new diagnostic and therapeutic solutions. This review focuses on zebrafish disease models for biomedical research, mainly in developmental disorders, mental disorders, and metabolic diseases.
Collapse
|
46
|
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M. Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. CHEMOSPHERE 2021; 238:124584. [PMID: 33032226 DOI: 10.1016/j.chemosphere.2019.124584] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 05/22/2023]
Abstract
A wide variety of anthropogenic chemicals is detected in humans and wildlife and the health effects of various chemical exposures are not well understood. Early life stages are generally the most susceptible to chemical disruption and developmental exposure can cause disease in adulthood, but the mechanistic understanding of such effects is poor. Within the EU project EDC-MixRisk, a chemical mixture (Mixture G) was identified in the Swedish pregnancy cohort SELMA by the inverse association between levels in women at around gestational week ten with birth weight of their children. This mixture was composed of mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mono-isononyl phthalate, triclosan, perfluorohexane sulfonate, perfluorooctanoic acid, and perfluorooctane sulfonate. In a series of experimental studies, we characterized effects of Mixture G on early development in zebrafish models. Here, we studied apoptosis and Wnt/β-catenin signaling which are two evolutionarily conserved signaling pathways of crucial importance during development. We determined effects on apoptosis by measuring TUNEL staining, caspase-3 activity, and acridine orange staining in wildtype zebrafish embryos, while Wnt/β-catenin signaling was assayed using a transgenic line expressing an EGFP reporter at β-catenin-regulated promoters. We found that Mixture G increased apoptosis, suppressed Wnt/β-catenin signaling in the caudal fin, and altered the shape of the caudal fin at water concentrations only 20-100 times higher than the geometric mean serum concentration in the human cohort. These findings call for awareness that pollutant mixtures like mixture G may interfere with a variety of developmental processes, possibly resulting in adverse health effects.
Collapse
Affiliation(s)
- Anna Smirnova
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Petter Ranefall
- SciLifeLab BioImage Informatics Facility, and Dept of Information Technology, Uppsala University, Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
47
|
Cai L, Liu G, Wei Y, Zhu Y, Li J, Miao Z, Chen M, Yue Z, Yu L, Dong Z, Ye H, Sun W, Huang R. Whole-genome sequencing reveals sex determination and liver high-fat storage mechanisms of yellowstripe goby (Mugilogobius chulae). Commun Biol 2021; 4:15. [PMID: 33398077 PMCID: PMC7782490 DOI: 10.1038/s42003-020-01541-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
As a promising novel marine fish model for future research on marine ecotoxicology as well as an animal model of human disease, the genome information of yellowstripe goby (Mugilogobius chulae) remains unknown. Here we report the first annotated chromosome-level reference genome assembly for yellowstripe goby. A 20.67-cM sex determination region was discovered on chromosome 5 and seven potential sex-determining genes were identified. Based on combined genome and transcriptome data, we identified three key lipid metabolic pathways for high-fat accumulation in the liver of yellowstripe goby. The changes in the expression patterns of MGLL and CPT1 at different development stage of the liver, and the expansion of the ABCA1 gene, innate immune gene TLR23, and TRIM family genes may help in balancing high-fat storage in hepatocytes and steatohepatitis. These results may provide insights into understanding the molecular mechanisms of sex determination and high-fat storage in the liver of marine fishes.
Collapse
Affiliation(s)
- Lei Cai
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Guocheng Liu
- grid.21155.320000 0001 2034 1839BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yuanzheng Wei
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yabing Zhu
- grid.21155.320000 0001 2034 1839BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jianjun Li
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zongyu Miao
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Meili Chen
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhen Yue
- grid.21155.320000 0001 2034 1839BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lujun Yu
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhensheng Dong
- grid.21155.320000 0001 2034 1839BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Huixin Ye
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Wenjing Sun
- grid.21155.320000 0001 2034 1839BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ren Huang
- grid.464317.3Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
48
|
Wang T, Dai MZ, Liu FS, Cao BB, Guo J, Shen JQ, Li CQ. Probiotics Modulate Intestinal Motility and Inflammation in Zebrafish Models. Zebrafish 2020; 17:382-393. [PMID: 33232637 DOI: 10.1089/zeb.2020.1877] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study was aimed to assess effects of three strains of probiotics Lactobacillus acidophilus NCFM, Lactobacillus rhamnosus HN001, and Bifidobacterium animalis subsp. lactis Bi-07 on the intestinal motility and inflammation in the zebrafish models. The intestinal motility model was established using 5 days postfertilization (dpf) zebrafish administered with a fluorescent dye Nile red at 10 ng/mL for 16 h, followed by probiotics treatment for 24 h and the intestinal motility was inversely proportional to the intestinal fluorescence intensity that was quantitatively measured by image analysis. The intestinal inflammation was induced by treating 3 dpf neutrophil fluorescent zebrafish with 0.0125% of trinitrobenzenesulfonic acid for 48 h. Probiotics were administered at low, moderate, and high concentrations determined based on maximum tolerable concentration through soaking. All three strains of probiotics promoted intestinal movement, of which B. animalis subsp. lactis Bi-07 was most potent at lower concentrations. L. rhamnosus HN001 and B. animalis subsp. lactis Bi-07 had the therapeutic effects on the intestinal inflammation and the inflammation-associated mucosal damage recovery. The anti-inflammatory mechanisms of L. rhamnosus HN001 was related to both reduce inflammatory factor interleukin-6 (IL-6) and restored tissue repair factor transforming growth factor-β-1 (TGFβ-1); whereas B. animalis subsp. lactis Bi-07 was probably only associated with TGFβ-1 elevation. Using larval zebrafish models for probiotics screening and assessment would speed up product research and development and improve products' efficacy and quality.
Collapse
Affiliation(s)
- Tao Wang
- Infinitus (China) Company Ltd., Guangzhou, China
| | | | | | | | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Ja-Qi Shen
- Hunter Biotechnology, Inc., Hangzhou, China
| | - Chun-Qi Li
- Hunter Biotechnology, Inc., Hangzhou, China.,Zhejiang Provincial Key Laboratory for the Safety Evaluation Technology of Health Products, Zhejiang Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
49
|
Martínez R, Codina AE, Barata C, Tauler R, Piña B, Navarro-Martín L. Transcriptomic effects of tributyltin (TBT) in zebrafish eleutheroembryos. A functional benchmark dose analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122881. [PMID: 32474318 DOI: 10.1016/j.jhazmat.2020.122881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Exposure to the antifouling tributyltin (TBT) has been related to imposex in mollusks and to obesogenicity, adipogenesis and masculinization in fish. To understand the underlying molecular mechanisms, we evaluated dose-response effects of TBT (1.7-56 nM) in zebrafish eleutheroembryos transcriptome exposed from 2 to 5 days post-fertilization. RNA-sequencing analysis identified 3238 differentially expressed transcripts in eleutheroembryos exposed to TBT. Benchmark dose analyses (BMD) showed that the point of departure (PoD) for transcriptomic effects (9.28 nM) was similar to the metabolomic PoD (11.5 nM) and about one order of magnitude lower than the morphometric PoD (67.9 nM) or the median lethal concentration (LC50: 93.6 nM). Functional analysis of BMD transcriptomic data identified steroid metabolism and cholesterol and vitamin D3 biosynthesis as the most sensitive pathways to TBT (<50% PoD). Conversely, transcripts related to general stress and DNA damage became affected only at doses above the PoD. Therefore, our results indicate that transcriptomes can act as early molecular indicators of pollutant exposure, and illustrates their usefulness for the mechanistic identification of the initial toxic events. As the estimated molecular PoDs are close to environmental levels, we concluded that TBT may represent a substantial risk in some natural environments.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya 08007, Spain.
| | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Romà Tauler
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
50
|
Landgraf K, Klöting N, Gericke M, Maixner N, Guiu-Jurado E, Scholz M, Witte AV, Beyer F, Schwartze JT, Lacher M, Villringer A, Kovacs P, Rudich A, Blüher M, Kiess W, Körner A. The Obesity-Susceptibility Gene TMEM18 Promotes Adipogenesis through Activation of PPARG. Cell Rep 2020; 33:108295. [PMID: 33086065 DOI: 10.1016/j.celrep.2020.108295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 01/14/2023] Open
Abstract
TMEM18 is the strongest candidate for childhood obesity identified from GWASs, yet as for most GWAS-derived obesity-susceptibility genes, the functional mechanism remains elusive. We here investigate the relevance of TMEM18 for adipose tissue development and obesity. We demonstrate that adipocyte TMEM18 expression is downregulated in children with obesity. Functionally, downregulation of TMEM18 impairs adipocyte formation in zebrafish and in human preadipocytes, indicating that TMEM18 is important for adipocyte differentiation in vivo and in vitro. On the molecular level, TMEM18 activates PPARG, particularly upregulating PPARG1 promoter activity, and this activation is repressed by inflammatory stimuli. The relationship between TMEM18 and PPARG1 is also evident in adipocytes of children and is clinically associated with obesity and adipocyte hypertrophy, inflammation, and insulin resistance. Our findings indicate a role of TMEM18 as an upstream regulator of PPARG signaling driving healthy adipogenesis, which is dysregulated with adipose tissue dysfunction and obesity.
Collapse
Affiliation(s)
- Kathrin Landgraf
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany.
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Martin Gericke
- Institute of Anatomy, University of Leipzig, Leipzig 04103, Germany
| | - Nitzan Maixner
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Esther Guiu-Jurado
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig 04103, Germany; LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig 04103, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Julian T Schwartze
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig 04103, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig 04103, Germany; Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig 04103, Germany
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig (CPL), Hospital for Children & Adolescents, University of Leipzig, Leipzig 04103, Germany.
| |
Collapse
|