1
|
Xiong S. Gut-Microbiota-Driven Lipid Metabolism: Mechanisms and Applications in Swine Production. Metabolites 2025; 15:248. [PMID: 40278377 PMCID: PMC12029090 DOI: 10.3390/metabo15040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: The gut microbiota plays a pivotal role in host physiology through metabolite production, with lipids serving as essential biomolecules for cellular structure, metabolism, and signaling. This review aims to elucidate the interactions between gut microbiota and lipid metabolism and their implications for enhancing swine production. Methods: We systematically analyzed current literature on microbial lipid metabolism, focusing on mechanistic studies on microbiota-lipid interactions, key regulatory pathways in microbial lipid metabolism, and multi-omics evidence (metagenomic/metabolomic) from swine models. Results: This review outlines the structural and functional roles of lipids in bacterial membranes and examines the influence of gut microbiota on the metabolism of key lipid classes, including cholesterol, bile acids, choline, sphingolipids, and fatty acids. Additionally, we explore the potential applications of microbial lipid metabolism in enhancing swine production performance. Conclusions: Our analysis establishes a scientific framework for microbiota-based strategies to optimize lipid metabolism. The findings highlight potential interventions to improve livestock productivity through targeted manipulation of gut microbial communities.
Collapse
Affiliation(s)
- Shuqi Xiong
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Francini E, Badillo Pazmay GV, Fumarola S, Procopio AD, Olivieri F, Marchegiani F. Bi-Directional Relationship Between Bile Acids (BAs) and Gut Microbiota (GM): UDCA/TUDCA, Probiotics, and Dietary Interventions in Elderly People. Int J Mol Sci 2025; 26:1759. [PMID: 40004221 PMCID: PMC11855466 DOI: 10.3390/ijms26041759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota (GM), the set of microorganisms that colonizes our intestinal tract, can undergo many changes, some of which are age related. Several studies have shown the importance of maintaining a healthy GM for a good quality of life. In the elderly, maintaining a good GM may become a real defense against infection by pathogens, such as C. difficile. In addition to the GM, bile acids (BAs) have been shown to provide an additional defense mechanism against the proliferation of pathogenic bacteria and to regulate bacterial colonization of the gut. BAs are molecules produced in the host liver and secreted with the bile into the digestive tract, and they are necessary for the digestion of dietary lipids. In the gut, host-produced BAs are metabolized by commensal bacteria to secondary BAs. In general GM and host organisms interact in many ways. This review examines the relationship between GM, BAs, aging, and possible new approaches such as dietary interventions, administration of ursodesoxycholic acid/tauroursodesoxycholic acid (UDCA/TUDCA), and probiotics to enrich the microbial consortia of the GM in the elderly and achieve a eubiotic state necessary for maintaining good health. The presence of Firmicutes and Actinobacteria together with adequate levels of secondary BAs would provide protection and improve the frailty state in the elderly. In fact, an increase in secondary BAs has been observed in centenarians who have reached old age without serious health issues, which may justify their active role in achieving longevity.
Collapse
Affiliation(s)
- Emanuele Francini
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| | - Gretta V. Badillo Pazmay
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Stefania Fumarola
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
| | - Antonio Domenico Procopio
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Fabiola Olivieri
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy; (G.V.B.P.); (S.F.); (F.O.)
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Francesca Marchegiani
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy; (E.F.); (A.D.P.)
| |
Collapse
|
3
|
Li J, Zhang C, Wang Y, Tian M, Xie C, Hu H. Research progress on the synthesis process, detection method, pharmacological effects and application of glycocholic acid. Front Pharmacol 2025; 15:1492070. [PMID: 39830334 PMCID: PMC11739089 DOI: 10.3389/fphar.2024.1492070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This review aims to summarize the research progress of glycocholic acid to promote its broader development and application. Methods This article collects relevant literature from databases such as Science Direct, PubMed, Web of Science, Google Scholar and CNKI from the establishment to 2024, systematically organizing and analyzing aspects of glycocholic acid including its physicochemical properties, synthesis and extraction techniques, detection methods, pharmacological effects, mechanisms of action, clinical research, and application as an excipient. Results Glycocholic acid, as a key conjugated component in bile acids, exhibits various pharmacological effects such as anti-inflammatory and antioxidant activities. Nevertheless, current research on glycocholic acid is insufficient, with synthesis techniques requiring improvement, limited application of detection technologies, and a need for in-depth exploration of its pharmacological mechanisms. Due to its amphiphilic molecular structure, glycocholic acid is primarily used as a pharmaceutical excipient. Conclusion This review summarizes the existing research on glycocholic acid, indicating that future research should strengthen work in this field, including improving synthesis processes and enhancing the sensitivity of detection technologies, to provide a scientific basis for the development of new formulations and drug combinations, thereby promoting the advancement of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiahui Li
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chungang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, China
- Qimeng Co., Ltd., Chifeng, China
| | - Yang Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Minyuan Tian
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chao Xie
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Heng Hu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
4
|
Zhang ZY, Guo XL, Liu JTY, Gu YJ, Ji XW, Zhu S, Xie JY, Guo F. Conjugated bile acids alleviate acute pancreatitis through inhibition of TGR5 and NLRP3 mediated inflammation. J Transl Med 2024; 22:1124. [PMID: 39707318 DOI: 10.1186/s12967-024-05922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION Severe acute pancreatitis (SAP) is a crucial gastrointestinal disease characterized by systemic inflammatory responses and persistent multiple organ failure. The role of bile acids (BAs) in diverse inflammatory diseases is increasingly recognized as crucial, but the underlying role of BA conjugation remains elusive. OBJECTIVES Our study aim to investigate the potential role of conjugated bile acids in SAP and reveal the molecular mechanisms underlying its regulatory effects. We hypothesized that taurochenodeoxycholic acid (TCDCA) and glycochenodeoxycholic acid (GCDCA) could protect SAP through inhibiting the activation of NLRP3 inflammasomes via the TGR5 pathway in macrophages. METHODS To test our hypothesis, we used BA-CoA: amino acid N-acyltransferase knockout (Baat-/-) mice and established SAP mouse models using caerulein- and sodium taurocholate- induced. We utilized a range of methods, including pathology sections, qRT-PCR, immunofluorescence, Western blotting, and ELISA, to identify the mechanisms of regulation. RESULTS BA-CoA: Amino acid N-acyltransferase knockout (Baat-/-) mice significantly exacerbated pancreatitis by increasing pancreatic and systemic inflammatory responses and pancreatic damage in SAP mouse models. Moreover, the serum TCDCA levels in Baat-/- mice were lower than those in wild-type (WT) mice with or without SAP, and GCDCA and TCDCA showed stronger anti-inflammatory effects than chenodeoxycholic acid (CDCA) in vitro. TCDCA treatment alleviated SAP in a Takeda G protein-coupled receptor 5 and NOD-like receptor family, pyrin domain containing 3-dependent manner in vivo. Reinforcing our conclusions from the mouse study, clinical SAP patients exhibited decreased serum content of conjugated BAs, especially GCDCA, which was inversely correlated with the severity of systemic inflammatory responses. CONCLUSION Conjugated bile acids significantly inhibit NLRP3 inflammasome activation by activating TGR5 pathway, thereby alleviating pancreatic immunopathology. The results provide new insights into the variability of clinical outcomes and paves the way for developing more effective therapeutic interventions for AP.
Collapse
Affiliation(s)
- Zi-Yi Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiu-Liu Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jing-Tian-Yi Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi-Jie Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Xing-Wei Ji
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shu Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jin-Yan Xie
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China.
| | - Feng Guo
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Wang L, Fan K, Xing R, Yin J, Si X, Zhang H, Huang Y, Chen W. Investigating the Effects of Dietary Bile Acids on Production Performance and Lipid Metabolism in Late-Phase Laying Hens. Animals (Basel) 2024; 14:3554. [PMID: 39765458 PMCID: PMC11672458 DOI: 10.3390/ani14243554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Multiply adverse effects including declines in production performance and excessive fat deposition were noticed with the extension of the laying cycle in hens, which are pertinent to animal welfare and human food safety. This study aimed to investigate the effect of dietary supplementation of bile acids (BAs) on production performance and lipid metabolism in late-phase laying hens. A total of 144 70-week-old hens were distributed into three treatments with eight replicates per treatment, including the basal diet with 0 (Ctrl), 95.01 (Low-BA), and 189.99 mg/kg (High-BA) of porcine BAs, respectively. The test period was from 70 to 75 weeks. The supplementation of BAs did not significantly alter laying performance during the trial, whereas it increased (p < 0.05) the total follicles compared to the Ctrl diet. The eggs from the hens fed the BA diet exhibited increased (p > 0.05) relative weight of eggshell and yolk color than those that consumed the Ctrl diet. There were no significant changes following BA treatment regarding the serum lipid profile. Dietary BA treatment reduced the total triglyceride in livers to different extents, resulting in the decreased diameter and area of vacuoles in liver tissues. The low-dose BA treatment decreased the mRNA levels of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD), while promoting the expression of lipoprotein lipase (LPL) compared to the Ctrl group (both p < 0.05). Of note, the expressions of farnesoid X receptor (FXR), apical sodium-dependent bile acid transporter (ASBT), and ileum bile acid-binding protein (IBABP) were notably downregulated (p < 0.05) by the low-dose BA treatment. Dietary BA treatment had no apparent effects on laying performance, whereas it increased the follicle frequency, eggshell weight, and yolk color. Moreover, a diet containing 95.01 mg/kg of BAs depressed ileal BA resorption and hepatic fatty deposition by reducing lipogenesis and promoting lipolysis, which may have a beneficial effect on the liver in late-phase layers.
Collapse
Affiliation(s)
- Longfei Wang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Kefeng Fan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Ronghui Xing
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Jixue Yin
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Xuemeng Si
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Huaiyong Zhang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium
| | - Yanqun Huang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Wen Chen
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| |
Collapse
|
6
|
Li Y, Luo Y, Wang C, Xu L, Dai X, An Y, He L, Zeng D, Bai Y, Zhang H. VSV infection and LPS treatment alter serum bile acid profiles, bile acid biosynthesis, and bile acid receptors in mice. Microbiol Spectr 2024; 12:e0083624. [PMID: 39287458 PMCID: PMC11537081 DOI: 10.1128/spectrum.00836-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Pathogen infections remain a significant public health problem worldwide. Accumulating evidence regarding the crosstalk between bile acid (BA) metabolism and immune response reveals that BA metabolism regulates host immunity and microbial pathogenesis, making it an attractive target for disease prevention and infection control. However, the effect of infection on circulating BA profiles, the biosynthesis-related enzymes, and their receptors remains to be depicted. Here, we investigated the effect of viral (vesicular stomatitis virus, VSV) and bacterial (lipopolysaccharide, LPS) infections on BA metabolism and signaling. Infection models were successfully established by intraperitoneally injecting VSV and LPS, respectively. VSV and LPS injection significantly changed the circulating BA profiles, with highly increased levels of taurine-conjugated BAs and significant decreases in unconjugated BAs. Consistent with the decreased levels of circulating cholic acid (CA) and chenodeoxycholic acid (CDCA), the expression of BA biosynthesis-related rate-limiting enzymes (Cyp7a1, Cyp27a1, Cyp8b1, and Hsd3b7) were significantly reduced. Furthermore, hepatic and pulmonary BA receptors (BARs) expression varied in different infection models. LPS treatment had an extensive impact on tested hepatic and pulmonary BARs, resulting in the upregulation of TGR5, S1PR2, and VDR, while VSV infection only promoted VDR expression. Our study provides insights into the involvement of BA metabolism in the pathophysiology of infection, which may provide potential clues for targeting BA metabolism and BAR signaling to boost innate immunity and control infection. IMPORTANCE This study focuses on the crosstalk between bile acid (BA) metabolism and immune response in VSV infection and LPS treatment models and depicts the effect of infection on circulating BA profiles, the biosynthesis-related enzymes, and their receptors. These findings provide insights into the effect of infection on BA metabolism and signaling, adding a more comprehensive understanding to the relationship between infection, BA metabolism and immune responses.
Collapse
Affiliation(s)
- Yamei Li
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Yan Luo
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Chao Wang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Lei Xu
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xinhua Dai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Yunfei An
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Lin He
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dongmei Zeng
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yangjuan Bai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, China
| | - Hua Zhang
- Department of Pathology, General Hospital of Western Theater Command, Chengdu, Sichuan, China
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
8
|
Ibrahim MK, Liu CD, Zhang L, Yu X, Kim ES, Liu Z, Jo S, Liu Y, Huang Y, Gao SJ, Guo H. The loss of hepatitis B virus receptor NTCP/SLC10A1 in human liver cancer cells is due to epigenetic silencing. J Virol 2024; 98:e0118724. [PMID: 39297647 PMCID: PMC11495020 DOI: 10.1128/jvi.01187-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Human Na+-taurocholate cotransporting polypeptide (hNTCP) is predominantly expressed in hepatocytes, maintaining bile salt homeostasis and serving as a receptor for hepatitis B virus (HBV). hNTCP expression is downregulated during hepatocellular carcinoma (HCC) development. In this study, we investigated the molecular mechanisms underlying hNTCP dysregulation using HCC tissues and cell lines, and primary human hepatocytes (PHHs). Firstly, we observed a significant reduction of hNTCP in HCC tumors compared to adjacent and normal tissues. Additionally, hNTCP mRNA levels were markedly lower in HepG2 cells compared to PHHs, which was corroborated at the protein level by immunoblotting. Sanger sequencing confirmed identical sequences for hNTCP promoter, exons, and mRNA coding sequences between PHH and HepG2 cells, indicating no mutations or splicing alterations. We then assessed the epigenetic status of hNTCP. The hNTCP promoter, with low CG content, showed no significant methylation differences between PHH and HepG2 cells. Chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) revealed a loss of activating histone posttranslational modification (PTM) H3K27ac near the hNTCP transcription start site (TSS) in HepG2 cells. This loss was also confirmed in HCC tumor cells compared to adjacent and background cells. Treating HepG2 cells with histone deacetylase inhibitors enhanced H3K27ac accumulation and glucocorticoid receptor (GR) binding at the hNTCP TSS, significantly increasing hNTCP mRNA and protein levels, and rendering the cells susceptible to HBV infection. In summary, histone PTM-related epigenetic mechanisms play a critical role in hNTCP dysregulation in liver cancer cells, providing insights into hepatocarcinogenesis and its impact on chronic HBV infection. IMPORTANCE HBV is a hepatotropic virus that infects human hepatocytes expressing the viral receptor hNTCP. Without effective antiviral therapy, chronic HBV infection poses a high risk of liver cancer. However, most liver cancer cell lines, including HepG2 and Huh7, do not support HBV infection due to the absence of hNTCP expression, and the mechanism underlying this defect remains unclear. This study demonstrates a significant reduction of hNTCP in hepatocellular carcinoma samples and HepG2 cells compared to normal liver tissues and primary human hepatocytes. Despite identical hNTCP genetic sequences, epigenetic analyses revealed a loss of the activating histone modification H3K27ac near the hNTCP transcription start site in cancer cells. Treatment with histone deacetylase inhibitors restored H3K27ac levels, reactivated hNTCP expression, and rendered HepG2 cells susceptible to HBV infection. These findings highlight the role of epigenetic modulation in hNTCP dysregulation, offering insights into hepatocarcinogenesis and its implications for chronic HBV infection.
Collapse
MESH Headings
- Humans
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Organic Anion Transporters, Sodium-Dependent/genetics
- Symporters/genetics
- Symporters/metabolism
- Hepatitis B virus/genetics
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Hep G2 Cells
- Liver Neoplasms/virology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Epigenesis, Genetic
- Promoter Regions, Genetic
- Hepatocytes/virology
- Hepatocytes/metabolism
- DNA Methylation
- Histones/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Hepatitis B/virology
- Hepatitis B/genetics
- Hepatitis B/metabolism
Collapse
Affiliation(s)
- Marwa K. Ibrahim
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cheng-Der Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Liyong Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoyang Yu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elena S. Kim
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Sumin Jo
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Yuanjie Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Kastrinou-Lampou V, Rodríguez-Pérez R, Poller B, Huth F, Gáborik Z, Mártonné-Tóth B, Temesszentandrási-Ambrus C, Schadt HS, Kullak-Ublick GA, Arand M, Camenisch G. Identification of reversible OATP1B1 and time-dependent CYP3A4 inhibition as the major risk factors for drug-induced cholestasis (DIC). Arch Toxicol 2024; 98:3409-3424. [PMID: 39023798 DOI: 10.1007/s00204-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Hepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences. Accordingly, the anticipation of clinical DIC with available in vitro or in silico models is also challenging, due to the complexity of the bile acid homeostasis. Herein, we assessed the in vitro inhibition potential of 47 marketed drugs with various degrees of reported DILI severity towards all metabolic and transport mechanisms currently known to be involved in the hepatic regulation of bile acids. The reported DILI concern and/or cholestatic annotation correlated with the number of investigated processes being inhibited. Furthermore, we employed univariate and multivariate statistical methods to determine the important processes for DILI discrimination. We identified time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 and reversible inhibition of the organic anion transporting polypeptide (OATP) 1B1 as the major risk factors for DIC among the tested mechanisms related to bile acid transport and metabolism. These results were consistent across multiple statistical methods and DILI classification systems applied in our dataset. We anticipate that our assessment of the two most important processes in the development of cholestasis will enable a risk assessment for DIC to be efficiently integrated into the preclinical development process.
Collapse
Affiliation(s)
- Vlasia Kastrinou-Lampou
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Birk Poller
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | - Beáta Mártonné-Tóth
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | | | - Heiko S Schadt
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland.
| |
Collapse
|
10
|
Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal 2024; 14:100979. [PMID: 39310850 PMCID: PMC11415714 DOI: 10.1016/j.jpha.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Collapse
Affiliation(s)
- Xin Tan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Guanghan People's Hospital, Guanghan, Sichuan, 618300, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
11
|
Bao S, Wang W, Deng Z, Zhou R, Zeng S, Hou D, He J, Huang Z. Changes of bacterial communities and bile acid metabolism reveal the potential "intestine-hepatopancreas axis" in shrimp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173384. [PMID: 38815838 DOI: 10.1016/j.scitotenv.2024.173384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
The interaction between the gut and the liver plays a significant role in individual health and diseases. Mounting evidence supports that bile acids are important metabolites in the bidirectional communication between the gut and the liver. Most of the current studies on the "gut-liver axis" have focused on higher vertebrates, however, few was reported on lower invertebrates such as shrimp with an open circulatory system. Here, microbiomic and metabolomic analyses were conducted to investigate the bacterial composition and bile acid metabolism in intestine, hemolymph and hepatopancreas of Penaeus vannamei fed diets supplemented with octanoic acid and oleic acid. After six days of feeding, the bacterial composition in intestine, hemolymph and hepatopancreas changed at different stages, with significant increases in the relative abundance of several genera such as Pseudomonas and Rheinheimera in intestine and hepatopancreas. Notably, there was a more similar bacterial composition in intestine and hepatopancreas at the genus level, which indicated the close communication between shrimp intestine and hepatopancreas. Meanwhile, higher content of some bile acids such as lithocholic acid (LCA) and α-muricholic acid (α-MCA) in intestine and lower content of some bile acids such as taurohyocholic acids (THCA) and isolithocholic acid (IsoLCA) in hepatopancreas were detected. Furthermore, Spearman correlation analysis revealed a significant correlation between bacterial composition and bile acid metabolism in intestine and hepatopancreas. The microbial source tracking analysis showed that there was a high proportion of intestine and hepatopancreas bacterial community as the source of each other. Collectively, these results showed a strong crosstalk between shrimp intestine and hepatopancreas, which suggests a unique potential "intestine-hepatopancreas axis" in lower invertebrate shrimp with an open circulatory system. Our finding contributed to the understanding of the interplay between shrimp intestine and hepatopancreas in the view of microecology and provided new ideas for shrimp farming and disease control.
Collapse
Affiliation(s)
- Shicheng Bao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Wenjun Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhixuan Deng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Renjun Zhou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Shenzheng Zeng
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dongwei Hou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China; State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhijian Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China; State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Zhou Y, Bai F, Xiao R, Chen M, Sun Y, Ye J. Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper ( Epinephelus coioides). Animals (Basel) 2024; 14:2039. [PMID: 39061501 PMCID: PMC11274106 DOI: 10.3390/ani14142039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China; (Y.Z.); (F.B.); (R.X.); (M.C.); (Y.S.)
| |
Collapse
|
13
|
Jiang J, Lu X, Dong LX, Peng D, Zhang JM, Tian J, Wen H, Jiang M. Dietary cholesterol intervention could alleviate the intestinal injury of Oreochromis niloticus induced by plant-based diet via the intestinal barriers. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109621. [PMID: 38740230 DOI: 10.1016/j.fsi.2024.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This study aims to explore the effects of supplementing cholesterol in plant-based feed on intestinal barriers (including physical barrier, chemical barrier, immune barrier, biological barrier) of GIFT strain tilapia (Oreochromis niloticus). Four isonitrogenous and isolipidic diets were prepared as follows: plant-based protein diet (Con group) containing corn protein powder, soybean meal, cottonseed meal, and rapeseed meal, with the addition of cholesterol at a level of 0.6 % (C0.6 % group), 1.2 % (C1.2 % group), and 1.8 % (C1.8 % group), respectively. A total of 360 fish (mean initial weight of (6.08 ± 0.12) g) were divided into 12 tanks with 30 fish per tank, each treatment was set with three tanks and the feeding period lasted 9 weeks. Histological analysis revealed that both the C0.6 % and C1.2 % groups exhibited a more organized intestinal structure, with significantly increased muscle layer thickness compared to the Con group (P < 0.05). Furthermore, in the C1.2 % group, there was a significant up-regulation of tight junction-related genes (claudin-14, occludin, zo-1) compared to the Con group (P < 0.05). 5-ethynyl-2'-deoxyuridine staining results also demonstrated a notable enhancement in intestinal cell proliferation within the C1.2 % group (P < 0.05). Regarding the intestinal chemical barrier, trypsin and lipase activities were significantly elevated in the C1.2 % group (P < 0.05), while hepcidin gene expression was considerably down-regulated in this group but up-regulated in the C1.8 % group (P < 0.05). In terms of the intestinal immune barrier, inflammation-related gene expression levels (tnf-α, il-1β, caspase 9, ire1, perk, atf6) were markedly reduced in the C1.2 % group (P < 0.05). Regarding the intestinal biological barrier, the composition of the intestinal microbiota indicated that compared to the Con group, both the 0.6 % and 1.2 % groups showed a significant increase in Shannon index (P < 0.05). Additionally, there was a significant increase in the abundance of Firmicutes and Clostridium in the C1.2 % group (P < 0.05). In summary, supplementation of 1.2 % cholesterol in the plant-based diet exhibits the potential to enhance intestinal tight junction function and improve the composition of intestinal microbiota, thereby significantly promoting tilapia's intestinal health.
Collapse
Affiliation(s)
- Jiayuan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Li-Xue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Di Peng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jian-Min Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| |
Collapse
|
14
|
Shi Y, Wei L, Jin F, Wang J, Cao H, Yang Y, Gao L. Colchicine disrupts bile acid metabolic homeostasis by affecting the enterohepatic circulation in mice. J Appl Toxicol 2024; 44:863-873. [PMID: 38311468 DOI: 10.1002/jat.4587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Although the medicinal properties of colchicine (COL) have been widely known for centuries, its toxicity has been the subject of controversy. The narrow therapeutic window causes COL to induce gastrointestinal adverse effects even when taken at recommended doses, mainly manifested as nausea, vomiting, and diarrhea. However, the mechanism of COL-induced gastrointestinal toxic reactions remains obscure. In the present study, the mice were dosed with COL (2.5 mg/kg b.w./day) for a week to explore the effect of COL on bile acid metabolism and the mechanism of COL-induced diarrhea. The results showed that COL treatment affected liver biochemistry in mice, resulting in a significant down-regulation of the mRNA expression levels of bile acid biosynthesis regulators Cyp7a1, Cyp8b1, Cyp7b1, and Cyp27a1 in liver tissues. The mRNA expression levels of bile acid transporters Ntcp, Oatp1, Mrp2, Ibabp, Mrp3, Osta, and Ostb in liver and ileum tissues were also significantly down-regulated. In addition, COL treatment significantly inhibited the mRNA expression levels of Fxr and its downstream target genes Shp, Lrh1, and Fgf15 in liver and ileum tissues, affecting the feedback regulation of bile acid biosynthesis. More importantly, the inhibition of COL on bile acid transporters in ileal and hepatic tissues affected bile acid recycling in the ileum as well as their reuptake in the liver, leading to a significantly increased accumulation of bile acids in the colon, which may be an important cause of diarrhea. In conclusion, our study revealed that COL treatment affected bile acid biosynthesis and enterohepatic circulation, thereby disrupting bile acid metabolic homeostasis in mice.
Collapse
Affiliation(s)
- Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Wei
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Fang Jin
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Ji Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Yang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Ridlon JM, Gaskins HR. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 2024; 21:348-364. [PMID: 38383804 PMCID: PMC11558780 DOI: 10.1038/s41575-024-00896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Zheng H, Xu YC, Zhao T, Luo Z, Zhang DG, Song CC, Yu AG, Tan X. Dietary chenodeoxycholic acid attenuates high-fat diet-induced growth retardation, lipid accumulation and bile acid metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Br J Nutr 2024; 131:921-934. [PMID: 37905695 DOI: 10.1017/s0007114523002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This experiment was conducted to investigate whether dietary chenodeoxycholic acid (CDCA) could attenuate high-fat (HF) diet-induced growth retardation, lipid accumulation and bile acid (BA) metabolism disorder in the liver of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (initial weight: 4·40 (sem 0·08) g) were fed four diets: the control (105·8 g/kg lipid), HF diet (HF group, 159·6 g/kg lipid), the control supplemented with 0·9 g/kg CDCA (CDCA group) and HF diet supplemented with 0·9 g/kg CDCA (HF + CDCA group). CDCA supplemented in the HF diet significantly improved growth performance and feed utilisation of yellow catfish (P < 0·05). CDCA alleviated HF-induced increment of hepatic lipid and cholesterol contents by down-regulating the expressions of lipogenesis-related genes and proteins and up-regulating the expressions of lipololysis-related genes and proteins. Compared with the control group, CDCA group significantly reduced cholesterol level (P < 0·05). CDCA significantly inhibited BA biosynthesis and changed BA profile by activating farnesoid X receptor (P < 0·05). The contents of CDCA, taurochenodeoxycholic acid and glycochenodeoxycholic acid were significantly increased with the supplementation of CDCA (P < 0·05). HF-induced elevation of cholic acid content was significantly attenuated by the supplementation of CDCA (P < 0·05). Supplementation of CDCA in the control and HF groups could improve the liver antioxidant capacity. This study proved that CDCA could improve growth retardation, lipid accumulation and BA metabolism disorder induced by HF diet, which provided new insight into understanding the physiological functions of BA in fish.
Collapse
Affiliation(s)
- Hua Zheng
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Yi-Chuang Xu
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Tao Zhao
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Zhi Luo
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, People's Republic of China
| | - Dian-Guang Zhang
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Chang-Chun Song
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - An-Gen Yu
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Xiaoying Tan
- Laboratory of Molecular Nutrition, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, People's Republic of China
| |
Collapse
|
17
|
Németh K, Sterczer Á, Kiss DS, Lányi RK, Hemző V, Vámos K, Bartha T, Buzás A, Lányi K. Determination of Bile Acids in Canine Biological Samples: Diagnostic Significance. Metabolites 2024; 14:178. [PMID: 38668306 PMCID: PMC11052161 DOI: 10.3390/metabo14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.
Collapse
Affiliation(s)
- Krisztián Németh
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Ágnes Sterczer
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Dávid Sándor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Réka Katalin Lányi
- Faculty of Pharmacy, University of Szeged, Zrínyi u. 9, H-6720 Szeged, Hungary;
| | - Vivien Hemző
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Kriszta Vámos
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Anna Buzás
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| | - Katalin Lányi
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| |
Collapse
|
18
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
19
|
Li X, Lu W, Kharitonenkov A, Luo Y. Targeting the FGF19-FGFR4 pathway for cholestatic, metabolic, and cancerous diseases. J Intern Med 2024; 295:292-312. [PMID: 38212977 DOI: 10.1111/joim.13767] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Human fibroblast growth factor 19 (FGF19, or FGF15 in rodents) plays a central role in controlling bile acid (BA) synthesis through a negative feedback mechanism. This process involves a postprandial crosstalk between the BA-activated ileal farnesoid X receptor and the hepatic Klotho beta (KLB) coreceptor complexed with fibrobalst growth factor receptor 4 (FGFR4) kinase. Additionally, FGF19 regulates glucose, lipid, and energy metabolism by coordinating responses from functional KLB and FGFR1-3 receptor complexes on the periphery. Pharmacologically, native FGF19 or its analogs decrease elevated BA levels, fat content, and collateral tissue damage. This makes them effective in treating both cholestatic diseases such as primary biliary or sclerosing cholangitis (PBC or PSC) and metabolic abnormalities such as nonalcoholic steatohepatitis (NASH). However, chronic administration of FGF19 drives oncogenesis in mice by activating the FGFR4-dependent mitogenic or hepatic regenerative pathway, which could be a concern in humans. Agents that block FGF19 or FGFR4 signaling have shown great potency in preventing FGF19-responsive hepatocellular carcinoma (HCC) development in animal models. Recent phase 1/2 clinical trials have demonstrated promising results for several FGF19-based agents in selectively treating patients with PBC, PSC, NASH, or HCC. This review aims to provide an update on the clinical development of both analogs and antagonists targeting the FGF19-FGFR4 signaling pathway for patients with cholestatic, metabolic, and cancer diseases. We will also analyze potential safety and mechanistic concerns that should guide future research and advanced trials.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiqin Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas, USA
| | | | - Yongde Luo
- School of Pharmacological Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Bao MY, Wang Z, Nuez-Ortín WG, Zhao G, Dehasque M, Du ZY, Zhang ML. Comparison of Lysophospholipids and Bile Acids on the Growth Performance, Lipid Deposition, and Intestinal Health of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:1518809. [PMID: 39555522 PMCID: PMC11003383 DOI: 10.1155/2024/1518809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 11/19/2024]
Abstract
Lysophospholipids (LPLs) and bile acids (BA) are commonly used as emulsifiers in aquaculture. This study investigated the effects of dietary supplementation of LPLs or BA on the growth performance, lipid deposition, and intestinal health of largemouth juveniles. Fish were randomly allotted into three groups in quadruplicate and fed with a basal diet (CON) or diets containing 300 mg/kg LPLs (LPLs), or 300 mg/kg commercially available BA product (BA) for 8 weeks. The results showed that compared with the control group, LPLs and BA supplemented groups showed a higher weight gain trend, and LPLs supplementation promoted the protein deposition in fish body. Both BA and LPLs supplementations helped to maintain liver health by decreasing the activities of aspartate aminotransferase and alanine aminotransferase in serum. Besides, LPLs supplementation decreased overall lipid deposition in terms of mesenteric fat index and liver lipid content. Furthermore, LPLs supplementation showed unique advantage in improving intestinal barrier, as characterized by the increased villus length and higher expression of the tight junction protein zo-1 expression. LPLs supplementation also increased the alpha diversity index and the abundances of Proteobacteria in the intestinal microbiota which is positively correlated with the abundance of SCFA in the gut. These findings will promote the application of novel feed additives and especially provide a basis for the rational selection of emulsifiers in the aquaculture industry.
Collapse
Affiliation(s)
- Ming-Yang Bao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhe Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Guiping Zhao
- Adisseo Life Science (Shanghai) Co., Ltd., Shanghai 200241, China
| | | | - Zhen-Yu Du
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei-Ling Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Ito E, Inuki S, Izumi Y, Takahashi M, Dambayashi Y, Ciacchi L, Awad W, Takeyama A, Shibata K, Mori S, Mak JYW, Fairlie DP, Bamba T, Ishikawa E, Nagae M, Rossjohn J, Yamasaki S. Sulfated bile acid is a host-derived ligand for MAIT cells. Sci Immunol 2024; 9:eade6924. [PMID: 38277465 PMCID: PMC11147531 DOI: 10.1126/sciimmunol.ade6924] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuki Dambayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ami Takeyama
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Shibata
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Shotaro Mori
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Saito H, Nishimura M, Sato R, Yamauchi Y. Quantitative Determination of Cholesterol Hydroxylase Specificities by GC-MS/MS in Living Mammalian Cells. Bio Protoc 2024; 14:e4924. [PMID: 38268974 PMCID: PMC10804311 DOI: 10.21769/bioprotoc.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Cholesterol is oxygenated by a variety of cholesterol hydroxylases; oxysterols play diverse important roles in physiological and pathophysiological conditions by regulating several transcription factors and cell-surface receptors. Each oxysterol has distinct and overlapping functions. The expression of cholesterol hydroxylases is highly regulated, but their physiological and pathophysiological roles are not fully understood. Although the activity of cholesterol hydroxylases has been characterized biochemically using radiolabeled cholesterol as the substrate, their specificities remain to be comprehensively determined quantitatively. To better understand their roles, a highly sensitive method to measure the amount of various oxysterols synthesized by cholesterol hydroxylases in living mammalian cells is required. Our method described here, with gas chromatography coupled with tandem mass spectrometry (GC-MS/MS), can quantitatively determine a series of oxysterols endogenously synthesized by forced expression of one of the four major cholesterol hydroxylases-CH25H, CYP7A1, CYP27A1, and CYP46A1-or induction of CH25H expression by a physiological stimulus. This protocol can also simultaneously measure the amount of intermediate sterols, which serve as markers for cellular cholesterol synthesis activity. Key features • Allows measuring the amount of a variety of oxysterols synthesized endogenously by cholesterol hydroxylases using GC-MS/MS. • Comprehensive and quantitative analysis of cholesterol hydroxylase specificities in living mammalian cells. • Simultaneous quantification of intermediate sterols to assess cholesterol synthesis activity.
Collapse
Affiliation(s)
- Hodaka Saito
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
| | - Mizuki Nishimura
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Nutri-Life Science Laboratory, Department of Applied
Biological Chemistry, Graduate School of Agricultural and Life Sciences, The
University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and
Development, Tokyo, Japan
| | - Yoshio Yamauchi
- Laboratory of Food Biochemistry, Department of
Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences,
The University of Tokyo, Tokyo, Japan
- Nutri-Life Science Laboratory, Department of Applied
Biological Chemistry, Graduate School of Agricultural and Life Sciences, The
University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and
Development, Tokyo, Japan
| |
Collapse
|
23
|
Groenen C, Nguyen TA, Paulusma C, van de Graaf S. Bile salt signaling and bile salt-based therapies in cardiometabolic disease. Clin Sci (Lond) 2024; 138:1-21. [PMID: 38180064 PMCID: PMC10767275 DOI: 10.1042/cs20230934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
Bile salts have an established role in the emulsification and intestinal absorption of dietary lipids, and their homeostasis is tightly controlled by various transporters and regulators in the enterohepatic circulation. Notably, emerging evidence points toward bile salts as major modulators of cardiometabolic disease (CMD), an umbrella disease of disorders affecting the heart and blood vessels that is caused by systemic metabolic diseases such as Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), the latter encompassing also metabolic dysfunction-associated steatohepatitis (MASH). The underlying mechanisms of protective effects of bile salts are their hormonal properties, enabling them to exert versatile metabolic effects by activating various bile salt-responsive signaling receptors with the nuclear farnesoid X receptor (FXR) and the Takeda G-protein-coupled receptor 5 (TGR5) as most extensively investigated. Activation of FXR and TGR5 is involved in the regulation of glucose, lipid and energy metabolism, and inflammation. Bile salt-based therapies directly targeting FXR and TGR5 signaling have been evaluated for their therapeutic potential in CMD. More recently, therapeutics targeting bile salt transporters thereby modulating bile salt localization, dynamics, and signaling, have been developed and evaluated in CMD. Here, we discuss the current knowledge on the contribution of bile salt signaling in the pathogenesis of CMD and the potential of bile salt-based therapies for the treatment of CMD.
Collapse
Affiliation(s)
- Claire C.J. Groenen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Thuc-Anh Nguyen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| | - Stan F.J. van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Centers, The Netherlands
| |
Collapse
|
24
|
Zhou T, Ismail A, Francis H. Bile Acids in Autoimmune Liver Disease: Unveiling the Nexus of Inflammation, Inflammatory Cells, and Treatment Strategies. Cells 2023; 12:2725. [PMID: 38067153 PMCID: PMC10705880 DOI: 10.3390/cells12232725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
As bile acids not solely play an essential role in nutrition absorption, but also in regulating metabolic functions as well as immune response, bile acids and their signaling pathways are increasingly acknowledged as potential therapeutic targets in the context of chronic liver diseases. Bile acid receptors such as G protein bile acid-activated receptor 1 and farnesoid X receptor are expressed in different immune cells engaged in innate immunity. Recently, a series of studies have revealed distinct functions of bile acids and bile acid receptors within the adaptive immune system. In addition, a variety of molecules targeting bile acid receptors and transporters are currently in advanced stages of clinical development. Autoimmune liver diseases including conditions like primary biliary cholangitis, primary sclerosing cholangitis, and autoimmune hepatitis can lead to chronic inflammation, fibrosis, and even cirrhosis and liver failure. In this review, we focus on the role of bile acids in the inflammatory aspects of autoimmune liver diseases.
Collapse
Affiliation(s)
- Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - AbdiGhani Ismail
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Kiriyama Y, Nochi H. The Role of Gut Microbiota-Derived Lithocholic Acid, Deoxycholic Acid and Their Derivatives on the Function and Differentiation of Immune Cells. Microorganisms 2023; 11:2730. [PMID: 38004742 PMCID: PMC10672800 DOI: 10.3390/microorganisms11112730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A wide variety and large number of bacterial species live in the gut, forming the gut microbiota. Gut microbiota not only coexist harmoniously with their hosts, but they also induce significant effects on each other. The composition of the gut microbiota can be changed due to environmental factors such as diet and antibiotic intake. In contrast, alterations in the composition of the gut microbiota have been reported in a variety of diseases, including intestinal, allergic, and autoimmune diseases and cancer. The gut microbiota metabolize exogenous dietary components ingested from outside the body to produce short-chain fatty acids (SCFAs) and amino acid metabolites. Unlike SCFAs and amino acid metabolites, the source of bile acids (BAs) produced by the gut microbiota is endogenous BAs from the liver. The gut microbiota metabolize BAs to generate secondary bile acids, such as lithocholic acid (LCA), deoxycholic acid (DCA), and their derivatives, which have recently been shown to play important roles in immune cells. This review focuses on current knowledge of the role of LCA, DCA, and their derivatives on immune cells.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan;
- Institute of Neuroscience, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan;
| |
Collapse
|
26
|
Wu D, Nealon G, Liu Y, Kim TK, Slominski AT, Tuckey RC. Metabolism of Lumisterol 2 by CYP27A1. J Steroid Biochem Mol Biol 2023; 233:106370. [PMID: 37499840 DOI: 10.1016/j.jsbmb.2023.106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Lumisterol2 (L2) is a photoproduct of UVB action on the fungal membrane sterol, ergosterol. Like vitamin D2, it is present in edible mushrooms, especially after UV irradiation. Lumisterol3 is similarly produced in human skin from 7-dehydrocholesterol by UVB and can be converted to hydroxy-metabolites by CYP27A1 and CYP11A1. These products are biologically active on human cells with actions that include photoprotection and inhibition of proliferation. The aim of this study was to test the ability of CYP11A1 and CYP27A1 to metabolise L2. Purified CYP27A1 was found to efficiently metabolise L2 to three major products and several minor products, whilst CYP11A1 did not act appreciably on L2. The three major products of CYP27A1 action on L2 were identified by mass spectrometry and NMR as 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2. Minor products included two dihydroxy L2 species, one which was identified as 24,27(OH)2L2, and another metabolite with one oxo and one hydroxyl group added. A comparison on the kinetics of the metabolism of L2 by CYP27A1 with that of the structurally similar compounds, L3 and ergosterol, was carried out with substrates incorporated into phospholipid vesicles. CYP27A1 displayed a 12-fold lower Km with L2 as substrate compared to L3 and a 5-fold lower turnover number (kcat), resulting in a 2.2 fold higher catalytic efficiency (kcat/Km) for L2 metabolism. L2 was a much better substrate for CYP27A1 than its precursor, ergosterol, with a catalytic efficiency 18-fold higher. The major CYP27A1-derived hydroxy-L2 products, 24-hydroxyL2, 27-hydroxyL2 and 28-hydroxyL2, inhibited the proliferation of melanoma and epidermoid cancer cell lines. In conclusion, this study shows that L2 is not metabolized appreciably by CYP11A1, but it is a good substrate for CYP27A1 which hydroxylates its side chain to produce 3 major products that display anti-proliferative activity on skin-cancer cell lines.
Collapse
Affiliation(s)
- Dongxian Wu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia
| | - Yuchen Liu
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA; VA Medical Center, Birmingham, AL, USA
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
27
|
Mezler M, Jones RS, Sangaraju D, Goldman DC, Hoffmann M, Heikkinen AT, Mannila J, Chang JH, Foquet L, Pusalkar S, Chothe PP, Scheer N. Analysis of the Bile Acid Composition in a Fibroblast Growth Factor 19-Expressing Liver-Humanized Mouse Model and Its Use for CYP3A4-Mediated Drug-Drug Interaction Studies. Drug Metab Dispos 2023; 51:1391-1402. [PMID: 37524541 DOI: 10.1124/dmd.123.001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.
Collapse
Affiliation(s)
- Mario Mezler
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Robert S Jones
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Dewakar Sangaraju
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Devorah C Goldman
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Matthew Hoffmann
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Aki T Heikkinen
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Janne Mannila
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Jae H Chang
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Lander Foquet
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Sandeepraj Pusalkar
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Paresh P Chothe
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| | - Nico Scheer
- Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany (M.M.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (R.S.J., D.S., J.C.C.); Yecuris Corporation, Tualatin, Oregon (D.C.G., L.F.); Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol Myers Squibb, Lawrenceville, New Jersey (M.H.); Symeres Finland Oy, Oulu, Finland, operating under Admescope brand (A.T.H., J.M.); Global Drug Metabolism and Pharmacokinetics, Takeda Development Center Americas, Inc. Cambridge, Massachusetts (S.P., P.P.C.); and FH Aachen University of Applied Sciences, Jülich, Germany (N.S.)
| |
Collapse
|
28
|
Benachenhou S, Laroui A, Dionne O, Rojas D, Toupin A, Çaku A. Cholesterol alterations in fragile X syndrome, autism spectrum disorders and other neurodevelopmental disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:115-139. [PMID: 37993175 DOI: 10.1016/bs.irn.2023.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Neurodevelopmental disorders (NDDs) are a group of etiologically diverse diseases primarily associated with abnormal brain development, impaired cognition, and various behavioral problems. The majority of NDDs present a wide range of clinical phenotypes while sharing distinct cellular and biochemical alterations. Low plasma cholesterol levels have been reported in a subset of NNDs including, autism spectrum disorder (ASD) and fragile X syndrome (FXS). The present review focuses on cholesterol metabolism and discusses the current evidence of lipid disruption in ASD, FXS, and other genetically related NDDs. The characterization of these common deficits might provide valuable insights into their underlying physiopathology and help identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sérine Benachenhou
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Asma Laroui
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Dionne
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daniela Rojas
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Amanda Toupin
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Artuela Çaku
- Biochemistry and Functional Genomic Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
29
|
Huo H, Hu C, Zhou Q, Xiong L, Peng M. Integrated transcriptome and metabolome analysis reveals a possible mechanism for the regulation of lipid metabolism via vitamin A in rice field eel ( Monopterus albus). Front Physiol 2023; 14:1254992. [PMID: 37680772 PMCID: PMC10482098 DOI: 10.3389/fphys.2023.1254992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
To understand the effects of vitamin A on lipid deposition in rice field eels, integrated liver transcriptome and metabolome were conducted and the changes in the genes and metabolites were assessed. Three groups of rice field eel were fed with 0, 200, and 16,000 IU/kg vitamin A supplementations in their diets for 70 days. The total lipid content in the whole body of the rice field eels was significantly increased with the vitamin A supplementations (p < 0.05). Comparative transcriptome analysis revealed 14 pathways and 46 differentially expressed genes involved in lipid metabolism. Sphingolipid metabolism, glycerolipid metabolism, primary bile acid biosynthesis and steroid hormone biosynthesis were significantly enriched pathways. In these pathways, three differential genes phospholipid phosphatase 1a (PLPP1a), phospholipid phosphatase 2b (PLPP2b), cytochrome P450 21a2 (CYP21a2) were consistent with the change trend of lipid content, and the other three differential genes aldo-keto reductase family 1 member D1 (AKR1D1), uridine diphosphate glucuronic acid transferase 1a1 (UGT1a1), cytochrome P450 1a (CYP1a) were opposite. Metabolomic analysis revealed that primary bile acid biosynthesis, sphingolipid metabolism, steroid hormone biosynthesis and biosynthesis of unsaturated fatty acids were all critical for rice field eel metabolic changes in response to vitamin A. Six important differential metabolites (eicosapentaenoic acid, sphinganine, 11-beta-hydroxyprogesterone, hydroxyeicosatetraenoic acid, cholic acid, and glycochenodeoxycholate) were identified and have provided new insights into how vitamin A regulates lipid deposition. Integrated transcriptome and metabolome analyses revealed that primary bile acid biosynthesis was the only remarkably enriched pathway in both the transcriptome and metabolome while that sphingosine was the main metabolite. Based on the above results, we have concluded that vitamin A promotes lipid deposition in the rice field eel through the primary bile acid synthesis pathway, and lipid deposits are widely stored in cell membranes, mainly in the form of sphingosine. These results will provide reference data to help improve our understanding of how vitamin A regulates lipid metabolism.
Collapse
Affiliation(s)
- Huanhuan Huo
- College of Animal Science and Technology of Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutrition Physiology and Healthy Breeding, Nanchang, China
| | - Chonghua Hu
- Ganzhou Animal Husbandry and Fisheries Research Institute, Ganzhou, China
| | - Qiubai Zhou
- College of Animal Science and Technology of Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutrition Physiology and Healthy Breeding, Nanchang, China
| | - Liufeng Xiong
- College of Animal Science and Technology of Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutrition Physiology and Healthy Breeding, Nanchang, China
| | - Mo Peng
- College of Animal Science and Technology of Jiangxi Agricultural University, Nanchang, China
- Key Laboratory of Featured Hydrobios Nutrition Physiology and Healthy Breeding, Nanchang, China
| |
Collapse
|
30
|
Chen B, Xu X, Wu W, Zheng K, Yu Y. LINC00659 Inhibits Hepatocellular Carcinoma Malignant Progression by Blocking Aerobic Glycolysis through FUS Recruitment and SLC10A1 Modulation. Anal Cell Pathol (Amst) 2023; 2023:5852963. [PMID: 37234237 PMCID: PMC10208759 DOI: 10.1155/2023/5852963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 04/04/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant type of liver cancer that poses severe threat to human health worldwide. Aerobic glycolysis is a hallmark of HCC and facilitates its progression. Solute carrier family 10 member 1 (SLC10A1) and long intergenic non-protein coding RNA 659 (LINC00659) were detected to be downregulated in HCC cells, yet their potential functions underlying HCC progression remained unidentified. In the current work, colony formation and transwell assays were used to detect HCC cells (HepG2 and HuH-7) proliferation and migration in vitro study. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays were used for gene/protein expression determination. Seahorse assay was performed for aerobic glycolysis assessment. RNA immunoprecipitation (RIP) and RNA pull-down assays were conducted for detection of the molecular interaction between LINC00659 and SLC10A1. The results showed that overexpressed SLC10A1 significantly suppressed the proliferation, migration, and aerobic glycolysis in HCC cells. Mechanical experiments further demonstrated that LINC00659 positively regulated SLC10A1 expression in HCC cells by recruiting fused protein in sarcoma (FUS). Our work elucidated that LINC00659 inhibited HCC progression and aerobic glycolysis via the FUS/SLC10A1 axis, revealing a novel lncRNA-RNA-binding protein-mRNA network in HCC, which might provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Bin Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Xin Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Wei Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Ke Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| | - Yijun Yu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Zhejiang, Hangzhou 310011, China
| |
Collapse
|
31
|
Rojas CA, Marks SL, Borras E, Lesea H, McCartney MM, Coil D, Davis CE, Eisen JA. Characterization of the microbiome and volatile compounds in anal gland secretions from domestic cats (Felis catus) using metagenomics and metabolomics. RESEARCH SQUARE 2023:rs.3.rs-2883555. [PMID: 37214811 PMCID: PMC10197813 DOI: 10.21203/rs.3.rs-2883555/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Animals rely on volatile chemical compounds for their communication and behavior. Many of these compounds are sequestered in endocrine and exocrine glands and are synthesized by anaerobic microbes. While the volatile organic compound (VOC) or microbiome composition of glandular secretions has been investigated in several mammalian species, few have linked specific bacterial taxa to the production of volatiles or to specific microbial gene pathways. Here, we use metagenomic sequencing, mass-spectrometry based metabolomics, and culturing to profile the microbial and volatile chemical constituents of anal gland secretions in twenty-three domestic cats (Felis catus), in attempts to identify organisms potentially involved in host odor production. We found that the anal gland microbiome was dominated by bacteria in the genera Corynebacterium, Bacteroides, Proteus, Lactobacillus, and Streptococcus, and showed striking variation among individual cats. Microbiome profiles also varied with host age and obesity. Metabolites such as fatty-acids, ketones, aldehydes and alcohols were detected in glandular secretions. Overall, microbiome and metabolome profiles were modestly correlated (r=0.17), indicating that a relationship exists between the bacteria in the gland and the metabolites produced in the gland. Functional analyses revealed the presence of genes predicted to code for enzymes involved in VOC metabolism such as dehydrogenases, reductases, and decarboxylases. From metagenomic data, we generated 85 high-quality metagenome assembled genomes (MAGs). Of these, four were inferred to have high relative abundance in metagenome profiles and had close relatives that were recovered as cultured isolates. These four MAGs were classified as Corynebacterium frankenforstense, Proteus mirabilis, Lactobacillus johnsonii, and Bacteroides fragilis. They represent strong candidates for further investigation of the mechanisms of volatile synthesis and scent production in the mammalian anal gland.
Collapse
|
32
|
Zhang J, Shang J, Hao Y, Wang Y, Cao Z, Yang H, Wang W, Li S. Growth performance, blood metabolites, ruminal fermentation, and bacterial community in preweaning dairy calves fed corn silage-included starter and total mixed ration. J Dairy Sci 2023:S0022-0302(23)00208-4. [PMID: 37164844 DOI: 10.3168/jds.2022-22476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
The objective of this study was to evaluate the effects of the inclusion of whole-plant corn silage (WPCS) in a starter or total mixed ration (TMR) on growth, blood metabolites, ruminal fermentation, and microbial community in preweaning dairy calves. A total of 45 healthy dairy calves were blocked by date of birth and randomly assigned to 1 of 3 treatments: 100% calf starter (CONS), a mix of 85% calf starter and 15% WPCS [dry matter (DM) basis; CSCS], or 100% WPCS-based lactation TMR (CTMR). Pasteurized normal milk was fed to all the animals under the same regimen. The experiment ran from when the calves were 2 d old to weaning at 63 d. Milk and feed intakes were recorded daily. Growth performance data and blood samples were collected on wk 3, 5, 7, and 9 of the experiment. Rumen fluid was sampled at 40 and 60 d. The 3 treatments had different particle size fractions. The CSCS group had greater medium fraction (<19 mm, >8 mm) and particles retained on 8-mm sieves than the other 2 groups, whereas the CTMR group had the greatest long (>19 mm) and fine (<4 mm) fractions and physically effective neutral detergent fiber (NDF) on 8- and 4-mm sieves, but had the smallest short fraction (<8 mm, >4 mm) and particles retained on 4-mm sieves. The 24-h in vitro digestibility of DM, crude protein (CP), NDF, and acid detergent fiber (ADF) were decreased in order by the CONS, CSCS, and CTMR groups. Compared with the CONS group, the digestibility of ether extract (EE) was lower in the CSCS and CTMR groups, whereas the digestibility of starch was similar among treatments. During the experimental period, the DM, CP, and metabolizable energy intakes from milk, solid feed, and total feed were not affected by treatments. The NDF, ADF, and EE intakes and potentially digestible intakes were greater in the CTMR group than in the other 2 groups. With the exception that body barrel was greater for calves fed CSCS, growth parameters and blood metabolites were similar among treatments. Compared with the CSCS group, the CTMR group had greater rumen pH and total volatile fatty acids, propionate, and isovalerate concentrations, but a lower acetate:propionate ratio. The CTMR group had greater relative abundances of some cellulolytic bacteria (Rikenellaceae RC9 gut group, Christensenellaceae R7, Ruminococcaceae NK4A214, Ruminococcaceae UCG, Ruminococcus, and Erysipelotrichaceae UCG) in the rumen, which may be beneficial for the early acquisition of specific adult-associated microorganisms. In summary, a WPCS-based lactation TMR, but not the WPCS-included starter, had the potential to be an alternative starter in preweaning calves without having significant adverse effects. These findings provide theoretical and practical implications for the rational application of TMR in the early life of dairy calves.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Shang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Chiang JYL. My lifelong dedication to bile acid research. J Biol Chem 2023; 299:104672. [PMID: 37019215 PMCID: PMC10173005 DOI: 10.1016/j.jbc.2023.104672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
It is a great honor to be invited to write a reflections article on my scientific journey and lifelong bile acid research for the Journal of Biological Chemistry, in which I am proud to have published 24 articles. I have also published 21 articles in the Journal of Lipid Research, another journal of the American Society of Biochemistry and Molecular Biology. I begin my reflections from my early education in Taiwan, my coming to America for graduate study, and continue with my postdoctoral training in cytochrome P450 research, and my lifelong bile acid research career at Northeast Ohio Medical University. I have witnessed and helped in the transformation of this rural not so visible medical school to a well-funded leader in liver research. Writing this reflections article on my long and rewarding journey in bile acid research brings back many good memories. I am proud of my scientific contributions and attribute my academic success to hard work, perseverance, good mentoring, and networking. I hope these reflections of my academic career would help inspire young investigators to pursue an academic career in biochemistry and metabolic diseases.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.
| |
Collapse
|
34
|
Ma H, Bian S, Han P, Li Y, Ni A, Zhang R, Ge P, Wang Y, Zhao J, Zong Y, Yuan J, Sun Y, Chen J. Supplementation of exogenous bile acids improve antitrichomonal activity and enhance intestinal health in pigeon (Columba livia). Poult Sci 2023; 102:102722. [PMID: 37167885 DOI: 10.1016/j.psj.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The study investigated the effects of supplementation of bile acids in drinking water on antitrichomonal activity, growth performance, immunity and microbial composition of pigeon. A total of 180 pairs of White King parent pigeons were randomly assigned to 5 treatments of 6 replications with 6 pairs of parent pigeons and 12 squabs in each replicate. The control (CON) group drank water without any additions. The metronidazole (MTZ) group drank water with 500 μg/mL metronidazole for 7 d and without any additions in other days. The else groups drank water with 500, 750, and 1,250 μg/mL bile acid (BAL, BAM, BAH) for 28 d. The results showed that Trichomonas gallinae (T. gallinae) in MTZ, BAL, BAM, and BAH groups were lower than that in CON group at 14, 21, and 28 d of parent pigeons (P < 0.05) and at 21 and 28 d of squabs (P < 0.05). Albumin and alanine transaminase in CON group were higher than those in MTZ, BAL, and BAH groups (P < 0.05). The levels of soluble CD8 were higher in MTZ and BAH groups compared with CON group (P < 0.05). The lesions in oral mucosa, thymus, liver, and spleen tissues of CON group could be observed. Abundance-based coverage estimator (ACE) index in BAH group was higher than that in CON and MTZ groups. Simpson index in CON and BAH groups was higher than MTZ group (P < 0.05). Lactobacillus was the highest colonized colonic bacteria in genera that were 77.21, 91.20, and 73.19% in CON, MTZ, and BAH, respectively. In conclusion, drinking water supplemented with 500, 750, and 1,250 μg/mL bile acid could inhibit growth of T. gallinae in both parent pigeons and squabs. Squabs infected with T. gallinae in control group had higher mortality rate and more serious tissue lesions. Squabs in bile acids treated group had more sCD8 in serum and abundant intestinal morphology. Bile acids could be an efficient drinking supplements to inhibit T. gallinae and improve pigeon adaptive immunity and intestinal health.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shixiong Bian
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengmin Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
35
|
Kiriyama Y, Nochi H. Role of Microbiota-Modified Bile Acids in the Regulation of Intracellular Organelles and Neurodegenerative Diseases. Genes (Basel) 2023; 14:825. [PMID: 37107583 PMCID: PMC10137455 DOI: 10.3390/genes14040825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Bile acids (BAs) are amphiphilic steroidal molecules generated from cholesterol in the liver and facilitate the digestion and absorption of fat-soluble substances in the gut. Some BAs in the intestine are modified by the gut microbiota. Because BAs are modified in a variety of ways by different types of bacteria present in the gut microbiota, changes in the gut microbiota can affect the metabolism of BAs in the host. Although most BAs absorbed from the gut are transferred to the liver, some are transferred to the systemic circulation. Furthermore, BAs have also been detected in the brain and are thought to migrate into the brain through the systemic circulation. Although BAs are known to affect a variety of physiological functions by acting as ligands for various nuclear and cell-surface receptors, BAs have also been found to act on mitochondria and autophagy in the cell. This review focuses on the BAs modified by the gut microbiota and their roles in intracellular organelles and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
- Institute of Neuroscience, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
36
|
Chiang JL. My lifelong dedication to bile acid research. J Biol Chem 2023:103070. [PMID: 36842499 DOI: 10.1016/j.jbc.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
It is a great honor to be invited to write a reflection of my lifelong bile acid research for the Journal of Biological Chemistry, the premier biochemistry journal in which I am proud to have published 24 manuscripts. I published 21 manuscripts in the Journal of Lipid Research, also a journal of American Society of Biochemistry and Molecular Biology. I started my reflection from my early education in Taiwan, my coming to America for graduate study, my postdoctoral training in cytochrome P450 research, and my lifelong bile acid research career at the not so "visible" Northeast Ohio Medical University. I have witnesses and help to transform this sleepy rural medical school to a well-funded powerhouse in liver research. Writing this reflection of my long, exciting, and rewarding journey in bile acid research brought back many good memories. I am proud of my scientific contribution. I attribute my lifelong academic success to working hard, perseverance, good mentoring, and networking. I hope that this reflection of my academic career may provide guidance to younger investigators who are pursuing academic teaching and research and might inspire the next generation of researchers in biochemistry and metabolic diseases.
Collapse
Affiliation(s)
- JohnY L Chiang
- Northeast Ohio Medical University, Rootstown, OH, 44272.
| |
Collapse
|
37
|
Kubota H, Ishizawa M, Kodama M, Nagase Y, Kato S, Makishima M, Sakurai K. Vitamin D Receptor Mediates Attenuating Effect of Lithocholic Acid on Dextran Sulfate Sodium Induced Colitis in Mice. Int J Mol Sci 2023; 24:ijms24043517. [PMID: 36834927 PMCID: PMC9965401 DOI: 10.3390/ijms24043517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Bile acids are major components of bile; they emulsify dietary lipids for efficient digestion and absorption and act as signaling molecules that activate nuclear and membrane receptors. The vitamin D receptor (VDR) is a receptor for the active form of vitamin D and lithocholic acid (LCA), a secondary bile acid produced by the intestinal microflora. Unlike other bile acids that enter the enterohepatic circulation, LCA is poorly absorbed in the intestine. Although vitamin D signaling regulates various physiological functions, including calcium metabolism and inflammation/immunity, LCA signaling remains largely unknown. In this study, we investigated the effect of the oral administration of LCA on colitis in a mouse model using dextran sulfate sodium (DSS). Oral LCA decreased the disease activity of colitis in the early phase, which is a phenotype associated with the suppression of histological injury, such as inflammatory cell infiltration and goblet cell loss. These protective effects of LCA were abolished in VDR-deleted mice. LCA decreased the expression of inflammatory cytokine genes, but this effect was at least partly observed in VDR-deleted mice. The pharmacological effect of LCA on colitis was not associated with hypercalcemia, an adverse effect induced by vitamin D compounds. Therefore, LCA suppresses DSS-induced intestinal injury in its action as a VDR ligand.
Collapse
Affiliation(s)
- Hitomi Kubota
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Department of Surgery, The Nippon Dental University School of Life Dentistry, 2-3-16 Fujimi, Chiyoda-ku, Tokyo 102-8158, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.I.); (M.M.); Tel.: +81-3-3972-8111 (M.I. & M.M.)
| | - Makoto Kodama
- Department of Pathology, Tokyo Yamate Medical Center, 3-22-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshihiro Nagase
- Department of Pathology, Tokyo Yamate Medical Center, 3-22-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shigeaki Kato
- Graduate School of Science and Technology, Iryo Sosei University, 5-5-1 Iino, Chuodai, Iwaki, Fukushima 970-8044, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Kaminodai-57 Jobankamiyunagayamachi, Iwaki, Fukushima 972-8322, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- Correspondence: (M.I.); (M.M.); Tel.: +81-3-3972-8111 (M.I. & M.M.)
| | - Kenichi Sakurai
- Department of Surgery, The Nippon Dental University School of Life Dentistry, 2-3-16 Fujimi, Chiyoda-ku, Tokyo 102-8158, Japan
| |
Collapse
|
38
|
Pan L, Yu Z, Liang X, Yao J, Fu Y, He X, Ren X, Chen J, Li X, Lu M, Lan T. Sodium cholate ameliorates nonalcoholic steatohepatitis by activation of FXR signaling. Hepatol Commun 2023; 7:e0039. [PMID: 36706173 PMCID: PMC9988322 DOI: 10.1097/hc9.0000000000000039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/25/2022] [Indexed: 01/29/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has become a major cause of liver transplantation and liver-associated death. The gut-liver axis is a potential therapy for NASH. Sodium cholate (SC) is a choleretic drug whose main component is bile acids and has anti-inflammatory, antifibrotic, and hepatoprotective effects. This study aimed to investigate whether SC exerts anti-NASH effects by the gut-liver axis. Mice were fed with an high-fat and high-cholesterol (HFHC) diet for 20 weeks to induce NASH. Mice were daily intragastric administrated with SC since the 11th week after initiation of HFHC feeding. The toxic effects of SC on normal hepatocytes were determined by CCK8 assay. The lipid accumulation in hepatocytes was virtualized by Oil Red O staining. The mRNA levels of genes were determined by real-time quantitative PCR assay. SC alleviated hepatic injury, abnormal cholesterol synthesis, and hepatic steatosis and improved serum lipid profile in NASH mice. In addition, SC decreased HFHC-induced hepatic inflammatory cell infiltration and collagen deposition. The target protein-protein interaction network was established through Cytoscape software, and NR1H4 [farnesoid x receptor (FXR)] was identified as a potential target gene for SC treatment in NASH mice. SC-activated hepatic FXR and inhibited CYP7A1 expression to reduce the levels of bile acid. In addition, high-dose SC attenuated the abnormal expression of cancer markers in NASH mouse liver. Finally, SC significantly increased the expression of FXR and FGF15 in NASH mouse intestine. Taken together, SC ameliorates steatosis, inflammation, and fibrosis in NASH mice by activating hepatic and intestinal FXR signaling so as to suppress the levels of bile acid in NASH mouse liver and intestine.
Collapse
Affiliation(s)
- Linyu Pan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ze Yu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaolin Liang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiyou Yao
- Department of HBP Surgery II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yanfang Fu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xu He
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoling Ren
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiajia Chen
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xuejuan Li
- Shenzhen Children’s Hospital of China Medical University, Shenzhen, Guangdong, China
| | - Minqiang Lu
- Department of HBP Surgery II, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Sun L, Xin Q, Jiao H, Wang X, Zhao J, Li H, Zhou Y, Cao A, Wang J, Lin H. Effect of exogenous bile salts supplementation on the performance and hepatic lipid metabolism of aged laying hens. J Anim Sci 2023; 101:skad334. [PMID: 37773415 PMCID: PMC11025372 DOI: 10.1093/jas/skad334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Bile acids (BA), a series of hydroxylated steroids secreted by the liver, are involved in the digestion and absorption of dietary fats. In the present study, the effect of exogenous BAs on the performance and liver lipid metabolism of laying hens was investigated. Three hundred and sixty 50-wk-old Hy-line Brown hens were randomly allocated into three groups and subjected to one of the following treatments: fed with the basal diet (control, Con), the basal diet supplemented with 0.1 g/kg (0.1 g/kg BAs), or 0.2 g/kg (0.2 g/kg BAs) porcine BAs. Laying performance, egg quality, and blood parameters were measured during the 8-wk experimental period. The expression of genes related to hepatic lipid metabolism was determined at the end of experiment. The results showed that BAs treatments had no influence (P > 0.05) on laying rate, egg weight, and feed efficiency. BAs treatment, however, significantly decreased mortality of hens (P = 0.006). BAs treatment showed a transient negative influence on eggshell quality at week 4 but not at week 8. The yolk color on week 8 was increased by BAs treatments (P < 0.0001) compared to control. The duodenum index showed a tendency to be increased (P = 0.053) and jejunum index were increased (P = 0.007) by BAs treatment. Compared to control, BAs treatments decreased lipid droplet content (P < 0.0001) and TG content (P = 0.002) of liver. Fatty acid synthase activity was also decreased as an effect of BAs dietary supplementation. Compared to the control group, 0.1 g/kg BAs treatment increased (P < 0.05) the mRNA expression of genes Farnesoid X receptor (FXR) (P = 0.042), cytochrome P450 family 7 subfamily A member 1 (CYP7A1) (P = 0.002), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) (P = 0.017), fatty acid synthase (FAS) (P = 0.020), acetyl-CoA carboxylase (ACC) (P = 0.032), sterol regulatory element binding protein-1c (SREBP-1c) (P = 0.037), proliferator-activated receptor gamma (PPARγ) (P = 0.002), apolipoprotein B (APO-B) (P = 0.020), and very low density lipoprotein receptor (VLDLR) (P = 0.024). In conclusion, the addition of exogenous BAs reduces lipid accumulation in liver. BA supplementation reduces the mortality of hens and improves egg yolk color, with no unfavorable effect on laying performance. The result suggests that suppressed FAS activity is involved in the reduced hepatic lipid accumulation by BAs treatment.
Collapse
Affiliation(s)
- Lijing Sun
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Qian Xin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Aizhi Cao
- Shandong Longchang Animal Health Products Co., Ltd., Jingshi Street, Jinan City, Shandong Province 250000, PR China
| | - Jianmin Wang
- Shandong Longchang Animal Health Products Co., Ltd., Jingshi Street, Jinan City, Shandong Province 250000, PR China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| |
Collapse
|
40
|
Bile acids and their receptors in regulation of gut health and diseases. Prog Lipid Res 2023; 89:101210. [PMID: 36577494 DOI: 10.1016/j.plipres.2022.101210] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022]
Abstract
It is well established that bile acids play important roles in lipid metabolism. In recent decades, bile acids have also been shown to function as signaling molecules via interacting with various receptors. Bile acids circulate continuously through the enterohepatic circulation and go through microbial transformation by gut microbes, and thus bile acids metabolism has profound effects on the liver and intestinal tissues as well as the gut microbiota. Farnesoid X receptor and G protein-coupled bile acid receptor 1 are two pivotal bile acid receptors that highly expressed in the intestinal tissues, and they have emerged as pivotal regulators in bile acids metabolism, innate immunity and inflammatory responses. There is considerable interest in manipulating the metabolism of bile acids and the expression of bile acid receptors as this may be a promising strategy to regulate intestinal health and disease. This review aims to summarize the roles of bile acids and their receptors in regulation of gut health and diseases.
Collapse
|
41
|
Asano T, Wakabayashi T, Kondo Y, Okada K, Yamamuro D, Koga Y, Oka K, Sakurai M, Sawayama N, Takahashi M, Okazaki H, Ebihara K, Minami K, Morisawa Y, Hatakeyama S, Matsumura M, Ishibashi S. Serum 25-hydroxycholesterol levels are increased in patients with coronavirus disease 2019. J Clin Lipidol 2023; 17:78-86. [PMID: 36522261 PMCID: PMC9637049 DOI: 10.1016/j.jacl.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND 25-hydroxycholesterol (25HC), produced by cholesterol 25-hydroxylase (CH25H) in macrophages, has been reported to inhibit the replication of viral pathogens such as severe acute respiratory syndrome coronavirus-2. Also, CH25H expression in macrophages is robustly induced by interferons (IFNs). OBJECTIVE To better understand the serum level increase of 25HC in coronavirus disease 2019 (COVID-19) and how it relates to the clinical picture. METHODS We measured the serum levels of 25HC and five other oxysterols in 17 hospitalized COVID-19 patients. RESULTS On admission, 25HC and 27-hydroxycholesterol (27HC) serum levels were elevated; however, 7-ketocholesterol (7KC) levels were lower in patients with COVID-19 than in the healthy controls. There was no significant correlation between 25HC serum levels and disease severity markers, such as interferon-gamma (IFN-γ) and interleukin 6. Dexamethasone effectively suppressed cholesterol 25-hydroxylase (CH25H) mRNA expression in RAW 264.7 cells, a murine leukemia macrophage cell line, with or without lipopolysaccharide or IFNs; therefore, it might mitigate the increasing effects of COVID-19 on the serum levels of 25HC. CONCLUSIONS Our results highlighted that 25HC could be used as a unique biomarker in severe COVID-19 and a potential therapeutic candidate for detecting the severity of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Takumi Asano
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Yasuyuki Kondo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Kenta Okada
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Yukiko Koga
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Kiyonori Oka
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Momoe Sakurai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Nagisa Sawayama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Hiroaki Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi)
| | - Kensuke Minami
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan (Drs Minami and Morisawa)
| | - Yuji Morisawa
- Division of Infectious Diseases, Jichi Medical University Hospital, Shimotsuke, Tochigi, Japan (Drs Minami and Morisawa)
| | - Shuji Hatakeyama
- Division of General Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Hatakeyama and Matsumura)
| | - Masami Matsumura
- Division of General Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Hatakeyama and Matsumura)
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan (Drs Asano, Wakabayashi, Kondo, Okada, Yamamuro, Koga, Oka, Sakurai, Sawayama, Takahashi, Okazaki, Ebihara and Ishibashi).
| |
Collapse
|
42
|
Bile acids and neurological disease. Pharmacol Ther 2022; 240:108311. [PMID: 36400238 DOI: 10.1016/j.pharmthera.2022.108311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
This review will focus on how bile acids are being used in clinical trials to treat neurological diseases due to their central involvement with the gut-liver-brain axis and their physiological and pathophysiological roles in both normal brain function and multiple neurological diseases. The synthesis of primary and secondary bile acids species and how the regulation of the bile acid pool may differ between the gut and brain is discussed. The expression of several bile acid receptors in brain and their currently known functions along with the tools available to manipulate them pharmacologically are examined, together with discussion of the interaction of bile acids with the gut microbiome and their lesser-known effects upon brain glucose and lipid metabolism. How dysregulation of the gut microbiome, aging and sex differences may lead to disruption of bile acid signalling and possible causal roles in a number of neurological disorders are also considered. Finally, we discuss how pharmacological treatments targeting bile acid receptors are currently being tested in an array of clinical trials for several different neurodegenerative diseases.
Collapse
|
43
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
44
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
45
|
Liu D, Ji Y, Cheng Q, Zhu Y, Zhang H, Guo Y, Cao X, Wang H. Dietary astaxanthin-rich extract ameliorates atherosclerosis/retinopathy and restructures gut microbiome in apolipoprotein E-deficient mice fed on a high-fat diet. Food Funct 2022; 13:10461-10475. [PMID: 36134474 DOI: 10.1039/d2fo02102a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scope: Atherosclerosis (AS) is the leading cause of ischemic disease. However, the anti-AS effects of astaxanthin and its potential mechanisms remain unclear. This study is aimed to investigate the function of astaxanthin-rich extract (ASTE) on AS and gut microbiota as well as the difference from atorvastatin (ATO) in apolipoprotein E-deficient (ApoE-/-) mice. Methods and results: Wild type (WT) and ApoE-/- mice were divided into seven groups: the low-fat diet (LFD) and high-fat diet (HFD) groups (in both types) as well as three ApoE-/- groups based on HFD added with two doses of ASTE and one dose of ATO, respectively. After 30 weeks of intervention, results showed that ASTE significantly inhibited body weight increase, lipids accumulation in serum/liver, and AS-lesions in the aorta. Furthermore, fundus fluorescein angiography and retinal CD31 immunohistochemical staining showed that ASTE could alleviate the occurrence of AS-retinopathy. H&E staining showed that ASTE could protect the colon's mucosal epithelium from damage. The gas chromatographic and gene expression analyses showed that ASTE promoted the excretion of fecal acidic and neutral sterols from cholesterol by increasing LXRα, CYP7A1, and ABCG5/8 and decreasing FXR, NPC1L1, ACAT2, and MTTP expressions. Remarkably, the ASTE administration maintained the gut barrier by enhancing gene expression of JAM-A, Occludin, and mucin2 in the colon and reshaped gut microbiota with the feature of blooming Akkermansia. Conclusion: Our results suggested that ASTE could prevent AS in both macrovascular and/or microvascular as well as used as novel prebiotics by supporting the bile acid excretion and growth of Akkermansia.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Qian Cheng
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yamin Zhu
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Haibo Zhang
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Xiupeng Cao
- The First People's Hospital of Neijiang, Neijiang 641099, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
46
|
Floreani A, Gabbia D, De Martin S. Update on the Pharmacological Treatment of Primary Biliary Cholangitis. Biomedicines 2022; 10:biomedicines10082033. [PMID: 36009580 PMCID: PMC9405864 DOI: 10.3390/biomedicines10082033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Ursodeoxycholic acid (UDCA) is the first-line therapy used for the treatment of PBC. In recent years, new pharmacological agents have been proposed for PBC therapy to cure UDCA-non-responders. Obeticholic acid (OCA) is registered in many countries for PBC, and fibrates also seem to be effective in ameliorating biochemistry alteration and symptoms typical of PBC. Moreover, a variety of new agents, acting with different mechanisms of action, are under clinical evaluation for PBC treatment, including PPAR agonists, anti-NOX agents, immunomodulators, and mesenchymal stem cell transplantation. Since an insufficient amount of data is currently available about the effect of these novel approaches on robust clinical endpoints, such as transplant-free survival, their clinical approval needs to be supported by the consistent improvement of these parameters. The intensive research in this field will hopefully lead to a novel treatment landscape for PBC in the near future, with innovative therapies based on the combination of multiple agents acting on different pathogenetic mechanisms.
Collapse
Affiliation(s)
- Annarosa Floreani
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- IRCCS Negrar, 37024 Verona, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
47
|
Li X, Zhou X, Yang H, Zhang L, Zhang X, Chai J. Biochemical and Bioinformatic Characterization of Patients with a Sodium Taurocholate Cotransporting Polypeptide Mutation. HEPATITIS MONTHLY 2022; 22. [DOI: 10.5812/hepatmon-121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 04/17/2025]
Abstract
Background: SLC10A1 codes for the sodium taurocholate cotransporting polypeptide (NTCP). The SLC10A1S267F mutation is associated with loss of function of bile acid (BA) uptake and defined as a new type of hypercholanemia. This kind of hypercholanemia is characterized by high levels of serum BA. However, limited studies have been conducted on this topic. Objectives: This study aimed to describe the biochemical and bioinformatic characterization of patients with an SLC10A1S267F mutation, as well as to dissect pathogenesis in hypercholanemia. Methods: In this study, a total of 12 individuals (including 5 homozygous, 3 heterozygous, and 4 wild-type individuals) were recruited. Whole-genome sequencing (WGS) and Sanger sequencing were used to confirm the genotype. Tests of liver function, renal function, and serum lipid level, in addition to routine blood tests, were performed to evaluate the clinical consequences of patients with an SLC10A1S267F mutation. The ClinVar website and protein prediction tools were used to analyze other cholesterol and BAs related gene mutations in SLC10A1S267F patients, as well as to evaluate their possible effects on serum BA levels of patients. Results: All SLC10A1S267F homozygous patients displayed high levels of BAs. Liver and renal functions were generally normal. According to previous reports, homozygous patients are prone to vitamin D deficiency and deviated blood lipids. However, all homozygous individuals had normal levels of blood lipids, thyroid hormones, and vitamin D (25(OH)D). Moreover, except for the SLC10A1S267F mutation, according to the WGS results, multiple gene mutations were found in 5 homozygous and might affect the level of BAs, but the SLC10A1S267F mutation still is the most important reason resulting in a high level of BAs. Conclusions: This study provided a more detailed description of the SLC10A1S267F mutation-induced hypercholanemia, delivering a new idea that there might be some mutations in SLC10A1S267F homozygotes, probably influencing BA metabolism.
Collapse
|
48
|
Liu Y, Liu T, Zhao X, Gao Y. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease. Cell Mol Life Sci 2022; 79:486. [PMID: 35978227 PMCID: PMC11073206 DOI: 10.1007/s00018-022-04509-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Cholestasis is a key causative factor in alcohol-related liver disease (ALD) and variable degrees of cholestasis occur in all stages of ALD. However, the pathogenetic mechanisms and biomarkers associated with cholestasis are not well characterized. Cholestatic disease is marked by the disruption of bile acids (BA) transport and homeostasis. Consequently, in both human and experimental ALD, the disease shows a direct correlation with an imbalance in BA equilibrium, which in turn may also affect the severity of the disease. Modulation of BA metabolism or signaling pathways is increasingly considered as a potential therapeutic strategy for ALD in humans. In this paper, we highlight the key advances made in the past two decades in characterizing the molecular regulatory mechanisms of BA synthesis, enterohepatic circulation, and BA homeostasis. We summarize recent insights into the nature of the linkage between BA dysregulation and ALD, including the abnormal expression of genes involved in BA metabolism, abnormal changes in receptors that regulate BA metabolism, and disturbance in the gut flora engaged in BA metabolism caused by alcohol consumption. Additionally, we provide novel perspectives on the changes in BAs in various stages of ALD. Finally, we propose potential pharmacological therapies for ALD targeting BA metabolism and signaling.
Collapse
Affiliation(s)
- Yali Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
49
|
Abstract
Metabolomics emerged as an important tool to gain insights on how the body responds to therapeutic interventions. Bariatric surgery is the most effective treatment for severe obesity and obesity-related co-morbidities. Our aim was to conduct a systematic review of the available data on metabolomics profiles that characterize patients submitted to different bariatric surgery procedures, which could be useful to predict clinical outcomes including weight loss and type 2 diabetes remission. For that, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed. Data from forty-seven original study reports addressing metabolomics profiles induced by bariatric surgery that met eligibility criteria were compiled and summarized. Amino acids, lipids, energy-related and gut microbiota-related were the metabolite classes most influenced by bariatric surgery. Among these, higher pre-operative levels of specific lipids including phospholipids, long-chain fatty acids and bile acids were associated with post-operative T2D remission. As conclusion, metabolite profiling could become a useful tool to predict long term response to different bariatric surgery procedures, allowing more personalized interventions and improved healthcare resources allocation.
Collapse
Affiliation(s)
- Matilde Vaz
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia S Pereira
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Mariana P Monteiro
- Endocrine & Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), University of Porto, Porto, Portugal.
- Department of Anatomy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
50
|
Park JW, Kim JH, Kim SE, Jung JH, Jang MK, Park SH, Lee MS, Kim HS, Suk KT, Kim DJ. Primary Biliary Cholangitis and Primary Sclerosing Cholangitis: Current Knowledge of Pathogenesis and Therapeutics. Biomedicines 2022; 10:1288. [PMID: 35740310 PMCID: PMC9220082 DOI: 10.3390/biomedicines10061288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiopathies encompass various biliary diseases affecting the biliary epithelium, resulting in cholestasis, inflammation, fibrosis, and ultimately liver cirrhosis. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the most important progressive cholangiopathies in adults. Much research has broadened the scope of disease biology to genetic risk, epigenetic changes, dysregulated mucosal immunity, altered biliary epithelial cell function, and dysbiosis, all of which interact and arise in the context of ill-defined environmental triggers. An in-depth understanding of the molecular pathogenesis of these cholestatic diseases will help clinicians better prevent and treat diseases. In this review, we focus on the main underlying mechanisms of disease initiation and progression, and novel targeted therapeutics beyond currently approved treatments.
Collapse
Affiliation(s)
- Ji-Won Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jung-Hee Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Jang Han Jung
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Sang-Hoon Park
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Myung-Seok Lee
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
| | - Hyoung-Su Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, College of Medicine, Hallym University, Chuncheon-si 24252, Korea; (J.-W.P.); (J.-H.K.); (S.-E.K.); (J.H.J.); (M.-K.J.); (S.-H.P.); (M.-S.L.); (H.-S.K.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 200-010, Korea
| |
Collapse
|