1
|
Greber UF. Clicking viruses-with chemistry toward mechanisms in infection. J Virol 2025:e0047125. [PMID: 40366176 DOI: 10.1128/jvi.00471-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Viruses subvert cells and evade host defense. They emerge unpredictably and threaten humans and livestock through their genetic and phenotypic diversity. Despite more than 100 years since the discovery of viruses, the molecular underpinnings of virus infections are incompletely understood. The introduction of new methodologies into the field, such as that of click chemistry some 10 years ago, keeps uncovering new facets of viruses. Click chemistry uses bio-orthogonal reactions on chemical probes and couples nucleic acids, proteins, and lipids with tractable labels, such as fluorophores for single-cell and single-molecule imaging, or biotin for biochemical profiling of infections. Its applications in single cells often achieve single-molecule resolution and provide important insights into the widely known phenomenon of cell-to-cell infection variability. This review describes click chemistry advances to unravel infection mechanisms of a select set of enveloped and nonenveloped DNA and RNA viruses, including adenovirus, herpesvirus, and human immunodeficiency virus. It highlights recent click chemistry breakthroughs with viral DNA, viral RNA, protein, as well as host-derived lipid functions in both live and chemically fixed cells. It discusses new insights on specific processes including virus entry, uncoating, transcription, replication, packaging, and assembly and provides a perspective for click chemistry to explore viral cell biology, infection variability, and genome organization in the particle.
Collapse
Affiliation(s)
- Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Lathram WA, Neff RJ, Zalla AN, Brien JD, Subramanian V, Radka CD. Dissecting the biophysical mechanisms of oleate hydratase association with membranes. Front Mol Biosci 2025; 11:1504373. [PMID: 39845901 PMCID: PMC11751051 DOI: 10.3389/fmolb.2024.1504373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
This study investigates the dynamics of oleate hydratase (OhyA), a bacterial flavoenzyme from Staphylococcus aureus, and its interactions with lipid membranes, focusing on the factors influencing membrane binding and oligomerization. OhyA catalyzes the hydration of unsaturated fatty acids, playing a key role in bacterial pathogenesis by neutralizing host antimicrobial fatty acids. OhyA binds the membrane bilayer to access membrane-embedded substrates for catalysis, and structural studies have revealed that OhyA forms oligomers on membrane surfaces, stabilized by both protein-protein and protein-lipid interactions. Using fluorescence correlation spectroscopy (FCS), we examined the effects of membrane curvature and lipid availability on OhyA binding to phosphatidylglycerol unilamellar vesicles. Our results reveal that OhyA preferentially binds to vesicles with moderate curvature, while the presence of substrate fatty acids slightly enhanced the overall interaction despite reducing the binding affinity by 3- to 4-fold. Complementary phosphorus-31 (31P) NMR spectroscopy further demonstrated two distinct binding modes: a fast-exchange interaction at lower protein concentrations and a longer lasting interaction at higher protein concentrations, likely reflecting cooperative oligomerization. These findings highlight the reversible, non-stoichiometric nature of OhyA•membrane interactions, with dynamic binding behaviors influenced by protein concentration and lipid environment. This research provides new insights into the dynamic behavior of OhyA on bacterial membranes, highlighting that initial interactions are driven by lipid-mediated protein binding, while sustained interactions are primarily governed by the protein:lipid molar ratio rather than the formation of new, specific lipid-protein interactions. These findings advance our understanding of the biophysical principles underlying OhyA's role in bacterial membrane function and virulence.
Collapse
Affiliation(s)
- William A. Lathram
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Robert J. Neff
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Ashley N. Zalla
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - James D. Brien
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | | | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Palomar-Alonso N, Lee M, Kim M. Exosomes: Membrane-associated proteins, challenges and perspectives. Biochem Biophys Rep 2024; 37:101599. [PMID: 38145105 PMCID: PMC10746368 DOI: 10.1016/j.bbrep.2023.101599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
Membrane proteins determine the precise function of each membrane and, therefore, the function of each cell type. These proteins essential roles in cell physiology, participating in the maintenance of the cell metabolism, its homeostasis or promoting proper cell growth. Membrane proteins, as has long been described, are located both in the plasma membrane and in complex subcellular structures. However, they can also be released into the extracellular environment associated with extracellular vesicles (EVs). To date, most of the research have been focused on understanding the role of exosomal RNA in several processes. Recently, there has been increasing interest in studying the function of exosome membrane proteins for exosome-based therapy, but not much research has been done yet on the function of exosome membrane proteins. One of the major limitations of studying exosome membrane proteins and their application to translational research of exosome-based therapeutics is the low yield of exosome isolation. Here, we have introduced a new perspective on exosome membrane protein research by reviewing studies showing the important role of exosome membrane proteins in exosome-based therapies. Furthermore, we have proposed a new strategy to boost the yield of exosome isolation: hybridization of liposomes with exosome-derived membrane. Liposomes have already been reported to affect the cell excitation to increase exosome production in tumor cells. Therefore, increasing cellular uptake of these liposomes would enhance exosome release by increasing cellular excitation. This new perspective could be a breakthrough in exosome-based therapeutic research.
Collapse
Affiliation(s)
- Nuria Palomar-Alonso
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mijung Lee
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Dementia Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
4
|
Rostovtseva TK, Weinrich M, Jacobs D, Rosencrans WM, Bezrukov SM. Dimeric Tubulin Modifies Mechanical Properties of Lipid Bilayer, as Probed Using Gramicidin A Channel. Int J Mol Sci 2024; 25:2204. [PMID: 38396879 PMCID: PMC10889239 DOI: 10.3390/ijms25042204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Using the gramicidin A channel as a molecular probe, we show that tubulin binding to planar lipid membranes changes the channel kinetics-seen as an increase in the lifetime of the channel dimer-and thus points towards modification of the membrane's mechanical properties. The effect is more pronounced in the presence of non-lamellar lipids in the lipid mixture used for membrane formation. To interpret these findings, we propose that tubulin binding redistributes the lateral pressure of lipid packing along the membrane depth, making it closer to the profile expected for lamellar lipids. This redistribution happens because tubulin perturbs the lipid headgroup spacing to reach the membrane's hydrophobic core via its amphiphilic α-helical domain. Specifically, it increases the forces of repulsion between the lipid headgroups and reduces such forces in the hydrophobic region. We suggest that the effect is reciprocal, meaning that alterations in lipid bilayer mechanics caused by membrane remodeling during cell proliferation in disease and development may also modulate tubulin membrane binding, thus exerting regulatory functions. One of those functions includes the regulation of protein-protein interactions at the membrane surface, as exemplified by VDAC complexation with tubulin.
Collapse
Affiliation(s)
- Tatiana K. Rostovtseva
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA (S.M.B.)
| | - Michael Weinrich
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Daniel Jacobs
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA (S.M.B.)
| | - William M. Rosencrans
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA (S.M.B.)
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sergey M. Bezrukov
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA (S.M.B.)
| |
Collapse
|
5
|
Rout M, Mishra S, Panda S, Dehury B, Pati S. Lipid and cholesterols modulate the dynamics of SARS-CoV-2 viral ion channel ORF3a and its pathogenic variants. Int J Biol Macromol 2024; 254:127986. [PMID: 37944718 DOI: 10.1016/j.ijbiomac.2023.127986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
SARS-CoV-2 accessory protein, ORF3a is a putative ion channel which immensely contributes to viral pathogenicity by modulating host immune responses and virus-host interactions. Relatively high expression of ORF3a in diseased individuals and implication with inflammasome activation, apoptosis and autophagy inhibition, ratifies as an effective target for developing vaccines and therapeutics. Herein, we present the elusive dynamics of ORF3a-dimeric state using all-atoms molecular dynamics (MD) simulations at μ-seconds scale in a heterogeneous lipid-mimetic system in multiple replicates. Additionally, we also explore the effect of non-synonymous pathogenic mutations on ORF3a ion channel activity and viral pathogenicity in different SARS-CoV-2 variants using various structure-based protein stability (ΔΔG) tools and computational saturation mutagenesis. Our study ascertains the role of phosphatidylcholines and cholesterol in modulating the structure of ORF3a, which perturbs the size and flexibility of the polar cavity that allows permeation of large cations. Discrete trend in ion channel pore radius and area per lipid arises the premise that presence of lipids might also affect the overall conformation of ORF3a. MD structural-ensembles, in some replicates rationalize the crucial role of TM2 in maintaining the native structure of ORF3a. We also infer that loss of structural stability primarily grounds for pathogenicity in more than half of the pathogenic variants of ORF3a. Overall, the effect of mutation on alteration of ion permeability of ORF3a, proposed in this study brings mechanistic insights into variant consequences on viral membrane proteins of SARS-CoV-2, which can be utilized for the development of novel therapeutics to treat COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Sunita Panda
- Mycology Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India.
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Chandrasekharpur, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
6
|
Yu J, Boehr DD. Regulatory mechanisms triggered by enzyme interactions with lipid membrane surfaces. Front Mol Biosci 2023; 10:1306483. [PMID: 38099197 PMCID: PMC10720463 DOI: 10.3389/fmolb.2023.1306483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Recruitment of enzymes to intracellular membranes often modulates their catalytic activity, which can be important in cell signaling and membrane trafficking. Thus, re-localization is not only important for these enzymes to gain access to their substrates, but membrane interactions often allosterically regulate enzyme function by inducing conformational changes across different time and amplitude scales. Recent structural, biophysical and computational studies have revealed how key enzymes interact with lipid membrane surfaces, and how this membrane binding regulates protein structure and function. This review summarizes the recent progress in understanding regulatory mechanisms involved in enzyme-membrane interactions.
Collapse
Affiliation(s)
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
7
|
Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1181031. [PMID: 37255567 PMCID: PMC10225987 DOI: 10.3389/fpls.2023.1181031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Membrane identity and dynamic processes, that act at membrane sites, provide important cues for regulating transport, signal transduction and communication across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse eukaryotes in particular plants and which roles are being played by protein interaction complexes composed of peripheral and integral membrane proteins. One class of peripheral membrane proteins conserved across eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs). These proteins share a SEC14 domain that contributes to membrane identity and fulfills regulatory functions in membrane trafficking by its ability to sense, bind, transport and exchange lipophilic substances between membranes, such as phosphoinositides and diverse other lipophilic substances. SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated organisms or with a modular domain structure as multi-domain proteins in animals and streptophytes (comprising charales and land plants). Here, we present an overview on the functional roles of SEC14L-PITPs, with a special focus on the multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group (PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles from membrane trafficking to organism fitness in plants. We concentrate on the structure of SEC14L-PITPs, their ability to not only bind phospholipids but also other lipophilic ligands, and their ability to regulate complex cellular responses through interacting with proteins at membrane sites.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Center of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
8
|
Jhingan GD, Manich M, Olivo-Marin JC, Guillen N. Live Cells Imaging and Comparative Phosphoproteomics Uncover Proteins from the Mechanobiome in Entamoeba histolytica. Int J Mol Sci 2023; 24:ijms24108726. [PMID: 37240072 DOI: 10.3390/ijms24108726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Entamoeba histolytica is a protozoan parasite and the causative agent of amoebiasis in humans. This amoeba invades human tissues by taking advantage of its actin-rich cytoskeleton to move, enter the tissue matrix, kill and phagocyte the human cells. During tissue invasion, E. histolytica moves from the intestinal lumen across the mucus layer and enters the epithelial parenchyma. Faced with the chemical and physical constraints of these diverse environments, E. histolytica has developed sophisticated systems to integrate internal and external signals and to coordinate cell shape changes and motility. Cell signalling circuits are driven by interactions between the parasite and extracellular matrix, combined with rapid responses from the mechanobiome in which protein phosphorylation plays an important role. To understand the role of phosphorylation events and related signalling mechanisms, we targeted phosphatidylinositol 3-kinases followed by live cell imaging and phosphoproteomics. The results highlight 1150 proteins, out of the 7966 proteins within the amoebic proteome, as members of the phosphoproteome, including signalling and structural molecules involved in cytoskeletal activities. Inhibition of phosphatidylinositol 3-kinases alters phosphorylation in important members of these categories; a finding that correlates with changes in amoeba motility and morphology, as well as a decrease in actin-rich adhesive structures.
Collapse
Affiliation(s)
| | - Maria Manich
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, 75015 Paris, France
| | - Nancy Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit, 75015 Paris, France
- Institut Pasteur, Biological Image Analysis Unit, 75015 Paris, France
- Centre National de la Recherche Scientifique, CNRS-ERL9195, 75015 Paris, France
| |
Collapse
|
9
|
Moutoussamy E, Khan HM, Roberts MF, Gershenson A, Chipot C, Reuter N. Standard Binding Free Energy and Membrane Desorption Mechanism for a Phospholipase C. J Chem Inf Model 2022; 62:6602-6613. [PMID: 35343689 PMCID: PMC9795555 DOI: 10.1021/acs.jcim.1c01543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peripheral membrane proteins (PMPs) bind temporarily to cellular membranes and play important roles in signaling, lipid metabolism, and membrane trafficking. Obtaining accurate membrane-PMP affinities using experimental techniques is more challenging than for protein-ligand affinities in an aqueous solution. At the theoretical level, calculation of the standard protein-membrane binding free energy using molecular dynamics simulations remains a daunting challenge owing to the size of the biological objects at play, the slow lipid diffusion, and the large variation in configurational entropy that accompanies the binding process. To overcome these challenges, we used a computational framework relying on a series of potential-of-mean-force (PMF) calculations including a set of geometrical restraints on collective variables. This methodology allowed us to determine the standard binding free energy of a PMP to a phospholipid bilayer using an all-atom force field. Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) was chosen due to its importance as a virulence factor and owing to the host of experimental affinity data available. We computed a standard binding free energy of -8.2 ± 1.4 kcal/mol in reasonable agreement with the reported experimental values (-6.6 ± 0.2 kcal/mol). In light of the 2.3-μs separation PMF calculation, we investigated the mechanism whereby BtPI-PLC disengages from interactions with the lipid bilayer during separation. We describe how a short amphipathic helix engages in transitory interactions to ease the passage of its hydrophobes through the interfacial region upon desorption from the bilayer.
Collapse
Affiliation(s)
- Emmanuel
E. Moutoussamy
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Hanif M. Khan
- Department
of Biological Sciences, University of Bergen, N-5020 Bergen, Norway,Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Mary F. Roberts
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Anne Gershenson
- Department
of Biochemistry and Molecular Biology, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Christophe Chipot
- Laboratoire
International Associé Centre National de la Recherche Scientifique
et University of Illinois at Urbana−Champaign, Unité
Mixte de Recherche n 7019, Université
de Lorraine, BP 70239, 54506 Vandœuvre-lès-Nancy cedex, France,Department
of Physics, University of Illinois, Urbana, Illinois 61801, United States
| | - Nathalie Reuter
- Computational
Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway,Department
of Chemistry, University of Bergen, N-5020 Bergen, Norway,
| |
Collapse
|
10
|
Hu Y, Zhang RQ, Wang ZG, Liu SL. In Situ Quantification of Lipids in Live Cells by Using Lipid-Binding Domain-Based Biosensors. Bioconjug Chem 2022; 33:2076-2087. [DOI: 10.1021/acs.bioconjchem.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Smulders L, Altman R, Briseno C, Saatchi A, Wallace L, AlSebaye M, Stahelin RV, Nikolaidis N. Phosphatidylinositol Monophosphates Regulate the Membrane Localization of HSPA1A, a Stress-Inducible 70-kDa Heat Shock Protein. Biomolecules 2022; 12:biom12060856. [PMID: 35740982 PMCID: PMC9221345 DOI: 10.3390/biom12060856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 02/02/2023] Open
Abstract
HSPA1A is a molecular chaperone that regulates the survival of stressed and cancer cells. In addition to its cytosolic pro-survival functions, HSPA1A also localizes and embeds in the plasma membrane (PM) of stressed and tumor cells. Membrane-associated HSPA1A exerts immunomodulatory functions and renders tumors resistant to standard therapies. Therefore, understanding and manipulating HSPA1A's surface presentation is a promising therapeutic. However, HSPA1A's pathway to the cell surface remains enigmatic because this protein lacks known membrane localization signals. Considering that HSPA1A binds to lipids, like phosphatidylserine (PS) and monophosphorylated phosphoinositides (PIPs), we hypothesized that this interaction regulates HSPA1A's PM localization and anchorage. To test this hypothesis, we subjected human cell lines to heat shock, depleted specific lipid targets, and quantified HSPA1A's PM localization using confocal microscopy and cell surface biotinylation. These experiments revealed that co-transfection of HSPA1A with lipid-biosensors masking PI(4)P and PI(3)P significantly reduced HSPA1A's heat-induced surface presentation. Next, we manipulated the cellular lipid content using ionomycin, phenyl arsine oxide (PAO), GSK-A1, and wortmannin. These experiments revealed that HSPA1A's PM localization was unaffected by ionomycin but was significantly reduced by PAO, GSK-A1, and wortmannin, corroborating the findings obtained by the co-transfection experiments. We verified these results by selectively depleting PI(4)P and PI(4,5)P2 using a rapamycin-induced phosphatase system. Our findings strongly support the notion that HSPA1A's surface presentation is a multifaceted lipid-driven phenomenon controlled by the binding of the chaperone to specific endosomal and PM lipids.
Collapse
Affiliation(s)
- Larissa Smulders
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Rachel Altman
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Carolina Briseno
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Alireza Saatchi
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Leslie Wallace
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Maha AlSebaye
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Cancer Center, Purdue University, West Lafayette, IN 47907, USA;
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834, USA; (L.S.); (R.A.); (C.B.); (A.S.); (L.W.); (M.A.)
- Correspondence: ; Tel.: +1-657-278-4526
| |
Collapse
|
13
|
Abstract
Lipid-protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host-pathogen interactions, and transmembrane transport. At the plasma membrane, lipid-protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid-protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid-protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid-protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions.
Collapse
Affiliation(s)
- Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA;
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden; ,
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Hammond GRV, Ricci MMC, Weckerly CC, Wills RC. An update on genetically encoded lipid biosensors. Mol Biol Cell 2022; 33:tp2. [PMID: 35420888 PMCID: PMC9282013 DOI: 10.1091/mbc.e21-07-0363] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023] Open
Abstract
Specific lipid species play central roles in cell biology. Their presence or enrichment in individual membranes can control properties or direct protein localization and/or activity. Therefore, probes to detect and observe these lipids in intact cells are essential tools in the cell biologist's freezer box. Herein, we discuss genetically encoded lipid biosensors, which can be expressed as fluorescent protein fusions to track lipids in living cells. We provide a state-of-the-art list of the most widely available and reliable biosensors and highlight new probes (circa 2018-2021). Notably, we focus on advances in biosensors for phosphatidylinositol, phosphatidic acid, and PI 3-kinase lipid products.
Collapse
Affiliation(s)
- Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Morgan M. C. Ricci
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Claire C. Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
15
|
Karmakar S, Klauda JB. Modeling the Membrane Binding Mechanism of a Lipid Transport Protein Osh4 to Single Membranes. Biophys J 2022; 121:1560-1575. [PMID: 35247338 PMCID: PMC9072576 DOI: 10.1016/j.bpj.2022.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/13/2021] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
All atom molecular dynamics simulations are utilized to unravel the binding mechanism of yeast oxysterol binding protein (Osh4) to model membranes with varying anionic lipid concentration using all-atom (AA) and the highly mobile membrane mimetic (HMMM) representations. For certain protein-lipid interactions, an improved force field description is used (CUFIX) to accurately describe lipid-protein electrostatic interactions. Our detailed computational studies have identified a single, β-crease orientated, membrane bound conformation of Osh4 for all anionic membranes. The penetration of the PHE-239 residue below the membrane phosphate plane is the characteristic signature of the membrane-bound state of Osh4. As the phenylalanine loop anchors itself deeply in the membrane; the other regions of the Osh4, namely, ALPS motif, ß6- ß7 loop, ß14- ß15 loop and ß16- ß17 loop, maximize their contact with the membrane. Furthermore, loose lipid packing and higher mobility of HMMM enables stronger association of ALPS motif with the membrane lipids through its hydrophobic surface and after the HMMM is converted to AA and equilibrated the binding is 2-3 times stronger compared to simulations started with the AA representation yielding the major importance of the ALPS motif to binding. Quantitative estimation of binding energy revealed that the phenylalanine loop plays a crucial role in stable membrane attachment of Osh4 and contributes significantly toward overall binding process. The CUFIX parameters provide a more balanced picture of hydrophobic and electrostatic interactions between the protein and the membrane which differs from our past work that showed salt bridges alone stabilized Osh4-membrane contact. Our study provides a comprehensive picture of the binding mechanism of Osh4 with model single membranes and thus, understanding of the initial interactions is important for elucidating the biological function of this protein to shuttle lipids between organelles.
Collapse
Affiliation(s)
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering; Biophysics Graduate Program University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
The Electrostatic Basis of Diacylglycerol Pyrophosphate—Protein Interaction. Cells 2022; 11:cells11020290. [PMID: 35053406 PMCID: PMC8774204 DOI: 10.3390/cells11020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 01/08/2023] Open
Abstract
Diacylglycerol pyrophosphate (DGPP) is an anionic phospholipid formed in plants, yeast, and parasites under multiple stress stimuli. It is synthesized by the phosphorylation action of phosphatidic acid (PA) kinase on phosphatidic acid, a signaling lipid with multifunctional properties. PA functions in the membrane through the interaction of its negatively charged phosphomonoester headgroup with positively charged proteins and ions. DGPP, like PA, can interact electrostatically via the electrostatic-hydrogen bond switch mechanism but differs from PA in its overall charge and shape. The formation of DGPP from PA alters the physicochemical properties as well as the structural dynamics of the membrane. This potentially impacts the molecular and ionic binding of cationic proteins and ions with the DGPP enriched membrane. However, the results of these important interactions in the stress response and in DGPP’s overall intracellular function is unknown. Here, using 31P MAS NMR, we analyze the effect of the interaction of low DGPP concentrations in model membranes with the peptides KALP23 and WALP23, which are flanked by positively charged Lysine and neutral Tryptophan residues, respectively. Our results show a significant effect of KALP23 on the charge of DGPP as compared to WALP23. There was, however, no significant effect on the charge of the phosphomonoester of DGPP due to the interaction with positively charged lipids, dioleoyl trimethylammonium propane (DOTAP) and dioleoyl ethyl-phosphatidylcholine (EtPC). Divalent calcium and magnesium cations induce deprotonation of the DGPP headgroup but showed no noticeable differences on DGPP’s charge. Our results lead to a novel model for DGPP—protein interaction.
Collapse
|
17
|
Xia X, Wu W, Cui Y, Roy P, Zhou ZH. Bluetongue virus capsid protein VP5 perforates membranes at low endosomal pH during viral entry. Nat Microbiol 2021; 6:1424-1432. [PMID: 34702979 PMCID: PMC9015746 DOI: 10.1038/s41564-021-00988-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/22/2021] [Indexed: 01/25/2023]
Abstract
Bluetongue virus (BTV) is a non-enveloped virus and causes substantial morbidity and mortality in ruminants such as sheep. Fashioning a receptor-binding protein (VP2) and a membrane penetration protein (VP5) on the surface, BTV releases its genome-containing core (VP3 and VP7) into the host cell cytosol after perforation of the endosomal membrane. Unlike enveloped ones, the entry mechanisms of non-enveloped viruses into host cells remain poorly understood. Here we applied single-particle cryo-electron microscopy, cryo-electron tomography and structure-guided functional assays to characterize intermediate states of BTV cell entry in endosomes. Four structures of BTV at the resolution range of 3.4-3.9 Å show the different stages of structural rearrangement of capsid proteins on exposure to low pH, including conformational changes of VP5, stepwise detachment of VP2 and a small shift of VP7. In detail, sensing of the low-pH condition by the VP5 anchor domain triggers three major VP5 actions: projecting the hidden dagger domain, converting a surface loop to a protonated β-hairpin that anchors VP5 to the core and stepwise refolding of the unfurling domains into a six-helix stalk. Cryo-electron tomography structures of BTV interacting with liposomes show a length decrease of the VP5 stalk from 19.5 to 15.5 nm after its insertion into the membrane. Our structures, functional assays and structure-guided mutagenesis experiments combined indicate that this stalk, along with dagger domain and the WHXL motif, creates a single pore through the endosomal membrane that enables the viral core to enter the cytosol. Our study unveils the detailed mechanisms of BTV membrane penetration and showcases general methods to study cell entry of other non-enveloped viruses.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Weining Wu
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function. PLoS One 2021; 16:e0258385. [PMID: 34648550 PMCID: PMC8516228 DOI: 10.1371/journal.pone.0258385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The efficacy of antibiotics to treat bacterial infections declines rapidly due to antibiotic resistance. This problem has stimulated the development of novel antibiotics, but most attempts have failed. Consequently, the idea of mining uncharacterized genes of pathogens to identify potential targets for entirely new classes of antibiotics was proposed. Without knowing the biochemical function of a protein, it is difficult to validate its potential for drug targeting; therefore, the functional characterization of bacterial proteins of unknown function must be accelerated. Here, we present a paradigm for comprehensively predicting the biochemical functions of a large set of proteins encoded by hypothetical genes in human pathogens to identify candidate drug targets. A high-throughput approach based on homology modelling with ten templates per target protein was applied to the set of 2103 P. aeruginosa proteins encoded by hypothetical genes. The >21000 homology modelling results obtained and available biological and biochemical information about several thousand templates were scrutinized to predict the function of reliably modelled proteins of unknown function. This approach resulted in assigning one or often multiple putative functions to hundreds of enzymes, ligand-binding proteins and transporters. New biochemical functions were predicted for 41 proteins whose essential or virulence-related roles in P. aeruginosa were already experimentally demonstrated. Eleven of them were shortlisted as promising drug targets that participate in essential pathways (maintaining genome and cell wall integrity), virulence-related processes (adhesion, cell motility, host recognition) or antibiotic resistance, which are general drug targets. These proteins are conserved in other WHO priority pathogens but not in humans; therefore, they represent high-potential targets for preclinical studies. These and many more biochemical functions assigned to uncharacterized proteins of P. aeruginosa, made available as PaPUF database, may guide the design of experimental screening of inhibitors, which is a crucial step towards the validation of the highest-potential targets for the development of novel drugs against P. aeruginosa and other high-priority pathogens.
Collapse
|
19
|
Rathod J, Yen HC, Liang B, Tseng YY, Chen CS, Wu WS. YPIBP: A repository for phosphoinositide-binding proteins in yeast. Comput Struct Biotechnol J 2021; 19:3692-3707. [PMID: 34285772 PMCID: PMC8261538 DOI: 10.1016/j.csbj.2021.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Phosphoinositides (PIs) are a family of eight lipids consisting of phosphatidylinositol (PtdIns) and its seven phosphorylated forms. PIs have important regulatory functions in the cell including lipid signaling, protein transport, and membrane trafficking. Yeast has been recognized as a eukaryotic model system to study lipid-protein interactions. Hundreds of yeast PI-binding proteins have been identified, but this research knowledge remains scattered. Besides, the complete PI-binding spectrum and potential PI-binding domains have not been interlinked. No comprehensive databases are available to support the lipid-protein interaction research on phosphoinositides. Here we constructed the first knowledgebase of Yeast Phosphoinositide-Binding Proteins (YPIBP), a repository consisting of 679 PI-binding proteins collected from high-throughput proteome-array and lipid-array studies, QuickGO, and a rigorous literature mining. The YPIBP also contains protein domain information in categories of lipid-binding domains, lipid-related domains and other domains. The YPIBP provides search and browse modes along with two enrichment analyses (PI-binding enrichment analysis and domain enrichment analysis). An interactive visualization is given to summarize the PI-domain-protein interactome. Finally, three case studies were given to demonstrate the utility of YPIBP. The YPIBP knowledgebase consolidates the present knowledge and provides new insights of the PI-binding proteins by bringing comprehensive and in-depth interaction network of the PI-binding proteins. YPIBP is available at http://cosbi7.ee.ncku.edu.tw/YPIBP/.
Collapse
Key Words
- ANTH, AP180 N-terminal Homology
- BAR, Bin-Amphiphysin-Rvs
- CAFA, Critical Assessment of Functional Annotation
- CRAL-TRIO, cellular retinaldehyde-binding protein (CRALBP) and TRIO guanine exchange factor
- Cvt, Cytoplasm-to-vacuole targeting
- ENTH, Epsin N-terminal Homology
- FDR, False Discovery Rate
- FYVE, Fab 1 (yeast orthologue of PIKfyve), YOTB, Vac 1 (vesicle transport protein), and EEA1
- GO, Gene Ontology
- ITC, Isothermal Titration Calorimetry
- LBD, Lipid-Binding Domain
- LMPD, LIPID MAPS Proteome Database
- LMSD, LIPID MAPS Structure Database
- LRD, Lipid-Related Domain
- Lipid-binding domain
- OMIM, Online Mendelian Inheritance in Man
- OSBP, Oxysterol-Binding Protein
- PH, Pleckstrin Homology
- PI(3,4)P2, phosphatidylinositol-3,4-bisphosphate
- PI(3,4,5)P3, phosphatidylinositol-3,4,5-trisphosphate
- PI(3,5)P2, phosphatidylinositol-3,5-bisphosphate
- PI(4,5)P2, phosphatidylinositol-4,5-bisphosphate
- PI-binding protein
- PI3P, phosphatidylinositol-3-phosphate
- PI4P, phosphatidylinositol-4-phosphate
- PI5P, phosphatidylinositol-5-phosphate
- PIs, Phosphoinositides
- PMID, PubMed ID
- PX, Phox Homology
- Phosphatidylinositol (PtdIns)
- Phosphoinositides (PIs)
- PtdIns, Phosphatidylinositol
- QCM, Quartz Crystal Microbalance
- S. cerevisiae
- SNX, Sorting Nexin
- SPR, Surface Plasmon Resonance
- YPIBP, Yeast Phosphoinositide-Binding Proteins
- Yeast
Collapse
Affiliation(s)
- Jagat Rathod
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Chen Yen
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| | - Biqing Liang
- Department of Earth Sciences, College of Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
20
|
Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells 2021; 10:cells10051191. [PMID: 34068055 PMCID: PMC8152464 DOI: 10.3390/cells10051191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/07/2023] Open
Abstract
Signal transduction, the ability of cells to perceive information from the surroundings and alter behavior in response, is an essential property of life. Studies on tyrosine kinase action fundamentally changed our concept of cellular regulation. The induced assembly of subcellular hubs via the recognition of local protein or lipid modifications by modular protein interactions is now a central paradigm in signaling. Such molecular interactions are mediated by specific protein interaction domains. The first such domain identified was the SH2 domain, which was postulated to be a reader capable of finding and binding protein partners displaying phosphorylated tyrosine side chains. The SH3 domain was found to be involved in the formation of stable protein sub-complexes by constitutively attaching to proline-rich surfaces on its binding partners. The SH2 and SH3 domains have thus served as the prototypes for a diverse collection of interaction domains that recognize not only proteins but also lipids, nucleic acids, and small molecules. It has also been found that particular SH2 and SH3 domains themselves might also bind to and rely on lipids to modulate complex assembly. Some lipid-binding properties of SH2 and SH3 domains are reviewed here.
Collapse
|
21
|
Ojha A, Zhang W. Characterization of gustatory receptor 7 in the brown planthopper reveals functional versatility. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103567. [PMID: 33741431 DOI: 10.1016/j.ibmb.2021.103567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Insect pests consume tastants as their necessary energy and nutrient sources. Gustatory receptors play important roles in insect life and can form within an extremely complicated regulatory network. However, there are still many gustatory genes that have a significant impact on insect physiology, but their functional mechanism is still unknown. Here, we purified and characterized a gustatory receptor (protein) coding gene, NlGr7, from the brown planthopper (BPH) Nilaparvata lugens, which is an important insect pest of rice. Our results revealed that NlGr7 has an active association with various ligands, such as lectins, lipids (phospho- and sphingolipid) and copper. The mass-spectrometry result showed that NlGr7 is a sugar receptor, and NlGr7 is validated by different types of insoluble polysaccharides and a varied range of tastants. Further, we observed that NlGr7-bound ATP hydrolysed on the ATPase activity assay, which indicated that NlGr7 may be associated with important biological functions in the BPH. Furthermore, an injection of NlGr7 (protein), into newly emerged female adults of BPH, showed the reduced vitellogenin in ovary. The important NlGr7 for chemoreception has now been characterized in the BPH. We showed that NlGr7 in the BPH is required for various protein-ligands, as well as protein-sugars interactions, and for regulation of fecundity marker to play crucial roles in this pest. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest.
Collapse
Affiliation(s)
- Abhishek Ojha
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
22
|
Gao YG, Zhai X, Boldyrev IA, Molotkovsky JG, Patel DJ, Malinina L, Brown RE. Ceramide-1-phosphate transfer protein (CPTP) regulation by phosphoinositides. J Biol Chem 2021; 296:100600. [PMID: 33781749 PMCID: PMC8091061 DOI: 10.1016/j.jbc.2021.100600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Ceramide-1-phosphate transfer proteins (CPTPs) are members of the glycolipid transfer protein (GLTP) superfamily that shuttle ceramide-1-phosphate (C1P) between membranes. CPTPs regulate cellular sphingolipid homeostasis in ways that impact programmed cell death and inflammation. CPTP downregulation specifically alters C1P levels in the plasma and trans-Golgi membranes, stimulating proinflammatory eicosanoid production and autophagy-dependent inflammasome-mediated cytokine release. However, the mechanisms used by CPTP to target the trans-Golgi and plasma membrane are not well understood. Here, we monitored C1P intervesicular transfer using fluorescence energy transfer (FRET) and showed that certain phosphoinositides (phosphatidylinositol 4,5 bisphosphate (PI-(4,5)P2) and phosphatidylinositol 4-phosphate (PI-4P)) increased CPTP transfer activity, whereas others (phosphatidylinositol 3-phosphate (PI-3P) and PI) did not. PIPs that stimulated CPTP did not stimulate GLTP, another superfamily member. Short-chain PI-(4,5)P2, which is soluble and does not remain membrane-embedded, failed to activate CPTP. CPTP stimulation by physiologically relevant PI-(4,5)P2 levels surpassed that of phosphatidylserine (PS), the only known non-PIP stimulator of CPTP, despite PI-(4,5)P2 increasing membrane equilibrium binding affinity less effectively than PS. Functional mapping of mutations that led to altered FRET lipid transfer and assessment of CPTP membrane interaction by surface plasmon resonance indicated that di-arginine motifs located in the α-6 helix and the α3-α4 helix regulatory loop of the membrane-interaction region serve as PI-(4,5)P2 headgroup-specific interaction sites. Haddock modeling revealed specific interactions involving the PI-(4,5)P2 headgroup that left the acyl chains oriented favorably for membrane embedding. We propose that PI-(4,5)P2 interaction sites enhance CPTP activity by serving as preferred membrane targeting/docking sites that favorably orient the protein for function.
Collapse
Affiliation(s)
- Yong-Guang Gao
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Xiuhong Zhai
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Julian G Molotkovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Lucy Malinina
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | |
Collapse
|
23
|
RNA-sequencing of the Nyssomyia neivai sialome: a sand fly-vector from a Brazilian endemic area for tegumentary leishmaniasis and pemphigus foliaceus. Sci Rep 2020; 10:17664. [PMID: 33077743 PMCID: PMC7572365 DOI: 10.1038/s41598-020-74343-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis encompasses a spectrum of diseases caused by a protozoan belonging to the genus Leishmania. The parasite is transmitted by the bite of sand flies, which inoculate the promastigote forms into the host’s skin while acquiring a blood meal. Nyssomyia neivai is one of the main vectors of tegumentary leishmaniasis (TL) in Brazil. Southeastern Brazil is an endemic region for TL but also overlaps with an endemic focus for pemphigus foliaceus (PF), also known as Fogo Selvagem. Salivary proteins of sand flies, specifically maxadilan and LJM11, have been related to pemphigus etiopathogenesis in the New World, being proposed as an environmental trigger for autoimmunity. We present a comprehensive description of the salivary transcriptome of the N. neivai, using deep sequencing achieved by the Illumina protocol. In addition, we highlight the abundances of several N. neivai salivary proteins and use phylogenetic analysis to compare with Old- and New-World sand fly salivary proteins. The collection of protein sequences associated with the salivary glands of N. neivai can be useful for monitoring vector control strategies as biomarkers of N. neivai, as well as driving vector-vaccine design for leishmaniasis. Additionally, this catalog will serve as reference to screen for possible antigenic peptide candidates triggering anti-Desmoglein-1 autoantibodies.
Collapse
|
24
|
Conduit SE, Vanhaesebroeck B. Phosphoinositide lipids in primary cilia biology. Biochem J 2020; 477:3541-3565. [PMID: 32970140 PMCID: PMC7518857 DOI: 10.1042/bcj20200277] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Primary cilia are solitary signalling organelles projecting from the surface of most cell types. Although the ciliary membrane is continuous with the plasma membrane it exhibits a unique phospholipid composition, a feature essential for normal cilia formation and function. Recent studies have illustrated that distinct phosphoinositide lipid species localise to specific cilia subdomains, and have begun to build a 'phosphoinositide map' of the cilium. The abundance and localisation of phosphoinositides are tightly regulated by the opposing actions of lipid kinases and lipid phosphatases that have also been recently discovered at cilia. The critical role of phosphoinositides in cilia biology is highlighted by the devastating consequences of genetic defects in cilia-associated phosphoinositide regulatory enzymes leading to ciliopathy phenotypes in humans and experimental mouse and zebrafish models. Here we provide a general introduction to primary cilia and the roles phosphoinositides play in cilia biology. In addition to increasing our understanding of fundamental cilia biology, this rapidly expanding field may inform novel approaches to treat ciliopathy syndromes caused by deregulated phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E. Conduit
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, U.K
| |
Collapse
|
25
|
Putta P, Creque E, Piontkivska H, Kooijman EE. Lipid-protein interactions for ECA1 an N-ANTH domain protein involved in stress signaling in plants. Chem Phys Lipids 2020; 231:104919. [PMID: 32416105 DOI: 10.1016/j.chemphyslip.2020.104919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 01/27/2023]
Abstract
Epsin-like Clathrin Adaptor 1 (ECA1/ PICALM1A) is an A/ENTH domain protein that acts as an adaptor protein in clathrin-mediated endocytosis. ECA1 is recruited to the membrane during salt stress signaling in plants in a phosphatidic acid (PA)-dependent manner. PA is a lipid second messenger that rapidly and transiently increases in concentration under stress stimuli. Upon an increase in PA concentration another lipid, diacylglycerol pyrophosphate (DGPP), starts to accumulate. The accumulation of DGPP is suggested to be a cue for attenuating PA signaling during stress in plants. We showed in vitro that ECA1-PA binding is modulated as a function of membrane curvature stress and charge. In this work, we investigate ECA1 binding to DGPP in comparison with PA. We show that ECA1 has more affinity for the less charged PA, and this binding is pH dependent. Additionally, plant PA binding proteins SnRK2.10, TGD2C, and PDK1-PH2 were investigated for their interaction with DGPP, since no known DGPP binding proteins are available in the literature to date. Our results shed further light on DGPP and its interactions with membrane proteins which brings us closer toward understanding the complexity of protein interactions with anionic lipids, especially the enigmatic anionic lipid DGPP.
Collapse
Affiliation(s)
- Priya Putta
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Emily Creque
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Helen Piontkivska
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| | - Edgar E Kooijman
- Biological Sciences, Kent State University, PO Box 5109, 44242 Kent, OH, USA.
| |
Collapse
|
26
|
CD81 extracted in SMALP nanodiscs comprises two distinct protein populations within a lipid environment enriched with negatively charged headgroups. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183419. [PMID: 32735789 PMCID: PMC7456796 DOI: 10.1016/j.bbamem.2020.183419] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Tetraspanins exert a wide range of cellular functions of broad medical importance. Despite this, their biophysical characteristics are incompletely understood. Only two high-resolution structures of full-length tetraspanins have been solved. One is that of human CD81, which is involved in the infectivity of human pathogens including influenza, HIV, the malarial Plasmodium parasite and hepatitis C virus (HCV). The CD81 crystal structure identifies a cholesterol-binding pocket, which has been suggested to be important in the regulation of tetraspanin function. Here we investigate the use of styrene-maleic anhydride co-polymers (SMA) for the solubilisation and purification of CD81 within a lipid environment. When CD81 was expressed in the yeast Pichia pastoris, it could be solubilised and purified using SMA2000. This SMALP-encapsulated CD81 retained its native folded structure, as determined by the binding of two conformation-sensitive anti-CD81 antibodies. Analysis by size exclusion chromatography revealed two distinct populations of CD81, only one of which bound the HCV glycoprotein, E2. Optimization of expression and buffer conditions increased the proportion of E2-binding competent CD81 protein. Mass spectrometry analysis indicated that the lipid environment surrounding CD81 is enriched with negatively charged lipids. These results establish a platform to study the influence of protein-lipid interactions in tetraspanin biology. CD81 expressed in Pichia pastoris can be solubilised and purified using SMA polymer. SMALP-encapsulated CD81 retains native folded structure. Expression and buffer conditions can be optimized to improve protein quality. The lipid environment surrounding CD81 is enriched with negatively charged lipids.
Collapse
|
27
|
Scott JL, Frick CT, Johnson KA, Liu H, Yong SS, Varney AG, Wiest O, Stahelin RV. Molecular Analysis of Membrane Targeting by the C2 Domain of the E3 Ubiquitin Ligase Smurf1. Biomolecules 2020; 10:biom10020229. [PMID: 32033048 PMCID: PMC7072158 DOI: 10.3390/biom10020229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
SMAD ubiquitination regulatory factor 1 (Smurf1) is a Nedd4 family E3 ubiquitin ligase that regulates cell motility, polarity and TGFβ signaling. Smurf1 contains an N-terminal protein kinase C conserved 2 (C2) domain that targets cell membranes and is required for interactions with membrane-localized substrates such as RhoA. Here, we investigated the lipid-binding mechanism of Smurf1 C2, revealing a general affinity for anionic membranes in addition to a selective affinity for phosphoinositides (PIPs). We found that Smurf1 C2 localizes not only to the plasma membrane but also to negatively charged intracellular sites, acting as an anionic charge sensor and selective PIP-binding domain. Site-directed mutagenesis combined with docking/molecular dynamics simulations revealed that the Smurf1 C2 domain loop region primarily interacts with PIPs and cell membranes, as opposed to the β-surface cationic patch employed by other C2 domains. By depleting PIPs from the inner leaflet of the plasma membrane, we found that PIP binding is necessary for plasma membrane localization. Finally, we used a Smurf1 cellular ubiquitination assay to show that the amount of ubiquitin at the plasma membrane interface depends on the lipid-binding properties of Smurf1. This study shows the mechanism by which Smurf1 C2 targets membrane-based substrates and reveals a novel interaction for non-calcium-dependent C2 domains and membrane lipids.
Collapse
Affiliation(s)
- Jordan L. Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (J.L.S.); (C.T.F.); (K.A.J.); (H.L.); (S.S.Y.); (A.G.V.); (O.W.)
| | - Cary T. Frick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (J.L.S.); (C.T.F.); (K.A.J.); (H.L.); (S.S.Y.); (A.G.V.); (O.W.)
| | - Kristen A. Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (J.L.S.); (C.T.F.); (K.A.J.); (H.L.); (S.S.Y.); (A.G.V.); (O.W.)
| | - Haining Liu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (J.L.S.); (C.T.F.); (K.A.J.); (H.L.); (S.S.Y.); (A.G.V.); (O.W.)
| | - Sylvia S. Yong
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (J.L.S.); (C.T.F.); (K.A.J.); (H.L.); (S.S.Y.); (A.G.V.); (O.W.)
| | - Allyson G. Varney
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (J.L.S.); (C.T.F.); (K.A.J.); (H.L.); (S.S.Y.); (A.G.V.); (O.W.)
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (J.L.S.); (C.T.F.); (K.A.J.); (H.L.); (S.S.Y.); (A.G.V.); (O.W.)
| | - Robert V. Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: ; Tel.: +1-765-494-4152
| |
Collapse
|
28
|
Pinault M, Guimaraes C, Dumas J, Servais S, Chevalier S, Besson P, Goupille C. A 1D High Performance Thin Layer Chromatography Method Validated to Quantify Phospholipids Including Cardiolipin and Monolysocardiolipin from Biological Samples. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201900240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michelle Pinault
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Médecine de Tours Université de Tours 37000 Tours France
| | - Cyrille Guimaraes
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Médecine de Tours Université de Tours 37000 Tours France
| | - Jean‐François Dumas
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Pharmacie de Tours Université de Tours 37200 Tours France
| | - Stéphane Servais
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- IUT de Tours Université de Tours 37100 Tours France
| | - Stephan Chevalier
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Pharmacie de Tours Université de Tours 37200 Tours France
| | - Pierre Besson
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- Faculté de Pharmacie de Tours Université de Tours 37200 Tours France
| | - Caroline Goupille
- Université de Tours, INSERM N2C UMR1069 37032 Tours cedex 01 France
- CHRU de Tours, Hôpital Bretonneau 2 boulevard Tonnellé 37000 Tours France
| |
Collapse
|
29
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
30
|
Nastou KC, Tsaousis GN, Iconomidou VA. PerMemDB: A database for eukaryotic peripheral membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183076. [PMID: 31629694 DOI: 10.1016/j.bbamem.2019.183076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
Abstract
The majority of all proteins in cells interact with membranes either permanently or temporarily. Peripheral membrane proteins form transient complexes with membrane proteins and/or lipids, via non-covalent interactions and are of outmost importance, due to numerous cellular functions in which they participate. In an effort to collect data regarding this heterogeneous group of proteins we designed and constructed a database, called PerMemDB. PerMemDB is currently the most complete and comprehensive repository of data for eukaryotic peripheral membrane proteins deposited in UniProt or predicted with the use of MBPpred - a computational method that specializes in the detection of proteins that interact non-covalently with membrane lipids, via membrane binding domains. The first version of the database contains 231,770 peripheral membrane proteins from 1009 organisms. All entries have cross-references to other databases, literature references and annotation regarding their interactions with other proteins. Moreover, additional sequence annotation of the characteristic domains that allow these proteins to interact with membranes is available, due to the application of MBPpred. Through the web interface of PerMemDB, users can browse the contents of the database, submit advanced text searches and BLAST queries against the protein sequences deposited in PerMemDB. We expect this repository to serve as a source of information that will allow the scientific community to gain a deeper understanding of the evolution and function of peripheral membrane proteins via the enhancement of proteome-wide analyses. The database is available at: http://bioinformatics.biol.uoa.gr/db=permemdb.
Collapse
Affiliation(s)
- Katerina C Nastou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Georgios N Tsaousis
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15701, Greece.
| |
Collapse
|
31
|
Alkelai A, Greenbaum L, Heinzen EL, Baugh EH, Teitelbaum A, Zhu X, Strous RD, Tatarskyy P, Zai CC, Tiwari AK, Tampakeras M, Freeman N, Müller DJ, Voineskos AN, Lieberman JA, Delaney SL, Meltzer HY, Remington G, Kennedy JL, Pulver AE, Peabody EP, Levy DL, Lerer B. New insights into tardive dyskinesia genetics: Implementation of whole-exome sequencing approach. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109659. [PMID: 31153890 DOI: 10.1016/j.pnpbp.2019.109659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Tardive dyskinesia (TD) is an adverse movement disorder induced by chronic treatment with antipsychotics drugs. The contribution of common genetic variants to TD susceptibility has been investigated in recent years, but with limited success. The aim of the current study was to investigate the potential contribution of rare variants to TD vulnerability. In order to identify TD risk genes, we performed whole-exome sequencing (WES) and gene-based collapsing analysis focusing on rare (allele frequency < 1%) and putatively deleterious variants (qualifying variants). 82 Jewish schizophrenia patients chronically treated with antipsychotics were included and classified as having severe TD or lack of any abnormal movements based on a rigorous definition of the TD phenotype. First, we performed a case-control, exome-wide collapsing analysis comparing 39 schizophrenia patients with severe TD to 3118 unrelated population controls. Then, we checked the potential top candidate genes among 43 patients without any TD manifestations. All the genes that were found to harbor one or more qualifying variants in patients without any TD features were excluded from the final list of candidate genes. Only one gene, regulating synaptic membrane exocytosis 2 (RIMS2), showed significant enrichment of qualifying variants in TD patients compared with unrelated population controls after correcting for multiple testing (Fisher's exact test p = 5.32E-08, logistic regression p = 2.50E-08). Enrichment was caused by a single variant (rs567070433) due to a frameshift in an alternative transcript of RIMS2. None of the TD negative patients had qualifying variants in this gene. In a validation cohort of 140 schizophrenia patients assessed for TD, the variant was also not detected in any individual. Some potentially suggestive TD genes were detected in the TD cohort and warrant follow-up in future studies. No significant enrichment in previously reported TD candidate genes was identified. To the best of our knowledge, this is the first WES study of TD, demonstrating the potential role of rare loss-of-function variant enrichment in this pharmacogenetic phenotype.
Collapse
Affiliation(s)
- Anna Alkelai
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA.
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Alexander Teitelbaum
- Jerusalem Mental Health Center, Kfar Shaul Psychiatric Hospital, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | - Xiaolin Zhu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, USA
| | - Rael D Strous
- Maayenei Hayeshua Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pavel Tatarskyy
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Maria Tampakeras
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jeffrey A Lieberman
- Columbia University, New York State Psychiatric Institute, New York City, NY, USA
| | - Shannon L Delaney
- Columbia University, New York State Psychiatric Institute, New York City, NY, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gary Remington
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ann E Pulver
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma P Peabody
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
32
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Nintemann SJ, Palmgren M, López-Marqués RL. Catch You on the Flip Side: A Critical Review of Flippase Mutant Phenotypes. TRENDS IN PLANT SCIENCE 2019; 24:468-478. [PMID: 30885637 DOI: 10.1016/j.tplants.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Lipid flippases are integral membrane proteins that use ATP hydrolysis to power the generation of phospholipid asymmetry between the two leaflets of biological membranes, a process essential for cell survival. Although the first report of a plant lipid flippase was published in 2000, progress in the field has been slow, partially due to the high level of redundancy in this gene family. However, recently an increasing number of reports have examined the physiological function of lipid flippases, mainly in Arabidopsis thaliana. In this review we aim to summarize recent findings on the physiological relevance of lipid flippases in plant adaptation to a changing environment and caution against misinterpretation of pleiotropic effects in genetic studies of flippases.
Collapse
Affiliation(s)
- Sebastian J Nintemann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark; https://plen.ku.dk/english/research/transport_biology/blf/.
| |
Collapse
|
34
|
Bilog AD, Smulders L, Oliverio R, Labanieh C, Zapanta J, Stahelin RV, Nikolaidis N. Membrane Localization of HspA1A, a Stress Inducible 70-kDa Heat-Shock Protein, Depends on Its Interaction with Intracellular Phosphatidylserine. Biomolecules 2019; 9:E152. [PMID: 30999671 PMCID: PMC6523125 DOI: 10.3390/biom9040152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
HspA1A is a cytosolic molecular chaperone essential for cellular homeostasis. HspA1A also localizes at the plasma membrane (PM) of tumor and stressed cells. However, it is currently unknown how this cytosolic protein translocates to the PM. Taking into account that HspA1A interacts with lipids, including phosphatidylserine (PS), and that lipids recruit proteins to the PM, we hypothesized that the interaction of HspA1A with PS allows the chaperone to localize at the PM. To test this hypothesis, we subjected cells to mild heat-shock and the PM-localized HspA1A was quantified using confocal microscopy and cell surface biotinylation. These experiments revealed that HspA1A's membrane localization increased during recovery from non-apoptotic heat-shock. Next, we selectively reduced PS targets by overexpressing the C2 domain of lactadherin (Lact-C2), a known PS-biosensor, and determined that HspA1A's membrane localization was greatly reduced. In contrast, the reduction of PI(4,5)P2 availability by overexpression of the PLCδ-PH biosensor had minimal effects on HspA1A's PM-localization. Implementation of a fluorescent PS analog, TopFluor-PS, established that PS co-localizes with HspA1A. Collectively, these results reveal that HspA1A's PM localization and anchorage depend on its selective interaction with intracellular PS. This discovery institutes PS as a new and dynamic partner in the cellular stress response.
Collapse
Affiliation(s)
- Andrei D Bilog
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| | - Larissa Smulders
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| | - Ryan Oliverio
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| | - Cedra Labanieh
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| | - Julianne Zapanta
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Cancer Center, Purdue University, West Lafayette, IN, 47907, USA.
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
35
|
Deryusheva E, Nemashkalova E, Galloux M, Richard C, Eléouët J, Kovacs D, Belle K, Tompa P, Uversky V, Permyakov S. Does Intrinsic Disorder in Proteins Favor Their Interaction with Lipids? Proteomics 2019; 19:e1800098. [DOI: 10.1002/pmic.201800098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 12/09/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Evgenia Deryusheva
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
| | - Ekaterina Nemashkalova
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
| | - Marie Galloux
- VIM, INRAUniversité Paris‐Saclay Jouy‐en‐Josas 78350 France
| | | | | | - Denis Kovacs
- VIB, Structural Biology Research CenterVrije Universiteit Brussel Brussels 1050 Belgium
| | - Karo Belle
- VIB, Structural Biology Research CenterVrije Universiteit Brussel Brussels 1050 Belgium
| | - Peter Tompa
- VIB, Structural Biology Research CenterVrije Universiteit Brussel Brussels 1050 Belgium
- Institute of EnzymologyResearch Centre for Natural Sciences of the Hungarian Academy of Sciences Budapest 1117 Hungary
| | - Vladimir Uversky
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research InstituteMorsani College of MedicineUniversity of South Florida Tampa FL 33612 USA
| | - Sergei Permyakov
- Russian Academy of SciencesInstitute for Biological Instrumentation Pushchino Moscow Region 142290 Russia
| |
Collapse
|
36
|
Rai S, Mohanty P, Bhatnagar S. Modeling, dynamics and phosphoinositide binding of the pleckstrin homology domain of two novel PLCs: η1 and η2. J Mol Graph Model 2018; 85:130-144. [PMID: 30193228 DOI: 10.1016/j.jmgm.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 11/16/2022]
Abstract
PH domains mediate interactions involved in cell signaling, intracellular membrane transport regulation and cytoskeleton organization. Some PH domains bind phosphoinositides with different affinity and specificity. The two novel PLCη (1 and 2) possess an N-terminal PH domain (PHη1 and PHη2 respectively) that has been implicated in membrane association and induction of PLC activity. Understanding of the structure and dynamics is crucial for future modulation of lipid-protein interactions in PHη1, PHη2 and other PH domains. Therefore, the three-dimensional structure of PHη1 and PHη2 was modeled using ITASSER and phosphoinositides (IP3 and IP4) were docked in the inferred binding site using HADDOCK server. Molecular Dynamics simulations of unliganded and phosphoinositide bound PHη1 and PHη2 were performed using AMBER14 to study the mechanism of interaction, and conformational dynamics in response to phosphoinositide binding. The binding affinity was predicted using Kdeep server. The models of PHη1 and PHη2 had a conserved structural core consisting of seven β-strands and a C-terminal α-helix as seen in other PH domains. Sequence/structure analysis showed that phosphoinositide ligands bind PHη1 and PHη2 at the canonical binding site. Phosphoinositide binding induced movement of positively charged side chains towards the ligand, changes in the secondary structure especially at the β5-β6 loop and allosteric changes at the interface of β1-β2 and β5-β6 loops. Dynamics studies showed that the size of the binding site and differential affinity for IP3/IP4 binding is coordinated by the number, length, flexibility, secondary structure and allosteric interactions of the loops surrounding the phosphoinositide binding site.
Collapse
Affiliation(s)
- Sneha Rai
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Pallavi Mohanty
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
37
|
Angelova MI, Bitbol AF, Seigneuret M, Staneva G, Kodama A, Sakuma Y, Kawakatsu T, Imai M, Puff N. pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2042-2063. [PMID: 29501601 DOI: 10.1016/j.bbamem.2018.02.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/22/2018] [Accepted: 02/24/2018] [Indexed: 01/27/2023]
Abstract
Most biological molecules contain acido-basic groups that modulate their structure and interactions. A consequence is that pH gradients, local heterogeneities and dynamic variations are used by cells and organisms to drive or regulate specific biological functions including energetic metabolism, vesicular traffic, migration and spatial patterning of tissues in development. While the direct or regulatory role of pH in protein function is well documented, the role of hydrogen and hydroxyl ions in modulating the properties of lipid assemblies such as bilayer membranes is only beginning to be understood. Here, we review approaches using artificial lipid vesicles that have been instrumental in providing an understanding of the influence of pH gradients and local variations on membrane vectorial motional processes: migration, membrane curvature effects promoting global or local deformations, crowding generation by segregative polarization processes. In the case of pH induced local deformations, an extensive theoretical framework is given and an application to a specific biological issue, namely the structure and stability of mitochondrial cristae, is described. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Miglena I Angelova
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France.
| | - Anne-Florence Bitbol
- Sorbonne University, Faculty of Science and Engineering, Laboratory Jean Perrin, UMR 8237 CNRS, Paris F-75005, France
| | - Michel Seigneuret
- University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Atsuji Kodama
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yuka Sakuma
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | | | - Masayuki Imai
- Department of Physics, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Nicolas Puff
- Sorbonne University, Faculty of Science and Engineering, UFR 925 Physics, Paris F-75005, France; University Paris Diderot - Paris 7, Sorbonne Paris Cité, Laboratory Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Paris F-75013, France
| |
Collapse
|
38
|
Del Vecchio K, Stahelin RV. Investigation of the phosphatidylserine binding properties of the lipid biosensor, Lactadherin C2 (LactC2), in different membrane environments. J Bioenerg Biomembr 2018; 50:1-10. [PMID: 29426977 DOI: 10.1007/s10863-018-9745-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/07/2023]
Abstract
Lipid biosensors are robust tools used in both in vitro and in vivo applications of lipid imaging and lipid detection. Lactadherin C2 (LactC2) was described in 2000 as being a potent and specific sensor for phosphatidylserine (PS) (Andersen et al. Biochemistry 39:6200-6206, 2000). PS is an anionic phospholipid enriched in the inner leaflet of the plasma membrane and has paramount roles in apoptosis, cells signaling, and autophagy. The myriad roles PS plays in membrane dynamics make monitoring PS levels and function an important endeavor. LactC2 has functioned as a tantamount PS biosensor namely in the field of cellular imaging. While PS specificity and high affinity of LactC2 for PS containing membranes has been well established, much less is known regarding LactC2 selectivity for subcellular pools of PS or PS within different membrane environments (e.g., in the presence of cholesterol). Thus, there has been a lack of studies that have compared LactC2 PS sensitivity based upon the acyl chain length and saturation or the presence of other host lipids such as cholesterol. Here, we use surface plasmon resonance as a label-free method to quantitatively assess the apparent binding affinity of LactC2 for membranes containing PS with different acyl chains, different fluidity, as well as representative lipid vesicle mimetics of cellular membranes. Results demonstrate that LactC2 is an unbiased sensor for PS, and can sensitively interact with membranes containing PS with different acyl chain saturation and interact with PS species in a cholesterol-independent manner.
Collapse
Affiliation(s)
- Kathryn Del Vecchio
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
39
|
Gorai S, Paul D, Borah R, Haloi N, Santra MK, Manna D. Role of Cationic Groove and Hydrophobic Residues in Phosphatidylinositol-Dependent Membrane-Binding Properties of Tks5-Phox Homology Domain. ChemistrySelect 2018. [DOI: 10.1002/slct.201702558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sukhamoy Gorai
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| | - Debasish Paul
- National Centre for Cell Science; Pune 411007, Maharashtra India
| | - Rituparna Borah
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| | - Nandan Haloi
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| | | | - Debasis Manna
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati - 781039, Assam India
| |
Collapse
|
40
|
Kelsey JS, Géczy T, Kaler CJ, Blumberg PM. The C1 domain of Vav3, a novel potential therapeutic target. Cell Signal 2017; 40:133-142. [PMID: 28927664 PMCID: PMC5651187 DOI: 10.1016/j.cellsig.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/22/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Vav1/2/3 comprise a protein family with guanyl nucleotide exchange activity for Rho and Rac as well as with motifs conferring adapter activity. Biologically, Vav1 plays a critical role in hematologic cell signaling, whereas Vav2/3 have a wider tissue distribution, but all 3 Vav proteins are implicated in cancer development. A structural feature of Vav1/2/3 is the presence of an atypical C1 domain, which possesses close structural homology to the typical C1 domains of protein kinase C but which fails to bind the second messenger diacylglycerol or the potent analogs, the phorbol esters. Previously, we have shown that five residues in the Vav1 C1 domain are responsible for its lack of phorbol ester binding. Here, we show that the lack of phorbol ester binding of Vav3 has a similar basis. We then explore the consequences of phorbol ester binding to a modified Vav3 in which the C1 domain has been altered to allow phorbol ester binding. We find both disruption of the guanyl nucleotide exchange activity of the modified Vav 3 as well as a shift in localization to the membrane upon phorbol ester treatment. This change in localization is associated with altered interactions with other signaling proteins. The studies provide a first step in assessing the potential for the design of custom C1 domain targeted molecules selective for the atypical C1 domains of Vav family proteins.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tamás Géczy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher J Kaler
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Szpiech ZA, Strauli NB, White KA, Ruiz DG, Jacobson MP, Barber DL, Hernandez RD. Prominent features of the amino acid mutation landscape in cancer. PLoS One 2017; 12:e0183273. [PMID: 28837668 PMCID: PMC5570307 DOI: 10.1371/journal.pone.0183273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 01/20/2023] Open
Abstract
Cancer can be viewed as a set of different diseases with distinctions based on tissue origin, driver mutations, and genetic signatures. Accordingly, each of these distinctions have been used to classify cancer subtypes and to reveal common features. Here, we present a different analysis of cancer based on amino acid mutation signatures. Non-negative Matrix Factorization and principal component analysis of 29 cancers revealed six amino acid mutation signatures, including four signatures that were dominated by either arginine to histidine (Arg>His) or glutamate to lysine (Glu>Lys) mutations. Sample-level analyses reveal that while some cancers are heterogeneous, others are largely dominated by one type of mutation. Using a non-overlapping set of samples from the COSMIC somatic mutation database, we validate five of six mutation signatures, including signatures with prominent arginine to histidine (Arg>His) or glutamate to lysine (Glu>Lys) mutations. This suggests that our classification of cancers based on amino acid mutation patterns may provide avenues of inquiry pertaining to specific protein mutations that may generate novel insights into cancer biology.
Collapse
Affiliation(s)
- Zachary A. Szpiech
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States of America
- * E-mail: (RDH); (ZAS)
| | - Nicolas B. Strauli
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States of America
- Biomedical Sciences Graduate Program, University of California, San Francisco, United States of America
| | - Katharine A. White
- Department of Cell and Tissue Biology, University of California, San Francisco, United States of America
| | - Diego Garrido Ruiz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States of America
| | - Matthew P. Jacobson
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States of America
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States of America
| | - Diane L. Barber
- Department of Cell and Tissue Biology, University of California, San Francisco, United States of America
| | - Ryan D. Hernandez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, United States of America
- Institute for Human Genetics, University of California, San Francisco, United States of America
- * E-mail: (RDH); (ZAS)
| |
Collapse
|
42
|
Takikawa M, Ohki R. A vicious partnership between AKT and PHLDA3 to facilitate neuroendocrine tumors. Cancer Sci 2017; 108:1101-1108. [PMID: 28295876 PMCID: PMC5480075 DOI: 10.1111/cas.13235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNET) are rare cancers that generally have a poor prognosis. Accurate diagnosis and proper treatment of these tumors requires a better understanding of the molecular mechanisms underlying the development of PanNET. It has been shown that the mTOR inhibitor everolimus can improve the progression‐free survival of PanNET patients, suggesting that inhibition of the PI3K‐Akt‐mTOR pathway may suppress the progression of PanNET. PHLDA3 is a novel tumor suppressor protein that inhibits Akt activation by competition for binding to PIP3. Our analysis of PanNET revealed frequent loss‐of‐heterozygosity and DNA methylation at the PHLDA3 locus, resulting in strong suppression of PHLDA3 transcription. Such alterations in the PHLDA3 gene were also frequently found in lung neuroendocrine tumors (NET), suggesting the possibility that various types of NET have in common the functional loss of the PHLDA3 gene.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Rieko Ohki
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
43
|
Hoogerheide DP, Noskov SY, Jacobs D, Bergdoll L, Silin V, Worcester DL, Abramson J, Nanda H, Rostovtseva TK, Bezrukov SM. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes. Proc Natl Acad Sci U S A 2017; 114:E3622-E3631. [PMID: 28420794 PMCID: PMC5422764 DOI: 10.1073/pnas.1619806114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques-surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations-suggest that α-tubulin's amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic "mitochondrial" membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents.
Collapse
Affiliation(s)
- David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899;
| | - Sergei Y Noskov
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4;
| | - Daniel Jacobs
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Lucie Bergdoll
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Vitalii Silin
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - David L Worcester
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Hirsh Nanda
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
44
|
Malinina L, Patel DJ, Brown RE. How α-Helical Motifs Form Functionally Diverse Lipid-Binding Compartments. Annu Rev Biochem 2017; 86:609-636. [PMID: 28375742 DOI: 10.1146/annurev-biochem-061516-044445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipids are produced site-specifically in cells and then distributed nonrandomly among membranes via vesicular and nonvesicular trafficking mechanisms. The latter involves soluble amphitropic proteins extracting specific lipids from source membranes to function as molecular solubilizers that envelope their insoluble cargo before transporting it to destination sites. Lipid-binding and lipid transfer structural motifs range from multi-β-strand barrels, to β-sheet cups and baskets covered by α-helical lids, to multi-α-helical bundles and layers. Here, we focus on how α-helical proteins use amphipathic helical layering and bundling to form modular lipid-binding compartments and discuss the functional consequences. Preformed compartments generally rely on intramolecular disulfide bridging to maintain conformation (e.g., albumins, nonspecific lipid transfer proteins, saposins, nematode polyprotein allergens/antigens). Insights into nonpreformed hydrophobic compartments that expand and adapt to accommodate a lipid occupant are few and provided mostly by the three-layer, α-helical ligand-binding domain of nuclear receptors. The simple but elegant and nearly ubiquitous two-layer, α-helical glycolipid transfer protein (GLTP)-fold now further advances understanding.
Collapse
Affiliation(s)
- Lucy Malinina
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Rhoderick E Brown
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912; ,
| |
Collapse
|
45
|
Lee YK, Jun YW, Choi HE, Huh YH, Kaang BK, Jang DJ, Lee JA. Development of LC3/GABARAP sensors containing a LIR and a hydrophobic domain to monitor autophagy. EMBO J 2017; 36:1100-1116. [PMID: 28320742 DOI: 10.15252/embj.201696315] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy allows for bulk degradation of cytosolic components in lysosomes. Overexpression of GFP/RFP-LC3/GABARAP is commonly used to monitor autophagosomes, a hallmark of autophagy, despite artifacts related to their overexpression. Here, we developed new sensors that detect endogenous LC3/GABARAP proteins at the autophagosome using an LC3-interacting region (LIR) and a short hydrophobic domain (HyD). Among HyD-LIR-GFP sensors harboring LIR motifs of 34 known LC3-binding proteins, HyD-LIR(TP)-GFP using the LIR motif from TP53INP2 allowed detection of all LC3/GABARAPs-positive autophagosomes. However, HyD-LIR(TP)-GFP preferentially localized to GABARAP/GABARAPL1-positive autophagosomes in a LIR-dependent manner. In contrast, HyD-LIR(Fy)-GFP using the LIR motif from FYCO1 specifically detected LC3A/B-positive autophagosomes. HyD-LIR(TP)-GFP and HyD-LIR(Fy)-GFP efficiently localized to autophagosomes in the presence of endogenous LC3/GABARAP levels and without affecting autophagic flux. Both sensors also efficiently localized to MitoTracker-positive damaged mitochondria upon mitophagy induction. HyD-LIR(TP)-GFP allowed live-imaging of dynamic autophagosomes upon autophagy induction. These novel autophagosome sensors can thus be widely used in autophagy research.
Collapse
Affiliation(s)
- You-Kyung Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Yong-Woo Jun
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea
| | - Ha-Eun Choi
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Daejeon, Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Deok-Jin Jang
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju, Korea
| | - Jin-A Lee
- Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea
| |
Collapse
|
46
|
Inhibitory potential of flavonoids on PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 pleckstrin homology domain. Bioorg Med Chem Lett 2017; 27:420-426. [DOI: 10.1016/j.bmcl.2016.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/24/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
|
47
|
Kraft ML. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. Front Cell Dev Biol 2017; 4:154. [PMID: 28119913 PMCID: PMC5222807 DOI: 10.3389/fcell.2016.00154] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/27/2016] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.
Collapse
Affiliation(s)
- Mary L Kraft
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana, IL, USA
| |
Collapse
|
48
|
Zhai X, Gao YG, Mishra SK, Simanshu DK, Boldyrev IA, Benson LM, Bergen HR, Malinina L, Mundy J, Molotkovsky JG, Patel DJ, Brown RE. Phosphatidylserine Stimulates Ceramide 1-Phosphate (C1P) Intermembrane Transfer by C1P Transfer Proteins. J Biol Chem 2016; 292:2531-2541. [PMID: 28011644 DOI: 10.1074/jbc.m116.760256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Genetic models for studying localized cell suicide that halt the spread of pathogen infection and immune response activation in plants include Arabidopsis accelerated-cell-death 11 mutant (acd11). In this mutant, sphingolipid homeostasis is disrupted via depletion of ACD11, a lipid transfer protein that is specific for ceramide 1-phosphate (C1P) and phyto-C1P. The C1P binding site in ACD11 and in human ceramide-1-phosphate transfer protein (CPTP) is surrounded by cationic residues. Here, we investigated the functional regulation of ACD11 and CPTP by anionic phosphoglycerides and found that 1-palmitoyl-2-oleoyl-phosphatidic acid or 1-palmitoyl-2-oleoyl-phosphatidylglycerol (≤15 mol %) in C1P source vesicles depressed C1P intermembrane transfer. By contrast, replacement with 1-palmitoyl-2-oleoyl-phosphatidylserine stimulated C1P transfer by ACD11 and CPTP. Notably, "soluble" phosphatidylserine (dihexanoyl-phosphatidylserine) failed to stimulate C1P transfer. Also, none of the anionic phosphoglycerides affected transfer action by human glycolipid lipid transfer protein (GLTP), which is glycolipid-specific and has few cationic residues near its glycolipid binding site. These findings provide the first evidence for a potential phosphoglyceride headgroup-specific regulatory interaction site(s) existing on the surface of any GLTP-fold and delineate new differences between GLTP superfamily members that are specific for C1P versus glycolipid.
Collapse
Affiliation(s)
- Xiuhong Zhai
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912,
| | - Yong-Guang Gao
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Shrawan K Mishra
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Dhirendra K Simanshu
- the Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Ivan A Boldyrev
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Linda M Benson
- the Medical Genomic Facility-Proteomics Core, Mayo Foundation, Rochester, Minnesota 55905, and
| | - H Robert Bergen
- the Medical Genomic Facility-Proteomics Core, Mayo Foundation, Rochester, Minnesota 55905, and
| | - Lucy Malinina
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - John Mundy
- the Department of Biology, BioCenter, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Julian G Molotkovsky
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dinshaw J Patel
- the Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Rhoderick E Brown
- From the Hormel Institute, University of Minnesota, Austin, Minnesota 55912,
| |
Collapse
|
49
|
Eggeling C, Honigmann A. Closing the gap: The approach of optical and computational microscopy to uncover biomembrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2558-2568. [DOI: 10.1016/j.bbamem.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/15/2022]
|
50
|
Abstract
C2 domains (C2s) are regulatory protein modules identified in eukaryotic proteins targeted to cell membranes. C2s were initially characterized as independently folded Ca(2+)-dependent phospholipids binding domains; however, later studies have shown that C2s have evolutionarily diverged into Ca(2+)-dependent and Ca(2+)-independent forms. These forms interact and regulate their affinity to diverse lipid species using different binding mechanisms. In this protocol we describe a biochemical approach to produce, purify, and solubilize functional C2 domains bound to GST for the identification of their putative Ca(2+)-dependent and Ca(2+)-independent lipid-binding partners.
Collapse
|