1
|
Surendran A, Zhang H, Stamenkovic A, Ravandi A. Lipidomics and cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167806. [PMID: 40122185 DOI: 10.1016/j.bbadis.2025.167806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide, necessitating innovative approaches for early detection and personalized interventions. Lipidomics, leveraging advanced mass spectrometry techniques, has become instrumental in deciphering lipid-mediated mechanisms in CVDs. This review explores the application of lipidomics in identifying biomarkers for myocardial infarction, heart failure, stroke, and calcific aortic valve stenosis (CAVS). This review examines the technological advancements in shotgun lipidomics and LC/MS, which provide unparalleled insights into lipid composition and function. Key lipid biomarkers, including ceramides and lysophospholipids, have been linked to disease progression and therapeutic outcomes. Integrating lipidomics with genomic and proteomic data reveals the molecular underpinnings of CVDs, enhancing risk prediction and intervention strategies. This review positions lipidomics as a transformative tool in reshaping cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Arun Surendran
- Mass Spectrometry Core Facility, BRIC-Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Hannah Zhang
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Manitoba, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; Precision Cardiovascular Medicine Group, St. Boniface Hospital Research, Manitoba, Canada
| | - Aleksandra Stamenkovic
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Manitoba, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; Precision Cardiovascular Medicine Group, St. Boniface Hospital Research, Manitoba, Canada
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Manitoba, Canada; Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada; Precision Cardiovascular Medicine Group, St. Boniface Hospital Research, Manitoba, Canada.
| |
Collapse
|
2
|
Kim KS, Lee JS, Han SS, Cho JY. Accurate Determination of Circulatory Lipids Using a Combination of HILIC-MRM and RPLC-PRM. Anal Chem 2025; 97:9713-9721. [PMID: 40315190 DOI: 10.1021/acs.analchem.4c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Circulatory lipids are important markers for characterizing disease phenotypes; however, accurately determining lipid species remains a significant challenge in lipidomic analysis. Here, we present a novel analytical workflow for accurate lipidome characterization in human plasma using mass spectrometry (MS) through the integration of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography (RPLC). This workflow enables rapid screening of 1,966 lipid species across 18 lipid classes using HILIC-multiple reaction monitoring (MRM), which enables facile identification of lipid species by lipid class-based separations. In the NIST Standard Reference Material for Human Plasma (SRM 1950), 489 lipid species were identified using HILIC-MRM and subsequently analyzed with RPLC-parallel reaction monitoring (PRM) to resolve potential lipid isobars within the same lipid class. Notably, RPLC-PRM identified 70 additional lipidomic features in SRM 1950 that were not detectable with HILIC-MRM. Furthermore, a high correlation (Pearson correlation coefficient = 0.81) was observed regarding the concentrations of lipid species not carrying isobaric interferences in between HILIC-MRM and RPLC-PRM, indicating that the individual lipid concentrations measured by each platform can be integrated. The workflow was further applied to a cohort of 284 human plasma samples from chronic kidney disease (CKD) patients, successfully profiling lipidomic phenotypes across CKD subtypes. These findings demonstrate that combining HILIC-MRM and RPLC-PRM as complementary platforms enhances the accuracy and comprehensiveness of lipidomic analysis.
Collapse
Affiliation(s)
- Kyeong-Seog Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Seung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Joo-Youn Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul National University, Seoul 08826, Republic of Korea
- Kidney Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Sousa BC, Klein ZG, Taylor D, West G, Huipeng AN, Wakelam MJO, Lopez‐Clavijo AF. Comprehensive lipidome of human plasma using minimal sample manipulation by liquid chromatography coupled with mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39 Suppl 1:e9472. [PMID: 36652341 PMCID: PMC12062770 DOI: 10.1002/rcm.9472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE The present work shows comprehensive chromatographic methods and MS conditions that have been developed based on the chemical properties of each lipid subclass to detect low-abundance molecular species. This study shows that the developed methods can detect low- and/or very-low-abundant lipids like phosphatidic acid (PA) in the glycerophospholipid (GP) method; dihydroceramide (dhCer) and dihydrosphingosine/sphinganine (dhSPB) in the sphingolipid (SP) method; and lysophosphatidic acid (LPA), LPI, LPG and sphingosine-1-phosphate (SPBP) in the lysolipid method. METHODS An optimised method for the extraction of lysolipids in plasma is used in addition to Folch extraction. Then, four chromatographic methods coupled with mass spectrometry using targeted and untargeted approaches are described here. Three of the methods use a tertiary pumping system to enable the inclusion of a gradient for analyte separation (pumps A and B) and an isocratic wash (pump C). This wash solution elutes interfering compounds that could cause background signal in the subsequent injections, reducing column lifetime. RESULTS Semi-quantitative values for 37 lipid subclasses are reported for a plasma sample (NIST SRM 1950). Furthermore, the methods presented here enabled the identification of 338 different lipid molecular species for GPs (mono- and diacyl-phospholipds), SPs, sterols and glycerolipids. The methods have been validated, and the reproducibility is presented here. CONCLUSIONS The comprehensive analysis of the lipidome addressed here of glycerolipids, GPs, sterols and SPs is in good agreement with previously reported results, in the NIST SRM 1950 sample, by other laboratories. Ten lipid subclasses LPS, LPI, alkyl-lysophosphatidic acid/alkenyl-lysophosphatidic acid, alkyl-lysophosphatidylethanolamine/alkenyl-lysophosphatidylethanolamine, dhCer (d18:0), SPB (d18:1), dhSPB (d18:0) and SPBP (d18:2) have been detected using this comprehensive method and are uniquely reported here.
Collapse
Affiliation(s)
- Bebiana C. Sousa
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
| | - Zulema Gonzalez Klein
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Universidad Politécnica de Madrid (UPM)MadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Diane Taylor
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
| | - Greg West
- Lipidomics FacilityBabraham Institute, Babraham Research CampusCambridgeUK
| | | | | | | |
Collapse
|
4
|
Hannun YA, Merrill AH, Luberto C. The Bioactive Sphingolipid Playbook. A Primer for the Uninitiated as well as Sphingolipidologists. J Lipid Res 2025:100813. [PMID: 40254066 DOI: 10.1016/j.jlr.2025.100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025] Open
Abstract
Sphingolipids and glycosphingolipids are among the most structurally diverse and complex compounds in the mammalian metabolome. They are well known to play important roles in biological architecture, cell-cell communication and cellular regulation, and for many biological processes, multiple sphingolipids are involved. Thus, it is not surprising that untargeted genetic/transcriptomic/pharmacologic/metabolomic screens have uncovered changes in sphingolipids and sphingolipid genes/proteins while studying physiological and pathological processes. Consequently, with increasing frequency, both targeted and untargeted mass spectrometry methodologies are being used to conduct sphingolipidomic analyses. Interpretation of such large data sets and design of follow-up experiments can be daunting for investigators with limited expertise with sphingolipids (and sometimes even for someone well-versed in sphingolipidology). Therefore, this review gives an overview of essential elements of sphingolipid structure and analysis, metabolism, functions, and roles in disease, and discusses some of the items to consider when interpreting lipidomics data and designing follow-up investigations.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Departments of Biochemistry, Medicine, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Chiara Luberto
- Department of Physiology and Biophysics, and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Romero-Gómez M, Escalada J, Noguerol M, Pérez A, Carretero J, Crespo J, Mascort JJ, Aguilar I, Tinahones F, Cañones P, Gómez-Huelgas R, de Luis D, Genúa Trullos I, Aller R, Rubio MA. Multidisciplinary clinical practice guideline on the management of metabolic hepatic steatosis. GASTROENTEROLOGIA Y HEPATOLOGIA 2025:502442. [PMID: 40221023 DOI: 10.1016/j.gastrohep.2025.502442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Metabolic hepatic steatosis (MetHS) is a clinically heterogeneous, multisystemic, dynamic, and complex disease, whose progression is one of the main causes of cirrhosis and hepatocarcinoma. This clinical practice guideline aims to respond to its main challenges, both in terms of disease burden and complexity. To this end, recommendations have been proposed to experts through the Delphi method. The consensus was optimal in recommendations regarding type 2 diabetes as a risk factor (1.5.1, 4.5.1), in which cases early detection of MetHS should be carried out (4.5.2). Its results also emphasize the importance of the use of non-invasive tests (FIB-4, NFS, HFS) for the exclusion of significant fibrosis in patients with suspected MetHS (2.3.1, 2.3.3). Diagnosis should be carried out through the sequential combination of non-invasive indices and transient elastography by FibroScan® for its risk stratification (2.3.3). A nearly unanimous consensus was reached regarding the role of early prevention in the impact on the quality of life and survival of patients (5.1.2), as well as on the effectiveness of the Mediterranean diet and physical exercise in relation to the improvement of steatosis, steatohepatitis and fibrosis in MetHS patients (5.2.2) and on the positive results offered by resmiterom and semaglutide in promoting fibrosis regression (5.4.1). Finally, a great consensus has been reached regarding the importance of multidisciplinary management in MetHS, for which it is essential to agree on multidisciplinary protocols for referral between levels in each health area (6.2.1), as well as ensuring that referrals to Hepatology/Digestive and Endocrinology or Internal Medicine services are effective and beneficial to prevent the risk of disease progression (6.2.3, 6.3.1).
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- UGC Aparato Digestivo, Hospital Universitario Virgen del Rocío, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Departamento de Medicina, Universidad de Sevilla, Sevilla, España; Asociación España para el Estudio del Hígado, España.
| | - Javier Escalada
- Clínica Universidad de Navarra, Pamplona, España; Sociedad Española de Endocrinología y Nutrición, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, España; Instituto de Investigación en la Salud de Navarra (IdiSNA), Pamplona, España.
| | - Mar Noguerol
- Centro de Salud Universitario Cuzco de Fuenlabrada, Madrid, España; Sociedad Española de Medicina de Familia y Comunitaria, España
| | - Antonio Pérez
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), España; Sociedad Española de Diabetes, España
| | - Juana Carretero
- Hospital Universitario de Badajoz, Badajoz, España; Sociedad Española de Medicina Interna (SEMI), España
| | - Javier Crespo
- Hospital Universitario Marqués de Valdecilla, Santander, España; Sociedad Española de Patología Digestiva, España; Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, España; Instituto de Investigación Valdecilla (IDIVAL), Santander, España
| | - Juan J Mascort
- Sociedad Española de Medicina de Familia y Comunitaria, España; Centro de Salud Florida Sud, Institut Català de la Salut, Hospitalet de Llobregat, España
| | - Ignacio Aguilar
- Clínica Universidad de Navarra, Pamplona, España; Sociedad Española de Endocrinología y Nutrición, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, España; Instituto de Investigación en la Salud de Navarra (IdiSNA), Pamplona, España
| | - Francisco Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, España; Departamento de Endocrinología y Nutrición, Hospital Virgen de la Victoria, Málaga, España; Sociedad Española de Obesidad, España; Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionard, Universidad de Málaga, Málaga, España
| | - Pedro Cañones
- Sociedad Española de Médicos Generales y de Familia, España
| | - Ricardo Gómez-Huelgas
- Sociedad Española de Medicina Interna (SEMI), España; Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Málaga, España; Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, España
| | - Daniel de Luis
- Sociedad Española de Endocrinología y Nutrición, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Valladolid, España; Centro de Investigación de Endocrinología y Nutrición, Universidad de Valladolidad, Valladolid, España
| | - Idoia Genúa Trullos
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), España; Sociedad Española de Diabetes, España
| | - Rocío Aller
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), España; Sociedad Española de Diabetes, España; Servicio de Aparato Digestivo, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España; Ciber Enfermedades infecciosas (CIBERINFEC), España
| | - Miguel A Rubio
- Sociedad Española de Endocrinología y Nutrición, España; Hospital Clínico San Carlos, Madrid, España
| |
Collapse
|
6
|
Peterka O, Kadyrbekova Y, Jirásko R, Lásko Z, Melichar B, Holčapek M. Novel Charge-Switch Derivatization Method Using 3-(Chlorosulfonyl)benzoic Acid for Sensitive RP-UHPLC/MS/MS Analysis of Acylglycerols, Sterols, and Prenols. Anal Chem 2025; 97:7157-7164. [PMID: 40152551 PMCID: PMC11983369 DOI: 10.1021/acs.analchem.4c06496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Chemical derivatization involves the reaction of an analyte with a derivatization agent to modify its structure, improving the peak shape, chromatographic performance, structural analysis, ionization efficiency, and sensitivity. A novel derivatization method using 3-(chlorosulfonyl)benzoic acid is developed for the determination of monoacylglycerols, diacylglycerols, free sterols, and tocopherols using the reversed-phase ultra-high-performance liquid chromatography-tandem mass spectrometry (RP-UHPLC/MS/MS) method in the negative ion mode. The chromatographic and mass spectrometric properties of derivatized lipids are investigated by using 29 lipid standards spanning four lipid classes. The derivatization process is optimized using pooled plasma spiked by 9 internal standards, achieving an optimal yield with a reaction time of 40 min at 60 °C. The stability of the derivatives is confirmed, with short-term stability maintained for 10 h at 4 °C and long-term stability preserved for 5 days at -80 °C. The repeatability and reproducibility are verified by one/two operator(s), which underscores the simplicity and robustness of the method, and calibration curves with high linear regression coefficients illustrate the accuracy of the method. The derivatization approach, which combines RP-UHPLC/MS/MS and the use of specific fragmentation patterns, significantly reduces limits of detection, reaching 15-25 pmol/mL for free sterols in plasma. The optimized method is applied to the analysis of human plasma, leading to the identification of 92 lipid species in the targeted lipid classes. This represents a substantial improvement in sensitivity and detection capabilities compared to those of previously reported methods.
Collapse
Affiliation(s)
- Ondřej Peterka
- University
of Pardubice, Faculty of Chemical
Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Yasmin Kadyrbekova
- University
of Pardubice, Faculty of Chemical
Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Robert Jirásko
- University
of Pardubice, Faculty of Chemical
Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Zuzana Lásko
- University
of Pardubice, Faculty of Chemical
Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Bohuslav Melichar
- Palacký
University Medical School and University Hospital Olomouc, Faculty of Medicine and Dentistry, Department of Oncology, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic
| | - Michal Holčapek
- University
of Pardubice, Faculty of Chemical
Technology, Department of Analytical Chemistry, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
7
|
Chen X, Cao S, Tao L, Yan R, Cao S, Hao J, Yi Y, Luan C, Wu J, Gao Y, Liang X. Establishment of MS LOC platform and its pilot application in clinical lipidomics. Talanta 2025; 285:127314. [PMID: 39689636 DOI: 10.1016/j.talanta.2024.127314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Lipidomics has demonstrated significant potential for disease diagnosis and prediction. The development and optimization of a robust mass spectrometry (MS) platform for lipidome analysis is critically important, as it can facilitate biomarker discovery, cohort testing, and performance evaluation in clinical lipidomics studies. In this work, we developed a high-throughput and reliable platform, termed MS Lab on a Chip (MS LOC), which integrates the MetArray chip, an automated lipidomics pretreatment protocol, and the reflectron matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) instrument. The MetArray chip, produced through a mass production process, exhibited exceptional stability as an MS substrate. The integration of automated lipid pretreatment and MS detection processes ensures high throughput, stability and efficiency during sample preparation. The analysis of various lipid standards and different types of biological samples enabled comprehensive investigation of lipid features and annotation using the MS LOC. Furthermore, a small cohort study, consisting of hepatocellular carcinoma (HCC) and non-HCC groups, was conducted on this platform, providing preliminary validation of its performance and suggesting that this platform offers a comprehensive protocol for clinical lipidomics testing.
Collapse
Affiliation(s)
- Xiaoming Chen
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; Well-healthcare Technologies Co., Ltd., Hangzhou, 310051, China
| | - Shuo Cao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Liye Tao
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Runlan Yan
- Department of Geriatrics, Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Sheng Cao
- Well-healthcare Technologies Co., Ltd., Hangzhou, 310051, China
| | - Jingwen Hao
- Well-healthcare Technologies Co., Ltd., Hangzhou, 310051, China
| | - Yuelin Yi
- Well-healthcare Technologies Co., Ltd., Hangzhou, 310051, China
| | - Chunyan Luan
- Well-healthcare Technologies Co., Ltd., Hangzhou, 310051, China
| | - Jianmin Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| | - Yue Gao
- Department of Geriatrics, Zhejiang Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Senile Chronic Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Xiao Liang
- Zhejiang Key Laboratory of Multi-omics Precision Diagnosis and Treatment of Liver Diseases, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China; School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
8
|
Antona A, Bettio V, Venetucci J, Cracas SV, Mazzucco E, Garro G, Varalda M, Fontanarosa C, Spinelli M, Amoresano A, Rolla R, Capello D. Evaluating Cryopreservation Methods in Biobanking: Impacts on Biomarker Integrity and Omics Data Reliability. Biopreserv Biobank 2025. [PMID: 40098524 DOI: 10.1089/bio.2024.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Objectives: Personalized medicine emphasizes prevention and early diagnosis by developing genetic screening and biomarker assessment tools. Biobanks, including University of Piemonte Orientale (UPO) Biobank, support this effort by providing high-quality biological samples collected, processed, and stored using optimized standardized protocols. To determine the optimal long-term storage conditions for biospecimens used in biomedical research, we evaluated plasma and serum samples cryopreserved using two storage methods, cryovials and straws, across various analytical methodologies with differing sensitivity and robustness. Design and Methods: Plasma and serum samples cryopreserved in liquid nitrogen in vials and straw at the UPO Biobank were subjected to multiple analyses including standard biochemical laboratory analysis, targeted lipidomics, untargeted proteomics, and targeted metabolites quantification through mass spectrometry-based analytical techniques. Results: Our data demonstrate the robustness and applicability of both storage methods for standard laboratory analyses in evaluating clinically relevant markers in plasma and serum. Lipidomic analysis revealed slight disparities in lipid abundance, though these differences were mostly confined to specific lipid species, particularly fatty acids. Conversely, proteomic and metabolomic analyses uncovered variations in abundance in a significant, albeit limited, fraction of analytes between vials and straw-derived samples. Conclusions: By highlighting similarities and differences in samples stored in these conditions, this study provides significant insights into optimizing biobanking practices and understanding the factors that influence the integrity of cryopreserved biospecimens and the reliability of the data derived from them. Both straws and vials are convenient and efficient cryopreservation methods, essentially equivalent for samples dedicated to robust and relatively low-sensitive standardized analyses. However, our findings emphasize the need for caution when interpreting omics data from samples subjected to different cryopreservation methods, as subtle variations can arise even with different types of containers.
Collapse
Affiliation(s)
- Annamaria Antona
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valentina Bettio
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Vittoria Cracas
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Sustainable Development and Ecological Transition (DISSTE), University of Piemonte Orientale, Vercelli, Italy
| | | | - Giulia Garro
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy
| | - Michele Spinelli
- Department of Physical and Mental Health and Preventive Medicine School of Medicine and Surgery, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples "Federico II," Naples, Italy
| | - Roberta Rolla
- Clinical Chemistry, Azienda Ospedaliera-Universitaria "Maggiore della Carità," University of Piemonte Orientale, Novara, Italy
| | - Daniela Capello
- Department of Translational Medicine (DIMET), Center of Excellence in Aging Sciences, University of Piemonte Orientale, Novara, Italy
- UPO Biobank, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
9
|
Castro-Alves V, Nguyen AH, Barbosa JMG, Orešič M, Hyötyläinen T. Liquid and gas-chromatography-mass spectrometry methods for exposome analysis. J Chromatogr A 2025; 1744:465728. [PMID: 39893915 DOI: 10.1016/j.chroma.2025.465728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Mass spectrometry-based methods have become fundamental to exposome research, providing the capability to explore a broad spectrum of chemical exposures. Liquid and gas chromatography coupled with low/high-resolution mass spectrometry (MS) are among the most frequently employed platforms due to their sensitivity and accuracy. However, these approaches present challenges, such as the inherent complexity of MS data and the expertise of biologists, chemists, clinicians, and data analysts to integrate and interpret MS data with other datasets effectively. The "omics" era advances rapidly, driven by developments of AI-based algorithms and an increase in accessible data; nevertheless, further efforts are necessary to ensure that exposomics outputs are comparable and reproducible, thus enhancing research findings. This review outlines the principles of MS-based methods for the exposome analytical pipeline, from sample collection to data analysis. We summarize and review both standard and cutting-edge strategies in exposome research, covering sample preparation, focusing on MS-based platforms, data acquisition strategies, and data annotation. The ultimate goal of this review is to highlight applications that enable the simultaneous analysis of endogenous metabolites and xenobiotics, which can help enhance our understanding of the impact of human exposure on health and disease and support personalized healthcare.
Collapse
Affiliation(s)
| | - Anh Hoang Nguyen
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, 702 81 Örebro, Sweden; Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, 702 81 Örebro, Sweden.
| |
Collapse
|
10
|
Bolliger M, Wasinger D, Brunmair J, Hagn G, Wolf M, Preindl K, Reiter B, Bileck A, Gerner C, Fitzal F, Meier-Menches SM. Mass spectrometry-based analysis of eccrine sweat supports predictive, preventive and personalised medicine in a cohort of breast cancer patients in Austria. EPMA J 2025; 16:165-182. [PMID: 39991101 PMCID: PMC11842658 DOI: 10.1007/s13167-025-00396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025]
Abstract
Objective Metabolomics measurements of eccrine sweat may provide novel and relevant biomedical information to support predictive, preventive and personalised medicine (3PM). However, only limited data is available regarding metabolic alterations accompanying chemotherapy of breast cancer patients related to residual cancer burden (RCB) or therapy response. Here, we have applied Metabo-Tip, a non-invasive metabolomics assay based on the analysis of eccrine sweat from the fingertips, to investigate the feasibility of such an approach, especially with respect to drug monitoring, assessing lifestyle parameters and stratification of breast cancer patients. Methods Eccrine sweat samples were collected from breast cancer patients (n = 9) during the first cycle of neoadjuvant chemotherapy at four time points in this proof-of-concept study at a Tertiary University Hospital. Metabolites in eccrine sweat were analysed using mass spectrometry. Blood plasma samples from the same timepoints were also collected and analysed using a validated targeted metabolomics kit, in addition to proteomics and fatty acids/oxylipin analysis. Results A total of 247 exogenous small molecules and endogenous metabolites were identified in eccrine sweat of the breast cancer patients. Cyclophosphamide and ondansetron were successfully detected and monitored in eccrine sweat of individual patients and accurately reflected the administration schedule. The non-essential amino acids asparagine, serine and proline, as well as ornithine were significantly regulated in eccrine sweat and blood plasma over the therapy cycle. However, their distinct time-dependent profiles indicated compartment-specific distributions. Indeed, the metabolite composition of eccrine sweat seems to largely resemble the composition of the interstitial fluid. Plasma proteins and fatty acids/oxylipins were not affected by the first treatment cycle. Individual smoking habit was revealed by the simultaneous detection of nicotine and its primary metabolite cotinine in eccrine sweat. Stratification according to RCB revealed pronounced differences in the metabolic composition of eccrine sweat in these patients at baseline, e.g., essential amino acids, possibly due to the systemic contribution of breast cancer and its impact on metabolic turnover. Conclusion Mass spectrometry-based analysis of metabolites from eccrine sweat of breast cancer patients successfully qualified lifestyle parameters for risk assessment and allowed us to monitor drug treatment and systemic response to therapy. Moreover, eccrine sweat revealed a potentially predictive metabolic pattern stratifying patients by the extent of the metabolic activity of breast cancer tissue at baseline. Eccrine sweat is derived from the otherwise hardly accessible interstitial fluid and, thus, opens up a new dimension for biomonitoring of breast cancer in secondary and tertiary care. The simple sample collection without the need for trained personnel could also enable decentralised long-term biomonitoring to assess stable disease or disease progression. Eccrine sweat analysis may indeed significantly advance 3PM for the benefit of breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-025-00396-6.
Collapse
Affiliation(s)
- Michael Bolliger
- Department of General Surgery (Division of Visceral Surgery), Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Surgery, St. Francis Hospital, Nikolsdorfergasse 32, 1050 Vienna, Austria
| | - Daniel Wasinger
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Julia Brunmair
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Gerhard Hagn
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Michael Wolf
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Waehringer Str. 38-42, 1090 Vienna, Austria
| | - Karin Preindl
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18–20, Vienna, 1090 Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Birgit Reiter
- Department of Laboratory Medicine, Medical University of Vienna, Waehringer Guertel 18–20, Vienna, 1090 Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Andrea Bileck
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Christopher Gerner
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Florian Fitzal
- Department of Surgery and Vascular Surgery, Hanusch Hospital, Heinrich-Collin-Str. 30, 1140 Vienna, Austria
| | - Samuel M. Meier-Menches
- Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
11
|
Jayaprakash J, Gowda SGB, Gowda D, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chen Y, Chiba H, Hui SP. Plasma Lipidomics of Preadolescent Children: A Hokkaido Study. J Lipids 2025; 2025:3106145. [PMID: 40084067 PMCID: PMC11898111 DOI: 10.1155/jl/3106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 03/16/2025] Open
Abstract
Lipids are the most abundant biomolecules of human plasma, and their balance plays a significant role in health and disease management. Despite the importance of lipids, the studies focused on the comprehensive determination of the plasma lipidome in children are limited. In this study, we investigated the sex, age, and weight-specific changes in the plasma lipidome of nonfasting preadolescent children aged 9-12 years (n = 342) using a nontargeted liquid chromatography-mass spectrometry technique. A total of 219 lipid species were characterized in the plasma samples. Multivariate analysis revealed that boys and girls have similar lipid profiles, but relatively higher levels of capric acid-composed triacylglycerols (TGs) were observed in plasma samples of boys. Saturated fatty acids are the most abundant fatty acyls followed by mono- and polyunsaturated fatty acids in the plasma of both boys and girls. Sphingolipids such as ceramides, hexosylceramides, sphingomyelin, and a phospholipid (phosphatidylinositol) were relatively higher in the plasma of a 10-year-old group than other age groups. Plasma levels of TG and phosphatidylserine were increased within age from 9 to 12 years. Furthermore, most of the TG molecular species were increased in the plasma of overweight children compared to the normal range groups. The receiver operating characteristic analysis results show that TG (10:0/10:0/18:1) could be a specific marker for childhood obesity (area under the curve (AUC) = 0.72). Overall, this study highlights the altered plasma lipidome in preadolescent children for sex, age, and percentage of overweight. Early detection of lipid markers for obesity would be a promising target for developing therapeutic strategies.
Collapse
Affiliation(s)
- Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
| | - Siddabasave Gowda B. Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| |
Collapse
|
12
|
Steinmeyer J. Phospholipids and Sphingolipids in Osteoarthritis. Biomolecules 2025; 15:250. [PMID: 40001553 PMCID: PMC11853253 DOI: 10.3390/biom15020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Many studies now emphasize the intricate relationship between lipid metabolism and osteoarthritis (OA), a leading cause of disability. This narrative review examines alterations in the levels of phospholipids (PLs) and sphingolipids (SLs) in synovial fluid (SF), plasma, serum, and articular tissues; discusses their role in joint lubrication, inflammation, and cartilage degradation; and describes their potential as diagnostic markers and therapeutic targets. Key findings include stage-dependent elevated levels of specific PLs and SLs in the SF, blood, and tissue of OA patients, implicating them as possible biomarkers of disease severity and progression. Studies suggest that beyond the involvement of these lipids in joint lubrication, individual species, such as lysophosphatidylcholine (LPC) 16:0, lysophosphatidic acid (LPA), ceramide-1-phosphate (C1P), and sphingosine-1-phosphate (S1P), contribute to pain, inflammation, and degradation of joints through various signaling pathways. Cross-species comparisons suggest that dogs and mice experience similar lipidomic changes during OA as humans, rendering them valuable models for studying lipid-related mechanisms. PLs and SLs in SF appear to originate primarily from the synovial blood capillaries through diffusion. In addition, lipids that are produced locally by fibroblast-like synoviocytes (FLSs) are influenced by cytokines and growth factors that regulate the biosynthesis of PLs for joint lubrication. Emerging research has identified genes such as UGCG and ESYT1 as regulators of lipid metabolism in OA. Further, we examine the suitability of lipids as biomarkers of OA and the potential of targeting the PL and SL pathways to treat OA, emphasizing the need for further research to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Juergen Steinmeyer
- Laboratory for Experimental Orthopaedics, Department of Orthopaedics and Orthopaedic Surgery, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
13
|
Abodi M, Mazzocchi A, Risé P, Marangoni F, Agostoni C, Milani GP. Salivary fatty acids in humans: a comprehensive literature review. Clin Chem Lab Med 2025; 63:14-26. [PMID: 38634552 DOI: 10.1515/cclm-2024-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Fatty acids (FAs) exert diverse biological functions in humans, influencing physiological responses and, ultimately, health and disease risk. The analysis of FAs in human samples has significant implications and attracts interest in diagnostics and research. The standard method for assessing FA profiles involves the collection of blood samples, which can be inconvenient, invasive, and potentially painful, particularly for young individuals outside hospital settings. Saliva emerged as a promising alternative for evaluating FA profiles in both clinical and research settings. However, to the best of our knowledge, an updated synthesis of the related evidence is unavailable. This comprehensive review aims to summarize data on FA analysis and highlight the potential of the use of salivary FAs as a biomarker in health and disease. Over the past decade, there has been a growing interest in studying salivary FAs in chronic diseases, and more recently, researchers have explored the prognostic value of FAs in acute conditions to check the availability of a non-invasive sampling methodology. A deeper understanding of salivary FAs could have relevant implications both for healthy individuals and patients, particularly in elucidating the correlation between the dietary lipidic content and salivary FA level, Finally, it is crucial to address the standardization of the methods as the sampling, processing, and analysis of saliva are heterogeneous among studies, and limited correlation between blood FAs and salivary FAs is available.
Collapse
Affiliation(s)
- Martina Abodi
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
| | - Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, 9304 University of Milan , Milan, Italy
| | | | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, 9304 University of Milan , Milan, Italy
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
14
|
Smith RA, Omar AM, Mulani FA, Zhang Q. OzNOxESI: A Novel Mass Spectrometry Ion Chemistry for Elucidating Lipid Double-Bond Regioisomerism in Complex Mixtures. Anal Chem 2025; 97:1879-1888. [PMID: 39817428 PMCID: PMC11780577 DOI: 10.1021/acs.analchem.4c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics. This ion chemistry relies on the online derivatization of lipid C═C with ozone and nitrogen oxides upon fragmentation by tandem mass spectrometry, yielding characteristic product ions capable of unambiguously annotating C═C regioisomers. The new workflow was thoroughly evaluated with various glycerophospholipids and fatty acids and applied to human plasma lipid extract, successfully identified and quantified 270 glycerophospholipid and 36 fatty acid C═C isomers with an in-house developed software, OzNOx Companion, for automated data analysis.
Collapse
Affiliation(s)
- Ryan A. Smith
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Ashraf M. Omar
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Fayaj A. Mulani
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
| | - Qibin Zhang
- Center
for Translational Biomedical Research, University
of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States
- Department
of Chemistry & Biochemistry, University
of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
15
|
Merrill AH. Don't Be Surprised When These Surprise You: Some Infrequently Studied Sphingoid Bases, Metabolites, and Factors That Should Be Kept in Mind During Sphingolipidomic Studies. Int J Mol Sci 2025; 26:650. [PMID: 39859363 PMCID: PMC11765627 DOI: 10.3390/ijms26020650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Sphingolipidomic mass spectrometry has provided valuable information-and surprises-about sphingolipid structures, metabolism, and functions in normal biological processes and disease. Nonetheless, many noteworthy compounds are not routinely determined, such as the following: most of the sphingoid bases that mammals biosynthesize de novo other than sphingosine (and sometimes sphinganine) or acquire from exogenous sources; infrequently considered metabolites of sphingoid bases, such as N-(methyl)n-derivatives; "ceramides" other than the most common N-acylsphingosines; and complex sphingolipids other than sphingomyelins and simple glycosphingolipids, including glucosyl- and galactosylceramides, which are usually reported as "monohexosylceramides". These and other subspecies are discussed, as well as some of the circumstances when they are likely to be seen (or present and missed) due to experimental conditions that can influence sphingolipid metabolism, uptake from the diet or from the microbiome, or as artifacts produced during extraction and analysis. If these compounds and factors are kept in mind during the design and interpretation of lipidomic studies, investigators are likely to be surprised by how often they appear and thereby advance knowledge about them.
Collapse
Affiliation(s)
- Alfred H Merrill
- School of Biological Sciences and The Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Muralidharan S, Lee JWJ, Lim YS, Muthiah M, Tan E, Demicioglu D, Shabbir A, Loo WM, Koo CS, Lee YM, Soon G, Wee A, Halisah N, Abbas S, Ji S, Triebl A, Burla B, Koh HWL, Chan YS, Lee MC, Ng HH, Wenk MR, Torta F, Dan YY. Serum lipidomic signatures in patients with varying histological severity of metabolic-dysfunction associated steatotic liver disease. Metabolism 2025; 162:156063. [PMID: 39522592 DOI: 10.1016/j.metabol.2024.156063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum of pathologies ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. Patients with metabolic associated steatohepatitis (MASH) with fibrosis are at greatest risk of liver and cardiovascular complications. To identify such at-risk MASLD patients, physicians are still reliant on invasive liver biopsies. This study aimed to identify circulating lipidomic signatures to better identify patients with MASH in a multi-ethnic Asian cohort. APPROACH & RESULTS A lipidomic approach was used to quantify a total of 481 serum lipids from 151 Singaporean patients paired with protocolized liver biopsies. Lipidomic signatures for MASLD, at-risk MASH and advanced fibrosis were identified. 210 lipids showed significant differences for varying histological subtypes of MASLD. Majority of these lipids were associated with liver steatosis (198/210). We identified a panel of 13 lipids associated with lobular inflammation, ballooning and significant fibrosis. Of note, dihexosylceramides were novel markers for significant fibrosis. Using the serum lipidome alone, we could stratify patients with MASLD (AUROC 0.863), as well as those with at-risk MASH (AUROC 0.912) and advanced fibrosis (AUROC 0.95). The lipidomic at-risk MASH predictor, using 14 markers, was independently validated (n = 105) with AUROC 0.76. CONCLUSIONS The dynamic shift in serum lipid profile was associated with progressive histological stages of MASLD, providing surrogate markers for distinguishing stages of MASLD as well as identifying novel pathways in the pathogenesis.
Collapse
Affiliation(s)
- Sneha Muralidharan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Jonathan W J Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology & Hepatology, National University Hospital, Singapore; iHealthtech, National University of Singapore, Singapore
| | - Yee Siang Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Mark Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Eunice Tan
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | | | - Asim Shabbir
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Surgery, National University Hospital, Singapore
| | - Wai Mun Loo
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Chieh Sian Koo
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Yin Mei Lee
- Division of Gastroenterology & Hepatology, National University Hospital, Singapore
| | - Gwyneth Soon
- Department of Pathology, National University Hospital, Singapore
| | - Aileen Wee
- Department of Pathology, National University Hospital, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nur Halisah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sakinah Abbas
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Alexander Triebl
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Hiromi W L Koh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yun Shen Chan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Mei Chin Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Huck Hui Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Programme and Department of Biochemistry, National University of Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore; Precision Medicine Translational Research Programme and Department of Biochemistry, National University of Singapore, Singapore; Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore
| | - Yock Young Dan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Gastroenterology & Hepatology, National University Hospital, Singapore.
| |
Collapse
|
17
|
Leung KS, Lee JCY. Nonenzymatic Oxidized Polyunsaturated Fatty Acid Products in Human Plasma and Urine Samples by LC-QTOF-MS/MS. Methods Mol Biol 2025; 2855:171-183. [PMID: 39354308 DOI: 10.1007/978-1-0716-4116-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Oxidative stress induces autooxidation of polyunsaturated fatty acids, producing numerous isoprostanoids and isofuranoids. These oxidized products are measurable in human plasma and urine and serve as oxidative stress biomarkers for chronic diseases. This chapter details the preparation and measurement of α-linolenic acid-derived phytoprostanes and phytofurans in human samples using liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QToF-MS/MS).
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
18
|
Nelson AB, Queathem ED, Puchalska P. Distinguishing Artifactual Fatty Acid Dimers from Fatty Acid Esters of Hydroxy Fatty Acids in Untargeted LC-MS Pipelines. Methods Mol Biol 2025; 2855:67-84. [PMID: 39354301 DOI: 10.1007/978-1-0716-4116-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Untargeted metabolomics is a powerful profiling tool for the discovery of possible biomarkers of disease onset and progression. Analytical pipelines applying liquid chromatography (LC) and mass spectrometry (MS)-based methods are widely used to survey a broad range of metabolites within various metabolic pathways, including organic acids, amino acids, nucleosides, and lipids. Accurate and complete identification of putative metabolites is an ongoing challenge in untargeted metabolomics studies. Highly sensitive instrumentation can result in the detection of adduct and fragment ions that form reproducibly and contain identifiable ions that are difficult to distinguish from metabolic pathway intermediates, which may result in false-positive identification. At concentrations as low as 10 μM, free fatty acids have been found to form homo- and heterodimers in untargeted metabolomics pipelines that resemble the lipid class fatty acid esters of hydroxy fatty acids (FAHFAs), resulting in misidentification. This chapter details a protocol for LC-MS-based untargeted metabolomics using hydrophilic interaction chromatography (HILIC) that specifically aids in distinguishing artifactual fatty acid dimers from endogenous FAHFAs.
Collapse
Affiliation(s)
- Alisa B Nelson
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Eric D Queathem
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Wölk M, Fedorova M. Recommendations for Accurate Lipid Annotation and Semi-absolute Quantification from LC-MS/MS Datasets. Methods Mol Biol 2025; 2855:269-287. [PMID: 39354313 DOI: 10.1007/978-1-0716-4116-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Recent developments in LC-MS instrumentation and analytical technologies together with bioinformatics tools supporting high-throughput processing of large omics datasets significantly enhanced our capabilities and efficiency of identification and quantification of lipids in diverse biological materials. However, each biological matrix is characterized by its unique lipid composition, thus requiring optimization of analytical and bioinformatics workflows for each studied lipidome. Here, we describe an integrated workflow for deep lipidome profiling, accurate annotation, and semi-absolute quantification of complex lipidomes based on reversed phase chromatography and high resolution mass spectrometry. This chapter provides details on selection of the optimal extraction protocol, acquisition of LC-MS/MS data for accurate annotation of lipid molecular species, and design of lipidome-specific mixtures of internal standards to assist quantitative analysis of complex, native lipidomes.
Collapse
Affiliation(s)
- Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Dresden, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Dresden, Germany.
| |
Collapse
|
20
|
Takeda H, Izumi Y, Bamba T. Quantitative Lipidomics of Biological Samples Using Supercritical Fluid Chromatography Mass Spectrometry. Methods Mol Biol 2025; 2891:131-152. [PMID: 39812980 DOI: 10.1007/978-1-0716-4334-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Lipidomics has attracted attention in the discovery of unknown biomolecules and for capturing the changes in metabolism caused by genetic and environmental factors in an unbiased manner. However, obtaining reliable lipidomics data, including structural diversity and quantification data, is still challenging. Supercritical fluid chromatography (SFC) is a suitable technique for separating lipid molecules with high throughput and separation efficiency. Here, we describe a quantitative lipidomics method using SFC coupled with mass spectrometry. This technique is suitable for characterizing the structural diversity of lipids (e.g., phospholipids, sphingolipids, glycolipids, and glycerolipids) with high quantitative accuracy to understand their biological functions.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- RIKEN Center for Brain Science, Saitama, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
21
|
Anh NK, Thu NQ, Tien NTN, Long NP, Nguyen HT. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024; 29:5934. [PMID: 39770023 PMCID: PMC11677340 DOI: 10.3390/molecules29245934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Targeted metabolomics and lipidomics are increasingly utilized in clinical research, providing quantitative and comprehensive assessments of metabolic profiles that underlie physiological and pathological mechanisms. These approaches enable the identification of critical metabolites and metabolic alterations essential for accurate diagnosis and precision treatment. Mass spectrometry, in combination with various separation techniques, offers a highly sensitive and specific platform for implementing targeted metabolomics and lipidomics in clinical settings. Nevertheless, challenges persist in areas such as sample collection, quantification, quality control, and data interpretation. This review summarizes recent advances in targeted metabolomics and lipidomics, emphasizing their applications in clinical research. Advancements, including microsampling, dynamic multiple reaction monitoring, and integration of ion mobility mass spectrometry, are highlighted. Additionally, the review discusses the critical importance of data standardization and harmonization for successful clinical implementation.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea (N.P.L.)
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| |
Collapse
|
22
|
Karmaus PWF, Gordon SM, Chen MY, Motsinger-Reif AA, Snyder RW, Fennell TR, Waidyanatha S, Fernando RA, Remaley AT, Fessler MB. Untargeted lipidomics reveals novel HDL metabotypes and lipid-clinical correlates. J Lipid Res 2024; 65:100678. [PMID: 39490932 PMCID: PMC11617998 DOI: 10.1016/j.jlr.2024.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Plasma high-density lipoprotein (HDL), originally studied for its role in lipid transport, is now appreciated to have wide-ranging biological functions that become defective during disease. While >200 lipids have collectively been detected in HDL, published HDL lipidomic analyses in different diseases have commonly been targeted to prespecified subsets of lipids. Here, we report the results of untargeted lipidomic analysis of HDL isolated from 101 subjects referred for computed tomographic coronary imaging for whom multiple additional clinical and lipoprotein metadata were measured. Unsupervised clustering of the total HDL lipidome revealed that the subjects fell into one of two discrete groups, herein referred to as HDL "metabotypes." Patients in metabotype 1 were likelier to be female and tended to have a less atherogenic lipoprotein profile, higher HDL cholesterol efflux capacity (CEC), and lower-grade non-calcified burden on coronary imaging than metabotype 2 counterparts. Specific lipids were relatively enriched in metabotype 1 HDL. Linear modeling revealed that several of these lipids were positively associated with CEC, statin use, HDL size, and HDL particle number, and positively correlated with HDL apolipoprotein A-1, suggesting that they may be informative HDL biomarkers. Taken together, we posit a novel, clinically relevant categorization for HDL revealed by systems biology.
Collapse
Affiliation(s)
- Peer W F Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Marcus Y Chen
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alison A Motsinger-Reif
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - Suramya Waidyanatha
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
23
|
Prabutzki P, Schiller J, Engel KM. Phospholipid-derived lysophospholipids in (patho)physiology. Atherosclerosis 2024; 398:118569. [PMID: 39227208 DOI: 10.1016/j.atherosclerosis.2024.118569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Phospholipids (PL) are major components of cellular membranes and changes in PL metabolism have been associated with the pathogenesis of numerous diseases. Lysophosphatidylcholine (LPC) in particular, is a comparably abundant component of oxidatively damaged tissues. LPC originates from the cleavage of phosphatidylcholine (PC) by phospholipase A2 or the reaction of lipids with reactive oxygen species (ROS) such as HOCl. Another explanation of increased LPC concentration is the decreased re-acylation of LPC into PC. While there are also several other lysophospholipids, LPC is the most abundant lysophospholipid in mammals and will therefore be the focus of this review. LPC is involved in many physiological processes. It induces the migration of lymphocytes, fostering the production of pro-inflammatory compounds by inducing oxidative stress. LPC also "signals" via G protein-coupled and Toll-like receptors and has been implicated in the development of different diseases. However, LPCs are not purely "bad": this is reflected by the fact that the concentration and fatty acyl composition of LPC varies under different conditions, in plasma of healthy and diseased individuals, in tissues and different tumors. Targeting LPC and lipid metabolism and restoring homeostasis might be a potential therapeutic method for inflammation-related diseases.
Collapse
Affiliation(s)
- Patricia Prabutzki
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany
| | - Kathrin M Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Härtelstr. 16-18, D 04107 Leipzig, Germany.
| |
Collapse
|
24
|
Li J, Stupak J, Haqqani AS, Harris G, Zhou H, Williamson S, Chen R, Xu HH, Chen W. Development of LC-FAIMS-MS and its application to lipidomics study of Acinetobacter baumannii infection. J Lipid Res 2024; 65:100668. [PMID: 39395788 PMCID: PMC11577210 DOI: 10.1016/j.jlr.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
The recent advances in mass spectrometry (MS) technologies have enabled comprehensive lipid profiling in biological samples. However, the robustness and efficiency of MS-based lipidomics is compromised by the complexity of biological samples. High-field asymmetric waveform ion mobility spectrometry (FAIMS) is a technology that can continuously transmit one type of ion, independent of the mass-to-charge ratio. Here we present the development and application of LC-FAIMS-MS/MS-based platform for untargeted lipidomics. We used 3 optimally balanced compensation voltages, i.e., 29 V, 34 V and 39 V, to analyze all subclasses of glycerophospholipids. The reproducibility of the method was evaluated using reference standards. The reproducibility of retention times ranged from 0.9% to 1.5% RSD; whereas RSD values of 5%-10% were observed for peak areas. More importantly, the coupling of a FAIMS device can significantly improve the robustness and efficiency. We exploited this NPLC-FAIMS-HRMS to analyze the serum lipid profiles in mice infected intranasally with Acinetobacter baumannii. The temporal profiles of serum lipids after A. baumannii inoculation were obtained for 4 h, 8 h, and 24 h. We found that nearly all ether PC and ether PE lipids were significantly decreased 8 h after inoculation. The resultant volcano plot illustrated the distribution of 28 increased and 28 decreased lipid species in mouse sera 24 h after inoculation. We also found that a single ether PE composition can comprise multiple isomeric structures, and the relative abundance of each isomer could be quantified using the newly developed NPLC-FAIMS-PRM method. We have demonstrated that the proposed LC-FAIMS-MS is a valuable platform for lipidomics.
Collapse
Affiliation(s)
- Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| | - Jacek Stupak
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Harris
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hongyan Zhou
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sam Williamson
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Wangxue Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Takeda H, Takeuchi M, Hasegawa M, Miyamoto J, Tsugawa H. A Procedure for Solid-Phase Extractions Using Metal-Oxide-Coated Silica Column in Lipidomics. Anal Chem 2024; 96:17065-17070. [PMID: 39410762 DOI: 10.1021/acs.analchem.4c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Lipid enrichment is indispensable for enhancing the coverage of targeted molecules in mass spectrometry (MS)-based lipidomics studies. In this study, we developed a simple stepwise fractionation method using a titanium- and zirconium-dioxide-coated solid-phase extraction (SPE) silica column that separates neutral lipids, phospholipids, and other lipids, including fatty acids (FAs) and glycolipids. Chloroform was used to dissolve the lipids, and neutral lipids, including steryl esters, diacylglycerols, and triacylglycerols, were collected in the loading fraction. Second, methanol with formic acid (99:1, v/v) was used to retrieve FAs, ceramides, and glycolipids, including glycosylated ceramides and glycosylated diacylglycerols, by competing for affinity with the Lewis acid sites on the metal oxide surface. Finally, phospholipids strongly retained via chemoaffinity interactions were eluted using a solution containing 5% ammonia and high water content (45:50 v/v, 2-propanol:water), which canceled the electrostatic and chelating interactions with the SPE column. High average reproducibility of <10% and coverage of ∼100% compared to those of the non-SPE samples were demonstrated by untargeted lipidomics of human plasma and mouse brain, testis, and feces. The advantage of our procedure was showcased by characterizing minor lipid subclasses, including dihexosylceramides containing very long-chain polyunsaturated FA in the testis, monogalactosyl and digalactosyl monoacylglycerols in feces, and acetylated and glycolylated derivatives of gangliosides in the brain that were not detected using conventional solvent extraction methods. Likewise, the value of our method in biology is maximized during glycolipidome profiling in the absence of neutral lipids and phospholipids that cover more than 80% of the chromatographic peaks.
Collapse
Affiliation(s)
- Hiroaki Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Manami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mayu Hasegawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Tsugawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
26
|
Perera TRW, Bromfield EG, Gibb Z, Nixon B, Sheridan AR, Rupasinghe T, Skerrett-Byrne DA, Swegen A. Plasma Lipidomics Reveals Lipid Signatures of Early Pregnancy in Mares. Int J Mol Sci 2024; 25:11073. [PMID: 39456856 PMCID: PMC11508387 DOI: 10.3390/ijms252011073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Understanding the systemic biochemistry of early pregnancy in the mare is essential for developing new diagnostics and identifying causes for pregnancy loss. This study aimed to elucidate the dynamic lipidomic changes occurring during the initial stages of equine pregnancy, with a specific focus on days 7 and 14 post-ovulation. By analysing and comparing the plasma lipid profiles of pregnant and non-pregnant mares, the objective of this study was to identify potential biomarkers for pregnancy and gain insights into the biochemical adaptations essential for supporting maternal recognition of pregnancy and early embryonic development. Employing discovery lipidomics, we analysed plasma samples from pregnant and non-pregnant mares on days 7 and 14 post-conception using the SCIEX ZenoTOF 7600 system. This high-resolution mass spectrometry approach enabled us to comprehensively profile and compare the lipidomes across these critical early gestational timepoints. Our analysis revealed significant lipidomic alterations between pregnant and non-pregnant mares and between days 7 and 14 of pregnancy. Key findings include the upregulation of bile acids, sphingomyelins, phosphatidylinositols, and triglycerides in pregnant mares. These changes suggest enhanced lipid synthesis and mobilization, likely associated with the embryo's nutritional requirements and the establishment of embryo-maternal interactions. There were significant differences in lipid metabolism between pregnant and non-pregnant mares, with a notable increase in the sterol lipid BA 24:1;O5 in pregnant mares as early as day 7 of gestation, suggesting it as a sensitive biomarker for early pregnancy detection. Notably, the transition from day 7 to day 14 in pregnant mares is characterized by a shift towards lipids indicative of membrane biosynthesis, signalling activity, and preparation for implantation. The study demonstrates the profound lipidomic shifts that occur in early equine pregnancy, highlighting the critical role of lipid metabolism in supporting embryonic development. These findings provide valuable insights into the metabolic adaptations during these period and potential biomarkers for early pregnancy detection in mares.
Collapse
Affiliation(s)
- Tharangani R. W. Perera
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Elizabeth G. Bromfield
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville 3052, Australia
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Alecia R. Sheridan
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | | | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan 2308, Australia (D.A.S.-B.)
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
27
|
Torta F, Hoffmann N, Burla B, Alecu I, Arita M, Bamba T, Bennett SAL, Bertrand-Michel J, Brügger B, Cala MP, Camacho-Muñoz D, Checa A, Chen M, Chocholoušková M, Cinel M, Chu-Van E, Colsch B, Coman C, Connell L, Sousa BC, Dickens AM, Fedorova M, Eiríksson FF, Gallart-Ayala H, Ghorasaini M, Giera M, Guan XL, Haid M, Hankemeier T, Harms A, Höring M, Holčapek M, Hornemann T, Hu C, Hülsmeier AJ, Huynh K, Jones CM, Ivanisevic J, Izumi Y, Köfeler HC, Lam SM, Lange M, Lee JC, Liebisch G, Lippa K, Lopez-Clavijo AF, Manzi M, Martinefski MR, Math RGH, Mayor S, Meikle PJ, Monge ME, Moon MH, Muralidharan S, Nicolaou A, Nguyen-Tran T, O'Donnell VB, Orešič M, Ramanathan A, Riols F, Saigusa D, Schock TB, Schwartz-Zimmermann H, Shui G, Singh M, Takahashi M, Thorsteinsdóttir M, Tomiyasu N, Tournadre A, Tsugawa H, Tyrrell VJ, van der Gugten G, Wakelam MO, Wheelock CE, Wolrab D, Xu G, Xu T, Bowden JA, Ekroos K, Ahrends R, Wenk MR. Concordant inter-laboratory derived concentrations of ceramides in human plasma reference materials via authentic standards. Nat Commun 2024; 15:8562. [PMID: 39362843 PMCID: PMC11449902 DOI: 10.1038/s41467-024-52087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
In this community effort, we compare measurements between 34 laboratories from 19 countries, utilizing mixtures of labelled authentic synthetic standards, to quantify by mass spectrometry four clinically used ceramide species in the NIST (National Institute of Standards and Technology) human blood plasma Standard Reference Material (SRM) 1950, as well as a set of candidate plasma reference materials (RM 8231). Participants either utilized a provided validated method and/or their method of choice. Mean concentration values, and intra- and inter-laboratory coefficients of variation (CV) were calculated using single-point and multi-point calibrations, respectively. These results are the most precise (intra-laboratory CVs ≤ 4.2%) and concordant (inter-laboratory CVs < 14%) community-derived absolute concentration values reported to date for four clinically used ceramides in the commonly analyzed SRM 1950. We demonstrate that calibration using authentic labelled standards dramatically reduces data variability. Furthermore, we show how the use of shared RM can correct systematic quantitative biases and help in harmonizing lipidomics. Collectively, the results from the present study provide a significant knowledge base for translation of lipidomic technologies to future clinical applications that might require the determination of reference intervals (RIs) in various human populations or might need to estimate reference change values (RCV), when analytical variability is a key factor for recall during multiple testing of individuals.
Collapse
Affiliation(s)
- Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-National University of Singapore (NUS) Medical School, Singapore, 169857, Singapore
| | - Nils Hoffmann
- Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Bo Burla
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Irina Alecu
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, and Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Makoto Arita
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takeshi Bamba
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | - Steffany A L Bennett
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, and Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, K1H 8M5, Canada
| | | | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Mónica P Cala
- Metabolomics Core Facility-MetCore, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, United Kingdom
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michaela Chocholoušková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Emeline Chu-Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Benoit Colsch
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Cristina Coman
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | | | - Bebiana C Sousa
- Babraham Institute, Babraham Research Campus, Cambridge, MA, CB22 3AT, USA
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, 04013, Leipzig, Germany
- Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307, Dresden, Germany
| | - Finnur Freyr Eiríksson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
- ArcticMass, Reykjavik, Iceland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mohan Ghorasaini
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Amy Harms
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marcus Höring
- University Hospital of Regensburg, Institute of Clinical Chemistry and Laboratory Medicine, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Zurich, 8952, Schlieren, Switzerland
| | - Chunxiu Hu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Andreas J Hülsmeier
- Institute of Clinical Chemistry, University Zurich, 8952, Schlieren, Switzerland
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christina M Jones
- Chemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yoshihiro Izumi
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | - Harald C Köfeler
- Core Facility Mass Spectrometry, Medical University of Graz, 8010, Graz, Austria
| | - Sin Man Lam
- LipidALL Technologies, Changzhou, 213000, Jiangshu, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mike Lange
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04013, Leipzig, Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, 04013, Leipzig, Germany
| | - Jong Cheol Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Gerhard Liebisch
- University Hospital of Regensburg, Institute of Clinical Chemistry and Laboratory Medicine, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Katrice Lippa
- Chemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | | | - Malena Manzi
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, 2160 C1428EGA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Desarrollo Analítico y Control de Procesos, Instituto Nacional de Tecnología Industrial, Av. General Paz 5445, B1650WAB, Buenos Aires, Argentina
| | - Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Buenos Aires, Junin 954, Junin, C1113AAD, CABA, Argentina
| | - Raviswamy G H Math
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, 3086, Australia
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea
| | - Sneha Muralidharan
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, 560065, India
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9NT, United Kingdom
| | - Thao Nguyen-Tran
- Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, Ottawa Brain and Mind Research Institute, Department of Biochemistry, Microbiology, and Immunology, and Department of Chemistry, Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 702 81, Örebro, Sweden
| | - Arvind Ramanathan
- Institute for Stem Cell Science and Regenerative Medicine, 560065, Bangalore, India
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8573, Japan
| | - Tracey B Schock
- Chemical Science Division, National Institute of Standards and Technology, Charleston, SC, 29412, USA
| | - Heidi Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFATulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Madhulika Singh
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Masatomo Takahashi
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | - Margrét Thorsteinsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
- ArcticMass, Reykjavik, Iceland
| | - Noriyuki Tomiyasu
- Division of Metabolomics Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3‑1‑1, Maidashi, Higashi‑ku, Fukuoka, 812‑8582, Japan
| | | | - Hiroshi Tsugawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Victoria J Tyrrell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Grace van der Gugten
- St. Paul's Hospital, Department of Pathology and Laboratory Medicine, Vancouver, BC, Canada
| | - Michael O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, MA, CB22 3AT, USA
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tianrun Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Espoo, Finland.
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria.
| | - Markus R Wenk
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
28
|
Sens A, Thomas D, Schäfer SMG, König A, Pinter A, Tegeder I, Geisslinger G, Gurke R. Endocannabinoid analysis in GlucoEXACT plasma: Method validation and sample handling recommendations. Talanta 2024; 278:126518. [PMID: 39018759 DOI: 10.1016/j.talanta.2024.126518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Endocannabinoids (ECs), such as anandamide and 2-arachidonyl glycerol (2-AG), contribute to the pathology of inflammatory, malignant, cardiovascular, metabolic and mental diseases. The reliability of quantitative analyses in biological fluids of ECs and endocannabinoid-like (EC-like) substances depends on pre-analytical conditions such as temperature and "time-to-centrifugation". Standardization of these parameters is critical for valid quantification and implementation in clinical research. In this study, we compared concentrations obtained with GlucoEXACT blood collection tubes versus K3EDTA tubes and employed the optimized procedure to assess ECs profiles in patients with inflammatory skin disease and healthy controls. A UHPLC-MS/MS method was validated for human plasma from GlucoEXACT blood collection tubes according to EMA and FDA guidelines, and pre-analytical conditions were systematically modified to assess analyte stability and optimize the procedures. The results showed significantly lower concentrations of ECs and EC-like substance concentrations with GlucoEXACT tubes compared with K3EDTA tubes, and GlucoEXACT extended the time window of stable concentrations. The strongest method-disagreement occurred for 1/2-AG suggesting that GlucoEXACT delayed ex vivo isomer rearrangement. Hence, GlucoExact tubes were superior in terms of stability and reliability. However, although absolute concentrations obtained with GlucoExact and K3EDTA differed, linear regression studies showed high agreement (except for 1/2-AG), and both methods showed similar EC profiles and similar disease-dependent pro-inflammatory patterns in dermatology patients. Hence, despite the obstacles in EC analyses, implementation of optimized pre-analytical blood collection and sample processing procedures provide reliable insight into peripheral ECs.
Collapse
Affiliation(s)
- A Sens
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - D Thomas
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - S M G Schäfer
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - A König
- Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - A Pinter
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Dermatology, Venereology, and Allergology, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - I Tegeder
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - G Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - R Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
29
|
Skotland T, Ekroos K, McDonald J, Ahrends R, Liebisch G, Sandvig K. Pitfalls in lipid mass spectrometry of mammalian samples - a brief guide for biologists. Nat Rev Mol Cell Biol 2024; 25:759-760. [PMID: 38951702 DOI: 10.1038/s41580-024-00758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.
| | - Kim Ekroos
- Lipidomic Consulting Ltd., Espoo, Finland.
| | - Jeffrey McDonald
- Center for Human Nutrition and Department of Molecular Genetics. University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Ahrends
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Rioux JD, Boucher G, Forest A, Bouchard B, Coderre L, Daneault C, Frayne IR, Legault JT, Bitton A, Ananthakrishnan A, Lesage S, Xavier RJ, Des Rosiers C. A pilot study to identify blood-based markers associated with response to treatment with Vedolizumab in patients with Inflammatory Bowel Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24314034. [PMID: 39371119 PMCID: PMC11451768 DOI: 10.1101/2024.09.19.24314034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The inflammatory bowel diseases (IBD) known as Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the gastrointestinal tract believed to arise because of an imbalance between the epithelial, immune and microbial systems. It has been shown that biological differences (genetic, epigenetic, microbial, environmental, etc.) exist between patients with IBD, with multiple risk factors been associated with disease susceptibility and IBD-related phenotypes (e.g. disease location). It is also known that there is heterogeneity in terms of response to therapy in patients with IBD, including to biological therapies that target very specific biological pathways (e.g. TNF-alpha signaling, IL-23R signaling, immune cell trafficking, etc.). It is hypothesized that the better the match between the biology targeted by these advanced therapies and the predominant disease-associated pathways at play in each patient will favor a beneficial response. The aim of this pilot study was to identify potential biological differences associated with differential treatment response to the anti α4β7 integrin therapy known as Vedolizumab. Our approach was to measure a broad range of analytes in the serum of patients prior to initiation of therapy and at the first clinical assessment visit, to identify potential markers of biological differences between patients at baseline and to see which biomarkers are most affected by treatment in responders. Our focus on early clinical response was to study the most proximal effects of therapy and to minimize confounders such as loss of response that occurs further distal to treatment initiation. Specifically, we performed targeted analyses of >150 proteins and metabolites, and untargeted analyses of >1100 lipid entities, in serum samples from 92 IBD patients (42 CD, 50 UC) immediately prior to initiation of therapy with vedolizumab (baseline samples) and at their first clinical assessment (14-week samples). We found lower levels of SDF-1a, but higher levels of PDGF-ββ, lactate, lysine, phenylalanine, branched chain amino acids, alanine, short/medium chain acylcarnitines, and triglycerides containing myristic acid in baseline serum samples of responders as compared to non-responders. We also observed an increase in serum levels of CXCL9 and citrate, as well as a decrease in IL-10, between baseline and week 14 samples. In addition, we observed that a group of metabolites and protein analytes was strongly associated with both treatment response and BMI status, although BMI status was not associated with treatment response.
Collapse
Affiliation(s)
- John D. Rioux
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
| | | | - Anik Forest
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Lise Coderre
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | | | | | | | | | - Alain Bitton
- McGill University Health Centre, Division of Gastroenterology, Montreal, Quebec, Canada
| | - Ashwin Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Département de Nutrition, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
31
|
Kopczynski D, Ejsing CS, McDonald JG, Bamba T, Baker ES, Bertrand-Michel J, Brügger B, Coman C, Ellis SR, Garrett TJ, Griffiths WJ, Guan XL, Han X, Höring M, Holčapek M, Hoffmann N, Huynh K, Lehmann R, Jones JW, Kaddurah-Daouk R, Köfeler HC, Meikle PJ, Metz TO, O'Donnell VB, Saigusa D, Schwudke D, Shevchenko A, Torta F, Vizcaíno JA, Welti R, Wenk MR, Wolrab D, Xia Y, Ekroos K, Ahrends R, Liebisch G. The lipidomics reporting checklist a framework for transparency of lipidomic experiments and repurposing resource data. J Lipid Res 2024; 65:100621. [PMID: 39151590 PMCID: PMC11417233 DOI: 10.1016/j.jlr.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
The rapid increase in lipidomic studies has led to a collaborative effort within the community to establish standards and criteria for producing, documenting, and disseminating data. Creating a dynamic easy-to-use checklist that condenses key information about lipidomic experiments into common terminology will enhance the field's consistency, comparability, and repeatability. Here, we describe the structure and rationale of the established Lipidomics Minimal Reporting Checklist to increase transparency in lipidomics research.
Collapse
Affiliation(s)
- Dominik Kopczynski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jeffrey G McDonald
- Center for Human Nutrition and Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justine Bertrand-Michel
- MetaboHUB-Metatoul, National Infrastructure of Metabolomics and Fluxomics, Inserm I2MC, Toulouse, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg, Heidelberg, Germany
| | - Cristina Coman
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Nils Hoffmann
- Institute for Bio- and Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Jace W Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences, Duke University, Durham, North Carolina, USA; Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA; Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Harald C Köfeler
- Core Facility Mass Spectrometry and Lipidomics, ZMF, Medical University of Graz, Graz, Austria
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany; German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany; German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore; Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Denise Wolrab
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Kim Ekroos
- Lipidomics Consulting Ltd., Esbo, Finland.
| | - Robert Ahrends
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
32
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
33
|
Isom M, Go EP, Desaire H. Enabling Lipidomic Biomarker Studies for Protected Populations by Combining Noninvasive Fingerprint Sampling with MS Analysis and Machine Learning. J Proteome Res 2024; 23:2805-2814. [PMID: 38171506 DOI: 10.1021/acs.jproteome.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Triacylglycerols and wax esters are two lipid classes that have been linked to diseases, including autism, Alzheimer's disease, dementia, cardiovascular disease, dry eye disease, and diabetes, and thus are molecules worthy of biomarker exploration studies. Since triacylglycerols and wax esters make up the majority of skin-surface lipid secretions, a viable sampling method for these potential biomarkers would be that of groomed latent fingerprints. Currently, however, blood-based sampling protocols predominate in the field. The invasiveness of a blood draw limits its utility to protected populations, including children and the elderly. Herein we describe a noninvasive means for sample collection (from fingerprints) paired with fast MS data-acquisition (MassIVE data set MSV000092742) and efficient data analysis via machine learning. Using both supervised and unsupervised classification, we demonstrate the usefulness of this method in determining whether a variable of interest imparts measurable change within the lipidomic data set. As a proof-of-concept, we show that the method is capable of distinguishing between the fingerprints of different individuals as well as between anatomical sebum collection regions. This noninvasive, high-throughput approach enables future lipidomic biomarker researchers to more easily include underrepresented, protected populations, such as children and the elderly, thus moving the field closer to definitive disease diagnoses that apply to all.
Collapse
Affiliation(s)
- Madeline Isom
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
34
|
Yoon JH, Lee D, Lee C, Cho E, Lee S, Cazenave-Gassiot A, Kim K, Chae S, Dennis EA, Suh PG. Paradigm shift required for translational research on the brain. Exp Mol Med 2024; 56:1043-1054. [PMID: 38689090 PMCID: PMC11148129 DOI: 10.1038/s12276-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Biomedical research on the brain has led to many discoveries and developments, such as understanding human consciousness and the mind and overcoming brain diseases. However, historical biomedical research on the brain has unique characteristics that differ from those of conventional biomedical research. For example, there are different scientific interpretations due to the high complexity of the brain and insufficient intercommunication between researchers of different disciplines owing to the limited conceptual and technical overlap of distinct backgrounds. Therefore, the development of biomedical research on the brain has been slower than that in other areas. Brain biomedical research has recently undergone a paradigm shift, and conducting patient-centered, large-scale brain biomedical research has become possible using emerging high-throughput analysis tools. Neuroimaging, multiomics, and artificial intelligence technology are the main drivers of this new approach, foreshadowing dramatic advances in translational research. In addition, emerging interdisciplinary cooperative studies provide insights into how unresolved questions in biomedicine can be addressed. This review presents the in-depth aspects of conventional biomedical research and discusses the future of biomedical research on the brain.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea.
| | - Dongha Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Chany Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Eunji Cho
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Seulah Lee
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Sehyun Chae
- Neurovascular Unit Research Group, Korean Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Edward A Dennis
- Department of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093-0601, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| |
Collapse
|
35
|
Rischke S, Gurke R, Bennett A, Behrens F, Geisslinger G, Hahnefeld L. ALISTER - Application for lipid stability evaluation and research. Clin Chim Acta 2024; 557:117858. [PMID: 38492658 DOI: 10.1016/j.cca.2024.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND AIMS In lipidomic and metabolomic studies, pre-analytical pitfalls enhance the risk of misusing resources such as time and money, as samples that are analyzed may not yield accurate or reliable data due to poor sample handling. Guidance and pre-analytic know-how are necessary for translation of omics technologies into routine clinical testing. The present work aims to enable decision making regarding sample stability in every phase of lipidomics- and metabolomics-centered studies. MATERIALS AND METHODS Data of multiple pre-analytic studies were aggregated into a database. Flexible approaches for evaluating these data were implemented in an RShiny-based web-application, tailored towards broad applicability in clinical and bioanalytic research. RESULTS Our "Application for lipid stability evaluation & research" - ALISTER facilitates decision making on blood sample stability during lipidomic and metabolomic studies, such as biomarker research, analysis of biobank samples and clinical testing. The interactive tool gives sampling recommendations when planning sample collection or aids in the assessment of sample quality of experiments retrospectively. CONCLUSION ALISTER is available for use under https://itmp.shinyapps.io/alister/. The application enables and simplifies data-driven decision making concerning pre-analytic blood sample handling and fits the needs of clinical investigations from multiple perspectives.
Collapse
Affiliation(s)
- Samuel Rischke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Robert Gurke
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Alexandre Bennett
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Frank Behrens
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Rheumatology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Goethe University Frankfurt, Institute of Clinical Pharmacology, Faculty of Medicine, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
36
|
Abrahams T, Nicholls SJ. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges. Expert Opin Drug Discov 2024; 19:281-290. [PMID: 38402906 DOI: 10.1080/17460441.2023.2292039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/04/2023] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Plasma lipidomics has emerged as a powerful tool in cardiovascular drug discovery by providing insights into disease mechanisms, identifying potential biomarkers for diagnosis and prognosis, and discovering novel targets for drug development. Widespread application of plasma lipidomics is hampered by technological limitations and standardization and requires a collaborative approach to maximize its use in cardiovascular drug discovery. AREAS COVERED This review provides an overview of the utility of plasma lipidomics in cardiovascular drug discovery and discusses the challenges and future perspectives of this rapidly evolving field. The authors discuss the role of lipidomics in understanding the molecular mechanisms of CVD, identifying novel biomarkers for diagnosis and prognosis, and discovering new therapeutic targets for drug development. Furthermore, they highlight the challenges faced in data analysis, standardization, and integration with other omics approaches and propose future directions for the field. EXPERT OPINION Plasma lipidomics holds great promise for improving the diagnosis, treatment, and prevention of CVD. While challenges remain in standardization and technology, ongoing research and collaboration among scientists and clinicians will undoubtedly help overcome these obstacles. As lipidomics evolves, its impact on cardiovascular drug discovery and clinical practice is expected to grow, ultimately benefiting patients and healthcare systems worldwide.
Collapse
Affiliation(s)
- Timothy Abrahams
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Stephen J Nicholls
- From the Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
37
|
Jumel T, Shevchenko A. Multispecies Benchmark Analysis for LC-MS/MS Validation and Performance Evaluation in Bottom-Up Proteomics. J Proteome Res 2024; 23:684-691. [PMID: 38243904 PMCID: PMC10845134 DOI: 10.1021/acs.jproteome.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/04/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
We present an instrument-independent benchmark procedure and software (LFQ_bout) for the validation and comparative evaluation of the performance of LC-MS/MS and data processing workflows in bottom-up proteomics. The procedure enables a back-to-back comparison of common and emerging workflows, e.g., diaPASEF or ScanningSWATH, and evaluates the impact of arbitrary and inadequately documented settings or black-box data processing algorithms. It enhances the overall performance and quantification accuracy by recognizing and reporting common quantification errors.
Collapse
Affiliation(s)
- Tobias Jumel
- Max Planck Institute of
Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of
Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
38
|
Rund KM, Carpanedo L, Lauterbach R, Wermund T, West AL, Wende LM, Calder PC, Schebb NH. LC-ESI-HRMS - lipidomics of phospholipids : Characterization of extraction, chromatography and detection parameters. Anal Bioanal Chem 2024; 416:925-944. [PMID: 38214704 PMCID: PMC10800306 DOI: 10.1007/s00216-023-05080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Lipids are a diverse class of molecules involved in many biological functions including cell signaling or cell membrane assembly. Owing to this relevance, LC-MS/MS-based lipidomics emerged as a major field in modern analytical chemistry. Here, we thoroughly characterized the influence of MS and LC settings - of a Q Exactive HF operated in Full MS/data-dependent MS2 TOP N acquisition mode - in order to optimize the semi-quantification of polar lipids. Optimization of MS-source settings improved the signal intensity by factor 3 compared to default settings. Polar lipids were separated on an ACQUITY Premier CSH C18 reversed-phase column (100 × 2.1 mm, 1.7 µm, 130 Å) during an elution window of 28 min, leading to a sufficient number of both data points across the chromatographic peaks, as well as MS2 spectra. Analysis was carried out in positive and negative ionization mode enabling the detection of a broader spectrum of lipids and to support the structural characterization of lipids. Optimal sample preparation of biological samples was achieved by liquid-liquid extraction using MeOH/MTBE resulting in an excellent extraction recovery > 85% with an intra-day and inter-day variability < 15%. The optimized method was applied on the investigation of changes in the phospholipid pattern in plasma from human subjects supplemented with n3-PUFA (20:5 and 22:6). The strongest increase was observed for lipids bearing 20:5, while 22:4 bearing lipids were lowered. Specifically, LPC 20:5_0:0 and PC 16:0_20:5 were found to be strongest elevated, while PE 18:0_22:4 and PC 18:2_18:2 were decreased by n3-PUFA supplementation. These results were confirmed by targeted LC-MS/MS using commercially available phospholipids as standards.
Collapse
Affiliation(s)
- Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Laura Carpanedo
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Robin Lauterbach
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Tim Wermund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Annette L West
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca M Wende
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
39
|
Conde-Torres D, Blanco-González A, Seco-González A, Suárez-Lestón F, Cabezón A, Antelo-Riveiro P, Piñeiro Á, García-Fandiño R. Unraveling lipid and inflammation interplay in cancer, aging and infection for novel theranostic approaches. Front Immunol 2024; 15:1320779. [PMID: 38361953 PMCID: PMC10867256 DOI: 10.3389/fimmu.2024.1320779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The synergistic relationships between Cancer, Aging, and Infection, here referred to as the CAIn Triangle, are significant determinants in numerous health maladies and mortality rates. The CAIn-related pathologies exhibit close correlations with each other and share two common underlying factors: persistent inflammation and anomalous lipid concentration profiles in the membranes of affected cells. This study provides a comprehensive evaluation of the most pertinent interconnections within the CAIn Triangle, in addition to examining the relationship between chronic inflammation and specific lipidic compositions in cellular membranes. To tackle the CAIn-associated diseases, a suite of complementary strategies aimed at diagnosis, prevention, and treatment is proffered. Our holistic approach is expected to augment the understanding of the fundamental mechanisms underlying these diseases and highlight the potential of shared features to facilitate the development of novel theranostic strategies.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alejandro Seco-González
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabián Suárez-Lestón
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paula Antelo-Riveiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
40
|
Peterka O, Maccelli A, Jirásko R, Vaňková Z, Idkowiak J, Hrstka R, Wolrab D, Holčapek M. HILIC/MS quantitation of low-abundant phospholipids and sphingolipids in human plasma and serum: Dysregulation in pancreatic cancer. Anal Chim Acta 2024; 1288:342144. [PMID: 38220279 DOI: 10.1016/j.aca.2023.342144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
A new hydrophilic interaction liquid chromatography - mass spectrometry method is developed for low-abundant phospholipids and sphingolipids in human plasma and serum. The optimized method involves the Cogent Silica type C hydride column, the simple sample preparation by protein precipitation, and the removal of highly abundant lipid classes using the postcolumn valve directed to waste during two elution windows. The method allows a highly confident and sensitive identification of low-abundant lipid classes in human plasma (246 lipid species from 24 lipid subclasses) based on mass accuracy and retention dependencies in both polarity modes. The method is validated for quantitation using two internal standards (if available) for each lipid class and applied to human plasma and serum samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC), healthy controls, and NIST SRM 1950. Multivariate data analysis followed by various statistical projection methods is used to determine the most dysregulated lipids. Significant downregulation is observed for lysophospholipids with fatty acyl composition 16:0, 18:0, 18:1, and 18:2. Distinct trends are observed for phosphatidylethanolamines (PE) in relation to the bonding type of fatty acyls, where most PE with acyl bonds are upregulated, while ether/plasmenyl PE are downregulated. For the sphingolipid category, sphingolipids with very long N-acyl chains are downregulated, while sphingolipids with shorter N-acyl chains were upregulated in PDAC. These changes are consistently observed for various classes of sphingolipids, ranging from ceramides to glycosphingolipids, indicating a possible metabolic disorder in ceramide biosynthesis caused by PDAC.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Alessandro Maccelli
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jakub Idkowiak
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic; University of Vienna, Department of Analytical Chemistry, Währinger Strasse 38, 1090, Vienna, Austria
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
41
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
42
|
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, Jackson HK, Moreira LR, Palacio PL, Hill AF, Quinn JF, Van Keuren‐Jensen KR, McFarland TJ, Palade J, Sribnick EA, Su H, Vekrellis K, Coyle B, Yang Y, Falcón‐Perez JM, Nieuwland R, Saugstad JA. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles 2024; 13:e12397. [PMID: 38158550 PMCID: PMC10756860 DOI: 10.1002/jev2.12397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Setty M. Magaña
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
| | - John P. Nolan
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Laura J. Vella
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | - Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc.Palm BeachFloridaUSA
| | - Lissette Retana Moreira
- Department of Parasitology, Faculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica, Central America
- Centro de Investigación en Enfermedades TropicalesUniversity of Costa RicaSan JoséCosta Rica, Central America
| | - Paola Loreto Palacio
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joseph F. Quinn
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Portland VA Medical CenterPortlandOregonUSA
| | | | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Joanna Palade
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixArizonaUSA
| | - Eric A. Sribnick
- Department of NeurosurgeryNationwide Children's Hospital, The Ohio State UniversityColumbusOhioUSA
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | | | - Beth Coyle
- Children's Brain Tumour Research Centre, School of MedicineUniversity of Nottingham Biodiscovery Institute, University of NottinghamNottinghamNottinghamshireUK
| | - You Yang
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Juan M. Falcón‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | |
Collapse
|
43
|
Mentis AFA, Liu L. Global impact and application of Precision Healthcare. THE NEW ERA OF PRECISION MEDICINE 2024:209-228. [DOI: 10.1016/b978-0-443-13963-5.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
44
|
Chaves-Filho AB, Diniz LS, Santos RS, Lima RS, Oreliana H, Pinto IFD, Dantas LS, Inague A, Faria RL, Medeiros MHG, Glezer I, Festuccia WT, Yoshinaga MY, Miyamoto S. Plasma oxylipin profiling by high resolution mass spectrometry reveal signatures of inflammation and hypermetabolism in amyotrophic lateral sclerosis. Free Radic Biol Med 2023; 208:285-298. [PMID: 37619957 DOI: 10.1016/j.freeradbiomed.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons, systemic hypermetabolism, and inflammation. In this context, oxylipins have been investigated as signaling molecules linked to neurodegeneration, although their specific role in ALS remains unclear. Importantly, most methods focused on oxylipin analysis are based on low-resolution mass spectrometry, which usually confers high sensitivity, but not great accuracy for molecular characterization, as provided by high-resolution MS (HRMS). Here, we established an ultra-high performance liquid chromatography HRMS (LC-HRMS) method for simultaneous analysis of 126 oxylipins in plasma. Intra- and inter-day method validation showed high sensitivity (0.3-25 pg), accuracy and precision for more than 90% of quality controls. This method was applied in plasma of ALS rats overexpressing the mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A) at asymptomatic (ALS 70 days old) and symptomatic stages (ALS 120 days old), and their respective age-matched wild type controls. From the 56 oxylipins identified in plasma, 17 species were significantly altered. Remarkably, most of oxylipins linked to inflammation and oxidative stress derived from arachidonic acid (AA), like prostaglandins and mono-hydroxides, were increased in ALS 120 d rats. In addition, ketones derived from AA and linoleic acid (LA) were increased in both WT 120 d and ALS 120 d groups, supporting that age also modulates oxylipin metabolism in plasma. Interestingly, the LA-derived diols involved in fatty acid uptake and β-oxidation, 9(10)-DiHOME and 12(13)-DiHOME, were decreased in ALS 120 d rats and showed significant synergic effects between age and disease factors. In summary, we validated a high-throughput LC-HRMS method for oxylipin analysis and provided a comprehensive overview of plasma oxylipins involved in ALS disease progression. Noteworthy, the oxylipins altered in plasma have potential to be investigated as biomarkers for inflammation and hypermetabolism in ALS.
Collapse
Affiliation(s)
- Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil; Departamento de Fisiologia, Instituto de Ciências Biomédicas, University of São Paulo, Brazil.
| | - Larissa S Diniz
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Rosangela S Santos
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Hector Oreliana
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Isabella F D Pinto
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Lucas S Dantas
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Rodrigo L Faria
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Isaías Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Federal University of São Paulo, Brazil
| | - William T Festuccia
- Departamento de Fisiologia, Instituto de Ciências Biomédicas, University of São Paulo, Brazil
| | - Marcos Y Yoshinaga
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, University of São Paulo, Brazil.
| |
Collapse
|
45
|
Troppmair N, Kopczynski D, Assinger A, Lehmann R, Coman C, Ahrends R. Accurate Sphingolipid Quantification Reducing Fragmentation Bias by Nonlinear Models. Anal Chem 2023; 95:15227-15235. [PMID: 37782305 PMCID: PMC10585660 DOI: 10.1021/acs.analchem.3c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Quantitative sphingolipid analysis is crucial for understanding the roles of these bioactive molecules in various physiological and pathological contexts. Molecular sphingolipid species are typically quantified using sphingoid base-derived fragments relative to a class-specific internal standard. However, the commonly employed "one standard per class" strategy fails to account for fragmentation differences presented by the structural diversity of sphingolipids. To address this limitation, we developed a novel approach for quantitative sphingolipid analysis. This approach utilizes fragmentation models to correct for structural differences and thus overcomes the limitations associated with using a limited number of standards for quantification. Importantly, our method is independent of the internal standard, instrumental setup, and collision energy. Furthermore, we integrated this method into a user-friendly KNIME workflow. The validation results illustrate the effectiveness of our approach in accurately quantifying ceramide subclasses from various biological matrices. This breakthrough opens up new avenues for exploring sphingolipid metabolism and gaining insights into its implications.
Collapse
Affiliation(s)
- Nina Troppmair
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry, University
of Vienna, 1090 Vienna, Austria
| | - Dominik Kopczynski
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alice Assinger
- Department
of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Rainer Lehmann
- Institute
for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic
Laboratory Medicine, University Hospital
Tuebingen, 72076 Tuebingen, Germany
| | - Cristina Coman
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Robert Ahrends
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
46
|
Wang D, Xiao H, Lv X, Chen H, Wei F. Mass Spectrometry Based on Chemical Derivatization Has Brought Novel Discoveries to Lipidomics: A Comprehensive Review. Crit Rev Anal Chem 2023; 55:21-52. [PMID: 37782560 DOI: 10.1080/10408347.2023.2261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Lipids, as one of the most important organic compounds in organisms, are important components of cells and participate in energy storage and signal transduction of living organisms. As a rapidly rising field, lipidomics research involves the identification and quantification of multiple classes of lipid molecules, as well as the structure, function, dynamics, and interactions of lipids in living organisms. Due to its inherent high selectivity and high sensitivity, mass spectrometry (MS) is the "gold standard" analysis technique for small molecules in biological samples. The combination chemical derivatization with MS detection is a unique strategy that could improve MS ionization efficiency, facilitate structure identification and quantitative analysis. Herein, this review discusses derivatization-based MS strategies for lipidomic analysis over the past decade and focuses on all the reported lipid categories, including fatty acids and modified fatty acids, glycerolipids, glycerophospholipids, sterols and saccharolipids. The functional groups of lipids mainly involved in chemical derivatization include the C=C group, carboxyl group, hydroxyl group, amino group, carbonyl group. Furthermore, representative applications of these derivatization-based lipid profiling methods were summarized. Finally, challenges and countermeasures of lipid derivatization are mentioned and highlighted to guide future studies of derivatization-based MS strategy in lipidomics.
Collapse
Affiliation(s)
- Dan Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Huaming Xiao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Xin Lv
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Hong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, Hubei, PR China
- Hubei Hongshan Laboratory, Wuhan, Hubei, PR China
| |
Collapse
|
47
|
Astarita G, Kelly RS, Lasky-Su J. Metabolomics and lipidomics strategies in modern drug discovery and development. Drug Discov Today 2023; 28:103751. [PMID: 37640150 PMCID: PMC10543515 DOI: 10.1016/j.drudis.2023.103751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Metabolomics and lipidomics have an increasingly pivotal role in drug discovery and development. In the context of drug discovery, monitoring changes in the levels or composition of metabolites and lipids relative to genetic variations yields functional insights, bolstering human genetics and (meta)genomic methodologies. This approach also sheds light on potential novel targets for therapeutic intervention. In the context of drug development, metabolite and lipid biomarkers contribute to enhanced success rates, promising a transformative impact on precision medicine. In this review, we deviate from analytical chemist-focused perspectives, offering an overview tailored to drug discovery. We provide introductory insight into state-of-the-art mass spectrometry (MS)-based metabolomics and lipidomics techniques utilized in drug discovery and development, drawing from the collective expertise of our research teams. We comprehensively outline the application of metabolomics and lipidomics in advancing drug discovery and development, spanning fundamental research, target identification, mechanisms of action, and the exploration of biomarkers.
Collapse
Affiliation(s)
- Giuseppe Astarita
- Georgetown University, Washington, DC, USA; Arkuda Therapeutics, Watertown, MA, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
Nkiliza A, Huguenard CJ, Aldrich GJ, Ferguson S, Cseresznye A, Darcey T, Evans JE, Dretsch M, Mullan M, Crawford F, Abdullah L. Levels of Arachidonic Acid-Derived Oxylipins and Anandamide Are Elevated Among Military APOE ɛ4 Carriers With a History of Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder Symptoms. Neurotrauma Rep 2023; 4:643-654. [PMID: 37786567 PMCID: PMC10541938 DOI: 10.1089/neur.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Currently approved blood biomarkers detect intracranial lesions in adult patients with mild to moderate traumatic brain injury (TBI) acutely post-injury. However, blood biomarkers are still needed to help with a differential diagnosis of mild TBI (mTBI) and post-traumatic stress disorder (PTSD) at chronic post-injury time points. Owing to the association between phospholipid (PL) dysfunction and chronic consequences of TBI, we hypothesized that examining bioactive PL metabolites (oxylipins and ethanolamides) would help identify long-term lipid changes associated with mTBI and PTSD. Lipid extracts of plasma from active-duty soldiers deployed to the Iraq/Afghanistan wars (control = 52, mTBI = 21, PTSD = 34, and TBI + PTSD = 13) were subjected to liquid chromatography/mass spectrometry analysis to examine oxylipins and ethanolamides. Linear regression analyses followed by post hoc comparisons were performed to assess the association of these lipids with diagnostic classifications. Significant differences were found in oxylipins derived from arachidonic acid (AA) between controls and mTBI, PTSD, and mTBI + PTSD groups. Levels of AA-derived oxylipins through the cytochrome P450 pathways and anandamide were significantly elevated among mTBI + PTSD patients who were carriers of the apolipoprotein E E4 allele. These studies demonstrate that AA-derived oxylipins and anandamide may be unique blood biomarkers of PTSD and mTBI + PTSD. Further, these AA metabolites may be indicative of an underlying inflammatory process that warrants further investigation. Future validation studies in larger cohorts are required to determine a potential application of this approach in providing a differential diagnosis of mTBI and PTSD in a clinical setting.
Collapse
Affiliation(s)
- Aurore Nkiliza
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Claire J.C. Huguenard
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | - Scott Ferguson
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
| | | | | | | | - Michael Dretsch
- U.S. Army Medical Research Directorate-West, Walter Reed Army Institute of Research, Joint Base Lewis-McChord, Washington, USA
- U.S. Army Aeromedical Research Laboratory, Fort Novosel, Alabama, USA
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida, USA
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| | - Laila Abdullah
- Roskamp Institute, Sarasota, Florida, USA
- Open University, Milton Keynes, United Kingdom
- James A. Haley VA Hospital, Tampa, Florida, USA
| |
Collapse
|
49
|
Seufert AL, Hickman JW, Choi J, Napier BA. Computational Analysis of Plasma Lipidomics from Mice Fed Standard Chow and Ketogenic Diet. Bio Protoc 2023; 13:e4819. [PMID: 37753463 PMCID: PMC10518786 DOI: 10.21769/bioprotoc.4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 09/28/2023] Open
Abstract
Dietary saturated fatty acids (SFAs) are upregulated in the blood circulation following digestion. A variety of circulating lipid species have been implicated in metabolic and inflammatory diseases; however, due to the extreme variability in serum or plasma lipid concentrations found in human studies, established reference ranges are still lacking, in addition to lipid specificity and diagnostic biomarkers. Mass spectrometry is widely used for identification of lipid species in the plasma, and there are many differences in sample extraction methods within the literature. We used ultra-high performance liquid chromatography (UPLC) coupled to a high-resolution hybrid triple quadrupole-time-of-flight (QToF) mass spectrometry (MS) to compare relative peak abundance of specific lipid species within the following lipid classes: free fatty acids (FFAs), triglycerides (TAGs), phosphatidylcholines (PCs), and sphingolipids (SGs), in the plasma of mice fed a standard chow (SC; low in SFAs) or ketogenic diet (KD; high in SFAs) for two weeks. In this protocol, we used Principal Component Analysis (PCA) and R to visualize how individual mice clustered together according to their diet, and we found that KD-fed mice displayed unique blood profiles for many lipid species identified within each lipid class compared to SC-fed mice. We conclude that two weeks of KD feeding is sufficient to significantly alter circulating lipids, with PCs being the most altered lipid class, followed by SGs, TAGs, and FFAs, including palmitic acid (PA) and PA-saturated lipids. This protocol is needed to advance knowledge on the impact that SFA-enriched diets have on concentrations of specific lipids in the blood that are known to be associated with metabolic and inflammatory diseases. Key features • Analysis of relative plasma lipid concentrations from mice on different diets using R. • Lipidomics data collected via ultra-high performance liquid chromatography (UPLC) coupled to a high-resolution hybrid triple quadrupole-time-of-flight (QToF) mass spectrometry (MS). • Allows for a comprehensive comparison of diet-dependent plasma lipid profiles, including a variety of specific lipid species within several different lipid classes. • Accumulation of certain free fatty acids, phosphatidylcholines, triglycerides, and sphingolipids are associated with metabolic and inflammatory diseases, and plasma concentrations may be clinically useful.
Collapse
Affiliation(s)
- Amy L. Seufert
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - James W. Hickman
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Brooke A. Napier
- Department of Biology and Center for Life in Extreme Environments, Portland State University, Portland, OR, USA
| |
Collapse
|
50
|
da Silva KM, Wölk M, Nepachalovich P, Iturrospe E, Covaci A, van Nuijs ALN, Fedorova M. Investigating the Potential of Drift Tube Ion Mobility for the Analysis of Oxidized Lipids. Anal Chem 2023; 95:13566-13574. [PMID: 37646365 DOI: 10.1021/acs.analchem.3c02213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Epilipids, a subset of the lipidome that comprises oxidized, nitrated, and halogenated lipid species, show important biochemical activity in the regulation of redox lipid metabolism by influencing cell fate decisions, including death, health, and aging. Due to the large chemical diversity, reversed-phase liquid chromatography-high-resolution mass spectrometry (RPLC-HRMS) methods have only a limited ability to separate numerous isobaric and isomeric epilipids. Ion mobility spectrometry (IMS) is a gas-phase separation technique that can be combined with LC-HRMS to improve the overall peak capacity of the analytical platform. Here, we illustrate the advantages and discuss the current limitations of implementing IMS in LC-HRMS workflows for the analysis of oxylipins and oxidized complex lipids. Using isomeric mixtures of oxylipins, we demonstrated that while deprotonated ions of eicosanoids were poorly resolved by IMS, sodium acetate and metal adducts (e.g., Li, Na, Ag, Ba, K) of structural isomers often showed ΔCCS% above 1.4% and base peak separation with high-resolution demultiplexing (HRDm). The knowledge of the IM migration order was also used as a proof of concept to help in the annotation of oxidized complex lipids using HRDm and all-ion fragmentation spectra. Additionally, we used a mixture of deuterium-labeled lipids for a routine system suitability test with the purpose of improving harmonization and interoperability of IMS data sets in (epi)lipidomics.
Collapse
Affiliation(s)
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Palina Nepachalovich
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Maria Fedorova
- Lipid Metabolism: Analysis and Integration, Center of Membrane Biochemistry and Lipid Research, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|