1
|
Biernat MM, Camp OG, Moussa DN, Awonuga AO, Abu-Soud HM. The interplay between the myeloperoxidase-hypochlorous acid system, heme oxygenase, and free iron in inflammatory diseases. J Inorg Biochem 2025; 270:112927. [PMID: 40267847 DOI: 10.1016/j.jinorgbio.2025.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Accumulated unbound free iron (Fe(II or III)) is a redox engine generating reactive oxygen species (ROS) that promote oxidative stress and inflammation. Iron is implicated in diseases with free radical pathology including cardiovascular, neurodegenerative, reproductive disorders, and some types of cancer. While many studies focus on iron overload disorders, few explore the potential link between the myeloperoxidase-hypochlorous acid (MPO-HOCl) system and localized iron accumulation through heme and iron‑sulfur (FeS) cluster protein destruction. Although inducible heme oxygenase (HO-1), the rate-limiting enzyme in heme catabolism, is frequently associated with these diseases, we hypothesize that HOCl also contributes to the generation of free iron and heme degradation products. Furthermore, HO-1 and HOCl may play a dual role in free iron accumulation by regulating the activity of key iron metabolism proteins. Enzymatic and non-enzymatic modulators, as well as scavengers of HOCl, can help prevent heme destruction and reduce the accumulation of free iron. Given iron's role in disease progression and severity, identifying the primary sources, mechanisms, and mediators involved in free iron generation is crucial for developing effective pharmacological treatments. Further investigation focusing on the specific contributions of the MPO-HOCl system and free iron is necessary to explore novel strategies to mitigate its harmful effects in biological systems.
Collapse
Affiliation(s)
- Mia M Biernat
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Hu X, Lin Y, Appleton AA, Wang W, Yu B, Zhou L, Li G, Zhou Y, Ou Y, Dong H. Remnant cholesterol, iron status and diabetes mellitus: a dose-response relationship and mediation analysis. Diabetol Metab Syndr 2024; 16:65. [PMID: 38475846 DOI: 10.1186/s13098-024-01304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Remnant cholesterol (RC) is recognized as a risk factor for diabetes mellitus (DM). Although iron status has been shown to be associated with cholesterol metabolism and DM, the association between RC, iron status, and DM remains unclear. We examined the relationship between RC and iron status and investigated the role of iron status in the association between RC and DM. METHODS A total of 7308 patients were enrolled from the China Health and Nutrition Survey. RC was calculated as total cholesterol minus low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Iron status was assessed as serum ferritin (SF) and total body iron (TBI). DM was ascertained by self-reported physician diagnosis and/or antidiabetic drug use and/or fasting plasma glucose ≥ 126 mg/dL and/or glycated haemoglobin ≥ 6.5%. General linear models were used to evaluate the relationships between RC and iron status. Restricted cubic splines were used to assess the association between RC and DM. Mediation analysis was used to clarified the mediating role of iron status in the association between the RC and DM. RESULTS The average age of the participants was 50.6 (standard deviation = 15.1) years. Higher RC was significantly associated with increased SF (β = 73.14, SE = 3.75, 95% confidence interval [CI] 65.79-80.49) and TBI (β = 1.61, SE = 0.08, 95% CI 1.44-1.78). J-shape relationships were found in the association between RC levels with DM, as well as iron status with DM. Significant indirect effects of SF and TBI in the association between RC and DM were found, with the index mediated at 9.58% and 6.37%, respectively. CONCLUSIONS RC has a dose-response relationship with iron status. The association between RC and DM was mediated in part by iron status. Future studies are needed to confirm these findings and further clarify the underlying mechanism.
Collapse
Affiliation(s)
- Xiangming Hu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Cardiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Lin
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Allison A Appleton
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, NY, USA
| | - Weimian Wang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingyan Yu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Langping Zhou
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Cardiology, Baoan District Central Hospital, Shenzhen, Guangdong, China
| | - Guang Li
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yingling Zhou
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yanqiu Ou
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Haojian Dong
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Halliwell B, Watt F, Minqin R. Iron and atherosclerosis: Lessons learned from rabbits relevant to human disease. Free Radic Biol Med 2023; 209:165-170. [PMID: 37852545 DOI: 10.1016/j.freeradbiomed.2023.10.383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The role of iron in promoting atherosclerosis, and hence the cardiovascular, neurodegenerative and other diseases that result from atherosclerosis, has been fiercely controversial. Many studies have been carried out on various rodent models of atherosclerosis, especially on apoE-knockout (apoE-/-) mice, which develop atherosclerosis more readily than normal mice. These apoE-/- mouse studies generally support a role for iron in atherosclerosis development, although there are conflicting results. The purpose of the current article is to describe studies on another animal model that is not genetically manipulated; New Zealand White (NZW) rabbits fed a high-cholesterol diet. This may be a better model than the apoE-/- mice for human atherosclerosis, although it has been given much less attention. Studies on NZW rabbits support the view that iron promotes atherosclerosis, although some uncertainties remain, which need to be resolved by further experimentation.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Research Programme, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | - Frank Watt
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| | - Ren Minqin
- Department of Physics, National University of Singapore, Faculty of Science, 2 Science Drive 3, Blk S12, Level 2, 117551, Singapore.
| |
Collapse
|
4
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
5
|
Camp OG, Bai D, Gonullu DC, Nayak N, Abu-Soud HM. Melatonin interferes with COVID-19 at several distinct ROS-related steps. J Inorg Biochem 2021; 223:111546. [PMID: 34304092 PMCID: PMC8285369 DOI: 10.1016/j.jinorgbio.2021.111546] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Recent studies have shown a correlation between COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the distinct, exaggerated immune response titled "cytokine storm". This immune response leads to excessive production and accumulation of reactive oxygen species (ROS) that cause clinical signs characteristic of COVID-19 such as decreased oxygen saturation, alteration of hemoglobin properties, decreased nitric oxide (NO) bioavailability, vasoconstriction, elevated cytokines, cardiac and/or renal injury, enhanced D-dimer, leukocytosis, and an increased neutrophil to lymphocyte ratio. Particularly, neutrophil myeloperoxidase (MPO) is thought to be especially abundant and, as a result, contributes substantially to oxidative stress and the pathophysiology of COVID-19. Conversely, melatonin, a potent MPO inhibitor, has been noted for its anti-inflammatory, anti-oxidative, anti-apoptotic, and neuroprotective actions. Melatonin has been proposed as a safe therapeutic agent for COVID-19 recently, having been given with a US Food and Drug Administration emergency authorized cocktail, REGEN-COV2, for management of COVID-19 progression. This review distinctly highlights both how the destructive interactions of HOCl with tetrapyrrole rings may contribute to oxygen deficiency and hypoxia, vitamin B12 deficiency, NO deficiency, increased oxidative stress, and sleep disturbance, as well as how melatonin acts to prevent these events, thereby improving COVID-19 prognosis.
Collapse
Affiliation(s)
- Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David Bai
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Damla C Gonullu
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neha Nayak
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Goud PT, Bai D, Abu-Soud HM. A Multiple-Hit Hypothesis Involving Reactive Oxygen Species and Myeloperoxidase Explains Clinical Deterioration and Fatality in COVID-19. Int J Biol Sci 2021; 17:62-72. [PMID: 33390833 PMCID: PMC7757048 DOI: 10.7150/ijbs.51811] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Multi-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O2 supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles. Overwhelming immune response associated with "cytokine storms" could activate reactive oxygen species (ROS), which may result in consumption of nitric oxide (NO), a critical vasodilation regulator. In other inflammatory infections, activated neutrophils are known to release myeloperoxidase (MPO) in a natural immune response, which contributes to production of hypochlorous acid (HOCl). However, during overwhelming inflammation, HOCl competes with O2 at heme binding sites, decreasing O2 saturation. Moreover, HOCl contributes to several oxidative reactions, including hemoglobin-heme iron oxidation, heme destruction, and subsequent release of free iron, which mediates toxic tissue injury through additional generation of ROS and NO consumption. Connecting these reactions in a multi-hit model can explain generalized tissue damage, vasoconstriction, severe hypoxia, and precipitous clinical deterioration in critically ill COVID-19 patients. Understanding these mechanisms is critical to develop therapeutic strategies to combat COVID-19.
Collapse
Affiliation(s)
- Pravin T Goud
- Division of Reproductive Endocrinology and Infertility & California IVF Fertility Center, Department of Obstetrics and Gynecology, University of California Davis, Sacramento, CA, 95833, USA
- California Northstate University Medical College, Elk Grove, CA, 95757, USA
| | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol 2019; 93:2491-2513. [DOI: 10.1007/s00204-019-02538-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022]
|
8
|
Ali I, Khan SN, Chatzicharalampous C, Bai D, Abu-Soud HM. Catalase prevents myeloperoxidase self-destruction in response to oxidative stress. J Inorg Biochem 2019; 197:110706. [PMID: 31103890 DOI: 10.1016/j.jinorgbio.2019.110706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/17/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Catalase (CAT) and myeloperoxiase (MPO) are heme-containing enzymes that have attracted attention for their role in the etiology of numerous respiratory disorders such as cystic fibrosis, bronchial asthma, and acute hypoxemic respiratory failure. However, information regarding the interrelationship and competition between the two enzymes, free iron accumulation, and decreased levels of non-enzymatic antioxidants at sites of inflammation is still lacking. Myeloperoxidase catalyzes the generation of hypochlorous acid (HOCl) from the reaction of hydrogen peroxide (H2O2) and chloride (Cl-). Self-generated HOCl has recently been proposed to auto-inhibit MPO through a mechanism that involves MPO heme destruction. Here, we investigate the interplay of MPO, HOCl, and CAT during catalysis, and explore the crucial role of MPO inhibitors and HOCl scavengers in protecting the catalytic site from protein modification of both enzymes against oxidative damage mediated by HOCl. We showed that CAT not only competes with MPO for H2O2 but also scavenges HOCl. The protective role provided by CAT versus the damaging effect provided by HOCl depends in part on the ratio between MPO/CAT and the affinity of the enzymes towards H2O2 versus HOCl. The severity of such damaging effects mainly depends on the ratio of HOCl to enzyme heme content. In addition to its effect in mediating protein modification and aggregation, HOCl oxidatively destroys the catalytic sites of the enzymes, which contain porphyrin rings and iron. Thus, modulation of MPO/CAT activities may be a fundamental feature of catalysis, and functions to down-regulate HOCl synthesis and prevent hemoprotein heme destruction and/or protein modification.
Collapse
Affiliation(s)
- Iyad Ali
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA; Department of Biochemistry and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 7, Palestine
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - David Bai
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Bukiya AN, Blank PS, Rosenhouse-Dantsker A. Cholesterol intake and statin use regulate neuronal G protein-gated inwardly rectifying potassium channels. J Lipid Res 2018; 60:19-29. [PMID: 30420402 DOI: 10.1194/jlr.m081240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/10/2018] [Indexed: 12/31/2022] Open
Abstract
Cholesterol, a critical component of the cellular plasma membrane, is essential for normal neuronal function. Cholesterol content is highest in the brain, where most cholesterol is synthesized de novo; HMG-CoA reductase controls the synthesis rate. Despite strict control, elevated blood cholesterol levels are common and are associated with various neurological disorders. G protein-gated inwardly rectifying potassium (GIRK) channels mediate the actions of inhibitory brain neurotransmitters. Loss of GIRK function enhances neuron excitability; gain of function reduces neuronal activity. However, the effect of dietary cholesterol or HMG-CoA reductase inhibition (i.e., statin therapy) on GIRK function remains unknown. Using a rat model, we compared the effects of a high-cholesterol versus normal diet both with and without atorvastatin, a widely prescribed HMG-CoA reductase inhibitor, on neuronal GIRK currents. The high-cholesterol diet increased hippocampal CA1 region cholesterol levels and correspondingly increased neuronal GIRK currents. Both phenomena were reversed by cholesterol depletion in vitro. Atorvastatin countered the high-cholesterol diet effects on neuronal cholesterol content and GIRK currents; these effects were reversed by cholesterol enrichment in vitro. Our findings suggest that high-cholesterol diet and atorvastatin therapy affect ion channel function in the brain by modulating neuronal cholesterol levels.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
10
|
Liu Y, Li J, Xu K, Gu J, Huang L, Zhang L, Liu N, Kong J, Xing M, Zhang L, Zhang L. Characterization of superparamagnetic iron oxide nanoparticle-induced apoptosis in PC12 cells and mouse hippocampus and striatum. Toxicol Lett 2018; 292:151-161. [PMID: 29715513 DOI: 10.1016/j.toxlet.2018.04.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/30/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used as theranostic drug-carrier and MRI contrast agent. Their potential effects are still in blank while SPIONs are used for brain. The present study aims to investigate SPIONs' neurotoxicity in vitro and in vivo using stereotaxic technique. By co-incubating SPIONs with dopaminergic neuronal PC12 cells, we found that SPIONs had a dose-dependent cytotoxic in PC12 cells at 60-200 ug/mL but not at 10-50 ug/mL, it reduced cell viability, decreased the capacity of PC12 cells to extend neurites in response to nerve growth factor (NGF), induced a reduction of the tyrosine hydroxylase protein, while increasing PC12 cell apoptosis. Accordingly, the no-observed-adverse-effect level (NOAEL) of current SPIONs was 50 ug/mL in vitro, which would be useful for human health risk assessment. While directly injecting the SPIONs into the dorsal striatum or hippocampus, 7 and 14 days after surgery, nanoparticles decreased the TH+ fiber density in both the dorsal striatum and the hippocampus. A behavioral evaluation demonstrated that SPIONs attenuated the animals' motor coordination and spatial memory, as evaluated by the rotarod test and the Morris water maze. We further examined mitogen-activated protein kinase (MAPK) activation and found that c-Jun N-terminal kinase (JNK) was activated after SPIONs treatment. It suggests that the SPIONs-induced neurotoxicity might be mediated through the JNK signaling pathway. SPIONs could possibly induce neurotoxic effects on the dorsal striatum and hippocampus.
Collapse
Affiliation(s)
- Yutong Liu
- Guangdong Provincial Key Laboratory of Proteomics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Proteomics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kaige Xu
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada
| | - Jingjing Gu
- Guangdong Provincial Key Laboratory of Proteomics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lu Huang
- Guangdong Provincial Key Laboratory of Proteomics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - N Liu
- Elderly Health Services Research Center, Southern Medical University, Guangzhou, 510515, China
| | - Jiming Kong
- Southern Medical University-University of Manitoba Geriatric Medicine Joint Laboratory, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada.
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Elderly Health Services Research Center, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
11
|
Jeelani R, Maitra D, Chatzicharalampous C, Najeemuddin S, Morris RT, Abu-Soud HM. Melatonin prevents hypochlorous acid-mediated cyanocobalamin destruction and cyanogen chloride generation. J Pineal Res 2018; 64:10.1111/jpi.12463. [PMID: 29247550 PMCID: PMC5843513 DOI: 10.1111/jpi.12463] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
Hypochlorous acid (HOCl) is a potent cytotoxic oxidant generated by the enzyme myeloperoxidase (MPO) in the presence of hydrogen peroxide (H2 O2 ) and chloride (Cl- ). Elevated levels of HOCl play an important role in various pathological conditions through oxidative modification of several biomolecules. Recently, we have highlighted the ability of HOCl to mediate the destruction of the metal-ion derivatives of tetrapyrrole macrocyclic rings such as hemoproteins and vitamin B12 (VB12 ) derivatives. Destruction of cyanocobalamin, a common pharmacological form of VB12 mediated by HOCl, results in the generation of toxic molecular products such as chlorinated derivatives, corrin ring cleavage products, the toxic blood agents cyanide (CN- ) and cyanogen chloride (CNCl), and redox-active free cobalt. Here, we show that melatonin prevents HOCl-mediated cyanocobalamin destruction, using a combination of UV-Vis spectrophotometry, high-performance liquid chromatography analysis, and colorimetric CNCl assay. Identification of several melatonin oxidation products suggests that the protective role of melatonin against HOCl-mediated cyanocobalamin destruction and subsequent CNCl generation is at the expense of melatonin oxidation. Collectively, this work highlights that, in addition to acting as an antioxidant and as a MPO inhibitor, melatonin can also prevent VB12 deficiency in inflammatory conditions such as cardiovascular and neurodegenerative diseases, among many others.
Collapse
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, C. S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI, 48201 USA
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, C. S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI, 48201 USA
| | - Charalampos Chatzicharalampous
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, C. S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI, 48201 USA
| | - Syed Najeemuddin
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, C. S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI, 48201 USA
| | - Robert T. Morris
- Division of Gynecologic Oncology, Department of Oncology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, 48201 USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, C. S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI, 48201 USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201 USA
- Address correspondence to: Husam Abu-Soud, Department of Obstetrics and Gynecology, C. S. Mott Center for Growth and Development, Wayne State University, 275 E. Hancock Detroit, MI 48201. Tel: 313/577-6178; Fax: 313/577-8554;
| |
Collapse
|
12
|
Approaches for extending human healthspan: from antioxidants to healthspan pharmacology. Essays Biochem 2017; 61:389-399. [PMID: 28698312 DOI: 10.1042/ebc20160091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Dramatic increases in human lifespan and declining population growth are monumental achievements but these same achievements have also led to many societies today ageing at a faster rate than ever before. Extending healthy lifespan (healthspan) is a key translational challenge in this context. Disease-centric approaches to manage population ageing risk are adding years to life without adding health to these years. The growing consensus that ageing is driven by a limited number of interconnected processes suggests an alternative approach. Instead of viewing each age-dependent disease as the result of an independent chain of events, this approach recognizes that most age-dependent diseases depend on and are driven by a limited set of ageing processes. While the relative importance of each of these processes and the best intervention strategies targeting them are subjects of debate, there is increasing interest in providing preventative intervention options to healthy individuals even before overt age-dependent diseases manifest. Elevated oxidative damage is involved in the pathophysiology of most age-dependent diseases and markers of oxidative damage often increase with age in many organisms. However, correlation is not causation and, sadly, many intervention trials of supposed antioxidants have failed to extend healthspan and to prevent diseases. This does not, however, mean that reactive species (RS) and redox signalling are unimportant. Ultimately, the most effective antioxidants may not turn out to be the best geroprotective drugs, but effective geroprotective interventions might well turn out to also have excellent, if probably indirect, antioxidant efficacy.
Collapse
|
13
|
Abstract
OBJECTIVE The association between iron and neurocognition remains underexplored in adolescents, and the neurocognitive effects of low and high iron levels have yet to be established. The aim of this study was to investigate the relationships of low and high iron levels with neurocognitive domains in early adolescents. METHOD The sample comprised 428 adolescents (12.0 ± 0.4 years) from Jintan, China. Serum iron concentrations were analyzed from venous blood samples and classified into low, normal, and high levels according to the clinical reference range 75-175 μg/dl. Neurocognition was measured by the Penn Computerized Neurocognitive Battery and Wechsler Intelligence Scale. Generalized linear regression was used to analyze relationships. RESULTS Prevalence rates of iron deficiency, normal iron, and high iron were 13.8%, 76.4%, and 9.8%, respectively. Compared with normal levels, iron deficiency was associated with slower performance in tasks that measured abstraction and mental flexibility (β = 107.5, p = .03) and spatial processing ability (β = 917.2, p = .04). High serum iron was associated with less accuracy in the spatial processing ability task (β = -2.2, p = .03) and a longer reaction time in the task assessing abstraction and mental flexibility (β = 702.8, p = .046) compared to normal levels. CONCLUSION Both iron deficiency and high iron levels contribute to reduced neurocognitive performance in a domain-specific manner in early adolescents. The dual burden of iron under- and overnutrition should be incorporated into future interventions for improving brain development and cognitive function in adolescents, especially in a Chinese context.
Collapse
Affiliation(s)
- Xiaopeng Ji
- School of Nursing University of Pennsylvania, Philadelphia, PA, USA
| | - Naixue Cui
- School of Nursing University of Pennsylvania, Philadelphia, PA, USA
| | - Jianghong Liu
- School of Nursing University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem 2017; 292:6135-6147. [PMID: 28213520 DOI: 10.1074/jbc.m116.753350] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease.
Collapse
Affiliation(s)
- Anna N Bukiya
- the Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Serdar Durdagi
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4 Canada, and.,the Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul 34353, Turkey
| | - Sergei Noskov
- the Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4 Canada, and
| | | |
Collapse
|
15
|
El Gaamouch F, Jing P, Xia J, Cai D. Alzheimer's Disease Risk Genes and Lipid Regulators. J Alzheimers Dis 2017; 53:15-29. [PMID: 27128373 DOI: 10.3233/jad-160169] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain lipid homeostasis plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Aggregation of amyloid-β peptide is one of the major events in AD. The complex interplay between lipids and amyloid-β accumulation has been intensively investigated. The proportions of lipid components including phospholipids, sphingolipids, and cholesterol are roughly similar across different brain regions under physiological conditions. However, disruption of brain lipid homeostasis has been described in AD and implicated in disease pathogenesis. Moreover, studies suggest that analysis of lipid composition in plasma and cerebrospinal fluid could improve our understanding of the disease development and progression, which could potentially serve as disease biomarkers and prognostic indicators for AD therapies. Here, we summarize the functional roles of AD risk genes and lipid regulators that modulate brain lipid homeostasis including different lipid species, lipid complexes, and lipid transporters, particularly their effects on amyloid processing, clearance, and aggregation, as well as neuro-toxicities that contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Farida El Gaamouch
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Jing
- The Central Hospital of Wuhan, China
| | | | - Dongming Cai
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA.,Department of Neurology, Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Central Hospital of Wuhan, China
| |
Collapse
|
16
|
Bou Khalil R, Khoury E, Koussa S. Linking multiple pathogenic pathways in Alzheimer's disease. World J Psychiatry 2016; 6:208-214. [PMID: 27354962 PMCID: PMC4919259 DOI: 10.5498/wjp.v6.i2.208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder presenting as progressive cognitive decline with dementia that does not, to this day, benefit from any disease-modifying drug. Multiple etiologic pathways have been explored and demonstrate promising solutions. For example, iron ion chelators, such as deferoxamine, are a potential therapeutic solution around which future studies are being directed. Another promising domain is related to thrombin inhibitors. In this minireview, a common pathophysiological pathway is suggested for the pathogenesis of AD to prove that all these mechanisms converge onto the same cascade of neuroinflammatory events. This common pathway is initiated by the presence of vascular risk factors that induce brain tissue hypoxia, which leads to endothelial cell activation. However, the ensuing hypoxia stimulates the production and release of reactive oxygen species and pro-inflammatory proteins. Furthermore, the endothelial activation may become excessive and dysfunctional in predisposed individuals, leading to thrombin activation and iron ion decompartmentalization. The oxidative stress that results from these modifications in the neurovascular unit will eventually lead to neuronal and glial cell death, ultimately leading to the development of AD. Hence, future research in this field should focus on conducting trials with combinations of potentially efficient treatments, such as the combination of intranasal deferoxamine and direct thrombin inhibitors.
Collapse
|
17
|
Tan G, Liu L, He Z, Sun J, Xing W, Sun X. Role of hepcidin and its downstream proteins in early brain injury after experimental subarachnoid hemorrhage in rats. Mol Cell Biochem 2016; 418:31-8. [DOI: 10.1007/s11010-016-2730-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/25/2016] [Indexed: 01/16/2023]
|
18
|
Shaeib F, Khan SN, Thakur M, Kohan-Ghadr HR, Drewlo S, Saed GM, Pennathur S, Abu-Soud HM. The Impact of Myeloperoxidase and Activated Macrophages on Metaphase II Mouse Oocyte Quality. PLoS One 2016; 11:e0151160. [PMID: 26982351 PMCID: PMC4794194 DOI: 10.1371/journal.pone.0151160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/24/2016] [Indexed: 01/26/2023] Open
Abstract
Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils, monocytes, and macrophages, is produced in high levels during inflammation, and associated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl), a damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride (Cl-). Here we investigate the effect of activated immune cells and MPO on oocyte quality. Mouse metaphase II oocytes were divided into the following groups: 1) Incubation with a catalytic amount of MPO (40 nM) for different incubation periods in the presence of 100 mM Cl- with and without H2O2 and with and without melatonin (100 μM), at 37°C (n = 648/648 total number of oocytes in each group for oocytes with and without cumulus cells); 2) Co-cultured with activated mouse peritoneal macrophage and neutrophils cells (1.0 x 106 cells/ml) in the absence and presence of melatonin (200 μM), an MPO inhibitor/ROS scavenger, for different incubation periods in HTF media, at 37°C (n = 200/200); 3) Untreated oocytes incubated for 4 hrs as controls (n = 73/64). Oocytes were then fixed, stained and scored based on the microtubule morphology and chromosomal alignment. All treatments were found to negatively affect oocyte quality in a time dependent fashion as compared to controls. In all cases the presence of cumulus cells offered no protection; however significant protection was offered by melatonin. Similar results were obtained with oocytes treated with neutrophils. This work provides a direct link between MPO and decreased oocyte quality. Therefore, strategies to decrease MPO mediated inflammation may influence reproductive outcomes.
Collapse
Affiliation(s)
- Faten Shaeib
- Department of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Sana N. Khan
- Department of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Mili Thakur
- Department of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States of America
- * E-mail:
| |
Collapse
|
19
|
Sur TK, Chatterjee S, Hazra AK, Pradhan R, Chowdhury S. Acute and sub-chronic oral toxicity study of black tea in rodents. Indian J Pharmacol 2016; 47:167-72. [PMID: 25878375 PMCID: PMC4386124 DOI: 10.4103/0253-7613.153423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 11/04/2022] Open
Abstract
Objectives: Systematic oral toxicity study for black tea (Camellia sinensis), the most commonly consumed variety of tea, is lacking. The present study was undertaken to assess the iron load on black tea (Camellia sinensis) and its safety aspects in animals. Materials and Methods: The analysis of iron was done in six tea samples as per American Public Health Association method using flame atomic absorption spectrophotometer. Maximum physical iron-loaded tea sample was identified on black tea sample 2 (BTS-2), and this was further studied for acute and 90-day sub-chronic toxicity following Organisation for Economic Co-operation and Development guidelines. Results: Black tea sample 2 did not show any signs of toxicity or mortality at up to 2 g/kg per oral dose in Swiss albino mice. 90-day toxicity studies in Wistar rats did not reveal any evidence of toxicity at up to 250 mg/kg/day (2.5% infusion of BTS-2) oral dose as exhibited by regular observations, body weight, food consumption, hematology, serum chemistry, organ weights, and histopathology. Further, serum iron, total iron binding capacity, unsaturated iron binding capacity, and ferritin were not altered after 90 days of treatment. Masson trichrome staining and Perls’ staining did not reveal any abnormalities in hepatic tissue following 90-day treatment of high iron-loaded BTS-2. Conclusions: This safety study provides evidence that BTSs, in spite of relatively high iron content, show no significant iron-related toxicity on acute or sub-chronic oral administration in animals.
Collapse
Affiliation(s)
- Tapas Kumar Sur
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Suparna Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Alok Kumar Hazra
- Scientist, Chemistry Division, Quality Testing Laboratory (AYUSH), Ramakrishna Mission Ashrama, Vivekananda University, Narendrapur, West Bengal, India
| | - Richeek Pradhan
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Supriyo Chowdhury
- Department of Pharmacology, College of Medicine and Sagore Dutta Hospital, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016; 4:e1129476. [PMID: 27141418 PMCID: PMC4836458 DOI: 10.1080/21688370.2015.1129476] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
Blood brain barrier (BBB) is a group of astrocytes, neurons and endothelial cells, which makes restricted passage of various biological or chemical entities to the brain tissue. It gives protection to brain at one hand, but at the other hand it has very selective permeability for bio-actives and other foreign materials and is one of the major challenges for the drug delivery. Nanocarriers are promising to cross BBB utilizing alternative route of administration such as intranasal and intra-carotid drug delivery which bypasses BBB. In future more optimized drug delivery system can be achieved by compiling the best routes with the best carriers. Single photon emission tomography (SPECT) and different brain-on-a-chip in vitro models are being very reliable to study live in vivo tracking of BBB and its pathophysiology, respectively. In the current review we have tried to exploit mechanistically all these to understand and manage the various BBB disruptions in diseased condition along with crossing the hurdles occurring in drug or gene delivery across BBB.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Ashok Kumar Sharma
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Umesh Gupta
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| |
Collapse
|
21
|
Salminen LE, Schofield PR, Pierce KD, Luo X, Zhao Y, Laidlaw DH, Cabeen RP, Conturo TE, Lane EM, Heaps JM, Bolzenius JD, Baker LM, Cooley SA, Scott S, Cagle LM, Paul RH. Genetic markers of cholesterol transport and gray matter diffusion: a preliminary study of the CETP I405V polymorphism. J Neural Transm (Vienna) 2015; 122:1581-92. [PMID: 26253899 PMCID: PMC4618053 DOI: 10.1007/s00702-015-1434-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
Variations of the cholesteryl ester transfer protein polymorphism (CETP I405V/rs5882) have been associated with an increased risk for neurodegeneration, particularly when examined in conjunction with the epsilon 4 isoform of apolipoprotein E (ApoE4). Despite these identified relationships, the impact of I405V on gray matter microstructure remains unknown. The present study examined the impact of the CETP I405V polymorphism on gray matter integrity among 52 healthy adults between ages 51 and 85. Gray matter was measured bilaterally using diffusion tensor imaging (DTI) metrics of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Participants were grouped according to a dominant statistical model (II genotype vs. IV/VV genotypes) and secondary analyses were completed to examine the interactive effects of CETP and ApoE4 on DTI metrics. Compared to individuals with the IV/VV genotypes, II homozygotes demonstrated significantly higher MD in bilateral temporal, parietal, and occipital gray matter. Secondary analyses revealed higher FA and AD in the left temporal lobe of IV/VV genotypes with an ApoE4 allele. Our results provide preliminary evidence that CETP II homozygosity is a predisposing risk factor for gray matter abnormalities in posterior brain regions in healthy older adults, independent of an ApoE4 allele.
Collapse
Affiliation(s)
- Lauren E Salminen
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., Stadler Hall 442A, St. Louis, MO, 63121, USA.
| | - Peter R Schofield
- Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW, 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kerrie D Pierce
- Neuroscience Research Australia, Barker Street Randwick, Sydney, NSW, 2031, Australia
| | - Xi Luo
- Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - Yi Zhao
- Department of Biostatistics and Center for Statistical Sciences, Brown University, Providence, RI, 02912, USA
| | - David H Laidlaw
- Computer Science Department, Brown University, Providence, RI, 02912, USA
| | - Ryan P Cabeen
- Computer Science Department, Brown University, Providence, RI, 02912, USA
| | - Thomas E Conturo
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway, St. Louis, MO, 63110, USA
| | - Elizabeth M Lane
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - Jodi M Heaps
- Missouri Institute of Mental Health, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| | - Jacob D Bolzenius
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., Stadler Hall 442A, St. Louis, MO, 63121, USA
| | - Laurie M Baker
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., Stadler Hall 442A, St. Louis, MO, 63121, USA
| | - Sarah A Cooley
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., Stadler Hall 442A, St. Louis, MO, 63121, USA
| | - Staci Scott
- Missouri Institute of Mental Health, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| | - Lee M Cagle
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., Stadler Hall 442A, St. Louis, MO, 63121, USA
| | - Robert H Paul
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., Stadler Hall 442A, St. Louis, MO, 63121, USA
- Missouri Institute of Mental Health, 4633 World Parkway Circle, Berkeley, MO, 63134-3115, USA
| |
Collapse
|
22
|
Lu N, Li J, Ren X, Tian R, Peng YY. Nitrite attenuated hypochlorous acid-mediated heme degradation in hemoglobin. Chem Biol Interact 2015; 238:25-32. [DOI: 10.1016/j.cbi.2015.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/30/2015] [Accepted: 05/29/2015] [Indexed: 01/08/2023]
|
23
|
Shaeib F, Khan SN, Ali I, Najafi T, Maitra D, Abdulhamid I, Saed GM, Pennathur S, Abu-Soud HM. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid. PLoS One 2015; 10:e0120737. [PMID: 25835505 PMCID: PMC4383586 DOI: 10.1371/journal.pone.0120737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022] Open
Abstract
Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2)-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.
Collapse
Affiliation(s)
- Faten Shaeib
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sana N. Khan
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Iyad Ali
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Genetics, Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Tohid Najafi
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Ghassan M. Saed
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
24
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
25
|
Abu-Soud HM, Maitra D, Shaeib F, Khan SN, Byun J, Abdulhamid I, Yang Z, Saed GM, Diamond MP, Andreana PR, Pennathur S. Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid. J Inorg Biochem 2014; 140:245-54. [PMID: 25193127 PMCID: PMC4449957 DOI: 10.1016/j.jinorgbio.2014.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 12/14/2022]
Abstract
Myeloperoxidase (MPO), lactoperoxidase (LPO) and eosinophil peroxidase (EPO) play a central role in oxidative damage in inflammatory disorders by utilizing hydrogen peroxide and halides/pseudo halides to generate the corresponding hypohalous acid. The catalytic sites of these enzymes contain a covalently modified heme group, which is tethered to the polypeptide chain at two ester linkages via the methyl group (MPO, EPO and LPO) and one sulfonium bond via the vinyl group (MPO only). Covalent cross-linking of the catalytic site heme to the polypeptide chain in peroxidases is thought to play a protective role, since it renders the heme moiety less susceptible to the oxidants generated by these enzymes. Mass-spectrometric analysis revealed the following possible pathways by which hypochlorous acid (HOCl) disrupts the heme-protein cross-linking: (1) the methyl-ester bond is cleaved to form an alcohol; (2) the alcohol group undergoes an oxygen elimination reaction via the formation of an aldehyde intermediate or undergoes a demethylation reaction to lose the terminal CH2 group; and (3) the oxidative cleavage of the vinyl-sulfonium linkage. Once the heme moiety is released it undergoes cleavage at the carbon-methyne bridge either along the δ-β or a α-γ axis to form different pyrrole derivatives. These results indicate that covalent cross-linking is not enough to protect the enzymes from HOCl mediated heme destruction and free iron release. Thus, the interactions of mammalian peroxidases with HOCl modulates their activity and sets a stage for initiation of the Fenton reaction, further perpetuating oxidative damage at sites of inflammation.
Collapse
Affiliation(s)
- Husam M Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Sana N Khan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Peter R Andreana
- The University of Toledo, Department of Chemistry and School of Green Chemistry and Engineering, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Ali-Rahmani F, Schengrund CL, Connor JR. HFE gene variants, iron, and lipids: a novel connection in Alzheimer's disease. Front Pharmacol 2014; 5:165. [PMID: 25071582 PMCID: PMC4086322 DOI: 10.3389/fphar.2014.00165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiological, genetic, and molecular evidence of disruption of cholesterol homeostasis in several neurodegenerative diseases, in particular Alzheimer's disease (AD). Despite the efforts that have been made to identify factors that can trigger the pathological events associated with neurodegenerative diseases they remain mostly unknown. Because molecular phenotypes such as oxidative stress, synaptic failure, neuronal loss, and cognitive decline, characteristics associated with AD, have been shown to result from disruption of a number of pathways, one can easily argue that the phenotype seen may not arise from a linear sequence of events. Therefore, a multi-targeted approach is needed to understand a complex disorder like AD. This can be achieved only when knowledge about interactions between the different pathways and the potential influence of environmental factors on them becomes available. Toward this end, this review discusses what is known about the roles and interactions of iron and cholesterol in neurodegenerative diseases. It highlights the effects of gene variants of HFE (H63D- and C282Y-HFE) on iron and cholesterol metabolism and how they may contribute to understanding the etiology of complex neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatima Ali-Rahmani
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Cara-Lynne Schengrund
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - James R. Connor
- Departments of Neurosurgery, Neural and Behavioral Sciences and Pediatrics, Center for Aging and Neurodegenerative Diseases, Penn State Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
27
|
Lavrentiadou SN, Tsantarliotou MP, Zervos IA, Nikolaidis E, Georgiadis MP, Taitzoglou IA. CCl4 induces tissue-type plasminogen activator in rat brain; protective effects of oregano, rosemary or vitamin E. Food Chem Toxicol 2013; 61:196-202. [DOI: 10.1016/j.fct.2013.06.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/13/2013] [Accepted: 06/24/2013] [Indexed: 01/29/2023]
|
28
|
Maitra D, Shaeib F, Abdulhamid I, Abdulridha RM, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med 2013; 63:90-8. [PMID: 23624305 PMCID: PMC3863623 DOI: 10.1016/j.freeradbiomed.2013.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase (MPO) is a heme-containing enzyme that generates hypochlorous acid (HOCl) from chloride (Cl(-)) and hydrogen peroxide (H₂O₂). It is implicated in the pathology of several chronic inflammatory conditions such as cardiovascular and pulmonary diseases and cancer. Recently we have shown that HOCl can destroy the heme prosthetic group of hemoproteins. Here, we investigated whether the HOCl formed during steady-state catalysis is able to destroy the MPO heme moiety and thereby function as a major source of free iron. UV-visible spectra and H₂O₂-specific electrode measurements recorded during steady-state HOCl synthesis by MPO showed that the degree of MPO heme destruction increased after multiple additions of H₂O₂ (10 µM), precluding the enzyme from functioning at maximum activity (80-90% inhibition). MPO heme destruction occurred only in the presence of Cl(-). Stopped-flow measurements revealed that the HOCl-mediated MPO heme destruction was complex and occurred through transient ferric species whose formation and decay kinetics indicated it participates in heme destruction along with subsequent free iron release. MPO heme depletion was confirmed by the buildup of free iron utilizing the ferrozine assay. Hypochlorous acid, once generated, first equilibrates in the solution as a whole before binding to the heme iron and initiating heme destruction. Eliminating HOCl from the MPO milieu by scavenging HOCl, destabilizing the MPO-Compound I-Cl complex that could be formed during catalysis, and/or inhibiting MPO catalytic activity partially or completely protects MPO from HOCl insults. Collectively, this study elucidates the bidirectional relationship between MPO and HOCl, which highlights the potential role of MPO as a source of free iron.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - Rasha M. Abdulridha
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Fax: 313 577 8554. (H. M. Abu-Soud)
| |
Collapse
|
29
|
Shaeib F, Banerjee J, Maitra D, Diamond MP, Abu-Soud HM. Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radic Biol Med 2013; 58:154-9. [PMID: 23261938 PMCID: PMC4482232 DOI: 10.1016/j.freeradbiomed.2012.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022]
Abstract
Here we show that hydroxyl radical ((•)OH) generated through the Fenton reaction alters metaphase-II mouse oocyte microtubules (MT) and chromosomal alignment (CH). Metaphase-II mouse oocytes, obtained commercially, were grouped as follows: control, hydrogen peroxide (H2O2), Fe(II), and combined (Fe(II) +H2O2) treatments. After 7-10 min of incubation at 37 °C, MT and CH were evaluated on fixed and stained oocytes and scored by two blinded observers. Pearson χ(2) test and Fisher exact test were used to compare outcomes between controls and treated groups and also among the treated groups. Our results showed that poor scores for MT and CH increased significantly in oocytes treated with a combination of H2O2 and Fe(II) (p<0.001); oocytes treated with H2O2 alone or Fe(II) alone showed no or few changes compared to control. Comparison of oocyte groups that received increasing concentrations of H2O2 and a fixed amount of Fe(II) showed that 70-80% demonstrated poor scores in both MT and CH when pretreated with 5 μM H2O2, and this increased up to 90-100% when treated with 10-20 μM H2O2. Hydroxyl radical generated by H2O2-driven Fenton reaction deteriorates the metaphase-II mouse oocyte spindle and CH alignment, which is thought to be a potential cause of poor oocyte quality. Thus, free iron and/or ROS scavengers could attenuate the (•)OH-mediated spindle and chromosomal damage, thereby serving as a possible approach for further examination as a therapeutic option in inflammatory states.
Collapse
Affiliation(s)
| | | | | | | | - Husam M. Abu-Soud
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
- Address correspondence to: Husam M Abu-Soud, Ph.D Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock Detroit, MI 48201, Tel. 313 577-6178, Fax. 313 577-8554,
| |
Collapse
|
30
|
Deo AK, Theil FP, Nicolas JM. Confounding Parameters in Preclinical Assessment of Blood–Brain Barrier Permeation: An Overview With Emphasis on Species Differences and Effect of Disease States. Mol Pharm 2013; 10:1581-95. [DOI: 10.1021/mp300570z] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anand K. Deo
- UCB Pharma S.A., Chemin du Foriest, B-1420 Braine-l’Alleud,
Belgium
| | | | | |
Collapse
|
31
|
Maitra D, Abdulhamid I, Diamond MP, Saed GM, Abu-Soud HM. Melatonin attenuates hypochlorous acid-mediated heme destruction, free iron release, and protein aggregation in hemoglobin. J Pineal Res 2012; 53:198-205. [PMID: 22462755 DOI: 10.1111/j.1600-079x.2012.00988.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In inflammatory diseases, where hypochlorous acid (HOCl) is elevated, iron homeostasis is disturbed, resulting in accumulation of free iron. Free iron is toxic by virtue of its ability to generate free radicals through the Fenton reaction. HOCl is generated by myeloperoxidase, (MPO) using chloride and hydrogen peroxide as substrates. Recent studies demonstrate that HOCl binds to the heme moiety of hemoglobin (Hb), which generates a transient ferric species whose formation and decay kinetics indicate it participates in protein aggregation, heme destruction, and free iron release. Here, we show that melatonin prevents HOCl-mediated Hb heme destruction and protein aggregation, using a combination of UV-vis spectrophotometry, ferrozine colorimetric assay, and in-gel heme staining. We also show that melatonin treatment prevents HOCl-mediated loss of red blood cell (RBC) viability, indicating biologic relevance of this finding. The mechanism by which melatonin prevents HOCl-mediated Hb heme destruction is by direct scavenging of HOCl and/or through the destabilization of the higher Hb oxidative states intermediates, ferryl porphyrin radical cation Hb-Fe(IV)=O(+π•) and Hb-Fe(IV)=O, which are formed through the reaction of HOCl with Hb. Our work establishes a direct mechanistic link between melatonin and its protective effect in chronic inflammatory diseases. Collectively, in addition to acting as an antioxidant and as a MPO inhibitor, melatonin can also exert its protective effect by inhibiting HOCl-mediated heme destruction of hemoproteins and subsequent free iron release.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Ramalingam M, Kim SJ. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm (Vienna) 2012; 119:891-910. [PMID: 22212484 DOI: 10.1007/s00702-011-0758-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
The continuous production and efflux of reactive oxygen/nitrogen species from endogenous and exogenous sources can damage biological molecules and initiate a cascade of events. Mitochondria are pivotal in controlling cell survival and death. Cumulative oxidative stress, disrupted mitochondrial respiration, and mitochondrial damage are related with various neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and others. Biochemical cascades of apoptosis are mediated in signaling molecules, including protein kinases and transcription factors. The expressions in the pro-apoptotic signal transduction networks may indeed promote cell death and degeneration in brain cells. The regulation of that protein phosphorylation by kinases and phosphatases is emerging as a prerequisite mechanism in the control of the apoptotic cell death program. In this review, we attempt to put forth the evidence for possible mechanistic explanations for involvement of free radicals in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, #1 Hoegi-dong, Dongdaemun-gu, Seoul, Republic of Korea
| | | |
Collapse
|
34
|
Aroun A, Zhong JL, Tyrrell RM, Pourzand C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem Photobiol Sci 2012; 11:118-34. [DOI: 10.1039/c1pp05204g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Souza CEA, Maitra D, Saed GM, Diamond MP, Moura AA, Pennathur S, Abu-Soud HM. Hypochlorous acid-induced heme degradation from lactoperoxidase as a novel mechanism of free iron release and tissue injury in inflammatory diseases. PLoS One 2011; 6:e27641. [PMID: 22132121 PMCID: PMC3222650 DOI: 10.1371/journal.pone.0027641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/21/2011] [Indexed: 12/02/2022] Open
Abstract
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H2O2) in the airways through its ability to oxidize thiocyanate (SCN−) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 µM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O2, Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN−. On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.
Collapse
Affiliation(s)
- Carlos Eduardo A. Souza
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kim JE, Shin JY, Cho MH. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects. Arch Toxicol 2011; 86:685-700. [PMID: 22076106 DOI: 10.1007/s00204-011-0773-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/24/2011] [Indexed: 01/18/2023]
Abstract
Magnetic nanoparticles (MNPs) represent a subclass within the overall category of nanomaterials and are widely used in many applications, particularly in the biomedical sciences such as targeted delivery of drugs or genes, in magnetic resonance imaging, and in hyperthermia (treating tumors with heat). Although the potential benefits of MNPs are considerable, there is a distinct need to identify any potential toxicity associated with these MNPs. The potential of MNPs in drug delivery stems from the intrinsic properties of the magnetic core combined with their drug loading capability and the biomedical properties of MNPs generated by different surface coatings. These surface modifications alter the particokinetics and toxicity of MNPs by changing protein-MNP or cell-MNP interactions. This review contains current advances in MNPs for drug delivery and their possible organ toxicities associated with disturbance in body iron homeostasis. The importance of protein-MNP interactions and various safety considerations relating to MNP exposure are also addressed.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
37
|
Maitra D, Byun J, Andreana PR, Abdulhamid I, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM. Mechanism of hypochlorous acid-mediated heme destruction and free iron release. Free Radic Biol Med 2011; 51:364-73. [PMID: 21466849 PMCID: PMC3378337 DOI: 10.1016/j.freeradbiomed.2011.03.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 11/23/2022]
Abstract
Here, we show that hypochlorous acid (HOCl), a potent neutrophil-generated oxidant, can mediate destruction of free heme (Ht) and the heme precursor, protoporphyrin IX (PPIX). Ht displays a broad Soret absorbance peak centered at 365 and 394 nm, indicative of the presence of monomer and μ-oxo-dimer. Oxidation of Ht by HOCl was accompanied by a marked decrease in the Soret absorption peak and release of free iron. Kinetic measurements showed that the Ht-HOCl reaction was triphasic. The first two phases were HOCl concentration dependent and attributable to HOCl binding to the monomeric and dimeric forms. The third phase was HOCl concentration independent and attributed to Ht destruction with the release of free iron. HPLC and LC-ESI-MS analyses of the Ht-HOCl reaction revealed the formation of a number of degradation products, resulting from the cleavage or modification of one or more carbon-methene bridges of the porphyrin ring. Similar studies with PPIX showed that HOCl also mediated tetrapyrrole ring destruction. Collectively, this work demonstrates the ability of HOCl to modulate destruction of heme, through a process that occurs independent of the iron molecule that resides in the porphyrin center. This phenomenon may play a role in HOCl-mediated oxidative injury in pathological conditions.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter R. Andreana
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
38
|
Maitra D, Byun J, Andreana PR, Abdulhamid I, Diamond MP, Saed GM, Pennathur S, Abu-Soud HM. Reaction of hemoglobin with HOCl: mechanism of heme destruction and free iron release. Free Radic Biol Med 2011; 51:374-86. [PMID: 21549834 PMCID: PMC3863628 DOI: 10.1016/j.freeradbiomed.2011.04.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/30/2011] [Accepted: 04/06/2011] [Indexed: 01/06/2023]
Abstract
Hypochlorous acid (HOCl) is generated by myeloperoxidase using chloride and hydrogen peroxide as substrates. HOCl and its conjugate base (OCl(-)) bind to the heme moiety of hemoglobin (Hb) and generate a transient ferric species whose formation and decay kinetics indicate it can participate in protein aggregation and heme destruction along with subsequent free iron release. The oxidation of the Hb heme moiety by OCl(-) was accompanied by marked heme destruction as judged by the decrease in and subsequent flattening of the Soret absorbance peak at 405 nm. HOCl-mediated Hb heme depletion was confirmed by HPLC analysis and in-gel heme staining. Exposure of Hb to increasing concentrations of HOCl produced a number of porphyrin degradation products resulting from oxidative cleavage of one or more of the carbon-methene bridges of the tetrapyrrole ring, as identified by their characteristic HPLC fluorescence and LC-MS. A nonreducing denaturing SDS-PAGE showed several degrees of protein aggregation. Similarly, porphyrin degradation products were identified after exposure of red blood cells to increasing concentrations of HOCl, indicating biological relevance of this finding. This work provides a direct link between Hb heme destruction and subsequent free iron accumulation, as occurs under inflammatory conditions where HOCl is formed in substantial amounts.
Collapse
Affiliation(s)
- Dhiman Maitra
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jaeman Byun
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter R. Andreana
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael P. Diamond
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding Author: Husam M. Abu-Soud, Ph.D., Wayne State University School of Medicine, Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, 275 E. Hancock, Detroit, MI 48201, Tel: 313 577-6178; Fax: 313 577-8554;
| |
Collapse
|
39
|
Expression and localization of the iron-siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem Int 2011; 59:591-9. [PMID: 21683107 DOI: 10.1016/j.neuint.2011.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/18/2011] [Accepted: 04/04/2011] [Indexed: 12/21/2022]
Abstract
Lipocalin 2 (LCN2) is produced by mammalian hosts to bind bacterial siderophore and sequester free iron as part of an innate immune response, and could also play a role in tissue iron homeostasis, but thus far, little is known about its expression in the CNS. The present study was carried out to study the expression of the lipocalin in the normal rat brain and after neuronal injury induced by kainate (KA). Low levels of LCN2 mRNA and protein expression were detected in most regions of the normal brain except the olfactory bulb, brainstem and cerebellum. KA lesions resulted in damage to the hippocampus, leading to an early increase at three days and a sustained elevation in LCN2 mRNA level of 16-fold, and protein expression at 80-fold in the lesioned tissue compared to controls at 2 weeks post-KA injection. The sustained elevation in mRNA expression was not detected among other lipocalins surveyed using real-time RT-PCR - apoD, PGDS, Rbp4 and LCN5. Single and double immunostaining confirmed that LCN2 is present in astrocytes in the olfactory bulb, brainstem and cerebellum of the normal brain, and reactive astrocytes in the KA-lesioned hippocampus. In conclusion, the present study showed LCN2 to be present in select brain regions, and is upregulated in astrocytes after neuronal injury induced by kainate. We postulate that, as in the periphery, LCN2 may have a role in iron transport or trafficking in the CNS.
Collapse
|
40
|
Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkötter C, Scharffetter-Kochanek K. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 2011; 121:985-97. [PMID: 21317534 DOI: 10.1172/jci44490] [Citation(s) in RCA: 852] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 12/08/2010] [Indexed: 12/14/2022] Open
Abstract
Uncontrolled macrophage activation is now considered to be a critical event in the pathogenesis of chronic inflammatory diseases such as atherosclerosis, multiple sclerosis, and chronic venous leg ulcers. However, it is still unclear which environmental cues induce persistent activation of macrophages in vivo and how macrophage-derived effector molecules maintain chronic inflammation and affect resident fibroblasts essential for tissue homeostasis and repair. We used a complementary approach studying human subjects with chronic venous leg ulcers, a model disease for macrophage-driven chronic inflammation, while establishing a mouse model closely reflecting its pathogenesis. Here, we have shown that iron overloading of macrophages--as was found to occur in human chronic venous leg ulcers and the mouse model--induced a macrophage population in situ with an unrestrained proinflammatory M1 activation state. Via enhanced TNF-α and hydroxyl radical release, this macrophage population perpetuated inflammation and induced a p16(INK4a)-dependent senescence program in resident fibroblasts, eventually leading to impaired wound healing. This study provides insight into the role of what we believe to be a previously undescribed iron-induced macrophage population in vivo. Targeting this population may hold promise for the development of novel therapies for chronic inflammatory diseases such as chronic venous leg ulcers.
Collapse
Affiliation(s)
- Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gaeta A, Molina-Holgado F, Kong XL, Salvage S, Fakih S, Francis PT, Williams RJ, Hider RC. Synthesis, physical–chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4(1H)-ones: Iron chelators with the potential for treating Alzheimer’s disease. Bioorg Med Chem 2011; 19:1285-97. [DOI: 10.1016/j.bmc.2010.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/26/2010] [Accepted: 12/03/2010] [Indexed: 12/22/2022]
|
42
|
Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010; 345:91-104. [PMID: 20730621 DOI: 10.1007/s11010-010-0563-x] [Citation(s) in RCA: 725] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/29/2010] [Indexed: 12/22/2022]
|
43
|
Affiliation(s)
- George J. Brewer
- Departments of Human Genetics and Internal Medicine, University of Michigan Medical School,Ann Arbor, Michigan
| |
Collapse
|
44
|
Galijasevic S, Maitra D, Lu T, Sliskovic I, Abdulhamid I, Abu-Soud HM. Myeloperoxidase interaction with peroxynitrite: chloride deficiency and heme depletion. Free Radic Biol Med 2009; 47:431-9. [PMID: 19464362 PMCID: PMC3416043 DOI: 10.1016/j.freeradbiomed.2009.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/28/2009] [Accepted: 05/13/2009] [Indexed: 12/16/2022]
Abstract
Myeloperoxidase (MPO) is a hemoprotein involved in the leukocyte-mediated defense mechanism and uses hydrogen peroxide (H2O2) and chloride (Cl(-)) to produce hypochlorous acid. In human saliva and in hypochloremic alkalosis syndrome occurring in breast-fed infants, the MPO-H2O2 system functions in a lower Cl(-) concentration (10-70 mM) compared to plasma levels (100 mM) as part of the antibacterial defense system. The impact of low Cl(-) concentration and exposure to high peroxynitrite (ONOO(-)) synthesized from cigarette smoke or oxidative stress on MPO function is still unexplored. Rapid mixing of ONOO(-) and MPO caused immediate formation of a transient intermediate MPO Compound II, which then decayed to MPO-Fe(III). Double mixing of MPO with ONOO(-) followed by H2O2 caused immediate formation of Compound II, followed by MPO heme depletion, a process that occurred independent of ONOO(-) concentration. Peroxynitrite/H2O2-mediated MPO heme depletion was confirmed by HPLC analysis, and in-gel heme staining showing 60-70% less heme content compared to the control. A nonreducing denaturing SDS-PAGE showed no fragmentation or degradation of protein. Myeloperoxidase heme loss was completely prevented by preincubation of MPO with saturating amounts of Cl(-). Chloride binding to the active site of MPO constrains ONOO(-) binding by filling the space directly above the heme moiety or by causing a protein conformational change that constricts the distal heme pocket, thus preventing ONOO(-) from binding to MPO heme iron. Peroxynitrite interaction with MPO may serve as a novel mechanism for modulating MPO catalytic activity, influencing the regulation of local inflammatory and infectious events in vivo.
Collapse
Affiliation(s)
- Semira Galijasevic
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dhiman Maitra
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tun Lu
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Inga Sliskovic
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ibrahim Abdulhamid
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Husam M. Abu-Soud
- Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
45
|
Ong WY, Jenner AM, Pan N, Ong CN, Halliwell B. Elevated oxidative stress, iron accumulation around microvessels and increased 4-hydroxynonenal immunostaining in zone 1 of the liver acinus in hypercholesterolemic rabbits. Free Radic Res 2009; 43:241-9. [DOI: 10.1080/10715760802691455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
46
|
Dwyer BE, Zacharski LR, Balestra DJ, Lerner AJ, Perry G, Zhu X, Smith MA. Getting the iron out: phlebotomy for Alzheimer's disease? Med Hypotheses 2009; 72:504-9. [PMID: 19195795 PMCID: PMC2732125 DOI: 10.1016/j.mehy.2008.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 10/24/2008] [Accepted: 12/28/2008] [Indexed: 11/22/2022]
Abstract
This communication explores the temporal link between the age-associated increase in body iron stores and the age-related incidence of Alzheimer's disease (AD), the most prevalent cause of senile dementia. Body iron stores that increase with age could be pivotal to AD pathogenesis and progression. Increased stored iron is associated with common medical conditions such as diabetes and vascular disease that increase risk for development of AD. Increased stored iron could also promote oxidative stress/free radical damage in vulnerable neurons, a critical early change in AD. A ferrocentric model of AD described here forms the basis of a rational, easily testable experimental therapeutic approach for AD, which if successful, would be both widely applicable and inexpensive. Clinical studies have shown that calibrated phlebotomy is an effective way to reduce stored iron safely and predictably without causing anemia. We hypothesize that reducing stored iron by calibrated phlebotomy to avoid iron deficiency will improve cerebrovascular function, slow neurodegenerative change, and improve cognitive and behavioral functions in AD. The hypothesis is eminently testable as iron reduction therapy is useful for chronic diseases associated with iron excess such as nonalcoholic steatohepatitis (NASH), atherosclerosis, hereditary hemochromatosis and thalassemia. Testing this hypothesis could provide valuable insight into the causation of AD and suggest novel preventive and treatment strategies.
Collapse
Affiliation(s)
- Barney E. Dwyer
- Research Service, Department of Veterans Affairs Medical Center, White River Junction, VT, and The Department of Medicine, Dartmouth Medical School, Lebanon, NH, United States
| | - Leo R. Zacharski
- Research Service, Department of Veterans Affairs Medical Center, White River Junction, VT, and The Department of Medicine, Dartmouth Medical School, Lebanon, NH, United States
| | - Dominic J. Balestra
- Research Service, Department of Veterans Affairs Medical Center, White River Junction, VT, and The Department of Medicine, Dartmouth Medical School, Lebanon, NH, United States
| | - Alan J. Lerner
- Department of Neurology, University Hospitals Case Medical Center, Cleveland, OH, United States
| | - George Perry
- Wolstein Research Building, Room 5125, Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, United States
- College of Science, University of San Antonio, San Antonio, TX, United States
| | - Xiongwei Zhu
- Wolstein Research Building, Room 5125, Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, United States
| | - Mark A. Smith
- Wolstein Research Building, Room 5125, Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, United States
| |
Collapse
|
47
|
Abstract
In my career I have moved from chemistry to biochemistry to plant science to clinical chemistry and back again (in a partial way) to plants. This review presents a brief history of my research achievements (ascorbate-glutathione cycle, role of iron in oxidative damage and human disease, biomarkers of free radical damage, and studies on atherosclerosis and neurodegeneration) and how they relate to my research activities today. The field of free radicals/other reactive species/antioxidants underpins all of modern Biology. These agents helped to drive human evolution and the basic principles of the field are repeatedly found to be relevant in other research areas. It was an exciting field when I started some 40 years ago, and it still is today, but some major challenges must be faced.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Puntel GO, de Carvalho NR, Gubert P, Palma AS, Corte CLD, Ávila DS, Pereira ME, Carratu VS, Bresolin L, da Rocha JBT, Soares FAA. Butane-2,3-dionethiosemicarbazone: An oxime with antioxidant properties. Chem Biol Interact 2009; 177:153-60. [DOI: 10.1016/j.cbi.2008.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/23/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
49
|
Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2008; 10:1767-812. [PMID: 18576916 DOI: 10.1089/ars.2008.2043] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme oxygenase-1, an enzyme degrading heme to carbon monoxide, iron, and biliverdin, has been recognized as playing a crucial role in cellular defense against stressful conditions, not only related to heme release. HO-1 protects endothelial cells from apoptosis, is involved in blood-vessel relaxation regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in blood-vessel formation by means of angiogenesis and vasculogenesis. The latter functions link HO-1 not only to cardiovascular ischemia but also to many other conditions that, like development, wound healing, or cancer, are dependent on neovascularization. The aim of this comprehensive review is to address the mechanisms of HO-1 regulation and function in cardiovascular physiology and pathology and to demonstrate some possible applications of the vast knowledge generated so far. Recent data provide powerful evidence for the involvement of HO-1 in the therapeutic effect of drugs used in cardiovascular diseases. Novel studies open the possibilities of application of HO-1 for gene and cell therapy. Therefore, research in forthcoming years should help to elucidate both the real role of HO-1 in the effect of drugs and the clinical feasibility of HO-1-based cell and gene therapy, creating the effective therapeutic avenues for this refined antioxidant system.
Collapse
Affiliation(s)
- Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Molina-Holgado F, Gaeta A, Francis PT, Williams RJ, Hider RC. Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. J Neurochem 2008; 105:2466-76. [DOI: 10.1111/j.1471-4159.2008.05332.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|