1
|
Liang X, Fu Y, Cao WT, Wang Z, Zhang K, Jiang Z, Jia X, Liu CY, Lin HR, Zhong H, Miao Z, Gou W, Shuai M, Huang Y, Chen S, Zhang B, Chen YM, Zheng JS. Gut microbiome, cognitive function and brain structure: a multi-omics integration analysis. Transl Neurodegener 2022; 11:49. [PMID: 36376937 PMCID: PMC9661756 DOI: 10.1186/s40035-022-00323-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Microbiome-gut-brain axis may be involved in the progression of age-related cognitive impairment and relevant brain structure changes, but evidence from large human cohorts is lacking. This study was aimed to investigate the associations of gut microbiome with cognitive impairment and brain structure based on multi-omics from three independent populations. METHODS We included 1430 participants from the Guangzhou Nutrition and Health Study (GNHS) with both gut microbiome and cognitive assessment data available as a discovery cohort, of whom 272 individuals provided fecal samples twice before cognitive assessment. We selected 208 individuals with baseline microbiome data for brain magnetic resonance imaging during the follow-up visit. Fecal 16S rRNA and shotgun metagenomic sequencing, targeted serum metabolomics, and cytokine measurements were performed in the GNHS. The validation analyses were conducted in an Alzheimer's disease case-control study (replication study 1, n = 90) and another community-based cohort (replication study 2, n = 1300) with cross-sectional dataset. RESULTS We found protective associations of specific gut microbial genera (Odoribacter, Butyricimonas, and Bacteroides) with cognitive impairment in both the discovery cohort and the replication study 1. Result of Bacteroides was further validated in the replication study 2. Odoribacter was positively associated with hippocampal volume (β, 0.16; 95% CI 0.06-0.26, P = 0.002), which might be mediated by acetic acids. Increased intra-individual alterations in gut microbial composition were found in participants with cognitive impairment. We also identified several serum metabolites and inflammation-associated metagenomic species and pathways linked to impaired cognition. CONCLUSIONS Our findings reveal that specific gut microbial features are closely associated with cognitive impairment and decreased hippocampal volume, which may play an important role in dementia development.
Collapse
Affiliation(s)
- Xinxiu Liang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
| | - Yuanqing Fu
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
| | - Wen-Ting Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- School of Public Health, Hainan Medical University, Haikou, 571199, China
| | - Zhihong Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, 100050, China
| | - Ke Zhang
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
| | - Zengliang Jiang
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
| | - Xiaofang Jia
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, 100050, China
| | - Chun-Ying Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hong-Rou Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haili Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zelei Miao
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
| | - Wanglong Gou
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
| | - Menglei Shuai
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
| | - Yujing Huang
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.
- Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, 100050, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ju-Sheng Zheng
- School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China.
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|
2
|
Wang S, Ichinomiya T, Savchenko P, Devulapalli S, Wang D, Beltz G, Saito T, Saido TC, Wagner SL, Patel HH, Head BP. Age-Dependent Behavioral and Metabolic Assessment of App NL-G-F/NL-G-F Knock-in (KI) Mice. Front Mol Neurosci 2022; 15:909989. [PMID: 35966019 PMCID: PMC9373872 DOI: 10.3389/fnmol.2022.909989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
Mitochondria play a crucial role in Alzheimer's disease (AD) onset and progression. Traditional transgenic AD mouse models which were widely used in the past decades share a common limitation: The overexpression of APP and overproduction of amyloid-beta (Aβ) are accompanied by other APP peptide fragments, which could introduce artificial and non-clinically relevant phenotypes. Here, we performed an in-depth and time-resolved behavioral and metabolic characterization of a clinically relevant AD mouse model engineered to express normal physiological levels of APP harboring humanized Swedish (K670N/M671L), Beyreuther/Iberian (I716F), and Arctic (E693G) mutations (App NL-G-F/NL-G-F ), termed APP knock-in (APPKI) mice. Our result showed that APPKI mice exhibited fear learning deficits at 6-m age and contextual memory deficit at 12-m age. Histopathological analysis revealed mild amyloidosis (6E10) accompanied by microgliosis (Iba1) as early as 3 months, which progressed significantly together with significant astrocytosis at 6 and 12 m. We further analyzed hippocampal mitochondrial dysfunction by multiple assays, while 3-m APPKI mice brain mitochondrial function remains a similar level as WT mice. Significant mitochondrial dysfunction characterized by decreased ATP production and higher membrane potential with subsequent overproduction of reactive oxygen species (ROS) was observed in mitochondria isolated from 7-m APPKI mice hippocampal tissue. Morphologically, these mitochondria were larger in volume with a decreased level of mitochondrial fusion protein mitofusin-2 (MFN2). At 12 months, APPKI mice exhibit a significantly decreased total mitochondrial oxygen consumption rate (OCR) in isolated hippocampal mitochondria detected by high-resolution respirometry. These data indicate early mitochondrial dysfunction in the brain at pre-symptomatic age in the App NL-G-F/NL-G-mice, which may play a key role in the progression of the disease. Moreover, the identified behavioral and bioenergetic alterations in this clinically relevant AD mouse model provide a valuable tool to optimize the temporal component for therapeutic interventions to treat AD.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Taiga Ichinomiya
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States,Department of Anesthesiology and Intensive Care Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Paul Savchenko
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Swetha Devulapalli
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Dongsheng Wang
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Gianna Beltz
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, Japan
| | - Steve L. Wagner
- Neurosciences Department, University of California, San Diego, San Diego, CA, United States
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States
| | - Brian P. Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States,Department of Anesthesia, University of California, San Diego, San Diego, CA, United States,*Correspondence: Brian P. Head
| |
Collapse
|
3
|
Van Vo G, Guest PC, Nguyen NH. Evaluation of Antimicrobial and Anticancer Activities of Bouea macrophylla Ethanol Extract. Methods Mol Biol 2021; 2343:215-228. [PMID: 34473325 DOI: 10.1007/978-1-0716-1558-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The Bouea macrophylla (B. macrophylla) tree is widely grown throughout South East Asia and has been used as a traditional medicine for the treatment of various illnesses. This chapter presents a protocol for preparation of ethanol extracts of B. macrophylla leaves and evaluation of the potential antimicrobial and anticancer activities in vitro. The extract displayed antibacterial activity against nine out of the ten target microorganisms tested. In addition, the extract was capable of inhibiting the proliferation of HeLa and HCT116 cells, thus demonstrating some anticancer activity.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ngoc Hong Nguyen
- CirTech Institute, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam.
| |
Collapse
|
4
|
Budni J, Braga Brandão A, da Silva S, Lima Garcez M, Mina F, Bellettini-Santos T, Casagrande Zabot G, Behenck Medeiros E, Scaini G, de Oliveira J, Streck EL, Quevedo J. Oral administration of D-galactose increases brain tricarboxylic acid cycle enzymes activities in Wistar rats. Metab Brain Dis 2021; 36:1057-1067. [PMID: 33616841 DOI: 10.1007/s11011-021-00682-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022]
Abstract
D-galactose (D-gal) is a carbohydrate widely distributed in regular diets. However, D-gal administration in rodents is associated with behavioral and neurochemical alterations similar to features observed in aging. In this regard, this study aimed to investigate the effects of D-gal exposure, in different periods, in rats' brain regions' activities of creatine kinase (CK) and tricarboxylic acid (TCA) cycle enzymes. Male adult Wistar rats received D-gal (100 mg/kg, gavage) for 1, 2, 4, 6 or 8 weeks. CK and TCA enzymes' activities were evaluated in rats' prefrontal cortex and hippocampus. In general, the results showed an increase in citrate synthase (CS) and succinate dehydrogenase (SDH) activities in animals treated with D-gal compared to the control group in the prefrontal cortex and hippocampus. Also, in the fourth week, the malate dehydrogenase (MD) activity increased in the hippocampus of rats that received D-gal compared to control rats. In addition, we observed an increase in the CK activity in the prefrontal cortex and hippocampus in the first and eighth weeks of treatment in the D-gal group compared to the control group. D-gal administration orally administered modulated TCA cycle enzymes and CK activities in the prefrontal cortex and hippocampus, which were also observed in aging and neurodegenerative diseases. However, more studies using experimental models are necessary to understand better the impact and contribution of these brain metabolic abnormalities associated with D-gal consumption for aging.
Collapse
Affiliation(s)
- Josiane Budni
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Arleide Braga Brandão
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Sabrina da Silva
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Michelle Lima Garcez
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Francielle Mina
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiani Bellettini-Santos
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Gabriel Casagrande Zabot
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Eduarda Behenck Medeiros
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Giselli Scaini
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Emílio Luiz Streck
- Experimental Neurology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center of Excellence On Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
5
|
Poddar MK, Banerjee S, Chakraborty A, Dutta D. Metabolic disorder in Alzheimer's disease. Metab Brain Dis 2021; 36:781-813. [PMID: 33638805 DOI: 10.1007/s11011-021-00673-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), a well known aging-induced neurodegenerative disease is related to amyloid proteinopathy. This proteinopathy occurs due to abnormalities in protein folding, structure and thereby its function in cells. The root cause of such kind of proteinopathy and its related neurodegeneration is a disorder in metabolism, rather metabolomics of the major as well as minor nutrients. Metabolomics is the most relevant "omics" platform that offers a great potential for the diagnosis and prognosis of neurodegenerative diseases as an individual's metabolome. In recent years, the research on such kinds of neurodegenerative diseases, especially aging-related disorders is broadened its scope towards metabolic function. Different neurotransmitter metabolisms are also involved with AD and its associated neurodegeneration. The genetic and epigenetic backgrounds are also noteworthy. In this review, the physiological changes of AD in relation to its corresponding biochemical, genetic and epigenetic involvements including its (AD) therapeutic aspects are discussed.
Collapse
Affiliation(s)
- Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India.
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Departrment of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
| | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mallick Road, Kolkata, 700032, India
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
6
|
Wang YY, Zhou N, Si YP, Bai ZY, Li M, Feng WS, Zheng XK. A UPLC-Q-TOF/MS-Based Metabolomics Study on the Effect of Corallodiscus flabellatus (Craib) B. L. Burtt Extract on Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8868690. [PMID: 34135987 PMCID: PMC8177975 DOI: 10.1155/2021/8868690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
A UPLC-Q-TOF/MS-based metabolomics study was carried out to explore the intervening mechanism of Corallodiscus flabellatus (Craib) B. L. Burtt (CF) extract on Alzheimer's disease (AD). The AD model group consisted of senescence-accelerated mouse prone 8 (SAMP8) mice, and the control group consisted of senescence-accelerated mouse resistant 1 (SAMR1) mice. UPLC-Q-TOF/MS detection, multivariate statistical analysis, and pathway enrichment were jointly performed to research the change in metabolite profiling in the urine of AD mice. The result suggested that the metabolite profiling of SAMP8 mice significantly changed at the sixth month compared with SAMR1 mice of the same age, and the principal component analysis (PCA) score scatter plots of the CF group closely resembled those of the control and positive drug (huperzine A, HA) group. A total of 28 metabolites were considered potential biomarkers associated with the metabolism of beta-alanine, glycine, serine, threonine, cysteine, methionine, arginine, proline, and purines in AD mice. Furthermore, the CF group was clustered with the control and positive group and was clearly separated from the model group in the heat map. In conclusion, significant anti-AD effects were firstly observed in mice after treatment with the CF extract, and the urinary metabolomics approach assisted with dissecting the underlying mechanism.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Ning Zhou
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Yan-Po Si
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Zhi-Yao Bai
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Meng Li
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Wei-Sheng Feng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| | - Xiao-Ke Zheng
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou 450046, China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, 156 Jinshui East Road, Zhengzhou 450046, China
| |
Collapse
|
7
|
Detecting Oxidative Stress Biomarkers in Neurodegenerative Disease Models and Patients. Methods Protoc 2020; 3:mps3040066. [PMID: 32987935 PMCID: PMC7712543 DOI: 10.3390/mps3040066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is prominent in many neurodegenerative diseases. Along with mitochondrial dysfunction and pathological protein aggregation, increased levels of reactive oxygen and nitrogen species, together with impaired antioxidant defense mechanisms, are frequently observed in Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. The presence of oxidative stress markers in patients' plasma and cerebrospinal fluid may aid early disease diagnoses, as well as provide clues regarding the efficacy of experimental disease-modifying therapies in clinical trials. In preclinical animal models, the detection and localization of oxidatively damaged lipids, proteins and nucleic acids helps to identify most vulnerable neuronal populations and brain areas, and elucidate the molecular pathways and the timeline of pathology progression. Here, we describe the protocol for the detection of oxidative stress markers using immunohistochemistry on formaldehyde-fixed, paraffin-embedded tissue sections, applicable to the analysis of postmortem samples and tissues from animal models. In addition, we provide a simple method for the detection of malondialdehyde in tissue lysates and body fluids, which is useful for screening and the identification of tissues and structures in the nervous system which are most affected by oxidative stress.
Collapse
|
8
|
Potential Antimicrobial and Anticancer Activities of an Ethanol Extract from Bouea macrophylla. Molecules 2020; 25:molecules25081996. [PMID: 32344601 PMCID: PMC7221966 DOI: 10.3390/molecules25081996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022] Open
Abstract
Bouea macrophylla is a tree widely grown throughout South East Asia. It is used in folk medicine for the treatment of various illnesses. The present study aimed to identify the chemical constituents and to test the antimicrobial and anticancer activities of an ethanol extract from B. macrophylla leaves. The extract exhibited excellent antibacterial properties against 9 out of 10 target microorganisms. including four Gram-negative bacteria (Escherichia coli, Shigella flexneri, Vibrio cholera, and Pseudomonas aeruginosa) and four Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, and Bacillus cereus), as well as a fungus (Candida albicans). In addition, the extract was also tested on HeLa and human colorectal carcinoma (HCT116) cells to evaluate its cytostatic effects. The ethanol extract was able to inhibit the proliferation of HeLa and HCT116 cells, showing IC50 = 24 ± 0.8 and 28 ± 0.9 µg/mL, respectively, whereas the IC50 values of doxorubicin (standard) were 13.6 ± 1.3 and 15.8 ± 1.1 µg/mL respectively. Also, we identified various bioactive compounds in the extract such as polyphenols, flavonoids, caryophyllene, phytol, and trans-geranylgeraniol by GC-MS, which could contribute to the extract's biological activities. Therefore, our findings strongly indicate that the constituents of the B. macrophylla ethanol extract could be active against the tested bacteria and fungi as well as cancer cells. Further investigation is needed to understand the mechanisms mediating the antimicrobial and anticancer effects and identify signaling pathways that could be targeted for therapeutic application.
Collapse
|
9
|
Alfei S, Turrini F, Catena S, Zunin P, Grilli M, Pittaluga AM, Boggia R. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. Eur J Med Chem 2019; 183:111724. [DOI: 10.1016/j.ejmech.2019.111724] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/24/2022]
|
10
|
Hawkins KE, Duchen M. Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells. World J Stem Cells 2019; 11:236-253. [PMID: 31171953 PMCID: PMC6545525 DOI: 10.4252/wjsc.v11.i5.236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. To date, only five pharmacological agents have been approved by the Food and Drug Administration for clinical use in AD, all of which target the symptoms of the disease rather than the cause. Increasing our understanding of the underlying pathophysiology of AD will facilitate the development of new therapeutic strategies. Over the years, the major hypotheses of AD etiology have focused on deposition of amyloid beta and mitochondrial dysfunction. In this review we highlight the potential of experimental model systems based on human induced pluripotent stem cells (iPSCs) to provide novel insights into the cellular pathophysiology underlying neurodegeneration in AD. Whilst Down syndrome and familial AD iPSC models faithfully reproduce features of AD such as accumulation of Aβ and tau, oxidative stress and mitochondrial dysfunction, sporadic AD is much more difficult to model in this way due to its complex etiology. Nevertheless, iPSC-based modelling of AD has provided invaluable insights into the underlying pathophysiology of the disease, and has a huge potential for use as a platform for drug discovery.
Collapse
Affiliation(s)
- Kate Elizabeth Hawkins
- Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Michael Duchen
- Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.
Collapse
Affiliation(s)
- Eric Tönnies
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, Chang M, Thompson SM, Khoury N, Gonnella R, Trotz M, Moore DB, Harms E, Perry G, Clunes L, Ortiz A, Friedrich JO, Murray IV. Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer's Disease (AD): A Meta-Analysis of CSF Markers. Curr Alzheimer Res 2018; 15:164-181. [PMID: 28933272 PMCID: PMC5769087 DOI: 10.2174/1567205014666170921122458] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is currently incurable and a majority of investigational drugs have failed clinical trials. One explanation for this failure may be the invalidity of hypotheses focusing on amyloid to explain AD pathogenesis. Recently, hypotheses which are centered on synaptic and metabolic dysfunction are increasingly implicated in AD. OBJECTIVE Evaluate AD hypotheses by comparing neurotransmitter and metabolite marker concentrations in normal versus AD CSF. METHODS Meta-analysis allows for statistical comparison of pooled, existing cerebrospinal fluid (CSF) marker data extracted from multiple publications, to obtain a more reliable estimate of concentrations. This method also provides a unique opportunity to rapidly validate AD hypotheses using the resulting CSF concentration data. Hubmed, Pubmed and Google Scholar were comprehensively searched for published English articles, without date restrictions, for the keywords "AD", "CSF", and "human" plus markers selected for synaptic and metabolic pathways. Synaptic markers were acetylcholine, gamma-aminobutyric acid (GABA), glutamine, and glycine. Metabolic markers were glutathione, glucose, lactate, pyruvate, and 8 other amino acids. Only studies that measured markers in AD and controls (Ctl), provided means, standard errors/deviation, and subject numbers were included. Data were extracted by six authors and reviewed by two others for accuracy. Data were pooled using ratio of means (RoM of AD/Ctl) and random effects meta-analysis using Cochrane Collaboration's Review Manager software. RESULTS Of the 435 identified publications, after exclusion and removal of duplicates, 35 articles were included comprising a total of 605 AD patients and 585 controls. The following markers of synaptic and metabolic pathways were significantly changed in AD/controls: acetylcholine (RoM 0.36, 95% CI 0.24-0.53, p<0.00001), GABA (0.74, 0.58-0.94, p<0.01), pyruvate (0.48, 0.24-0.94, p=0.03), glutathione (1.11, 1.01- 1.21, p=0.03), alanine (1.10, 0.98-1.23, p=0.09), and lower levels of significance for lactate (1.2, 1.00-1.47, p=0.05). Of note, CSF glucose and glutamate levels in AD were not significantly different than that of the controls. CONCLUSION This study provides proof of concept for the use of meta-analysis validation of AD hypotheses, specifically via robust evidence for the cholinergic hypothesis of AD. Our data disagree with the other synaptic hypotheses of glutamate excitotoxicity and GABAergic resistance to neurodegeneration, given observed unchanged glutamate levels and decreased GABA levels. With regards to metabolic hypotheses, the data supported upregulation of anaerobic glycolysis, pentose phosphate pathway (glutathione), and anaplerosis of the tricarboxylic acid cycle using glutamate. Future applications of meta-analysis indicate the possibility of further in silico evaluation and generation of novel hypotheses in the AD field.
Collapse
Affiliation(s)
- Roni Manyevitch
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Protas
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Sean Scarpiello
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Marisa Deliso
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Brittany Bass
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Anthony Nanajian
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Chang
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Stefani M. Thompson
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Neil Khoury
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Rachel Gonnella
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Margit Trotz
- Department of Biochemistry, School of Medicine, St George’s University, Grenada, W.I., USA
| | - D. Blaine Moore
- Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | - Emily Harms
- Department of Educational Services, St George’s University, Grenada, W.I., USA
| | - George Perry
- Department of Biology, University of Texas San Antonio, TX, USA
| | - Lucy Clunes
- Department of Pharmacology, School of Medicine, St George’s University, Grenada, W.I., USA
| | - Angélica Ortiz
- Department of Anatomy, School of Medicine, St George’s University, Grenada, W.I., USA
| | | | - Ian V.J. Murray
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
- Department of Biology, University of Texas San Antonio, TX, USA
| |
Collapse
|
13
|
Bondy SC, Campbell A. Water Quality and Brain Function. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:E2. [PMID: 29267198 PMCID: PMC5800103 DOI: 10.3390/ijerph15010002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
In the United States, regulations are in place to ensure the quality of drinking water. Such precautions are intended to safeguard the health of the population. However, regulatory guidelines may at times fail to achieve their purpose. This may be due to lack of sufficient data regarding the health hazards of chronic low dose exposure to contaminants or the introduction of new substances that pose a health hazard risk that has yet to be identified. In this review, examples of different sources of contaminants in drinking water will be discussed, followed by an evaluation of some select individual toxicants with known adverse neurological impact. The ability of mixtures to potentially cause additive, synergistic, or antagonistic neurotoxic responses will be briefly addressed. The last section of the review will provide examples of select mechanisms by which different classes of contaminants may lead to neurological impairments. The main objective of this review is to bring to light the importance of considering trace amounts of chemicals in the drinking water and potential brain abnormalities. There is continued need for toxicology studies to better understand negative consequences of trace amounts of toxins and although it is beyond the scope of this brief overview it is hoped that the review will underscore the paucity of studies focused on determining how long-term exposure to minute levels of contaminants in drinking water may pose a significant health hazard.
Collapse
Affiliation(s)
- Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA 92617-1830, USA.
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
| |
Collapse
|
14
|
Zhang ZH, Wen L, Wu QY, Chen C, Zheng R, Liu Q, Ni JZ, Song GL. Long-Term Dietary Supplementation with Selenium-Enriched Yeast Improves Cognitive Impairment, Reverses Synaptic Deficits, and Mitigates Tau Pathology in a Triple Transgenic Mouse Model of Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4970-4979. [PMID: 28578584 DOI: 10.1021/acs.jafc.7b01465] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by multiple histopathological changes in the brain and by impairments in memory and cognitive function. Currently, there is no effective treatment that can halt or reverse the progression of this disease. Here, we explored the effects of 3 months of treatment with selenium-enriched yeast (Se-yeast), which is commonly used as a source of organic selenium (Se) for nutrition, on cognitive dysfunction and neuropathology in the triple transgenic mouse model of AD (3×Tg-AD mice). As the results revealed that Se-yeast significantly improved the spatial learning and memory retention of 3×Tg-AD mice, promoted neuronal activity, attenuated the activation of astrocytes and microglia, mitigated synaptic deficits, and reduced the levels of total tau and phosphorylated tau though inhibiting the activity of GSK-3β, dietary supplementation with Se-yeast exerted multiple beneficial effects on the prevention or treatment of AD. These findings provide evidence of a potentially viable compound for AD treatment.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| | - Lei Wen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| | - Qiu-Yan Wu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| | - Chen Chen
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| | - Rui Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| | - Jia-Zuan Ni
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University , Shenzhen, 518060, China
| |
Collapse
|
15
|
Pan X, Sang S, Fei G, Jin L, Liu H, Wang Z, Wang H, Zhong C. Enhanced Activities of Blood Thiamine Diphosphatase and Monophosphatase in Alzheimer's Disease. PLoS One 2017; 12:e0167273. [PMID: 28060825 PMCID: PMC5218390 DOI: 10.1371/journal.pone.0167273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background Thiamine metabolites and activities of thiamine-dependent enzymes are impaired in Alzheimer’s disease (AD). Objective To clarify the mechanism for the reduction of thiamine diphosphate (TDP), an active form of thiamine and critical coenzyme of glucose metabolism, in AD. Methods Forty-five AD patients clinically diagnosed and 38 age- and gender-matched control subjects without dementia were voluntarily recruited. The contents of blood TDP, thiamine monophosphate (TMP), and thiamine, as well as the activities of thiamine diphosphatase (TDPase), thiamine monophosphatase (TMPase), and thiamine pyrophosphokinase (TPK), were assayed by high performance liquid chromatography. Results Blood TDP contents of AD patients were significantly lower than those in control subjects (79.03 ± 23.24 vs. 127.60 ± 22.65 nmol/L, P<0.0001). Activities of TDPase and TMPase were significantly enhanced in AD patients than those in control subjects (TDPase: 1.24 ± 0.08 vs. 1.00 ± 0.04, P < 0.05; TMPase: 1.22 ± 0.04 vs. 1.00 ± 0.06, P < 0.01). TPK activity remained unchanged in AD as compared with that in control (0.93 ± 0.04 vs. 1.00 ± 0.04, P > 0.05). Blood TDP levels correlated negatively with TDPase activities (r = -0.2576, P = 0.0187) and positively with TPK activities (r = 0.2426, P = 0.0271) in all participants. Conclusion Enhanced TDPase and TMPase activities may contribute to the reduction of TDP level in AD patients. The results imply that an imbalance of phosphorylation-dephosphorylation related to thiamine and glucose metabolism may be a potential target for AD prevention and therapy.
Collapse
Affiliation(s)
- Xiaoli Pan
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
| | - Huimin Liu
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhiliang Wang
- Regional Health Service Center of Xujiahui, Xuhui District, Shanghai, China
| | - Hui Wang
- Regional Health Service Center of Xujiahui, Xuhui District, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science & Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
16
|
Oxidative and Inflammatory Pathways in Age-Related Chronic Disease Processes. INFLAMMATION, AGING, AND OXIDATIVE STRESS 2016. [DOI: 10.1007/978-3-319-33486-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Agrawal U, Sharma R, Vyas SP. Targeted Drug Delivery to the Mitochondria. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Zhao W, Wang J, Varghese M, Ho L, Mazzola P, Haroutunian V, Katsel PL, Gibson GE, Levine S, Dubner L, Pasinetti GM. Impaired mitochondrial energy metabolism as a novel risk factor for selective onset and progression of dementia in oldest-old subjects. Neuropsychiatr Dis Treat 2015; 11:565-74. [PMID: 25784811 PMCID: PMC4356684 DOI: 10.2147/ndt.s74898] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent evidence shows that Alzheimer disease (AD) dementia in the oldest-old subjects was associated with significantly less amyloid plaque and fibrillary tangle neuropathology than in the young-old population. In this study, using quantitative (q) PCR studies, we validated genome-wide microarray RNA studies previously conducted by our research group. We found selective downregulation of mitochondrial energy metabolism genes in the brains of oldest-old, but not young-old, AD dementia cases, despite a significant lack of classic AD neuropathology features. We report a significant decrease of genes associated with mitochondrial pyruvate metabolism, the tricarboxylic acid cycle (TCA), and glycolytic pathways. Moreover, significantly higher levels of nitrotyrosylated (3-NT)-proteins and 4-hydroxy-2-nonenal (HNE) adducts, which are indexes of cellular protein oxidation and lipid peroxidation, respectively, were detected in the brains of oldest-old subjects at high risk of developing AD, possibly suggesting compensatory mechanisms. These findings support the hypothesis that although oldest-old AD subjects, characterized by significantly lower AD neuropathology than young-old AD subjects, have brain mitochondrial metabolism impairment, which we hypothesize may selectively contribute to the development of dementia. Outcomes from this study provide novel insights into the molecular mechanisms underlying clinical dementia in young-old and oldest-old AD subjects and provide novel strategies for AD prevention and treatment in oldest-old dementia cases.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA
| | - Jun Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA
| | - Merina Varghese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA
| | - Paolo Mazzola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Vahram Haroutunian
- Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel L Katsel
- Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary E Gibson
- Department of Neurology and Neuroscience, Weill Cornell Medical College, Burke Medical Research Institute, New York, NY, USA
| | - Samara Levine
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Dubner
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Geriatric Research Education Clinical Center - James J Peter VA Medical Center, Bronx, NY, USA ; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA ; Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
19
|
Tomasello MF, Sinopoli A, Pappalardo G. On the Environmental Factors Affecting the Structural and Cytotoxic Properties of IAPP Peptides. J Diabetes Res 2015; 2015:918573. [PMID: 26582441 PMCID: PMC4637107 DOI: 10.1155/2015/918573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/05/2015] [Indexed: 12/18/2022] Open
Abstract
Pancreatic islets in type 2 diabetes mellitus (T2DM) patients are characterized by reduced β-cells mass and diffuse extracellular amyloidosis. Amyloid deposition involves the islet amyloid polypeptide (IAPP), a neuropancreatic hormone cosecreted with insulin by β-cells. IAPP is physiologically involved in glucose homeostasis, but it may turn toxic to β-cells owing to its tendency to misfold giving rise to oligomers and fibrils. The process by which the unfolded IAPP starts to self-assemble and the overall factors promoting this conversion are poorly understood. Other open questions are related to the nature of the IAPP toxic species and how exactly β-cells die. Over the last decades, there has been growing consensus about the notion that early molecular assemblies, notably small hIAPP oligomers, are the culprit of β-cells decline. Numerous environmental factors might affect the conformational, aggregation, and cytotoxic properties of IAPP. Herein we review recent progress in the field, focusing on the influences that membranes, pH, and metal ions may have on the conformational conversion and cytotoxicity of full-length IAPP as well as peptide fragments thereof. Current theories proposed for the mechanisms of toxicity will be also summarized together with an outline of the underlying molecular links between IAPP and amyloid beta (Aβ) misfolding.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- International PhD Program in Translational Biomedicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Pappalardo
- CNR Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
- *Giuseppe Pappalardo:
| |
Collapse
|
20
|
Myhrstad MCW, Ulven SM, Günther CC, Ottestad I, Holden M, Ryeng E, Borge GI, Kohler A, Brønner KW, Thoresen M, Holven KB. Fish oil supplementation induces expression of genes related to cell cycle, endoplasmic reticulum stress and apoptosis in peripheral blood mononuclear cells: a transcriptomic approach. J Intern Med 2014; 276:498-511. [PMID: 24641624 PMCID: PMC4263263 DOI: 10.1111/joim.12217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fish oil supplementation has been shown to alter gene expression of mononuclear cells both in vitro and in vivo. However, little is known about the total transcriptome profile in healthy subjects after intake of fish oil. We therefore investigated the gene expression profile in peripheral blood mononuclear cells (PBMCs) after intake of fish oil for 7 weeks using transcriptome analyses. DESIGN In a 7-week, double-blinded, randomized, controlled, parallel-group study, healthy subjects received 8 g day(-1) fish oil (1.6 g day(-1) eicosapentaenoic acid + docosahexaenoic acid) (n = 17) or 8 g day(-1) high oleic sunflower oil (n = 19). Microarray analyses of RNA isolated from PBMCs were performed at baseline and after 7 weeks of intervention. RESULTS Cell cycle, DNA packaging and chromosome organization are biological processes found to be upregulated after intake of fish oil compared to high oleic sunflower oil using a moderated t-test. In addition, gene set enrichment analysis identified several enriched gene sets after intake of fish oil. The genes contributing to the significantly different gene sets in the subjects given fish oil compared with the control group are involved in cell cycle, endoplasmic reticulum (ER) stress and apoptosis. Gene transcripts with common motifs for 35 known transcription factors including E2F, TP53 and ATF4 were upregulated after intake of fish oil. CONCLUSION We have shown that intake of fish oil for 7 weeks modulates gene expression in PBMCs of healthy subjects. The increased expression of genes related to cell cycle, ER stress and apoptosis suggests that intake of fish oil may modulate basic cellular processes involved in normal cellular function.
Collapse
Affiliation(s)
- M C W Myhrstad
- Faculty of Health Sciences, Department of Health, Nutrition and Management, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Darvesh AS, Carroll RT, Bishayee A, Geldenhuys WJ, Van der Schyf CJ. Oxidative stress and Alzheimer’s disease: dietary polyphenols as potential therapeutic agents. Expert Rev Neurother 2014; 10:729-45. [DOI: 10.1586/ern.10.42] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Johnson R, Noble W, Tartaglia GG, Buckley NJ. Neurodegeneration as an RNA disorder. Prog Neurobiol 2012; 99:293-315. [PMID: 23063563 PMCID: PMC7116994 DOI: 10.1016/j.pneurobio.2012.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/14/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases constitute one of the single most important public health challenges of the coming decades, and yet we presently have only a limited understanding of the underlying genetic, cellular and molecular causes. As a result, no effective disease-modifying therapies are currently available, and no method exists to allow detection at early disease stages, and as a result diagnoses are only made decades after disease pathogenesis, by which time the majority of physical damage has already occurred. Since the sequencing of the human genome, we have come to appreciate that the transcriptional output of the human genome is extremely rich in non-protein coding RNAs (ncRNAs). This heterogeneous class of transcripts is widely expressed in the nervous system, and is likely to play many crucial roles in the development and functioning of this organ. Most exciting, evidence has recently been presented that ncRNAs play central, but hitherto unappreciated roles in neurodegenerative processes. Here, we review the diverse available evidence demonstrating involvement of ncRNAs in neurodegenerative diseases, and discuss their possible implications in the development of therapies and biomarkers for these conditions.
Collapse
Key Words
- neurodegeneration
- neurodegenerative disease
- non-coding rna
- alzheimer's disease
- parkinson's disease
- huntington's disease
- trinucleotide repeat disorder
- bace1
- rest
- long non-coding rna
- microrna
- har1
- sox2ot
- mir-9
- mir-132
- mir-124
- ndds, neurodegenerative disorders
- ad, alzheimer's disease
- hd, huntington's disease
- pd, parkinson's disease
- als, amyotrophic lateral sclerosis
- app, amyloid precursor protein
- cftr, cystic fibrosis
- csf, cerebrospinal fluid
- sod1, superoxide dismutase 1
- tardbp, tar dna binding protein
- psen-1, presenilin 1
- psen-2, presenilin 1
- mapt, microtubule-associated protein tau
- snca, α-synuclein
- ups, ubiquitin-proteasome system
- aββ, -amyloid
- er, endoplasmic reticulum
- ber, base excision repair
- parp-1, poly-adp ribose polymerase-1
- lncrnas, long non-coding rnas
- mirnas, microrna
- ncrna, non-coding rnas
- ngs, next generation sequencing
- pcr, polymerase chain reaction
- sars, severe acute respiratory disorder
- sca, spinal cerebellar ataxia
- dm, myotonic dystrophy
- hdl2, huntington's disease-like 2
- tnds, trinucleotide repeat disorders
Collapse
Affiliation(s)
- Rory Johnson
- Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | - Wendy Noble
- Kings College London, Institute of Psychiatry, London, UK
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG) and UPF, Dr. Aiguader, 88, 08003 Barcelona, Catalunya, Spain
| | | |
Collapse
|
23
|
Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Mol Neurodegener 2012; 7:52. [PMID: 23039869 PMCID: PMC3507664 DOI: 10.1186/1750-1326-7-52] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex age-related pathology, the etiology of which has not been firmly delineated. Among various histological stigmata, AD-affected brains display several cellular dysfunctions reflecting enhanced oxidative stress, inflammation process and calcium homeostasis disturbance. Most of these alterations are directly or indirectly linked to amyloid β-peptides (Aβ), the production, molecular nature and biophysical properties of which likely conditions the degenerative process. It is particularly noticeable that, in a reverse control process, the above-described cellular dysfunctions alter Aβ peptides levels. β-secretase βAPP-cleaving enzyme 1 (BACE1) is a key molecular contributor of this cross-talk. This enzyme is responsible for the primary cleavage generating the N-terminus of “full length” Aβ peptides and is also transcriptionally induced by several cellular stresses. This review summarizes data linking brain insults to AD-like pathology and documents the key role of BACE1 at the cross-road of a vicious cycle contributing to Aβ production.
Collapse
Affiliation(s)
- Linda Chami
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, 06560 Valbonne, France
| | | |
Collapse
|
24
|
Raukas M, Rebane R, Mahlapuu R, Jefremov V, Zilmer K, Karelson E, Bogdanovic N, Zilmer M. Mitochondrial oxidative stress index, activity of redox-sensitive aconitase and effects of endogenous anti- and pro-oxidants on its activity in control, Alzheimer's disease and Swedish Familial Alzheimer's disease brain. Free Radic Res 2012; 46:1490-5. [DOI: 10.3109/10715762.2012.728286] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Lott IT. Antioxidants in Down syndrome. Biochim Biophys Acta Mol Basis Dis 2011; 1822:657-63. [PMID: 22206998 DOI: 10.1016/j.bbadis.2011.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 01/09/2023]
Abstract
Individuals with Down syndrome (DS) have high levels of oxidative stress throughout the lifespan. Mouse models of DS share some structural and functional abnormalities that parallel findings seen in the human phenotype. Several of the mouse models show evidence of cellular oxidative stress and have provided a platform for antioxidant intervention. Genes that are overexpressed on chromosome 21 are associated with oxidative stress and neuronal apoptosis. The lack of balance in the metabolism of free radicals generated during processes related to oxidative stress may have a direct role in producing the neuropathology of DS including the tendency to Alzheimer disease (AD). Mitochondria are often a target for oxidative stress and are considered to be a trigger for the onset of the AD process in DS. Biomarkers for oxidative stress have been described in DS and in AD in the general population. However, intervention trials using standard antioxidant supplements or diets have failed to produce uniform therapeutic effect. This chapter will examine the biological role of oxidative stress in DS and its relationship to abnormalities in both development and aging within the disorder. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California Irvine (UCI), Orange, CA 92868, USA.
| |
Collapse
|
26
|
Leduc V, Legault V, Dea D, Poirier J. Normalization of gene expression using SYBR green qPCR: A case for paraoxonase 1 and 2 in Alzheimer's disease brains. J Neurosci Methods 2011; 200:14-9. [DOI: 10.1016/j.jneumeth.2011.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 10/18/2022]
|
27
|
Bicca MA, Figueiredo CP, Piermartiri TC, Meotti FC, Bouzon ZL, Tasca CI, Medeiros R, Calixto JB. The selective and competitive N-methyl-D-aspartate receptor antagonist, (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience 2011; 192:631-41. [PMID: 21756976 DOI: 10.1016/j.neuroscience.2011.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
The toxicity of amyloid β (Aβ) is highly associated with Alzheimer's disease (AD), which has a high incidence in elderly people worldwide. While the current treatment for moderate and severe AD includes blockage of the N-methyl-d-aspartate receptor (NMDAR), the molecular mechanisms of its effect are still poorly understood. Herein, we report that a single i.p. administration of the selective and competitive (NMDAR) antagonist LY235959 reduced Aβ neurotoxicity by preventing the down-regulation of glial glutamate transporters (glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)), the decrease in glutamate uptake, and the production of reactive oxygen species (ROS) induced by Aβ(1-40). Importantly, the blockage of NMDAR restored the Aβ(1-40)-induced synaptic dysfunction and cognitive impairment. However, LY235959 failed to prevent the inflammatory response associated with Aβ(1-40) treatment. Altogether, our data indicate that the acute administration of Aβ promotes oxidative stress, a decrease in glutamate transporter expression, and neurotoxicity. Our results reinforce the idea that NMDAR plays a critical regulatory action in Aβ toxicity and they provide further pre-clinical evidence for the potential role of the selective and competitive NMDAR antagonists in the treatment of AD.
Collapse
Affiliation(s)
- M A Bicca
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88049-900, Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Murray IVJ, Proza JF, Sohrabji F, Lawler JM. Vascular and metabolic dysfunction in Alzheimer's disease: a review. Exp Biol Med (Maywood) 2011; 236:772-82. [PMID: 21680755 DOI: 10.1258/ebm.2011.010355] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is thought to start years or decades prior to clinical diagnosis. Overt pathology such as protein misfolding and plaque formation occur at later stages, and factors other than amyloid misfolding contribute to the initiation of the disease. Vascular and metabolic dysfunctions are excellent candidates, as they are well-known features of AD that precede pathology or clinical dementia. While the general notion that vascular and metabolic dysfunctions contribute to the etiology of AD is becoming accepted, recent research suggests novel mechanisms by which these/such processes could possibly contribute to AD pathogenesis. Vascular dysfunction includes reduced cerebrovascular flow and cerebral amyloid angiopathy. Indeed, there appears to be an interaction between amyloid β (Aβ) and vascular pathology, where Aβ production and vascular pathology both contribute to and are affected by oxidative stress. One major player in the vascular pathology is NAD(P)H oxidase, which generates vasoactive superoxide. Metabolic dysfunction has only recently regained popularity in relation to its potential role in AD. The role of metabolic dysfunction in AD is supported by the increased epidemiological risk of AD associated with several metabolic diseases such as diabetes, dyslipidemia and hypertension, in which there is elevated oxidative damage and insulin resistance. Metabolic dysfunction is further implicated in AD as pharmacological inhibition of metabolism exacerbates pathology, and several metabolic enzymes of the glycolytic, tricarboxylic acid cycle (TCA) and oxidative phosphorylation pathways are damaged in AD. Recent studies have highlighted the role of insulin resistance, in contributing to AD. Thus, vascular and metabolic dysfunctions are key components in the AD pathology throughout the course of disease. The common denominator between vascular and metabolic dysfunction emerging from this review appears to be oxidative stress and Aβ. This review also provides a framework for evaluation of current and future therapeutics for AD.
Collapse
Affiliation(s)
- Ian V J Murray
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | |
Collapse
|
29
|
Camandola S, Mattson MP. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:965-73. [PMID: 20950656 PMCID: PMC3032815 DOI: 10.1016/j.bbamcr.2010.10.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 02/06/2023]
Abstract
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
30
|
Leadsham JE, Gourlay CW. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 2010; 11:92. [PMID: 21108829 PMCID: PMC3001716 DOI: 10.1186/1471-2121-11-92] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. RESULTS We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. CONCLUSIONS We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.
Collapse
Affiliation(s)
- Jane E Leadsham
- Department of Biosciences, University of Kent, Canterbury Kent, CT2 7NJ, England, UK
| | - Campbell W Gourlay
- Department of Biosciences, University of Kent, Canterbury Kent, CT2 7NJ, England, UK
| |
Collapse
|
31
|
Bøhn SK, Myhrstad MC, Thoresen M, Holden M, Karlsen A, Tunheim SH, Erlund I, Svendsen M, Seljeflot I, Moskaug JO, Duttaroy AK, Laake P, Arnesen H, Tonstad S, Collins A, Drevon CA, Blomhoff R. Blood cell gene expression associated with cellular stress defense is modulated by antioxidant-rich food in a randomised controlled clinical trial of male smokers. BMC Med 2010; 8:54. [PMID: 20846424 PMCID: PMC2955589 DOI: 10.1186/1741-7015-8-54] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/16/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Plant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells. TRIAL REGISTRATION NUMBER NCT00520819 http://clinicaltrials.gov. METHODS In an 8-week dietary intervention study, 102 healthy male smokers were randomised to either a diet rich in various antioxidant-rich foods, a kiwifruit diet (three kiwifruits/d added to the regular diet) or a control group. Blood cell gene expression profiles were obtained from 10 randomly selected individuals of each group. Diet-induced changes on gene expression were compared to controls using a novel application of the gene set enrichment analysis (GSEA) on transcription profiles obtained using Affymetrix HG-U133-Plus 2.0 whole genome arrays. RESULTS Changes were observed in the blood cell gene expression profiles in both intervention groups when compared to the control group. Groups of genes involved in regulation of cellular stress defence, such as DNA repair, apoptosis and hypoxia, were significantly upregulated (GSEA, FDR q-values < 5%) by both diets compared to the control group. Genes with common regulatory motifs for aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (AhR/ARNT) were upregulated by both interventions (FDR q-values < 5%). Plasma antioxidant biomarkers (polyphenols/carotenoids) increased in both groups. CONCLUSIONS The observed changes in the blood cell gene expression profiles suggest that the beneficial effects of a plant-based diet on human health may be mediated through optimization of defence processes.
Collapse
Affiliation(s)
- Siv K Bøhn
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Martínez A, Portero-Otin M, Pamplona R, Ferrer I. Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol 2010; 20:281-97. [PMID: 19725834 PMCID: PMC8094880 DOI: 10.1111/j.1750-3639.2009.00326.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 11/30/2022] Open
Abstract
Human neurodegenerative diseases with abnormal protein aggregates are associated with aberrant post-translational modifications, solubility, aggregation and fibril formation of selected proteins which cannot be degraded by cytosolic proteases, ubiquitin-protesome system and autophagy, and, therefore, accumulate in cells and extracellular compartments as residual debris. In addition to the accumulation of "primary" proteins, several other mechanisms are involved in the degenerative process and probably may explain crucial aspects such as the timing, selective cellular vulnerability and progression of the disease in particular individuals. One of these mechanisms is oxidative stress, which occurs in the vast majority of, if not all, degenerative diseases of the nervous system. The present review covers most of the protein targets that have been recognized as modified proteins mainly using bidimensional gel electrophoresis, Western blotting with oxidative and nitrosative markers, and identified by mass spectrometry in Alzheimer disease; certain tauopathies such as progressive supranuclear palsy, Pick disease, argyrophilic grain disease and frontotemporal lobar degeneration linked to mutations in tau protein, for example, FTLD-tau, Parkinson disease and related alpha-synucleinopathies; Huntington disease; and amyotrophic lateral sclerosis, together with related animal and cellular models. Vulnerable proteins can be mostly grouped in defined metabolic pathways covering glycolysis and energy metabolism, cytoskeletal, chaperoning, cellular stress responses, and members of the ubiquitin-proteasome system. Available information points to the fact that vital metabolic pathways are hampered by protein oxidative damage in several human degenerative diseases and that oxidative damage occurs at very early stages of the disease. Yet parallel functional studies are limited and further work is needed to document whether protein oxidation results in loss of activity and impaired performance. A better understanding of proteins susceptible to oxidation and nitration may serve to define damaged metabolic networks at early stages of disease and to advance therapeutic interventions to attenuate disease progression.
Collapse
Affiliation(s)
- Anna Martínez
- Institut de Neuropatologia, Institut d'Investigacio de Bellvitge-Hospital Universitari de Bellvitge, Universitat de Barcelona, Centro de Inbvestigación Biomédica en Red de Enfermedades Neurodegenerativas, Spain
| | | | | | | |
Collapse
|
33
|
Coskun PE, Wyrembak J, Derbereva O, Melkonian G, Doran E, Lott IT, Head E, Cotman CW, Wallace DC. Systemic mitochondrial dysfunction and the etiology of Alzheimer's disease and down syndrome dementia. J Alzheimers Dis 2010; 20 Suppl 2:S293-310. [PMID: 20463402 PMCID: PMC4175722 DOI: 10.3233/jad-2010-100351] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increasing evidence is implicating mitochondrial dysfunction as a central factor in the etiology of Alzheimer's disease (AD). The most significant risk factor in AD is advanced age and an important neuropathological correlate of AD is the deposition of amyloid-beta peptide (Abeta40 and Abeta42) in the brain. An AD-like dementia is also common in older individuals with Down syndrome (DS), though with a much earlier onset. We have shown that somatic mitochondrial DNA (mtDNA) control region (CR) mutations accumulate with age in post-mitotic tissues including the brain and that the level of mtDNA mutations is markedly elevated in the brains of AD patients. The elevated mtDNA CR mutations in AD brains are associated with a reduction in the mtDNA copy number and in the mtDNA L-strand transcript levels. We now show that mtDNA CR mutations increase with age in control brains; that they are markedly elevated in the brains of AD and DS and dementia (DSAD) patients; and that the increased mtDNA CR mutation rate in DSAD brains is associated with reduced mtDNA copy number and L-strand transcripts. The increased mtDNA CR mutation rate is also seen in peripheral blood DNA and in lymphoblastoid cell DNAs of AD and DSAD patients, and distinctive somatic mtDNA mutations, often at high heteroplasmy levels, are seen in AD and DSAD brain and blood cells DNA. In aging, DS, and DSAD, the mtDNA mutation level is positively correlated with beta-secretase activity and mtDNA copy number is inversely correlated with insoluble Abeta40 and Abeta42 levels. Therefore, mtDNA alterations may be responsible for both age-related dementia and the associated neuropathological changes observed in AD and DSAD.
Collapse
Affiliation(s)
- Pinar E. Coskun
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Joanne Wyrembak
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
| | - Olga Derbereva
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Goar Melkonian
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Ira T. Lott
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Institute of Brain Aging, University of California Irvine, Irvine, CA, USA
| | - Carl W. Cotman
- Institute of Brain Aging, University of California Irvine, Irvine, CA, USA
| | - Douglas C. Wallace
- Mitochondrial and Molecular Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Gurlo T, Ryazantsev S, Huang CJ, Yeh MW, Reber HA, Hines OJ, O'Brien TD, Glabe CG, Butler PC. Evidence for proteotoxicity in beta cells in type 2 diabetes: toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:861-9. [PMID: 20042670 DOI: 10.2353/ajpath.2010.090532] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in beta cells and islet amyloid derived from islet amyloid polypeptide (IAPP), a protein co-expressed with insulin by beta cells. It is increasingly appreciated that the toxic form of amyloidogenic proteins is not amyloid but smaller membrane-permeant oligomers. Using an antibody specific for toxic oligomers and cryo-immunogold labeling in human IAPP transgenic mice, human insulinoma and pancreas from humans with and without T2DM, we sought to establish the abundance and sites of formation of IAPP toxic oligomers. We conclude that IAPP toxic oligomers are formed intracellularly within the secretory pathway in T2DM. Most striking, IAPP toxic oligomers appear to disrupt membranes of the secretory pathway, and then when adjacent to mitochondria, disrupt mitochondrial membranes. Toxic oligomer-induced secretory pathway and mitochondrial membrane disruption is a novel mechanism to account for cellular dysfunction and apoptosis in T2DM.
Collapse
Affiliation(s)
- Tatyana Gurlo
- Larry Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-7073, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dorszewska J, Kempisty B, Jaroszewska-Kolecka J, Rózycka A, Florczak J, Lianeri M, Jagodziński PP, Kozubski W. Expression and polymorphisms of gene 8-oxoguanine glycosylase 1 and the level of oxidative DNA damage in peripheral blood lymphocytes of patients with Alzheimer's disease. DNA Cell Biol 2009; 28:579-88. [PMID: 19630534 DOI: 10.1089/dna.2009.0926] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine the level of 8-oxo-2'-deoxyguanosine (8-oxo2dG) and expression of three isoforms of 8-oxoguanine glycosylase 1 (OGG1), OGG1-1a, 1b, and 1c, and OGG1 protein and Ser326Cys and Arg46Gln polymorphisms of the OGG1 gene, in peripheral blood lymphocytes of patients with Alzheimer's disease (AD) and healthy controls. The study was performed in 41 AD patients and 51 healthy subjects. The level of 8-oxo2dG was determined by high performance liquid chromatography/electrochemical; expression of OGG1-1a, 1b, and 1c by real-time quantitative polymerase chain reaction; and OGG1 protein by Western blotting. The polymerase chain reaction-restriction fragment length polymorphism analysis was conducted to analyze the Ser326Cys and Arg46Gln polymorphisms. It was found that AD patients and controls have three isoforms, OGG1-1a, 1b, and 1c. The OGG1-1c isoform seems to be associated with early stage of AD, while an increase in the expression of the OGG1-1b isoform and levels of OGG1 protein appears to be similarly related to the progression of AD. All of the studied OGG1 isoforms show a decreased expression in advanced AD. The CG Ser326Cys genotype seems to have a tendency to decrease 8-oxo2dG via control of repair mechanisms. The Arg46Gln polymorphism is not associated with the pathogenesis of AD. It appears that the OGG1-1a, 1b, and 1c isoforms are involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bordet T, Pruss RM. Targeting neuroprotection as an alternative approach to preventing and treating neuropathic pain. Neurotherapeutics 2009; 6:648-62. [PMID: 19789070 PMCID: PMC5084287 DOI: 10.1016/j.nurt.2009.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022] Open
Abstract
Neuropathic pain syndromes arise from dysfunction of the nerve itself, through traumatic or nontraumatic injury. Unlike acute pain syndromes, the pain is long-lasting and does not respond to common analgesic therapies. Drugs that disrupt nerve conduction and transmission or central sensitization, currently the only effective treatments, are only modestly effective for a portion of the patients suffering from neuropathic pain and come with the cost of serious adverse effects. Neurodegeneration, as a reaction to nerve trauma or chronic metabolic or chemical intoxication, appears to be an underlying cause of neuropathic pain. Identifying mechanisms of neurodegeneration and designing neuroprotective therapies is an ambitious goal toward treating or even preventing the development of these disabling disorders.
Collapse
Affiliation(s)
- Thierry Bordet
- Trophos, Parc Scientifique de Luminy, Luminy Biotech Entreprises, Case 931, 13288 Marseille Cedex 9, France
| | - Rebecca M. Pruss
- Trophos, Parc Scientifique de Luminy, Luminy Biotech Entreprises, Case 931, 13288 Marseille Cedex 9, France
| |
Collapse
|
37
|
Kadish I, Thibault O, Blalock EM, Chen KC, Gant JC, Porter NM, Landfield PW. Hippocampal and cognitive aging across the lifespan: a bioenergetic shift precedes and increased cholesterol trafficking parallels memory impairment. J Neurosci 2009; 29:1805-16. [PMID: 19211887 PMCID: PMC2661568 DOI: 10.1523/jneurosci.4599-08.2009] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 12/30/2022] Open
Abstract
Multiple hippocampal processes and cognitive functions change with aging or Alzheimer's disease, but the potential triggers of these aging cascades are not well understood. Here, we quantified hippocampal expression profiles and behavior across the adult lifespan to identify early aging changes and changes that coincide with subsequent onset of cognitive impairment. Well powered microarray analyses (N = 49 arrays), immunohistochemistry, and Morris spatial maze learning were used to study male F344 rats at five age points. Genes that changed with aging (by ANOVA) were assigned to one of four onset age ranges based on template pattern matching; functional pathways represented by these genes were identified statistically (Gene Ontology). In the earliest onset age range (3-6 months old), upregulation began for genes in lipid/protein catabolic and lysosomal pathways, indicating a shift in metabolic substrates, whereas downregulation began for lipid synthesis, GTP/ATP-dependent signaling, and neural development genes. By 6-9 months of age, upregulation of immune/inflammatory cytokines was pronounced. Cognitive impairment first appeared in the midlife range (9-12 months) and coincided and correlated primarily with midlife upregulation of genes associated with cholesterol trafficking (apolipoprotein E), myelinogenic, and proteolytic/major histocompatibility complex antigen-presenting pathways. Immunolabeling revealed that cholesterol trafficking proteins were substantially increased in astrocytes and that myelination increased with aging. Together, our data suggest a novel sequential model in which an early-adult metabolic shift, favoring lipid/ketone body oxidation, triggers inflammatory degradation of myelin and resultant excess cholesterol that, by midlife, activates cholesterol transport from astrocytes to remyelinating oligodendrocytes. These processes may damage structure and compete with neuronal pathways for bioenergetic resources, thereby impairing cognitive function.
Collapse
Affiliation(s)
- Inga Kadish
- Department of Cell Biology, University of Alabama, Birmingham, Alabama 35294, and
| | - Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Eric M. Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Kuey-C. Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - John C. Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Nada M. Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Philip W. Landfield
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|