1
|
Wicaksono A, Buaboocha T. Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean. BMC Genomics 2024; 25:992. [PMID: 39443876 PMCID: PMC11515718 DOI: 10.1186/s12864-024-10893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Calmodulin-binding transcription activator (CAMTA) is comprised of a group of transcription factors and plays an important role in the Ca2+ signaling pathway, mediating various molecular responses via interactions with other transcription factors and binding to the promoter region of specific genes. Mung beans (Vigna radiata) are one of the most commonly consumed commodities in Asia. To date, CAMTA proteins have not been characterized in this important crop plant. RESULTS Eight paralogous VrCAMTA genes were identified and found to be distributed on five of the 11 chromosomes. The proteins possessed CG-1 DNA-binding domains with bipartite NLS signals, ankyrin domains, CaM-binding IQ motifs, and CaM-binding domain (CaMBD). The 2 kb upstream regions of VrCAMTA genes contained sequence motifs of abscisic acid-responsive elements (ABRE) and ethylene-responsive elements (ERE), and binding sites for transcription factors of the bZIP and bHLH domains. Analysis of RNA-seq data from a public repository revealed ubiquitous expression of the VrCAMTA genes, as VrCAMTA1 was expressed at the highest level in seedling leaves, whereas VrCAMTA8 was expressed at the lowest level, which agreed with the RT-qPCR analysis performed on the first true leaves. On day four after leaf emergence, all VrCAMTA genes were upregulated, with VrCAMTA1 exhibiting the highest degree of upregulation. In darkness on day 4, upregulation was not observed in most VrCAMTA genes, except VrCAMTA7, for which a low degree of upregulation was found, whereas no difference was found in VrCAMTA8 expression between light and dark conditions. Treatment with calcium ionophores enhanced VrCAMTA expression under light and/or dark conditions at different times after leaf emergence, suggesting that calcium signaling is involved in the light-induced upregulation of VrCAMTA gene expression. CONCLUSIONS The expression dependence of nearly all VrCAMTA genes on light and calcium signaling suggests their possible differential but likely complementary roles during the early stages of mung bean growth and development.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Zhang C, Tang H, Li T, Wu H, Gu Y, Zhang J, Zhang Z, Zhao L, Li Y, Gu L, Zhang H. Integrating Physiological Features and Proteomic Analyses Provides New Insights in Blue/Red Light-Treated Moso Bamboo ( Phyllostachys edulis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12859-12870. [PMID: 38780458 DOI: 10.1021/acs.jafc.4c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Bamboo is one of the most important nontimber forestry products in the world. Light is not only the most critical source of energy for plant photosynthesis but also involved in regulating the biological processes of plants. However, there are few reports on how blue/red light affects Moso bamboo. This study investigated the growth status and physiological responses of Moso bamboo (Phyllostachys edulis) to blue/red light treatments. The growth status of the bamboo plants was evaluated, revealing that both blue- and red-light treatments promoted plant height and overall growth. Gas exchange parameters, chlorophyll fluorescence, and enzyme activity were measured to assess the photosystem response of Moso bamboo to light treatments. Additionally, the blue light treatment led to a higher chlorophyll content and enzyme activities compared to the red light treatment. A tandem mass tag quantitative proteomics approach identified significant changes in protein abundance under different light conditions with specific response proteins associated with distinct pathways, such as photosynthesis and starch metabolism. Overall, this study provides valuable insights into the physiological and proteomic responses of Moso bamboo to blue/red light treatments, highlighting their potential impact on growth and development.
Collapse
Affiliation(s)
- Chuanyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haohao Tang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tuhe Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongwei Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuying Gu
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun Zhang
- College of Life Science, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangzhen Zhao
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxing Li
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Tan W, Chen J, Yue X, Chai S, Liu W, Li C, Yang F, Gao Y, Gutiérrez Rodríguez L, Resco de Dios V, Zhang D, Yao Y. The heat response regulators HSFA1s promote Arabidopsis thermomorphogenesis via stabilizing PIF4 during the day. SCIENCE ADVANCES 2023; 9:eadh1738. [PMID: 37922351 PMCID: PMC10624354 DOI: 10.1126/sciadv.adh1738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
During summer, plants often experience increased light inputs and high temperatures, two major environmental factors with contrasting effects on thermomorphological traits. The integration of light and temperature signaling to control thermomorphogenesis in plants is critical for their acclimation in such conditions, but the underlying mechanisms remain largely unclear. We found that heat shock transcription factor 1d (HSFA1d) and its homologs are necessary for plant thermomorphogenesis during the day. In response to warm daytime temperature, HSFA1s markedly accumulate and move into the nucleus where they interact with phytochrome-interacting factor 4 (PIF4) and stabilize PIF4 by interfering with phytochrome B-PIF4 interaction. Moreover, we found that the HSFA1d nuclear localization under warm daytime temperature is mediated by constitutive photomorphogenic 1-repressed GSK3-like kinase BIN2. These results support a regulatory mechanism for thermomorphogenesis in the daytime mediated by the HSFA1s-PIF4 module and uncover HSFA1s as critical regulators integrating light and temperature signaling for a better acclimation of plants to the summer high temperature.
Collapse
Affiliation(s)
- Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Junhua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaolan Yue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wei Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chenglin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Lucas Gutiérrez Rodríguez
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
4
|
Spaninks K, Offringa R. Local phytochrome signalling limits root growth in light by repressing auxin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4642-4653. [PMID: 37140032 PMCID: PMC10433924 DOI: 10.1093/jxb/erad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
In nature, plant shoots are exposed to light whereas the roots grow in relative darkness. Surprisingly, many root studies rely on in vitro systems that leave the roots exposed to light whilst ignoring the possible effects of this light on root development. Here, we investigated how direct root illumination affects root growth and development in Arabidopsis and tomato. Our results show that in light-grown Arabidopsis roots, activation of local phytochrome A and B by far-red or red light inhibits respectively PHYTOCHROME INTERACTING FACTORS 1 or 4, resulting in decreased YUCCA4 and YUCCA6 expression. As a result, auxin levels in the root apex become suboptimal, ultimately resulting in reduced growth of light-grown roots. These findings highlight once more the importance of using in vitro systems where roots are grown in darkness for studies that focus on root system architecture. Moreover, we show that the response and components of this mechanism are conserved in tomato roots, thus indicating its importance for horticulture as well. Our findings open up new research possibilities to investigate the importance of light-induced root growth inhibition for plant development, possibly by exploring putative correlations with responses to other abiotic signals, such as temperature, gravity, touch, or salt stress.
Collapse
Affiliation(s)
- Kiki Spaninks
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| |
Collapse
|
5
|
Wang W, Gao L, Zhao T, Chen J, Chen T, Lin W. Arabidopsis NF-YC7 Interacts with CRY2 and PIF4/5 to Repress Blue Light-Inhibited Hypocotyl Elongation. Int J Mol Sci 2023; 24:12444. [PMID: 37569819 PMCID: PMC10419918 DOI: 10.3390/ijms241512444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
Light is an important environmental factor. Plants adapt to their light environment by developing the optimal phenotypes. Light-mediated hypocotyl growth is an ideal phenotype for studying how plants respond to light. Thus far, many signaling components in light-mediated hypocotyl growth have been reported. Here, we focused on identifying the transcription factors (TFs) involved in blue light-mediated hypocotyl growth. We analyzed the blue-light-mediated hypocotyl lengths of Arabidopsis TF-overexpressing lines and identified three NF-YC proteins, NF-YC7, NF-YC5, and NF-YC8 (NF-YCs being the short name), as the negative regulators in blue light-inhibited hypocotyl elongation. NF-YC-overexpressing lines developed longer hypocotyls than those of the wild type under blue light, while the deficient mutants nf-yc5nf-yc7 and nf-yc7nf-yc8 failed to exhibit hypocotyl elongation under blue light. NF-YCs physically interacted with CRY2 (cryptochrome 2) and PIF4/5 (phytochrome interacting factor 4 or 5), while the NF-YCs-PIF4/5 interactions were repressed by CRY2. Moreover, the overexpression of CRY2 or deficiency of PIF4/5 repressed NF-YC7-induced hypocotyl elongation under blue light. Further investigation revealed that NF-YC7 may increase CRY2 degradation and regulate PIF4/5 activities under blue light. Taken together, this study will provide new insight into the mechanism of how blue light inhibits hypocotyl elongation.
Collapse
Affiliation(s)
- Wei Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Ningde Normal University, Ningde 352100, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Gao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianliang Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamei Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Zhang N, Xu K, Liu S, Yan R, Liu Z, Wu Y, Peng Y, Zhang X, Yukawa Y, Wu J. RNA Polymerase III-Dependent BoNR8 and AtR8 lncRNAs Contribute to Hypocotyl Elongation in Response to Light and Abscisic Acid. PLANT & CELL PHYSIOLOGY 2023; 64:646-659. [PMID: 36961744 DOI: 10.1093/pcp/pcad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/24/2023] [Indexed: 06/16/2023]
Abstract
Hypocotyl elongation is inhibited by light and promoted by darkness. The plant hormone abscisic acid (ABA) also inhibits hypocotyl elongation. However, details of the molecular mechanism that regulates the integrated effects of light and ABA signaling on hypocotyl elongation remain unclear. Long non-coding RNAs (lncRNAs; >200 nt) do not encode proteins but play many physiological roles in organisms. Until now, only a few lncRNAs related to hypocotyl elongation have been reported. The lncRNAs BoNR8 (272 nt) and AtR8 (259 nt), both of which are transcribed by RNA polymerase III, are homologous lncRNAs that are abundantly present in cabbage and Arabidopsis, respectively. These lncRNAs shared 77% sequence identity, and their predicted RNA secondary structures were similar; the non-conserved nucleotides in both sequences were positioned mainly in the stem-loop regions of the secondary structures. A previous study showed that BoNR8 regulated seed germination along with ABA and that AtR8 may be involved in innate immune function in Arabidopsis. Our results show that the expression levels of BoNR8 and AtR8 were differentially affected by light and ABA and that overexpression (OX) of both BoNR8 and AtR8 in Arabidopsis regulated hypocotyl elongation depending on light and ABA.. The expression levels of light-related genes PHYB, COP1, HY5 and PIF4 and ABA-related genes ABI3 and ABI5 were altered in the AtR8-OX and BoNR8-OX lines, and, in an ABI3-defective mutant, hypocotyl elongation was greatly increased under dark condition with the addition of ABA. These results indicate that BoNR8 and AtR8 regulate hypocotyl elongation together with ABI3 and key downstream light signaling genes.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Kai Xu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Shengyi Liu
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466- 850 Japan
| | - Rong Yan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Harbin 150040, China
| | - Ying Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yifang Peng
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Xiaoxu Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yasushi Yukawa
- Graduate School of Science, Nagoya City University, Nagoya, 467-8501 Japan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Juan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Manavella PA, Godoy Herz MA, Kornblihtt AR, Sorenson R, Sieburth LE, Nakaminami K, Seki M, Ding Y, Sun Q, Kang H, Ariel FD, Crespi M, Giudicatti AJ, Cai Q, Jin H, Feng X, Qi Y, Pikaard CS. Beyond transcription: compelling open questions in plant RNA biology. THE PLANT CELL 2023; 35:1626-1653. [PMID: 36477566 PMCID: PMC10226580 DOI: 10.1093/plcell/koac346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 12/06/2022] [Indexed: 05/30/2023]
Abstract
The study of RNAs has become one of the most influential research fields in contemporary biology and biomedicine. In the last few years, new sequencing technologies have produced an explosion of new and exciting discoveries in the field but have also given rise to many open questions. Defining these questions, together with old, long-standing gaps in our knowledge, is the spirit of this article. The breadth of topics within RNA biology research is vast, and every aspect of the biology of these molecules contains countless exciting open questions. Here, we asked 12 groups to discuss their most compelling question among some plant RNA biology topics. The following vignettes cover RNA alternative splicing; RNA dynamics; RNA translation; RNA structures; R-loops; epitranscriptomics; long non-coding RNAs; small RNA production and their functions in crops; small RNAs during gametogenesis and in cross-kingdom RNA interference; and RNA-directed DNA methylation. In each section, we will present the current state-of-the-art in plant RNA biology research before asking the questions that will surely motivate future discoveries in the field. We hope this article will spark a debate about the future perspective on RNA biology and provoke novel reflections in the reader.
Collapse
Affiliation(s)
- Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Micaela A Godoy Herz
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Alberto R Kornblihtt
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA), Buenos Aires C1428EHA, Argentina
| | - Reed Sorenson
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Leslie E Sieburth
- School of Biological Sciences, University of UtahSalt Lake City 84112, USA
| | - Kentaro Nakaminami
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- Cluster for Pioneering Research, RIKEN, Saitama 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, Kanagawa 244-0813, Japan
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Federico D Ariel
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Martin Crespi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Université de Paris, Bâtiment 630, Orsay 91405, France
| | - Axel J Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
8
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
9
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
10
|
Kalbfuß N, Strohmayr A, Kegel M, Le L, Grosse-Holz F, Brunschweiger B, Stöckl K, Wiese C, Franke C, Schiestl C, Prem S, Sha S, Franz-Oberdorf K, Hafermann J, Thiemé M, Facher E, Palubicki W, Bolle C, Assaad FF. A role for brassinosteroid signalling in decision-making processes in the Arabidopsis seedling. PLoS Genet 2022; 18:e1010541. [PMID: 36508461 PMCID: PMC9779667 DOI: 10.1371/journal.pgen.1010541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Plants often adapt to adverse conditions via differential growth, whereby limited resources are discriminately allocated to optimize the growth of one organ at the expense of another. Little is known about the decision-making processes that underly differential growth. In this study, we developed a screen to identify decision making mutants by deploying two tools that have been used in decision theory: a well-defined yet limited budget, as well as conflict-of-interest scenarios. A forward genetic screen that combined light and water withdrawal was carried out. This identified BRASSINOSTEROID INSENSITIVE 2 (BIN2) alleles as decision mutants with "confused" phenotypes. An assessment of organ and cell length suggested that hypocotyl elongation occurred predominantly via cellular elongation. In contrast, root growth appeared to be regulated by a combination of cell division and cell elongation or exit from the meristem. Gain- or loss- of function bin2 mutants were most severely impaired in their ability to adjust cell geometry in the hypocotyl or cell elongation as a function of distance from the quiescent centre in the root tips. This study describes a novel paradigm for root growth under limiting conditions, which depends not only on hypocotyl-versus-root trade-offs in the allocation of limited resources, but also on an ability to deploy different strategies for root growth in response to multiple stress conditions.
Collapse
Affiliation(s)
- Nils Kalbfuß
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Alexander Strohmayr
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Marcel Kegel
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Lien Le
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | | | | | - Katharina Stöckl
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Christian Wiese
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Carina Franke
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Caroline Schiestl
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Sophia Prem
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Shuyao Sha
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | | | - Juliane Hafermann
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Marc Thiemé
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| | - Eva Facher
- Systematic Botany and Mycology, Faculty of Biology, Ludwig-Maximilians-University, Munich, Germany
| | - Wojciech Palubicki
- Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Polen
| | - Cordelia Bolle
- Plant Molecular Biology (Botany), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Farhah F. Assaad
- Botany, School of Life Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
11
|
Barrero-Gil J, Bouza-Morcillo L, Espinosa-Cores L, Piñeiro M, Jarillo JA. H4 acetylation by the NuA4 complex is required for plastid transcription and chloroplast biogenesis. NATURE PLANTS 2022; 8:1052-1063. [PMID: 36038656 DOI: 10.1038/s41477-022-01229-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast biogenesis is crucial in plant development, as it is essential for the transition to autotrophic growth. This process is light-induced and relies on the orchestrated transcription of nuclear and plastid genes, enabling the effective assembly and regulation of the photosynthetic machinery. Here we reveal a new regulation level for this process by showing the involvement of chromatin remodelling in the nuclear control of plastid gene expression for proper chloroplast biogenesis and function. The two Arabidopsis homologues of yeast EPL1 protein, components of the NuA4 histone acetyltransferase complex, are essential for plastid transcription and correct chloroplast development and performance. We show that EPL1 proteins are light-regulated and necessary for concerted expression of nuclear genes encoding most components of chloroplast transcriptional machinery, directly mediating H4K5ac deposition at these loci and promoting the expression of plastid genes required for chloroplast biogenesis. These data unveil a NuA4-mediated mechanism regulating chloroplast biogenesis that links the transcription of nuclear and plastid genomes during chloroplast development.
Collapse
Affiliation(s)
- Javier Barrero-Gil
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Laura Bouza-Morcillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Loreto Espinosa-Cores
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)/CSIC, Campus Montegancedo UPM, Pozuelo de Alarcón (Madrid), Madrid, Spain.
| |
Collapse
|
12
|
Loudya N, Maffei DPF, Bédard J, Ali SM, Devlin PF, Jarvis RP, López-Juez E. Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein import and impact retrograde signaling. THE PLANT CELL 2022; 34:3028-3046. [PMID: 35640571 PMCID: PMC9338805 DOI: 10.1093/plcell/koac153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/19/2022] [Indexed: 05/16/2023]
Abstract
Chloroplast biogenesis requires synthesis of proteins in the nucleocytoplasm and the chloroplast itself. Nucleus-encoded chloroplast proteins are imported via multiprotein translocons in the organelle's envelope membranes. Controversy exists around whether a 1-MDa complex comprising TIC20, TIC100, and other proteins constitutes the inner membrane TIC translocon. The Arabidopsis thaliana cue8 virescent mutant is broadly defective in plastid development. We identify CUE8 as TIC100. The tic100cue8 mutant accumulates reduced levels of 1-MDa complex components and exhibits reduced import of two nucleus-encoded chloroplast proteins of different import profiles. A search for suppressors of tic100cue8 identified a second mutation within the same gene, tic100soh1, which rescues the visible, 1 MDa complex-subunit abundance, and chloroplast protein import phenotypes. tic100soh1 retains but rapidly exits virescence and rescues the synthetic lethality of tic100cue8 when retrograde signaling is impaired by a mutation in the GENOMES UNCOUPLED 1 gene. Alongside the strong virescence, changes in RNA editing and the presence of unimported precursor proteins show that a strong signaling response is triggered when TIC100 function is altered. Our results are consistent with a role for TIC100, and by extension the 1-MDa complex, in the chloroplast import of photosynthetic and nonphotosynthetic proteins, a process which initiates retrograde signaling.
Collapse
Affiliation(s)
- Naresh Loudya
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Douglas P F Maffei
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Jocelyn Bédard
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Sabri Mohd Ali
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Paul F Devlin
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Enrique López-Juez
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
13
|
Kim JY, Park YJ, Lee JH, Park CM. SMAX1 Integrates Karrikin and Light Signals into GA-Mediated Hypocotyl Growth during Seedling Establishment. PLANT & CELL PHYSIOLOGY 2022; 63:932-943. [PMID: 35477800 DOI: 10.1093/pcp/pcac055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Morphogenic adaptation of young seedlings to light environments is a critical developmental process that ensures plant survival and propagation, as they emerge from the soil. Photomorphogenic responses are facilitated by a network of light and growth hormonal signals, such as auxin and gibberellic acid (GA). Karrikins (KARs), a group of butenolide compounds produced from burning plant materials in wildfires, are known to stimulate seed germination in fire-prone plant species. Notably, recent studies support that they also regulate seedling growth, while underlying molecular mechanisms have been unexplored yet. Here, we demonstrate that SUPPRESSOR OF MAX2 1 (SMAX1), a negative regulator of KAR signaling, integrates light and KAR signals into GA-DELLA pathways that regulate hypocotyl growth during seedling establishment. We found that SMAX1 facilitates degradation of DELLA proteins in the hypocotyls. Interestingly, light induces the accumulation of SMAX1 proteins, and SMAX1-mediated degradation of DELLA is elevated in seedling establishment during the dark-to-light transition. Our observations indicate that SMAX1-mediated integration of light and KAR signals into GA pathways elaborately modulates seedling establishment.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
14
|
Veciana N, Martín G, Leivar P, Monte E. BBX16 mediates the repression of seedling photomorphogenesis downstream of the GUN1/GLK1 module during retrograde signalling. THE NEW PHYTOLOGIST 2022; 234:93-106. [PMID: 35043407 PMCID: PMC9305768 DOI: 10.1111/nph.17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 05/03/2023]
Abstract
Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.
Collapse
Affiliation(s)
- Nil Veciana
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Guiomar Martín
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
| | - Pablo Leivar
- Laboratory of BiochemistryInstitut Químic de SarriàUniversitat Ramon Llull08017BarcelonaSpain
| | - Elena Monte
- Centre for Research in Agricultural Genomics (CRAG) CSIC‐IRTA‐UAB‐UBCampus UAB, Bellaterra08193BarcelonaSpain
- Consejo Superior de Investigaciones Científicas (CSIC)08028BarcelonaSpain
| |
Collapse
|
15
|
Cabrera J, Conesa CM, Del Pozo JC. May the dark be with roots: a perspective on how root illumination may bias in vitro research on plant-environment interactions. THE NEW PHYTOLOGIST 2022; 233:1988-1997. [PMID: 34942016 DOI: 10.1111/nph.17936] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Roots anchor plants to the soil, providing them with nutrients and water while creating a defence network and facilitating beneficial interactions with a multitude of living organisms and climatological conditions. To facilitate morphological and molecular studies, root research has been conducted using in vitro systems. However, under natural conditions, roots grow in the dark, mainly in the absence of illumination, except for the relatively low illumination of the upper soil surface, and this has been largely ignored. Here, we discuss the results found over the last decade on how experimental exposure of roots to light may bias root development and responses through the alteration of hormonal signalling, cytoskeleton organization, reactive oxygen species or the accumulation of flavonoids, among other factors. Illumination alters the uptake of nutrients or water, and also affects the response of the roots to abiotic stresses and root interactions with the microbiota. Furthermore, we review in vitro systems created to maintain roots in darkness, and provide a comparative analysis of root transcriptomes obtained with these devices. Finally, we identify other experimental variables that should be considered to better mimic soil conditions, whose improvement would benefit studies using in vitro cultivation or enclosed ecosystems.
Collapse
Affiliation(s)
- Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
16
|
Bermejo NF, Hoummadi G, Munné-Bosch S. β-Carotene biofortification of chia sprouts with plant growth regulators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:398-409. [PMID: 34715565 DOI: 10.1016/j.plaphy.2021.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Chia (Salvia hispanica) is a native plant species from South America that is very appreciated for its oleaginous seeds in the agri-food field. Chia seeds are natural sources of many bioactive compounds which provide benefits to human health. Nevertheless, chia sprouts have better nutritional properties than seeds, such as antioxidants, essential amino acids, and phenolic compounds. Among all these beneficial compounds, β-carotene has not been studied in chia sprouts. β-carotene is a precursor of vitamin A, which contributes to maintaining our health status. In this study, to improve β-carotene content in chia sprouts, some plant growth regulators (abscisic acid, methyl jasmonate and methyl salicylate) were applied exogenously to germinating chia seeds. Gibberellins A4/A7 and cytokinin 6-benzyladenine (Promalin®) were also applied, combined with the other regulators, to antagonize a possible inhibition in the germination. Seeds were grown in darkness for 4 days, then seeds were exposed to a short light stimulus (30') and finally to a continued light stimulus (48h). β-carotene, xanthophylls, chlorophylls, de-epoxidation status of xanthophyll cycle (DPS), germination rate, and sprouts fresh weight were analysed. The results show that sprouts treated with methyl salicylate in-creased 2,35 fold their β-carotene content when they were exposed to light for 30'+48h. Sprouts fresh weight and germination were not affected by methyl salicylate. Although more research is needed before industrial application, it is concluded that methyl salicylate can be used to improve β-carotene contents in chia sprouts.
Collapse
Affiliation(s)
- Núria F Bermejo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Ghita Hoummadi
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain
| | - Sergi Munné-Bosch
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona, Spain.
| |
Collapse
|
17
|
Kim JY, Park CM. A dual mode of ethylene actions contributes to the optimization of hypocotyl growth under fluctuating temperature environments. PLANT SIGNALING & BEHAVIOR 2021; 16:1926131. [PMID: 33975509 PMCID: PMC8280972 DOI: 10.1080/15592324.2021.1926131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The gaseous phytohormone ethylene plays versatile roles in sustaining plant growth and fitness in response to environmental changes, such as light illumination, flooding, and mechanical pressure. Interestingly, it is well known that the effects of ethylene on plant growth vary profoundly, depending on external conditions. For example, light/dark conditions alter the directionality of ethylene action on hypocotyl growth. Similarly, a recent study has shown that the effects of ethylene on hypocotyl growth are reversed during temperature increases: ethylene attenuates hypocotyl elongation in the light at warm temperatures (28°C), while promoting it at normal temperatures (22°C). The ethylene-activated ETHYLENE-INSENSITIVE 3 (EIN3) transcription factor directly promotes the transcription of both PHYTOCHROM INTERACTING FACTOR 3 (PIF3) and ARABIDOPSIS PP2C CLADE D7 (APD7) genes. At 22°C, the auxin activity is tuned down, and thus ethylene promotes hypocotyl growth via the PIF3-mediated microtubule reorganization. On the other hand, when auxin highly accumulates at 28°C, the ethylene-directed growth repression is potentiated through the APD7-mediated repression of auxin responses. APD7 plays a role in integrating ethylene cues into auxin signaling. We propose that the dual mode of EIN3-mediated ethylene actions enables plants to optimize growth under constantly changing environments.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Kim JY, Lee JH, Park CM. A Multifaceted Action of Phytochrome B in Plant Environmental Adaptation. FRONTIERS IN PLANT SCIENCE 2021; 12:659712. [PMID: 34239522 PMCID: PMC8258378 DOI: 10.3389/fpls.2021.659712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Light acts as a vital external cue that conveys surrounding information into plant growth and performance to facilitate plants to coordinate with changing environmental conditions. Upon exposure to light illumination, plants trigger a burst of molecular and physiological signaling cascades that induces not only photomorphogenic responses but also diverse adaptive behaviors. Notably, light responses and photomorphogenic traits are often associated with plant responses to other environmental cues, such as heat, cold, drought, and herbivore and pathogen attack. Growing evidence in recent years demonstrate that the red/far-red light-absorbing phytochrome (phy) photoreceptors, in particular phyB, play an essential role in plant adaptation responses to abiotic and biotic tensions by serving as a key mediator of information flow. It is also remarkable that phyB mediates the plant priming responses to numerous environmental challenges. In this minireview, we highlight recent advances on the multifaceted role of phyB during plant environmental adaptation. We also discuss the biological relevance and efficiency of the phy-mediated adaptive behaviors in potentially reducing fitness costs under unfavorable environments.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Verma D, Bhagat PK, Sinha AK. A dual-specificity phosphatase, MAP kinase phosphatase 1, positively regulates blue light-mediated seedling development in Arabidopsis. PLANTA 2021; 253:131. [PMID: 34057637 DOI: 10.1007/s00425-021-03649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
A dual-specificity phosphatase MKP1 negatively regulates the activity of MPK6 by dephosphorylating it and acts as a positive regulator of blue light (BL)-mediated photomorphogenic development in Arabidopsis. Reversible phosphorylation of proteins is one of the major post-translational modifications in nearly all signaling pathways in plants. MAP kinase phosphatases are very crucial in the regulation of MAPKs as they dephosphorylate both threonine (Thr) and tyrosine (Tyr) residues within the T-X-Y motif of active MAPKs. Therefore, to gain insight of involvement of MAP kinase phosphatases in the regulation of light signaling, we searched for the potential phosphatase which may regulate the function of MPK6, a negative regulator of blue light (BL)-mediated photomorphogenic development. We report here the identification of a dual-specificity phosphatase, MAP kinase phosphatase 1 (MKP1) as a positive regulator of BL-mediated seedling development. Overexpression of MKP1 enhances the BL-induced inhibition of hypocotyl elongation and displays more opened cotyledons. We also show that MKP1OE accumulates more pigments and positively affects the expression of downstream light-related genes in response to BL. In vitro and in vivo evidences also demonstrate that MKP1 not only interacts with but also dephosphorylates MPK6 in BL. In addition, MKP1 regulates stability as well as activity of MPK6 upon BL. Taken together our study highlights the important role of phosphatases in the regulation of a signaling pathway and identifies the role of MKP1 in the negative regulation of MPK6 activity leading to a change in BL-induced photomorphogenic responses.
Collapse
Affiliation(s)
- Deepanjali Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
20
|
Filtering Light-Emitting Diodes to Investigate Amber and Red Spectral Effects on Lettuce Growth. PLANTS 2021; 10:plants10061075. [PMID: 34071921 PMCID: PMC8229074 DOI: 10.3390/plants10061075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
Red and blue light are the principal wavelengths responsible for driving photosynthetic activity, yet amber light (595 nm) has the highest quantum efficiency and amber-rich high pressure sodium lamps result in superior or comparable plant performance. On this basis, we investigated how lettuce plant growth and photosynthetic activity were influenced by broad and narrow light spectra in the 590–630 nm range, by creating amber and red light-emitting diode (LED) spectra that are not commercially available. Four different light spectra were outfitted from existing LEDs using shortpass and notch filters: a double peak spectrum (595 and 655 nm; referred to as 595 + 655-nm light) that excluded 630-nm light, 595-nm, 613-nm, and 633-nm light emitting at an irradiance level of 50 W·m−2 (243–267 µmol·m−2·s−1). Shifting LED wavelengths from 595 nm to 633 nm and from 595 nm to 613 nm resulted in a biomass yield decrease of ~50% and ~80%, respectively. When 630-nm light is blocked, lettuce displayed expanded plant structures and the absence of purple pigmentation. This report presents a new and feasible approach to plant photobiology studies, by removing certain wavelengths to assess and investigate wavelength effect on plant growth and photosynthesis. Findings indicate that amber light is superior to red light for promoting photosynthetic activity and plant productivity, and this could set precedence for future work aimed at maximizing plant productivity in controlled environment agriculture.
Collapse
|
21
|
Martín G, Duque P. Tailoring photomorphogenic markers to organ growth dynamics. PLANT PHYSIOLOGY 2021; 186:239-249. [PMID: 33620489 PMCID: PMC8154095 DOI: 10.1093/plphys/kiab083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
When a dark-germinated seedling reaches the soil surface and perceives sunlight for the first time, light signaling is activated to adapt the plant's development and transition to autotrophism. During this process, functional chloroplasts assemble in the cotyledons and the seedling's cell expansion pattern is rearranged to enhance light perception. Hypocotyl cells expand rapidly in the dark, while cotyledon cell expansion is suppressed. However, light reverses this pattern by activating cell expansion in cotyledons and repressing it in hypocotyls. The fact that light-regulated developmental responses, as well as the transcriptional mechanisms controlling them, are organ-specific has been largely overlooked in previous studies of seedling de-etiolation. To analyze the expansion pattern of the hypocotyl and cotyledons separately in a given Arabidopsis (Arabidopsis thaliana) seedling, we define an organ ratio, the morphogenic index (MI), which integrates either phenotypic or transcriptomic data for each tissue and provides an important resource for functional analyses. Moreover, based on this index, we identified organ-specific molecular markers to independently quantify cotyledon and hypocotyl growth dynamics in whole-seedling samples. The combination of these marker genes with those of other developmental processes occurring during de-etiolation will allow improved molecular dissection of photomorphogenesis. Along with organ growth markers, this MI contributes a key toolset to unveil and accurately characterize the molecular mechanisms controlling seedling growth.
Collapse
Affiliation(s)
- Guiomar Martín
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
22
|
Casal JJ, Estevez JM. Auxin-Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harb Perspect Biol 2021; 13:a040030. [PMID: 33431585 PMCID: PMC8015692 DOI: 10.1101/cshperspect.a040030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plant fitness depends on the adequate morphological adjustment to the prevailing conditions of the environment. Therefore, plants sense environmental cues through their life cycle, including the presence of full darkness, light, or shade, the range of ambient temperatures, the direction of light and gravity vectors, and the presence of water and mineral nutrients (such as nitrate and phosphate) in the soil. The environmental information impinges on different aspects of the auxin system such as auxin synthesis, degradation, transport, perception, and downstream transcriptional regulation to modulate organ growth. Although a single environmental cue can affect several of these points, the relative impacts differ significantly among the various growth processes and cues. While stability in the generation of precise auxin gradients serves to guide the basic developmental pattern, dynamic changes in the auxin system fine-tune body shape to optimize the capture of environmental resources.
Collapse
Affiliation(s)
- Jorge J Casal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires 1417, Argentina
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires C1405BWE, Argentina
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello and Millennium Institute for Integrative Biology (iBio), Santiago 8370146, Chile
| |
Collapse
|
23
|
Kreynes AE, Yong Z, Ellis BE. Developmental phenotypes of Arabidopsis plants expressing phosphovariants of AtMYB75. PLANT SIGNALING & BEHAVIOR 2021; 16:1836454. [PMID: 33100126 PMCID: PMC7781762 DOI: 10.1080/15592324.2020.1836454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis transcription factor Myeloblastosis protein 75 (MYB75, AT1G56650) is a well-established transcriptional activator of genes required for anthocyanin and flavonoid production, and a repressor of lignin and other secondary cell wall biosynthesis genes. MYB75 is itself tightly regulated at the transcriptional, translational and post-translational levels, including protein phosphorylation by Arabidopsis MAP kinases Examination of the behavior of different phosphovariant versions of MYB75 in vitro and in vivo revealed that overexpression of the MYB75T131E phosphovariant had a particularly marked effect on global changes in gene expression suggesting that phosphorylated MYB75 could be involved in a broader range of functions than previously recognized. Here, we describe a range of distinct developmental phenotypes observed among Arabidopsis lines expressing various phosphovariant forms of MYB75. Expression of either MYB75T131E or MYB75T131A phosphovariants, from the endogenous MYB75 promoter, in Arabidopsis myb75- mutants (Nossen background), resulted in severely impaired germination rates, and developmental arrest at early seedling stages. Arabidopsis plants overexpressing MYB75T131E from a strong constitutive Cauliflower mosaic virus (CaMV35S) promoter displayed slower development, with delayed bolting, flowering and onset of senescence. Conversely, MYB75T131A -overexpressing lines flowered and set seed earlier than either Col-0 WT controls or other MYB75-overexpressors (MYB75WT and MYB75T131E ). Histochemical analysis of mature stems also revealed ectopic vessel development in plants overexpressing MYB75; this phenotype was particularly prominent in the MYB75T131E phosphovariant. These data suggest that MYB75 plays a significant role in plant development, and that this aspect of MYB75 function is influenced by its phosphorylation status.
Collapse
Affiliation(s)
- Anna E. Kreynes
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
- CONTACT Anna E. Kreynes Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Zhenhua Yong
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Brian E. Ellis
- Michael Smith Laboratories, Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
24
|
Bhattacharjee A, Srivastava PL, Nath O, Jain M. Genome-wide discovery of OsHOX24-binding sites and regulation of desiccation stress response in rice. PLANT MOLECULAR BIOLOGY 2021; 105:205-214. [PMID: 33025523 DOI: 10.1007/s11103-020-01078-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
OsHOX24 mediates regulation of desiccation stress response via complex regulatory network as indicated by its binding to several target genes including transcription factors in rice. HD-ZIP I subfamily of homeobox transcription factors (TFs) are involved in abiotic stress responses and plant development. Previously, we demonstrated the role of OsHOX24, a member of HD-ZIP I subfamily, in abiotic stress responses. In this study, we identified downstream targets of OsHOX24 under control and desiccation stress conditions via chromatin immunoprecipitation-sequencing (ChIP-seq) approach in wild-type and OsHOX24 over-expression transgenic in rice. OsHOX24-binding sites in each sample and differential binding sites between the samples were detected at various genomic locations, including genic and intergenic regions. Gene ontology enrichment analysis revealed that OsHOX24 direct target genes were involved in several biological processes, including plant development, ABA-mediated signalling pathway, ubiquitin-dependent protein catabolic process, ion transport, abiotic and biotic stress responses besides transcriptional and translational regulation. The enrichment of several cis-regulatory motifs representing binding sites of other TFs, such as ABFs, ERF1, MYB1, LTREs and SORLIP2, suggested the involvement of OsHOX24 in a complex regulatory network. These findings indicate that OsHOX24-mediated desiccation stress regulation involves modulation of a plethora of target genes, which participate in diverse pathways in rice.
Collapse
Affiliation(s)
- Annapurna Bhattacharjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prabhakar Lal Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Onkar Nath
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
25
|
Favero DS, Lambolez A, Sugimoto K. Molecular pathways regulating elongation of aerial plant organs: a focus on light, the circadian clock, and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:392-420. [PMID: 32986276 DOI: 10.1111/tpj.14996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.
Collapse
Affiliation(s)
- David S Favero
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alice Lambolez
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 119-0033, Japan
| |
Collapse
|
26
|
Cammarisano L, Donnison IS, Robson PRH. Producing Enhanced Yield and Nutritional Pigmentation in Lollo Rosso Through Manipulating the Irradiance, Duration, and Periodicity of LEDs in the Visible Region of Light. FRONTIERS IN PLANT SCIENCE 2020; 11:598082. [PMID: 33391308 PMCID: PMC7775386 DOI: 10.3389/fpls.2020.598082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/23/2020] [Indexed: 06/01/2023]
Abstract
Pigmented food are an important part of the human diet, and anthocyanins have demonstrable protection against tumor production in mouse models and beneficial effects on human liver chemistry. As such, producing pigmented crops is important for a nutritionally diverse diet. Lollo rosso lettuce is a fast-growing pigmented plant, is rich in phenolic compounds, and represents a suitable system to test optimization strategies for yield and anthocyanin production. High-energy UV wavebands are often used to stimulate increased pigmentation; however, we hypothesized that optimizing visible wavebands would deliver both yield and quality improvements. Growing Lollo rosso under irradiances between 5 and 180 W m-2 using visible waveband LEDs produced 0.4 g fresh weight per W m-2 in the linear portion of the curve between 5 and 40 W m-2 and achieved an approximate asymptote of 20 g fresh weight at around 100-120 W m-2 for yield. Anthocyanin content increased linearly with irradiance. We attempted to optimize the visible wavebands by supplementing half the asymptotic energy for 15 days with supplemental red (R) or blue (B) wavebands in the peaks of photosynthetic activity (430-460 and 630-660 nm). R and B affected rosette morphology with no significant impact on yield, but B significantly increased anthocyanin content by 94% compared to R. We therefore focused on further optimizing B by shortening the daily duration of supplemental B. The minimum B treatment that lacked significant pigment induction was 1 h. We hypothesized that short durations would be more active at different times in the diurnal cycle. Supplemental B was applied for 2 h at four different times. A night-break with B produced the highest yield and anthocyanin content. Our research demonstrates new ways to efficiently use readily available LEDs within the PAR wavebands to increase both yield and crop quality in controlled environment agriculture.
Collapse
Affiliation(s)
- Laura Cammarisano
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- Next-Generation Horticultural Systems, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Iain S. Donnison
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Paul R. H. Robson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
27
|
Wang J, Sun N, Zhang F, Yu R, Chen H, Deng XW, Wei N. SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis. THE PLANT CELL 2020; 32:3792-3811. [PMID: 33093148 PMCID: PMC7721335 DOI: 10.1105/tpc.20.00283] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 05/04/2023]
Abstract
Following germination in the dark, Arabidopsis (Arabidopsis thaliana) seedlings undergo etiolation and develop apical hooks, closed cotyledons, and rapidly elongating hypocotyls. Upon light perception, the seedlings de-etiolate, which includes the opening of apical hooks and cotyledons. Here, we identify Arabidopsis Small Auxin Up RNA17 (SAUR17) as a downstream effector of etiolation, which serves to bring about apical hook formation and closed cotyledons. SAUR17 is highly expressed in apical hooks and cotyledons and is repressed by light. The apical organs also express a group of light-inducing SAURs, as represented by SAUR50, which promote hook and cotyledon opening. The development of etiolated or de-etiolated apical structures requires asymmetric differential cell growth. We present evidence that the opposing actions of SAUR17 and SAUR50 on apical development largely result from their antagonistic regulation of Protein Phosphatase 2C D-clade 1 (PP2C-D1), a phosphatase that suppresses cell expansion and promotes apical hook development in the dark. SAUR50 inhibits PP2C-D1, whereas SAUR17 has a higher affinity for PP2C-D1 without inhibiting its activity. PP2C-D1 predominantly associates with SAUR17 in etiolated seedlings, which shields it from inhibitory SAURs such as SAUR50. Light signals turn off SAUR17 and upregulate a subgroup of SAURs including SAUR50 at the inner side of the hook and cotyledon cells, leading to cell expansion and unfolding of the hook and cotyledons.
Collapse
Affiliation(s)
- Jiajun Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ning Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Renbo Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, School of Life Sciences, and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
28
|
Battle MW, Vegliani F, Jones MA. Shades of green: untying the knots of green photoperception. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5764-5770. [PMID: 32619226 PMCID: PMC7541914 DOI: 10.1093/jxb/eraa312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 05/04/2023]
Abstract
The development of economical LED technology has enabled the application of different light qualities and quantities to control plant growth. Although we have a comprehensive understanding of plants' perception of red and blue light, the lack of a dedicated green light sensor has frustrated our utilization of intermediate wavelengths, with many contradictory reports in the literature. We discuss the contribution of red and blue photoreceptors to green light perception and highlight how green light can be used to improve crop quality. Importantly, our meta-analysis demonstrates that green light perception should instead be considered as a combination of distinct 'green' and 'yellow' light-induced responses. This distinction will enable clearer interpretation of plants' behaviour in response to green light as we seek to optimize plant growth and nutritional quality in horticultural contexts.
Collapse
Affiliation(s)
- Martin W Battle
- School of Life Sciences, University of Essex, Colchester, UK
| | - Franco Vegliani
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow, UK
| | - Matthew A Jones
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow, UK
- Correspondence:
| |
Collapse
|
29
|
Deepika, Ankit, Sagar S, Singh A. Dark-Induced Hormonal Regulation of Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:581666. [PMID: 33117413 PMCID: PMC7575791 DOI: 10.3389/fpls.2020.581666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 05/04/2023]
Abstract
The sessile nature of plants has made them extremely sensitive and flexible toward the constant flux of the surrounding environment, particularly light and dark. The light is perceived as a signal by specific receptors which further transduce the information through the signaling intermediates and effector proteins to modulate gene expression. Signal transduction induces changes in hormone levels that alters developmental, physiological and morphological processes. Importance of light for plants growth is well recognized, but a holistic understanding of key molecular and physiological changes governing plants development under dark is awaited. Here, we describe how darkness acts as a signal causing alteration in hormone levels and subsequent modulation of the gene regulatory network throughout plant life. The emphasis of this review is on dark mediated changes in plant hormones, regulation of signaling complex COP/DET/FUS and the transcription factors PIFs which affects developmental events such as apical hook development, elongated hypocotyls, photoperiodic flowering, shortened roots, and plastid development. Furthermore, the role of darkness in shade avoidance and senescence is discussed.
Collapse
Affiliation(s)
| | | | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
30
|
Tognacca RS, Kubaczka MG, Servi L, Rodríguez FS, Godoy Herz MA, Petrillo E. Light in the transcription landscape: chromatin, RNA polymerase II and splicing throughout Arabidopsis thaliana's life cycle. Transcription 2020; 11:117-133. [PMID: 32748694 DOI: 10.1080/21541264.2020.1796473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants have a high level of developmental plasticity that allows them to respond and adapt to changes in the environment. Among the environmental cues, light controls almost every aspect of A. thaliana's life cycle, including seed maturation, seed germination, seedling de-etiolation and flowering time. Light signals induce massive reprogramming of gene expression, producing changes in RNA polymerase II transcription, alternative splicing, and chromatin state. Since splicing reactions occur mainly while transcription takes place, the regulation of RNAPII transcription has repercussions in the splicing outcomes. This cotranscriptional nature allows a functional coupling between transcription and splicing, in which properties of the splicing reactions are affected by the transcriptional process. Chromatin landscapes influence both transcription and splicing. In this review, we highlight, summarize and discuss recent progress in the field to gain a comprehensive insight on the cross-regulation between chromatin state, RNAPII transcription and splicing decisions in plants, with a special focus on light-triggered responses. We also introduce several examples of transcription and splicing factors that could be acting as coupling factors in plants. Unravelling how these connected regulatory networks operate, can help in the design of better crops with higher productivity and tolerance.
Collapse
Affiliation(s)
- Rocío S Tognacca
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - M Guillermina Kubaczka
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Lucas Servi
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Florencia S Rodríguez
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina.,Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Micaela A Godoy Herz
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Ezequiel Petrillo
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
31
|
Zhu A, Wang A, Zhang Y, Dennis ES, Peacock WJ, Greaves AIK. Early Establishment of Photosynthesis and Auxin Biosynthesis Plays a Key Role in Early Biomass Heterosis in Brassica napus (Canola) Hybrids. PLANT & CELL PHYSIOLOGY 2020; 61:1134-1143. [PMID: 32215572 DOI: 10.1093/pcp/pcaa038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/16/2020] [Indexed: 05/26/2023]
Abstract
Heterosis or hybrid vigor has been used widely for more than a decade in Canola (Brassica napus) production. Canola hybrids show heterosis in a variety of traits compared to parents, including increased biomass at the early stages of seedling establishment, which is a critical developmental step that impacts future plant growth and seed yield. In this study, we examined transcriptomes of two parental lines, Garnet (Gar) and NX0052 (0052), and their reciprocal hybrids, Gar/0052, at 4 and 8 days after sowing (DAS). In hybrids, early seedling biomass heterosis is correlated with earlier expression of genes in photosynthesis pathways relative to parents. The hybrids also showed early expression of genes in the auxin biosynthesis pathway, consistent with the higher auxin concentrations detected in hybrid seedlings at 4 DAS. Auxin is a key phytohormone that regulates plant development promoting cell expansion and cell proliferation. Consistent with the increased levels of auxin, hybrids have larger and more palisade cells than the parents at the same time point. We propose a possible mechanism of early biomass heterosis through the early establishment of photosynthesis and auxin biosynthesis, providing insights into how transcriptional changes in hybrids are translated into phenotypical heterosis. This finding could be utilized in future Canola breeding to identify hybrid combinations with the superior early seedling establishment and strong levels of hybrid vigor in later plant development.
Collapse
Affiliation(s)
- Anyu Zhu
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
| | - Aihua Wang
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
| | - You Zhang
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - Elizabeth S Dennis
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - W James Peacock
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, New South Wales 2007, Australia
| | - And Ian K Greaves
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2600, Australia
| |
Collapse
|
32
|
Merendino L, Courtois F, Grübler B, Bastien O, Straetmanns V, Chevalier F, Lerbs-Mache S, Lurin C, Pfannschmidt T. Retrograde signals from mitochondria reprogramme skoto-morphogenesis in Arabidopsis thaliana via alternative oxidase 1a. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190567. [PMID: 32362252 DOI: 10.1098/rstb.2019.0567] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The early steps in germination and development of angiosperm seedlings often occur in the dark, inducing a special developmental programme called skoto-morphogenesis. Under these conditions photosynthesis cannot work and all energetic requirements must be fulfilled by mitochondrial metabolization of storage energies. Here, we report the physiological impact of mitochondrial dysfunctions on the skoto-morphogenic programme by using the Arabidopsis rpoTmp mutant. This mutant is defective in the T7-phage-type organellar RNA polymerase shared by plastids and mitochondria. Lack of this enzyme causes a mitochondrial dysfunction resulting in a strongly reduced mitochondrial respiratory chain and a compensatory upregulation of the alternative-oxidase (AOX)-dependent respiration. Surprisingly, the mutant exhibits a triple-response-like phenotype with a twisted apical hook and a shortened hypocotyl. Highly similar phenotypes were detected in other respiration mutants (rug3 and atphb3) and in WT seedlings treated with the respiration inhibitor KCN. Further genetic and molecular data suggest that the observed skoto-morphogenic alterations are specifically dependent on the activity of the AOX1a enzyme. Microarray analyses indicated that a retrograde signal from mitochondria activates the ANAC017-dependent pathway which controls the activation of AOX1A transcription. In sum, our analysis identifies AOX as a functional link that couples the formation of a triple-response-like phenotype to mitochondrial dysfunction. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Livia Merendino
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France.,Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université, d'Evry, 91405 Orsay, France.,Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Florence Courtois
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Björn Grübler
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Vera Straetmanns
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Fabien Chevalier
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Silva Lerbs-Mache
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| | - Claire Lurin
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université, d'Evry, 91405 Orsay, France.,Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Thomas Pfannschmidt
- Université Grenoble Alpes, CNRS, INRAE, CEA, IRIG-LPCV, 38000 Grenoble, France
| |
Collapse
|
33
|
Chang W, Guo Y, Zhang H, Liu X, Guo L. Same Actor in Different Stages: Genes in Shoot Apical Meristem Maintenance and Floral Meristem Determinacy in Arabidopsis. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
34
|
Burko Y, Seluzicki A, Zander M, Pedmale UV, Ecker JR, Chory J. Chimeric Activators and Repressors Define HY5 Activity and Reveal a Light-Regulated Feedback Mechanism. THE PLANT CELL 2020; 32:967-983. [PMID: 32086365 PMCID: PMC7145465 DOI: 10.1105/tpc.19.00772] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/17/2020] [Accepted: 02/19/2020] [Indexed: 05/20/2023]
Abstract
The first exposure to light marks a crucial transition in plant development. This transition relies on the transcription factor HY5 controlling a complex downstream growth program. Despite its importance, its function in transcription remains unclear. Previous studies have generated lists of thousands of potential target genes and competing models of HY5 transcription regulation. In this work, we carry out detailed phenotypic and molecular analysis of constitutive activator and repressor HY5 fusion proteins. Using this strategy, we were able to filter out large numbers of genes that are unlikely to be direct targets, allowing us to eliminate several proposed models of HY5's mechanism of action. We demonstrate that the primary activity of HY5 is promoting transcription and that this function relies on other, likely light-regulated, factors. In addition, this approach reveals a molecular feedback loop via the COP1/SPA E3 ubiquitin ligase complex, suggesting a mechanism that maintains low HY5 in the dark, primed for rapid accumulation to reprogram growth upon light exposure. Our strategy is broadly adaptable to the study of transcription factor activity. Lastly, we show that modulating this feedback loop can generate significant phenotypic diversity in both Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Yogev Burko
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Adam Seluzicki
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Mark Zander
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ullas V Pedmale
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joseph R Ecker
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
35
|
Kreynes AE, Yong Z, Liu XM, Wong DCJ, Castellarin SD, Ellis BE. Biological impacts of phosphomimic AtMYB75. PLANTA 2020; 251:60. [PMID: 32030477 DOI: 10.1007/s00425-020-03350-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/27/2020] [Indexed: 05/04/2023]
Abstract
The phosphorylation status of MYB75 at T-131 affects protein stability, flavonoid profiles, and patterns of gene expression. The Arabidopsis transcription factor Myeloblastosis protein 75 (MYB75, AT1G56650) is known to act as a positive transcriptional regulator of genes required for flavonoid and anthocyanin biosynthesis. MYB75 was also shown to negatively regulate lignin and other secondary cell wall biosynthetic genes (Bhargava et al. in Plant Physiol 154(3):1428-1438, 2010). While transcriptional regulation of MYB75 has been described in numerous publications, little is known about post-translational control of MYB75 protein function. In a recent publication, light-induced activation of a MAP kinase (MPK4, AT4G01370) in Arabidopsis was reported to lead to MYB75 phosphorylation at two canonical MPK target sites, threonines, T-126 and T-131. This double phosphorylation event positively influenced MYB75 protein stability (Li et al. in Plant Cell 28(11):2866-2883, 2016). We have examined this phenomenon through use of phosphomutant forms of MYB75 and found that MYB75 is phosphorylated primarily at T-131, and that the phosphorylation of MYB75 recombinant protein in vitro can be catalyzed by multiple MAP kinases, including MPK3 (AT3G45640), MPK6 (AT2G43790), MPK4 and MPK11 (AT1G01560). We also demonstrate that MYB75 can bind to a large number of Arabidopsis MPK's in vitro, suggesting it could be a target of multiple signalling pathways. The impact of MYB75 phosphorylation at T-131 on the function of this transcription factor, in terms of localization, stability, and protein-protein interactions with known binding partners was examined in transgenic lines expressing phosphomimic and phosphonull versions of MYB75, to capture the behaviour of permanently phosphorylated and unphosphorylated MYB75 protein, respectively. In addition, we describe how ectopic over-expression of different phosphovariant forms of MYB75 (MYB75WT, MYB75T131A, and MYB75T131E) affects flavonoid biochemical profiles and global changes of gene expression in the corresponding transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Anna E Kreynes
- Michael Smith Laboratories, Department of Botany, and Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Zhenhua Yong
- Michael Smith Laboratories, Department of Botany, and Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiao-Min Liu
- Michael Smith Laboratories, Department of Botany, and Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Darren C J Wong
- Michael Smith Laboratories, Department of Botany, and Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simone D Castellarin
- Michael Smith Laboratories, Department of Botany, and Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian E Ellis
- Michael Smith Laboratories, Department of Botany, and Wine Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, Lee J, Marri S, Pogson BJ. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. eLife 2020; 9:45310. [PMID: 32003746 PMCID: PMC6994220 DOI: 10.7554/elife.45310] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are a core plastid component and yet their regulatory function during plastid biogenesis remains enigmatic. A unique carotenoid biosynthesis mutant, carotenoid chloroplast regulation 2 (ccr2), that has no prolamellar body (PLB) and normal PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR) levels, was used to demonstrate a regulatory function for carotenoids and their derivatives under varied dark-light regimes. A forward genetics approach revealed how an epistatic interaction between a ζ-carotene isomerase mutant (ziso-155) and ccr2 blocked the biosynthesis of specific cis-carotenes and restored PLB formation in etioplasts. We attributed this to a novel apocarotenoid retrograde signal, as chemical inhibition of carotenoid cleavage dioxygenase activity restored PLB formation in ccr2 etioplasts during skotomorphogenesis. The apocarotenoid acted in parallel to the repressor of photomorphogenesis, DEETIOLATED1 (DET1), to transcriptionally regulate PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR), PHYTOCHROME INTERACTING FACTOR3 (PIF3) and ELONGATED HYPOCOTYL5 (HY5). The unknown apocarotenoid signal restored POR protein levels and PLB formation in det1, thereby controlling plastid development.
Collapse
Affiliation(s)
| | - Xin Hou
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Yagiz Alagoz
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - John Rivers
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Jiwon Lee
- Centre for Advanced Microscopy, The Australian National University, Canberra, Australia
| | - Shashikanth Marri
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Barry J Pogson
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
37
|
Samiei S, Rasti P, Ly Vu J, Buitink J, Rousseau D. Deep learning-based detection of seedling development. PLANT METHODS 2020; 16:103. [PMID: 32742300 PMCID: PMC7391498 DOI: 10.1186/s13007-020-00647-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Monitoring the timing of seedling emergence and early development via high-throughput phenotyping with computer vision is a challenging topic of high interest in plant science. While most studies focus on the measurements of leaf area index or detection of specific events such as emergence, little attention has been put on the identification of kinetics of events of early seedling development on a seed to seed basis. RESULT Imaging systems screened the whole seedling growth process from the top view. Precise annotation of emergence out of the soil, cotyledon opening, and appearance of first leaf was conducted. This annotated data set served to train deep neural networks. Various strategies to incorporate in neural networks, the prior knowledge of the order of the developmental stages were investigated. Best results were obtained with a deep neural network followed with a long short term memory cell, which achieves more than 90% accuracy of correct detection. CONCLUSION This work provides a full pipeline of image processing and machine learning to classify three stages of plant growth plus soil on the different accessions of two species of red clover and alfalfa but which could easily be extended to other crops and other stages of development.
Collapse
Affiliation(s)
- Salma Samiei
- Laboratoire Angevin de Recherche en Ingénierie des Système (LARIS),UMR INRAe IRHS, Université d’Angers, Angers, France
| | - Pejman Rasti
- Laboratoire Angevin de Recherche en Ingénierie des Système (LARIS),UMR INRAe IRHS, Université d’Angers, Angers, France
- Department of Big Data and Data Science, École d’ingénieur Informatique et Environnement (ESAIP), Angers, France
| | - Joseph Ly Vu
- Institut de Recherche en Horticulture et Semences-UMR1345, Université d’Angers, INRAe, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Julia Buitink
- Institut de Recherche en Horticulture et Semences-UMR1345, Université d’Angers, INRAe, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Système (LARIS),UMR INRAe IRHS, Université d’Angers, Angers, France
| |
Collapse
|
38
|
Zhang X, Bian Z, Li S, Chen X, Lu C. Comparative Analysis of Phenolic Compound Profiles, Antioxidant Capacities, and Expressions of Phenolic Biosynthesis-Related Genes in Soybean Microgreens Grown under Different Light Spectra. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13577-13588. [PMID: 31730344 DOI: 10.1021/acs.jafc.9b05594] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Light-emitting diode (LED) based light sources, which can selectively and quantitatively provide different spectra, have been frequently applied to manipulate plant growth and development. In this study, the effects of different LED light spectra on the growth, phenolic compounds profile, antioxidant capacity, and transcriptional changes in genes regulating phenolic biosynthesis in soybean microgreens were investigated. The results showed that light illumination decreased the seedling length and yield but increased phenolic compound content. Blue light and ultraviolet-A (UV-A) induced significant increases in total phenolic and total flavonoid content, as compared with the white light control. Sixty-six phenolic compounds were identified in the soybean samples, of which isoflavone, phenolic acid, and flavonol were the main components. Ten phenolic compounds obtained from the orthogonal partial least-squares discriminant analysis (OPLS-DA) were reflecting the effect of light spectra. The antioxidant capacity was consistent with the phenolic metabolite levels, which showed higher levels under blue light and UV-A compared with the control. The highest transcript levels of phenolic biosynthesis-related genes were observed under blue light and UV-A. The transcript levels of GmCHI, GmFLS, and GmIOMT were also upregulated under far-red and red light. Taken together, our findings suggested that the application of LED light could pave a green and effective way to produce phenolic compound-enriched soybean microgreens with high nutritional quality, which could stimulate further investigations for improving plant nutritional value and should have a wide impact on maintaining human health.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Zhonghua Bian
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| | - Shuai Li
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Xin Chen
- Institute of Industrial Crops , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences , Nottingham Trent University , Brackenhurst Campus, Nottingham , NG25 0QF , U.K
| |
Collapse
|
39
|
Dobos O, Horvath P, Nagy F, Danka T, Viczián A. A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping. PLANT PHYSIOLOGY 2019; 181:1415-1424. [PMID: 31636105 PMCID: PMC6878028 DOI: 10.1104/pp.19.00728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/09/2019] [Indexed: 05/09/2023]
Abstract
Hypocotyl length determination is a widely used method to phenotype young seedlings. The measurement itself has advanced from using rulers and millimeter papers to assessing digitized images but remains a labor-intensive, monotonous, and time-consuming procedure. To make high-throughput plant phenotyping possible, we developed a deep-learning-based approach to simplify and accelerate this method. Our pipeline does not require a specialized imaging system but works well with low-quality images produced with a simple flatbed scanner or a smartphone camera. Moreover, it is easily adaptable for a diverse range of datasets not restricted to Arabidopsis (Arabidopsis thaliana). Furthermore, we show that the accuracy of the method reaches human performance. We not only provide the full code at https://github.com/biomag-lab/hypocotyl-UNet, but also give detailed instructions on how the algorithm can be trained with custom data, tailoring it for the requirements and imaging setup of the user.
Collapse
Affiliation(s)
- Orsolya Dobos
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Peter Horvath
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - Tivadar Danka
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Hungary
| |
Collapse
|
40
|
Galstyan A, Nemhauser JL. Auxin promotion of seedling growth via ARF5 is dependent on the brassinosteroid-regulated transcription factors BES1 and BEH4. PLANT DIRECT 2019; 3:e00166. [PMID: 31508562 PMCID: PMC6722427 DOI: 10.1002/pld3.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 05/21/2023]
Abstract
Seedlings must continually calibrate their growth in response to the environment. Auxin and brassinosteroids (BRs) are plant hormones that work together to control growth responses during photomorphogenesis. We used our previous analysis of promoter architecture in an auxin and BR target gene to guide our investigation into the broader molecular bases and biological relevance of transcriptional co-regulation by these hormones. We found that the auxin-regulated transcription factor Auxin Responsive Factor 5 (ARF5) and the brassinosteroid-regulated transcription factor BRI1-EMS-Suppressor 1/Brassinazole Resistant 2 (BES1) co-regulated a subset of growth-promoting genes via conserved bipartite cis-regulatory elements. Moreover, ARF5 binding to DNA could be enriched by increasing BES1 levels. The evolutionary loss of bipartite elements in promoters results in loss of hormone responsiveness. We also identified another member of the BES1/BZR1 family called BEH4 that acts partially redundantly with BES1 to regulate seedling growth. Double mutant analysis showed that BEH4 and not BZR1 were required alongside BES1 for normal auxin response during early seedling development. We propose that an ARF5-BES1/BEH4 transcriptional module acts to promote growth via modulation of a diverse set of growth-associated genes.
Collapse
Affiliation(s)
- Anahit Galstyan
- Department of BiologyUniversity of WashingtonSeattleWAUSA
- Present address:
Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | | |
Collapse
|
41
|
Senapati D, Kushwaha R, Dutta S, Maurya JP, Biswas S, Gangappa SN, Chattopadhyay S. COP1 regulates the stability of CAM7 to promote photomorphogenic growth. PLANT DIRECT 2019; 3:e00144. [PMID: 31245782 PMCID: PMC6593147 DOI: 10.1002/pld3.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 05/31/2023]
Abstract
The unique member of the calmodulin gene family, Calmodulin7 (CAM7), plays a crucial role as transcriptional regulator to promote Arabidopsis seedling development. CAM7 regulates the expression of HY5, which is intimately involved in the promotion of photomorphogenic growth and light-regulated gene expression. COP1 ubiquitin ligase suppresses photomorphogenesis by degrading multiple photomorphogenesis promoting factors including HY5 in darkness. Genetic interaction studies, in this report, reveal that CAM7 and COP1 co-ordinately work to promote photomorphogenic growth and light-regulated gene expression at lower intensity of light. CAM7 physically interacts with COP1 in the nucleus. Further, in vivo study suggests that CAM7 and COP1 interaction is light intensity dependent. We have also shown that functional COP1 is required for optimum accumulation of CAM7 at lower fluences of light. Taken together, this study demonstrates the coordinated function of CAM7 and COP1 in Arabidopsis seedling development.
Collapse
Affiliation(s)
| | - Ritu Kushwaha
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Siddhartha Dutta
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Jay Prakash Maurya
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Srabasthi Biswas
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | | | | |
Collapse
|
42
|
Zhang Y, Wang C, Xu H, Shi X, Zhen W, Hu Z, Huang J, Zheng Y, Huang P, Zhang KX, Xiao X, Hao X, Wang X, Zhou C, Wang G, Li C, Zheng L. HY5 Contributes to Light-Regulated Root System Architecture Under a Root-Covered Culture System. FRONTIERS IN PLANT SCIENCE 2019; 10:1490. [PMID: 31850011 PMCID: PMC6892842 DOI: 10.3389/fpls.2019.01490] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/28/2019] [Indexed: 05/05/2023]
Abstract
Light is essential for plant organogenesis and development. Light-regulated shoot morphogenesis has been extensively studied; however, the mechanisms by which plant roots perceive and respond to aboveground light are largely unknown, particularly because the roots of most terrestrial plants are usually located underground in darkness. To mimic natural root growth conditions, we developed a root-covered system (RCS) in which the shoots were illuminated and the plant roots could be either exposed to light or cultivated in darkness. Using the RCS, we observed that root growth of wild-type plants was significantly promoted when the roots were in darkness, whereas it was inhibited by direct light exposure. This growth change seems to be regulated by ELONGATED HYPOCOTYL 5 (HY5), a master regulator of photomorphogenesis. Light was found to regulate HY5 expression in the roots, while a HY5 deficiency partially abolished the inhibition of growth in roots directly exposed to light, suggesting that HY5 expression is induced by direct light exposure and inhibits root growth. However, no differences in HY5 expression were observed between illuminated and dark-grown cop1 roots, indicating that HY5 may be regulated by COP1-mediated proteasome degradation. We confirmed the crucial role of HY5 in regulating root development in response to light under soil-grown conditions. A transcriptomic analysis revealed that light controls the expression of numerous genes involved in phytohormone signaling, stress adaptation, and metabolic processes in a HY5-dependent manner. In combination with the results of the flavonol quantification and exogenous quercetin application, these findings suggested that HY5 regulates the root response to light through a complex network that integrates flavonol biosynthesis and reactive oxygen species signaling. Collectively, our results indicate that HY5 is a master regulator of root photomorphogenesis.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chunfei Wang
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Xu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Weibo Zhen
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhubing Hu
- Center for Multi-omics Research, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Yan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Ping Huang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Kun-Xiao Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xiao Xiao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xincai Hao
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Chen Li
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Guodong Wang, ; Chen Li, ; Lanlan Zheng,
| |
Collapse
|
43
|
Xin X, Chen W, Wang B, Zhu F, Li Y, Yang H, Li J, Ren D. Arabidopsis MKK10-MPK6 mediates red-light-regulated opening of seedling cotyledons through phosphorylation of PIF3. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:423-439. [PMID: 29244171 PMCID: PMC5853512 DOI: 10.1093/jxb/erx418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/31/2017] [Indexed: 05/21/2023]
Abstract
Photomorphogenesis is an important process in which seedlings emerge from soil and begin autotrophic growth. Mechanisms of photomorphogenesis include light signal perception, signal transduction, and the modulation of expression of light-responsive genes, ultimately leading to cellular and developmental changes. Phytochrome-interacting factors (PIFs) play negative regulatory roles in photomorphogenesis. Light-induced activation of phytochromes triggers rapid phosphorylation and degradation of PIFs, but the kinases responsible for the phosphorylation of PIFs are largely unknown. Here, we show that Arabidopsis MPK6 is a kinase involved in phosphorylating PIF3 and regulating red light-induced cotyledon opening, a crucial process during seedling photomorphogenesis. MPK6 was activated by red light, and the cotyledon opening angle in red light was reduced in mpk6 seedlings. MKK10, a MAPKK whose function is currently unclear, appears to act as a kinase upstream of MPK6 in regulating cotyledon opening. Activation of MPK6 by MKK10 led to the phosphorylation of PIF3 and accelerated its turnover in transgenic seedlings. Accordingly, the overexpression of PIF3 suppressed MKK10-induced cotyledon opening. MKK10 and MPK6 function downstream of phyB in regulating seedling cotyledon opening in red light. Therefore, the MKK10-MPK6 cascade appears to mediate the regulation of red-light-controlled seedling photomorphogenesis via a mechanism that might involve the phosphorylation of PIF3.
Collapse
Affiliation(s)
- Xiaoyun Xin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Wenhao Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Bo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Fan Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Hailian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, China
- Collaborative Innovation Center of Crop Stress Biology, China
- Correspondence:
| |
Collapse
|
44
|
Bu TT, Shen J, Chao Q, Shen Z, Yan Z, Zheng HY, Wang BC. Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using Concanavalin A lectin affinity chromatography and a nano-LC-MS/MS-based iTRAQ approach. PLANT CELL REPORTS 2017; 36:1943-1958. [PMID: 28942497 DOI: 10.1007/s00299-017-2209-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The identification of N -glycosylated proteins with information about changes in the level of N -glycosylation during de-etiolation provides a database that will aid further research on plant N -glycosylation and de-etiolation. N-glycosylation is one of the most prominent and abundant protein post-translational modifications in all eukaryotes and in plants it plays important roles in development, stress tolerance and immune responses. Because light-induced de-etiolation is one of the most dramatic developmental processes known in plants, seedlings undergoing de-etiolation are an excellent model for investigating dynamic proteomic profiles. Here, we present a comprehensive, quantitative N-glycoproteomic profile of maize seedlings undergoing 12 h of de-etiolation obtained using Concanavalin A (Con A) lectin affinity chromatography enrichment coupled with a nano-LC-MS/MS-based iTRAQ approach. In total, 1084 unique N-glycopeptides carrying 909 N-glycosylation sites and corresponding to 609 proteins were identified and quantified, including 186 N-glycosylation sites from 162 proteins that were significantly regulated over the course of the 12 h de-etiolation period. Based on hierarchical clustering analysis, the significantly regulated N-glycopeptides were divided into seven clusters that showed different N-glycosylation patterns during de-etiolation. We found no obvious difference in the enriched MapMan bincode categories for each cluster, and these clustered significantly regulated N-glycoproteins (SRNPs) are enriched in miscellaneous, protein, cell wall and signaling, indicating that although the N-glycosylation regulation patterns of these SRNPs might differ, they are involved in similar biological processes. Overall, this study represents the first large-scale quantitative N-glycoproteome of the model C4 plant, maize, which is one of the most important cereal and biofuel crops. Our results greatly expand the maize N-glycoproteomic database and also shed light on the potential roles of N-glycosylation modification during the greening of maize leaves.
Collapse
Affiliation(s)
- Tian-Tian Bu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Shen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qing Chao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhuo Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhen Yan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Yan Zheng
- Center for Advanced Biotechnology and Medicine, Robert-Wood Johnson Medical School-Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
45
|
Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, Stein RJ, Grolimund D, Begerow D, Neumann U, Haydon MJ, Krämer U. Etiolated Seedling Development Requires Repression of Photomorphogenesis by a Small Cell-Wall-Derived Dark Signal. Curr Biol 2017; 27:3403-3418.e7. [PMID: 29103938 DOI: 10.1016/j.cub.2017.09.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 09/28/2017] [Indexed: 11/27/2022]
Abstract
Etiolated growth in darkness or the irreversible transition to photomorphogenesis in the light engages alternative developmental programs operating across all organs of a plant seedling. Dark-grown Arabidopsis de-etiolated by zinc (dez) mutants exhibit morphological, cellular, metabolic, and transcriptional characteristics of light-grown seedlings. We identify the causal mutation in TRICHOME BIREFRINGENCE encoding a putative acyl transferase. Pectin acetylation is decreased in dez, as previously found in the reduced wall acetylation2-3 mutant, shown here to phenocopy dez. Moreover, pectin of dez is excessively methylesterified. The addition of very short fragments of homogalacturonan, tri-galacturonate, and tetra-galacturonate, restores skotomorphogenesis in dark-grown dez and similar mutants, suggesting that the mutants are unable to generate these de-methylesterified pectin fragments. In combination with genetic data, we propose a model of spatiotemporally separated photoreceptive and signal-responsive cell types, which contain overlapping subsets of the regulatory network of light-dependent seedling development and communicate via a pectin-derived dark signal.
Collapse
Affiliation(s)
- Scott A Sinclair
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Camille Larue
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Laura Bonk
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany; Geobotany, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Asif Khan
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Hiram Castillo-Michel
- ID21 Beamline, European Synchrotron Radiation Facility, Avenue des Martyrs, 38043 Grenoble, France
| | - Ricardo J Stein
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Daniel Grolimund
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Dominik Begerow
- Geobotany, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, 50829 Cologne, Germany
| | - Michael J Haydon
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany
| | - Ute Krämer
- Department of Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitätsstrasse, 44801 Bochum, Germany.
| |
Collapse
|
46
|
Sheerin DJ, Hiltbrunner A. Molecular mechanisms and ecological function of far-red light signalling. PLANT, CELL & ENVIRONMENT 2017; 40:2509-2529. [PMID: 28102581 DOI: 10.1111/pce.12915] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 05/18/2023]
Abstract
Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed.
Collapse
Affiliation(s)
- David J Sheerin
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
47
|
Grübler B, Merendino L, Twardziok SO, Mininno M, Allorent G, Chevalier F, Liebers M, Blanvillain R, Mayer KFX, Lerbs-Mache S, Ravanel S, Pfannschmidt T. Light and Plastid Signals Regulate Different Sets of Genes in the Albino Mutant Pap7-1. PLANT PHYSIOLOGY 2017; 175:1203-1219. [PMID: 28935841 PMCID: PMC5664474 DOI: 10.1104/pp.17.00982] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/20/2017] [Indexed: 05/20/2023]
Abstract
Plants possessing dysfunctional plastids due to defects in pigment biosynthesis or translation are known to repress photosynthesis-associated nuclear genes via retrograde signals from the disturbed organelles toward the nucleus. These signals are thought to be essential for proper biogenesis and function of the plastid. Mutants lacking plastid-encoded RNA polymerase-associated proteins (PAPs) display a genetic arrest in eoplast-chloroplast transition leading to an albino phenotype in the light. Retrograde signaling in these mutants, therefore, could be expected to be similar as under conditions inducing plastid dysfunction. To answer this question, we performed plastome- and genomewide array analyses in the pap7-1 mutant of Arabidopsis (Arabidopsis thaliana). In parallel, we determined the potential overlap with light-regulated expression networks. To this end, we performed a comparative expression profiling approach using light- and dark-grown wild-type plants as relative control for the expression profiles obtained from light-grown pap7-1 mutants. Our data indicate a specific impact of retrograde signals on metabolism-related genes in pap7-1 mutants reflecting the starvation situation of the albino seedlings. In contrast, light regulation of PhANGs and other nuclear gene groups appears to be fully functional in this mutant, indicating that a block in chloroplast biogenesis per se does not repress expression of them as suggested by earlier studies. Only genes for light harvesting complex proteins displayed a significant repression indicating an exclusive retrograde impact on this gene family. Our results indicate that chloroplasts and arrested plastids each emit specific signals that control different target gene modules both in positive and negative manner.
Collapse
Affiliation(s)
- Björn Grübler
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Livia Merendino
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Sven O Twardziok
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Morgane Mininno
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Guillaume Allorent
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Fabien Chevalier
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Monique Liebers
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Robert Blanvillain
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Silva Lerbs-Mache
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Stéphane Ravanel
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| | - Thomas Pfannschmidt
- LPCV, CNRS, CEA, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France and
| |
Collapse
|
48
|
Seluzicki A, Burko Y, Chory J. Dancing in the dark: darkness as a signal in plants. PLANT, CELL & ENVIRONMENT 2017; 40:2487-2501. [PMID: 28044340 PMCID: PMC6110299 DOI: 10.1111/pce.12900] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/21/2023]
Abstract
Daily cycles of light and dark provide an organizing principle and temporal constraints under which life on Earth evolved. While light is often the focus of plant studies, it is only half the story. Plants continuously adjust to their surroundings, taking both dawn and dusk as cues to organize their growth, development and metabolism to appropriate times of day. In this review, we examine the effects of darkness on plant physiology and growth. We describe the similarities and differences between seedlings grown in the dark versus those grown in light-dark cycles, and the evolution of etiolated growth. We discuss the integration of the circadian clock into other processes, looking carefully at the points of contact between clock genes and growth-promoting gene-regulatory networks in temporal gating of growth. We also examine daily starch accumulation and degradation, and the possible contribution of dark-specific metabolic controls in regulating energy and growth. Examining these studies together reveals a complex and continuous balancing act, with many signals, dark included, contributing information and guiding the plant through its life cycle. The extraordinary interconnection between light and dark is manifest during cycles of day and night and during seedling emergence above versus below the soil surface.
Collapse
Affiliation(s)
- Adam Seluzicki
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
| | - Yogev Burko
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joanne Chory
- Salk Institute for Biological Studies, Plant Biology Laboratory, La Jolla, CA, 92037, USA
- Howard Hughes Medical Institute Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| |
Collapse
|
49
|
Humplík JF, Bergougnoux V, Van Volkenburgh E. To Stimulate or Inhibit? That Is the Question for the Function of Abscisic Acid. TRENDS IN PLANT SCIENCE 2017; 22:830-841. [PMID: 28843765 DOI: 10.1016/j.tplants.2017.07.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/12/2017] [Accepted: 07/26/2017] [Indexed: 05/18/2023]
Abstract
Physiologically, abscisic acid (ABA) is believed to be a general inhibitor of plant growth, including during the crucial early development of seedlings. However, this view contradicts many reports of stimulatory effects of ABA that, so far, have not been considered in the debate concerning ABA's function in plant development. To address this apparent contradiction, we propose a hypothetical mechanism to explain how ABA might contribute to the promotion of cell expansion. We wish to overturn conventional views on ABA's role during juvenile plant development and put forward the idea that, as for other phytohormones, the role of ABA is determined by dose and sensitivity and ranges from stimulatory to inhibitory effects.
Collapse
Affiliation(s)
- Jan F Humplík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Czech Academy of Sciences and Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; These authors contributed equally to the work.
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; These authors contributed equally to the work
| | | |
Collapse
|
50
|
Zhang Y, Li C, Zhang J, Wang J, Yang J, Lv Y, Yang N, Liu J, Wang X, Palfalvi G, Wang G, Zheng L. Dissection of HY5/HYH expression in Arabidopsis reveals a root-autonomous HY5-mediated photomorphogenic pathway. PLoS One 2017; 12:e0180449. [PMID: 28683099 PMCID: PMC5500333 DOI: 10.1371/journal.pone.0180449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
ELONGATED HYPOCOTYL 5 (HY5), a member of the bZIP gene family, is a positive regulator of the light signaling pathway in Arabidopsis thaliana. Whereas the hy5 mutant exhibits an elongated hypocotyl when grown in the light, the hy5 homolog (hyh) mutant does not. Although the functions of HY5 and HYH in light-mediated seedling development have been revealed, the tissue-specific expression patterns of HY5 and HYH and their interconnected regulation are largely unknown. Here, we report that HY5 regulates HYH expression in roots and contributes to root growth under different light conditions. We generated HY5 and HYH transcriptional and translational fusion reporter lines to investigate their expression patterns. HY5 was constitutively expressed in all root tissues, while HYH was predominantly expressed in root xylem cells. Root growth after a dark-to-light transition was perturbed in the hy5 and hy5hyh mutant lines, but not in the hyh mutant line, indicating that HY5 plays a major role in light-regulated root growth. Light-induced HY5/HYH expression occurred autonomously in roots. HYH expression in roots was decreased in the hy5 mutant, suggesting that HY5 regulates HYH expression. Collectively, these results indicate that an organ-specific HY5-mediated pathway controls root photomorphogenic development independently of light signaling in the shoot.
Collapse
Affiliation(s)
- Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Chen Li
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jingxuan Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Jiajing Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jingwei Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanxia Lv
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Nian Yang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jianping Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Gergo Palfalvi
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- * E-mail: (GW); (LZ)
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- * E-mail: (GW); (LZ)
| |
Collapse
|