1
|
Oberemok VV, Laikova KV, Repetskaya AI, Kenyo IM, Gorlov MV, Kasich IN, Krasnodubets AM, Gal'chinsky NV, Fomochkina II, Zaitsev AS, Bekirova VV, Seidosmanova EE, Dydik KI, Meshcheryakova AO, Nazarov SA, Smagliy NN, Chelengerova EL, Kulanova AA, Deri K, Subbotkin MV, Useinov RZ, Shumskykh MN, Kubyshkin AV. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey. Molecules 2018; 23:E1302. [PMID: 29844255 PMCID: PMC6099785 DOI: 10.3390/molecules23061302] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Antisense oligonucleotides (ASO), short single-stranded polymers based on DNA or RNA chemistries and synthesized in vitro, regulate gene expression by binding in a sequence-specific manner to an RNA target. The functional activity and selectivity in the action of ASOs largely depends on the combination of nitrogenous bases in a target sequence. This simple and natural property of nucleic acids provides an attractive route by which scientists can create different ASO-based techniques. Over the last 50 years, planned and realized applications in the field of antisense and nucleic acid nanotechnologies have produced astonishing results and posed new challenges for further developments, exemplifying the essence of the post-genomic era. Today the majority of ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake. This review critically analyzes some successful cases using the antisense approach in medicine to address severe diseases, such as Duchenne muscular dystrophy and spinal muscular atrophy, and suggests some prospective directions for future research. We also examine in detail the elaboration of unmodified insect-specific DNA insecticides and RNA preparations in the areas of agriculture and forestry, a relatively new branch of ASO that allows circumvention of the use of non-selective chemical insecticides. When considering the variety of successful ASO modifications with an efficient signal-to-noise ratio of action, coupled with the affordability of in vitro oligonucleotide synthesis and post-synthesis procedures, we predict that the next half-century will produce a fruitful yield of tools created from effective ASO-based end products.
Collapse
MESH Headings
- Agriculture/methods
- Animals
- Biological Control Agents/chemical synthesis
- Biological Control Agents/history
- Biological Control Agents/pharmacology
- DNA/antagonists & inhibitors
- DNA/genetics
- DNA/metabolism
- Forestry/methods
- Gene Expression Regulation/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- Larva/drug effects
- Larva/genetics
- Larva/metabolism
- Moths/drug effects
- Moths/genetics
- Moths/growth & development
- Moths/metabolism
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neuromuscular Agents/chemical synthesis
- Neuromuscular Agents/history
- Neuromuscular Agents/therapeutic use
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 29500 Simferopol, Crimea.
| | - Igor M Kenyo
- Academy of Bioresources and Environmental Management of V.I. Vernadsky Crimean Federal University, 95492 Agrarnoye, Crimea.
| | - Mikhail V Gorlov
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia.
| | - Igor N Kasich
- Rostov State Medical University, Nakhchivan Lane 29, 344022 Rostov-on-Don, Russia.
| | - Alisa M Krasnodubets
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Nikita V Gal'chinsky
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Aleksei S Zaitsev
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Viktoriya V Bekirova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Eleonora E Seidosmanova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Ksenia I Dydik
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anna O Meshcheryakova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Sergey A Nazarov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Natalya N Smagliy
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Edie L Chelengerova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Alina A Kulanova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Karim Deri
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Mikhail V Subbotkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Refat Z Useinov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Maksym N Shumskykh
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| |
Collapse
|
2
|
Johnson CN, Spring AM, Sergueev D, Shaw BR, Germann MW. Structural basis of the RNase H1 activity on stereo regular borano phosphonate DNA/RNA hybrids. Biochemistry 2011; 50:3903-12. [PMID: 21443203 DOI: 10.1021/bi200083d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Numerous DNA chemistries for improving oligodeoxynucleotide (ODN)-based RNA targeting have been explored. The majority of the modifications render the ODN/RNA target insensitive to RNase H1. Borano phosphonate ODN's are among the few modifications that are tolerated by RNase H1. To understand the effect of the stereochemistry of the BH(3) modification on the nucleic acid structure and RNase H1 enzyme activity, we have investigated two DNA/RNA hybrids containing either a R(P) or S(P) BH(3) modification by nuclear magnetic resonance (NMR) spectroscopy. T(M) studies show that the stabilities of R(P) and S(P) modified DNA/RNA hybrids are essentially identical (313.8 K) and similar to that of an unmodified control (312.9 K). The similarity is also reflected in the imino proton spectra. To characterize such similar structures, we used a large number of NMR restraints (including dipolar couplings and backbone torsion angles) to determine structural features that were important for RNase H1 activity. The final NMR structures exhibit excellent agreement with the data (total R(x) values of <6%) with helical properties between those of an A and B helix. Subtle backbone variations are observed in the DNA near the modification, while the RNA strands are relatively unperturbed. In the case of the S(P) modification, for which more perturbations are recorded, a slightly narrower minor groove is also obtained. Unique NOE base contacts localize the S(P) BH(3) group in the major groove while the R(P) BH(3) group points away from the DNA. However, this creates a potential clash of the R(P) BH(3) groups with important RNase H1 residues in a complex, while the S(P) BH(3) groups could be tolerated. We therefore predict that on the basis of our NMR structures a fully R(P) BH(3) DNA/RNA hybrid would not be a substrate for RNase H1.
Collapse
Affiliation(s)
- Christopher N Johnson
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | | | | | | | | |
Collapse
|
3
|
Nemunaitis J, Roth J. Gene-Based Therapies for Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Barhoumi A, Huschka R, Bardhan R, Knight MW, Halas NJ. Light-induced release of DNA from plasmon-resonant nanoparticles: Towards light-controlled gene therapy. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.076] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Tamm I, Wagner M. Antisense therapy in clinical oncology: preclinical and clinical experiences. Mol Biotechnol 2008; 33:221-38. [PMID: 16946452 DOI: 10.1385/mb:33:3:221] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/04/2023]
Abstract
Nucleic acid molecules have emerged as versatile tools with promising utility as therapeutics for human diseases. The specificity of hybridization of an antisense oligonucleotide (AS ODN) to the target mRNA makes the AS strategy attractive to selectively modulate the expression of genes involved in the pathogenesis of malignant or non-malignant diseases. One AS drug has been approved for local therapy of cytomegalovirus retinitis, and a number of AS ODN are currently tested in clinical trials including ODN that target bcl-2, survivin, and DNA methyltransferase. The clinical studies indicate that AS ODN are well tolerated and may have therapeutic activity. In this overview, we summarize therapeutic concepts, clinical studies, and new promising molecular targets to treat human cancer with AS ODN.
Collapse
Affiliation(s)
- Ingo Tamm
- Universitätsmedizin Berlin, Charité, Campus Virchow, Department for Haematology and Oncology, Forschungshaus, Room 2.0315, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
6
|
Low J, Dowless M, Blosser W, Vincent T, Davis S, Hodson J, Koller E, Marcusson E, Blanchard K, Stancato L. High-content imaging analysis of the knockdown effects of validated siRNAs and antisense oligonucleotides. ACTA ACUST UNITED AC 2007; 12:775-88. [PMID: 17517903 DOI: 10.1177/1087057107302675] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
High-content imaging (HCI) provides researchers with a powerful tool for understanding cellular processes. Although phenotypic analysis generated through HCI is a potent technique to determine the overall cellular effects of a given treatment, it frequently produces complex data sets requiring extensive interpretation. The authors developed statistical analyses to decrease the time spent to determine the outcome of each HCI assay and to better understand complex phenotypic changes. To test these tools, the authors performed a comparison experiment between 2 types of oligonucleotide-mediated gene silencing (OMGS), antisense oligonucleotides (ASOs), and short, double-stranded RNAs (siRNAs). Although similar in chemical structure, these 2 methods differ in cellular mechanism of action and off-target effects. Using a library of 50 validated ASOs and siRNAs to the same targets, the authors characterized the differential effects of these 2 technologies using a HeLa cell G2-M cell cycle assay. Although knockdown of a variety of targets by ASOs or siRNAs affected the cell cycle profile, few of those targets were affected by both ASOs and siRNAs. Distribution analysis of population changes induced through target knockdown led to the identification of targets that, when inhibited, could affect the G2-M transition in the cell cycle in a statistically significant manner. The distinctly different mechanisms of action of these 2 forms of gene silencing may help define the use of these treatments in both clinical and research environments.
Collapse
Affiliation(s)
- Jonathan Low
- Cancer Growth and Translational Genetics, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nakazawa K, Nemoto T, Hata T, Seyama Y, Nagahara S, Sano A, Itoh H, Nagai Y, Kubota S. Single-injection ornithine decarboxylase-directed antisense therapy using atelocollagen to suppress human cancer growth. Cancer 2007; 109:993-1002. [PMID: 17318877 DOI: 10.1002/cncr.22483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Substantial evidence supports a direct role of ornithine decarboxylase (ODC) in the development and maintenance of human tumors. Although antisense oligonucleotide therapy targeting various genes are useful for cancer treatment, 1 of the major limitations is the problem of delivery. A novel antisense oligonucleotide delivery method is described that allows prolonged sustainment and release of ODC antisense oligonucleotides in vivo using atelocollagen. METHODS The effect of ODC antisense oligonucleotides in the atelocollagen on cell growth of gastrointestinal cancer (MKN 45 and COLO201) and rhabdomyosarcoma (RD) was studied in vitro using a cell-counting method with a hemocytometer. In vivo, the effect of intratumoral, intramuscular, and intraperitoneal single administration of ODC antisense oligonucleotides in the atelocollagen on tumor growth of MKN45, COLO201, and RD cells was studied. ODC activity and polyamine contents were measured. RESULTS In vitro, ODC antisense oligonucleotides in the atelocollagen remarkably suppressed MKN45, COLO201, and RD cell growth. A single administration of antisense oligonucleotides in the atelocollagen via 3 routes remarkably suppressed the growth of MKN45, COLO201, and RD tumor over a period of 35-42 days. CONCLUSIONS As various human cancers significantly express ODC, the results strongly suggest that this new antisense method may be of considerable value for treatment of human cancers.
Collapse
Affiliation(s)
- Kunihiko Nakazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Opalinska JB, Kalota A, Chattopadhyaya J, Damha M, Gewirtz AM. Nucleic acid therapeutics for hematologic malignancies--theoretical considerations. Ann N Y Acad Sci 2007; 1082:124-36. [PMID: 17145934 DOI: 10.1196/annals.1348.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our work is motivated by the belief that RNA targeted gene silencing agents can be developed into effective drugs for treating hematologic malignancies. In many experimental systems, antisense nucleic acids of various composition, including antisense oligodeoxynucleotides (AS ODNs) and short interfering RNA (siRNA), have been shown to perturb gene expression in a sequence specific manner. Nevertheless, our clinical experience, and those of others, have led us to conclude that the antisense nucleic acids (ASNAs) we, and others, employ need to be optimized with regard to intracellular delivery, targeting, chemical composition, and efficiency of mRNA destruction. We have hypothesized that addressing these critical issues will lead to the development of practical and effective nucleic acid drugs. An overview of our recent work which seeks to addresses these core issues is contained within this review.
Collapse
|
9
|
Gewirtz AM. RNA targeted therapeutics for hematologic malignancies. Blood Cells Mol Dis 2007; 38:117-9. [PMID: 17215146 DOI: 10.1016/j.bcmd.2006.10.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 12/26/2022]
Abstract
In a variety of experimental systems, antisense nucleic acids (ASNA) of various composition, including antisense oligodeoxynucleotides (ODN) and siRNA, have been shown to have the ability to variably perturb gene expression in a sequence specific manner. Pilot clinical studies from our group, and others, have demonstrated that gene silencing is a therapeutic strategy that is starting to make a real contribution to the treatment of various diseases. The development of this field, with specific reference to hematologic malignancies, is reviewed very briefly below.
Collapse
Affiliation(s)
- Alan M Gewirtz
- Division of Hematology/Oncology, Department of Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Abstract
Preclinical and clinical studies indicate a role for AS ODNs (antisense oligonucleotides) as therapeutics for malignant diseases. The principle of antisense technology is the sequence-specific binding of an AS ODN to the target mRNA, resulting in a translational arrest. The specificity of hybridization makes antisense strategy attractive to selectively modulate the expression of genes involved in the pathogenesis of malignant diseases. One antisense drug has been approved for local therapy of CMV (cytomegalovirus) retinitis, and a number of AS ODNs are currently being tested in clinical trials, including AS ODN targeting Bcl-2, XIAP (X-linked inhibitor of apoptosis protein) and TGF-beta-2 (transforming growth factor beta-2). AS ODNs are well tolerated and may have therapeutic activity. In particular, an AS ODN to Bcl-2 has been tested in phase III clinical trials in chronic lymphocytic leukaemia, multiple myeloma and malignant melanoma. In this review, therapeutic concepts, clinical studies and new promising molecular targets to treat malignancies with AS ODNs are summarized.
Collapse
Affiliation(s)
- Ingo Tamm
- Department for Haematology and Oncology, Charité, Campus Virchow, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
11
|
Rayburn E, Wang W, Zhang R, Wang H. Antisense approaches in drug discovery and development. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2006; 63:227-74. [PMID: 16265883 DOI: 10.1007/3-7643-7414-4_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Elizabeth Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, VH 112, Box 600, 1670 University Blvd., Birmingham, AL 35294-0019, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Abnormal gene expression is a hallmark of many diseases. Gene-specific downregulation of aberrant genes could be useful therapeutically and potentially less toxic than conventional therapies due its specificity. Over the years, many strategies have been proposed for silencing gene expression in a gene-specific manner. Three major approaches are antisense oligonucleotides (AS-ONs), ribozymes/DNAzymes, and RNA interference (RNAi). In this brief review, we will discuss the successes and shortcomings of these three gene-silencing methods, and the approaches being taken to improve the effectiveness of antisense molecules. We will also provide an overview of some of the clinical applications of antisense therapy.
Collapse
Affiliation(s)
- A Kalota
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, 421 Curie Blvd, Philadelphia PA, 19104, USA
| | | | | |
Collapse
|
13
|
Vidal L, Blagden S, Attard G, de Bono J. Making sense of antisense. Eur J Cancer 2005; 41:2812-8. [PMID: 16289851 DOI: 10.1016/j.ejca.2005.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 06/09/2005] [Indexed: 01/22/2023]
Abstract
The specific and rational targeting of key genes, identified to be vital to driving cancer growth, has recently led to the successful development of several small molecule and antibody therapeutics. However, despite considerable efforts, antisense oligonucleotides (ASO) have yet to prove their worth as targeted therapies. However, many important genes cannot be readily targeted by antibodies or small molecules, and could be blocked by ASOs. Moreover, the latest generation of ASOs is safe, well tolerated and able to modulate target protein expression both in surrogate and tumour tissue in the clinic. This review will describe the experience acquired with these agents to date and will raise critical issues relevant to the further optimal development of these agents. Future clinical studies need to evaluate combinations of several different ASO targeting multiple key targets, including strategies that reverse functional redundancy of the key target (e.g., targeting several Bcl family members including Bcl-2 and Bcl-x). Approaches to maximise the duration of target blockade yet avert the need for prolonged intravenous infusions, with the consequent risk of line infection and thrombosis, are also needed. These may include slow-release depot subcutaneous formulations. Short interfering (Si) RNA therapeutics, which are now being evaluated in early clinical trials, are also envisioned to impact the future utility of this class of therapeutics. The high manufacture cost of these agents, when compared with small chemical molecules, could however, limit their success unless cost-effective manufacturing processes are developed.
Collapse
Affiliation(s)
- Laura Vidal
- Centre for Cancer Therapeutics, Institute of Cancer Research, Royal Marsden Hospital, Sutton, Surrey SM2 5PT, London, United Kingdom
| | | | | | | |
Collapse
|
14
|
Desai AA, Schilsky RL, Young A, Janisch L, Stadler WM, Vogelzang NJ, Cadden S, Wright JA, Ratain MJ. A phase I study of antisense oligonucleotide GTI-2040 given by continuous intravenous infusion in patients with advanced solid tumors. Ann Oncol 2005; 16:958-65. [PMID: 15824081 DOI: 10.1093/annonc/mdi178] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This study of GTI-2040, a 20-mer phosphorothioate oligonucleotide complementary to the messenger ribonucleic acid (mRNA) of the R2 subunit of ribonucleotide reductase (RNR), was conducted to determine the dose-limiting toxicity (DLT) and maximum-tolerated dose (MTD) of the agent in patients with advanced solid tumors or lymphoma. Plasma pharmacokinetics of GTI-2040 and suppression of RNR expression in peripheral blood mononuclear cells were also studied. PATIENTS AND METHODS GTI-2040 was administered as a continuous intravenous infusion for 21 days every 4 weeks. Dose escalation was performed using an accelerated, dose-doubling schedule until any drug related toxicity > or = grade 2 was observed; subsequent dose escalation followed a more conservative dose escalation scheme with three patients/cohort. RESULTS A total of 49 cycles of therapy were administered to 36 patients at GTI-2040 doses ranging from 18.5 mg/m(2)/day to 222 mg/m(2)/day. GTI-2040 was generally well tolerated. At the highest dose level examined, two patients experienced dose limiting reversible hepatic toxicity. Constitutional toxicities consisting of fatigue and anorexia were the most common toxicities. CONCLUSIONS The recommended dose of GTI-2040 given on this infusion schedule is 185 mg/m(2)/day. GTI-2040 appears to have a manageable toxicity profile and is generally well tolerated as a single agent.
Collapse
Affiliation(s)
- A A Desai
- Section of Hematology and Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nesterova MV, Cho-Chung YS. Antisense protein kinase A RIalpha inhibits 7,12-dimethylbenz(a)anthracene-induction of mammary cancer: blockade at the initial phase of carcinogenesis. Clin Cancer Res 2005; 10:4568-77. [PMID: 15240549 DOI: 10.1158/1078-0432.ccr-03-0436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There are two types of cyclic AMP (cAMP)-dependent protein kinase (PKA), type I (PKA-I) and type II (PKA-II), which share a common catalytic (C) subunit but contain distinct regulatory (R) subunits, RI versus RII, respectively. Evidence suggests that increased expression of PKA-I and its regulatory subunit (RIalpha) correlates with tumorigenesis and tumor growth. We investigated the effect of sequence-specific inhibition of RIalpha gene expression at the initial phase of 7,12-dimethylbenz(alphaa)anthracene (DMBA)-induced mammary carcinogenesis. EXPERIMENTAL DESIGN Antisense RIalpha oligodeoxynucleotide (ODN) targeted against PKA RIalpha was administered (0.1 mg/day/rat, i.p.) 1 day before DMBA intubation and during the first 9 days post-DMBA intubation to determine the anticarcinogenic effects. RESULTS Antisense RIalpha, in a sequence-specific manner, inhibited the tumor production. At 90 days after DMBA intubation, untreated controls and RIalpha-antisense-treated rats exhibited an average mean number of tumors per rat of 4.2 and 1.8, respectively, and 90% of control and 45% of antisense-treated animals had tumors. The antisense also delayed the first tumor appearance. An increase in RIalpha and PKA-I levels in the mammary gland and liver preceded DMBA-induced tumor production, and antisense down-regulation of RIalpha restored normal levels of PKA-I and PKA-II in these tissues. Antisense RIalpha in the liver induced the phase II enzymes, glutathione S-transferase and quinone oxidoreductase, c-fos protein, and activator protein 1 (AP-1)- and cAMP response element (CRE)-directed transcription. In the mammary glands, antisense RIalpha promoted DNA repair processes. In contrast, the CRE transcription-factor decoy could not mimic these effects of antisense RIalpha. CONCLUSIONS The results demonstrate that RIalpha antisense produces dual anticarcinogenic effects: (a) increasing DMBA detoxification in the liver by increasing phase II enzyme activities, increasing CRE-binding-protein phosphorylation and enhancing CRE- and Ap-1-directed transcription; and (b) activating DNA repair processes in the mammary gland by down-regulating PKA-I.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene/pharmacology
- Animals
- Carcinogens/pharmacology
- Catalytic Domain
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
- Cyclic AMP-Dependent Protein Kinase Type II
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic AMP-Dependent Protein Kinases/physiology
- DNA Repair
- Dose-Response Relationship, Drug
- Down-Regulation
- Ethanolamines/pharmacology
- Female
- Glutathione Transferase/metabolism
- Immunoprecipitation
- Liver/metabolism
- Mammary Glands, Animal/metabolism
- Mammary Neoplasms, Animal/chemically induced
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mice
- NAD(P)H Dehydrogenase (Quinone)/metabolism
- NADPH Dehydrogenase/metabolism
- Oligonucleotides, Antisense/pharmacology
- Phosphorylation
- Protein Binding
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Maria V Nesterova
- Cellular Biochemistry Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
16
|
Divito KA, Berger AJ, Camp RL, Dolled-Filhart M, Rimm DL, Kluger HM. Automated quantitative analysis of tissue microarrays reveals an association between high Bcl-2 expression and improved outcome in melanoma. Cancer Res 2005; 64:8773-7. [PMID: 15574790 DOI: 10.1158/0008-5472.can-04-1387] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The addition of B-cell lymphoma 2 (Bcl-2) antisense to dacarbazine in the treatment of metastatic melanoma demonstrates improved response rates and progression-free survival when compared with dacarbazine alone. Studies on small cohorts of melanoma patients have shown variability in Bcl-2 expression (60%-96% positive). We performed quantitative analysis of Bcl-2 expression in a large patient cohort to assess the association with outcome. Tissue microarrays containing intact melanoma specimens representing 402 patients (339 with associated survival data) were analyzed with our AQUA system for automated quantitative analysis. Automated, quantitative analysis uses S100 to define pixels as melanoma (tumor mask) within the array spot and measures intensity of Bcl-2 expression using a Cy5 conjugated antibody within the mask. A continuous index score is generated, which is directly proportional to the number of molecules per unit area. Scores were divided into quartiles and correlated with clinical variables. High Bcl-2 expression was associated with better outcome in the entire cohort and among metastatic specimens only (P = 0.004 and P = 0.015, respectively). Expression was higher in primary than in metastatic specimens (P < 0.0001). There was no association between Bcl-2 expression and Breslow depth or Clark level. The diverse results within the literature may be due to use of small cohorts or variability in staining technique. These results suggest studies are needed to evaluate the association between quantitative assessment of Bcl-2 expression and response to Bcl-2 targeting therapy toward the goal of improved response rates to these drugs.
Collapse
Affiliation(s)
- Kyle A Divito
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
17
|
Opalinska JB, Kalota A, Gifford LK, Lu P, Jen KY, Pradeepkumar PI, Barman J, Kim TK, Swider CR, Chattopadhyaya J, Gewirtz AM. Oxetane modified, conformationally constrained, antisense oligodeoxyribonucleotides function efficiently as gene silencing molecules. Nucleic Acids Res 2004; 32:5791-9. [PMID: 15514112 PMCID: PMC528787 DOI: 10.1093/nar/gkh893] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Incorporation of nucleosides with novel base-constraining oxetane (OXE) modifications [oxetane, 1-(1',3'-O-anhydro-beta-d-psicofuranosyl nucleosides)] into antisense (AS) oligodeoxyribonucleotides (ODNs) should greatly improve the gene silencing efficiency of these molecules. This is because OXE modified bases provide nuclease protection to the natural backbone ODNs, can impart T(m) values similar to those predicted for RNA-RNA hybrids, and not only permit but also accelerate RNase H mediated catalytic activity. We tested this assumption in living cells by directly comparing the ability of OXE and phosphorothioate (PS) ODNs to target c-myb gene expression. The ODNs were targeted to two different sites within the c-myb mRNA. One site was chosen arbitrarily. The other was a 'rational' choice based on predicted hybridization accessibility after physical mapping with self-quenching reporter molecules (SQRM). The Myb mRNA and protein levels were equally diminished by OXE and PS ODNs, but the latter were delivered to cells with approximately six times greater efficiency, suggesting that OXE modified ODNs were more potent on a molar basis. The rationally targeted molecules demonstrated greater silencing efficiency than those directed to an arbitrarily chosen mRNA sequence. We conclude that rationally targeted, OXE modified ODNs, can function efficiently as gene silencing agents, and hypothesize that they will prove useful for therapeutic purposes.
Collapse
Affiliation(s)
- J B Opalinska
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cho-Chung YS. Antisense protein kinase A RI alpha-induced tumor reversion: portrait of a microarray. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:71-9. [PMID: 15023351 DOI: 10.1016/j.bbapap.2003.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Accepted: 11/12/2003] [Indexed: 10/26/2022]
Abstract
Antisense oligonucleotides can selectively block disease-causing genes due to the specificity of the Watson-Crick base-pairing mechanism of action. A genome-wide view of antisense technology is illustrated via protein kinase A RI alpha antisense. Complementary DNA microarray analysis of the RI alpha antisense-induced expression profile shows the up- and down-regulation of clusters of coordinately expressed genes that define the molecular portrait of a reverted tumor cell phenotype. This global view broadens the horizons of antisense technology; it advances the promise of antisense beyond a single target gene to the whole cell and the whole organism. Along with recent rapid advances in oligonucleotide technologies-including new chemical and biological understanding of more sophisticated nucleic acid drugs-oligonucleotide-based gene silencing offers not only an exquisitely specific genetic tool for exploring basic science but also an exciting possibility for treating and preventing cancer and other diseases.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Rockville Pike, Bethesda, MD 20892-1750, USA.
| |
Collapse
|
19
|
Abstract
Elucidation of many disease-related signal transduction and gene expression pathways has provided unparalleled opportunities for the development of targeted therapeutics. The types of molecules in development are increasingly varied and include small-molecule enzyme inhibitors, humanized antibodies to cell surface receptors, and antisense nucleic acids for silencing the expression of specific genes. This Perspective reviews the basis for various antisense strategies for modulating gene expression, including RNA interference, and discusses the prospects for their clinical use.
Collapse
Affiliation(s)
- Joanna B Opalinska
- Department of Hematology, Pommeranian Medical Academy, ul. Unii Lubelskiej 1, 71245 Szczecin, Poland.
| | | |
Collapse
|
20
|
Tan YJ, Teng E, Ting AE. A small inhibitor of the interaction between Bax and Bcl-X(L) can synergize with methylprednisolone to induce apoptosis in Bcl-X(L)-overexpressing breast-cancer cells. J Cancer Res Clin Oncol 2003; 129:437-48. [PMID: 12884026 DOI: 10.1007/s00432-003-0464-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 05/08/2003] [Indexed: 12/28/2022]
Abstract
PURPOSE To identify inhibitors of the interaction between Bax and Bcl-X(L). METHODS Using an assay based on biosensor technology, we screened a chemical library of 10,000 compounds for inhibitors of the interaction between Bax and Bcl-X(L). Using cell-culture systems we tested active compounds for their ability to induce apoptosis in Bcl-X(L)-overexpressing MCF7 cells and increase the sensitivities of the cells to apoptosis-inducing drugs [vincristine sulphate, dexamethasone, cycloheximide and 6alpha-methylprednisolone (MP)]. RESULTS A single compound, 2',4',5',7'-tetrabromofluorescein (A5), from the library was found to inhibit this interaction efficiently. Several structural analogues of A5 were tested and two of these [4',5'-dibromofluorescein (A9) and 3,4,5,6-tetrabromofluorescein (A11)] were found to be active, and their activities were confirmed by an independent in vitro pull-down assay. These active compounds were observed to induce apoptosis in Bcl-X(L)-overexpressing MCF7 cells. Moreover, two of the compounds (A5 and A11) appeared to increase the sensitivities of the cells to MP. A more rigorous test using the isobologram technique showed that there is a synergistic cytotoxic effect between A11 and MP. CONCLUSIONS We have identified a small inhibitor of the interaction between Bax and Bcl-X(L) that can synergize with methylprednisolone to induce apoptosis in Bcl-X(L)-overexpressing breast-cancer cells.
Collapse
Affiliation(s)
- Yee-Joo Tan
- Institute of Molecular and Cell Biology, 30 Medical Drive, 117609, Singapore, Republic of Singapore.
| | | | | |
Collapse
|
21
|
Sykes DB, Scheele J, Pasillas M, Kamps MP. Transcriptional profiling during the early differentiation of granulocyte and monocyte progenitors controlled by conditional versions of the E2a-Pbx1 oncoprotein. Leuk Lymphoma 2003; 44:1187-99. [PMID: 12916872 DOI: 10.1080/1042819031000090273] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The E2a-Pbx1 oncoprotein of human pre-B cell leukemia prevents differentiation and maintains continued cell division in cultured myeloid progenitors. Previously, estrogen-dependent forms of E2a-Pbx1 were generated that immortalized neutrophil (ECoM-G cells) or monocyte (ECoM-M cells) progenitors and that permitted their terminal differentiation upon estrogen withdrawal. Here, representational difference analysis (RDA) and Affymetrix array analysis are used to identify changes in gene expression that accompany the early differentiation of these cells. The promoters of these genes, whose expression changes upon E2a-Pbx1 inactivation, integrate the biochemical mechanism through which E2a-Pbx1 arrests differentiation and maintains cell division. Inactivation of E2a-Pbx1 caused the 10- to 80-fold up regulation of a small subset of myeloid differentiation genes (MRP8, Cnlp, NB1, Bactenecin, YM1, Stefin 1, Lipocortin, Lactoferrin, gp91 phox and Ly6-G) and a 10-fold down regulation of the TLE1 corepressor gene, as well as of a group of genes expressed in dividing cells (c-Myc, Nucleophosmin, Spermidine synthase, NOP56, Hnrpa1). Transcription of 97% of cellular genes, including 300 other transcription factor genes (21 Hox genes) and other myeloid genes, varied less than 3-fold, with most varying less than 50%. Therefore, E2a-Pbx1 prevents transcription and maintains the cell cycle by a specific rather than a global transcriptional mechanism. Monocyte progenitors were distinguished by persistent expression of IRF8 and of a category of other genes characterized as "interferon-stimulated" (ISG15, ISG20, Ifit1, Ifi202a, Ifi203, IfiS204, Ifi204-related, IRF7 and Ly6-E.1), as well as by the upregulation of the Lrg21 bZip transcription factor gene during late differentiation. The synchronous expression of stage-specific and cell cycle genes regulated by E2a-Pbx1 in these cell lines comprises a model system in which analysis of their promoters can be used as a starting point to backtrack to the transcriptional mechanisms of oncogenesis by E2a-Pbx1.
Collapse
Affiliation(s)
- David B Sykes
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0612, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Chemotherapeutic approaches during the last decade have failed to result in major advances in the outcome of patients with chronic lymphocytic leukemia (CLL). The recent availability of an increasing number of active monoclonal antibodies, immunotoxins, and radioimmunoconjugates (RICs) has stimulated considerable interest in clinical research in CLL. Alemtuzumab was the first antibody approved for CLL on the basis of responses in one third of patients with advanced disease. However, infusion reactions and immunosuppression with opportunistic infections present a challenge that may be overcome with altered schedules and routes of administration. Rituximab has limited activity as a single agent in patients relapsed or refractory after prior chemotherapy; however, response rates seem to be higher in previously untreated patients. More importantly, combinations with chemotherapy drugs such as fludarabine are showing promise in early trials. Newer antibodies in development as single agents and in combinations include apolizumab (Hu1D10), a humanized antibody against an epitope of HLA-DR, and IDEC-152, a primatized anti-CD23 antibody. BL22, an immunotoxin with impressive activity in hairy cell leukemia, is in phase II trials in CLL as well. The safe use of RICs is complicated by the elevated peripheral blood B-cell count, and the extent of bone marrow involvement in CLL; studies will explore the use of agents to eliminate malignant cells from the bone marrow before RIC therapy. It is hoped that the rational development of combinations of the various promising antibodies with chemotherapy and each other will lead to more effective approaches for patients with CLL.
Collapse
Affiliation(s)
- Blanche Mavromatis
- Department of Hematology/Oncology, Lombardi Cancer Center, Georgetown University Hospital, 3800 Reservoir Rd., N.W., Washington, DC, USA
| | | |
Collapse
|
23
|
Berg RW, Ferguson PJ, Vincent MD, Koropatnick DJ. A "combination oligonucleotide" antisense strategy to downregulate thymidylate synthase and decrease tumor cell growth and drug resistance. Cancer Gene Ther 2003; 10:278-86. [PMID: 12679800 DOI: 10.1038/sj.cgt.7700566] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thymidylate synthase (TS) catalyzes de novo production of thymidylate for DNA synthesis and cell proliferation. As such, TS has been a target of antitumor chemotherapy for many years. Our laboratory has identified several antisense oligodeoxynucleotides (ODNs) that downregulate TS mRNA and protein, inhibit cell proliferation, and sensitize cells to TS-directed chemotherapeutic drugs. Based on our observation that targeting distinct regions of the TS mRNA with a variety of antisense molecules resulted in differential effects on TS mRNA levels, it was hypothesized that use of multiple ODNs targeting distinct noncontiguous regions would result in synergistic or antagonistic interactions. In this study, we report that some combinations of TS antisense ODNs were more effective at reducing TS mRNA abundance and inhibiting cell proliferation than the individual ODNs used alone. However, in contrast to the effects on cell proliferation, the enhanced sensitivity to anti-TS chemotherapeutic drugs (i.e., raltitrexed and 5-fluorodeoxyuridine) that is achieved by treatment with individual ODNs was not further augmented by combined ODN treatment. This suggests that ODNs targeting TS mRNA inhibit an alternative function of TS mRNA or protein, distinct from thymidylate production. The results are evidence that the novel use of multiple antisense ODNs that target different regions of the same mRNA represents a general strategy to improve antisense effectiveness.
Collapse
Affiliation(s)
- Randal W Berg
- Cancer Research Laboratories, London Regional Cancer Centre, 790 Commissioners Road, London, Ontario, Canada N6A 4L6
| | | | | | | |
Collapse
|
24
|
Abstract
Nucleic acid therapies represent a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in antisense technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately, the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. Antisense oligonucleotides are promising molecular medicines for treating human cancer in the near future.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, Basic Research Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892-1750, USA.
| |
Collapse
|
25
|
Jahrsdörfer B, Jox R, Mühlenhoff L, Tschoep K, Krug A, Rothenfusser S, Meinhardt G, Emmerich B, Endres S, Hartmann G. Modulation of malignant B cell activation and apoptosis by bcl‐2 antisense ODN and immunostimulatory CpG ODN. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.1.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- B. Jahrsdörfer
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - R. Jox
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - L. Mühlenhoff
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - K. Tschoep
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - A. Krug
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - S. Rothenfusser
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - G. Meinhardt
- Division of Hematology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - B. Emmerich
- Division of Hematology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - S. Endres
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| | - G. Hartmann
- Division of Clinical Pharmacology and Oncology, Department of Internal Medicine, University of Munich, Germany
| |
Collapse
|
26
|
Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002; 1:503-14. [PMID: 12120257 DOI: 10.1038/nrd837] [Citation(s) in RCA: 384] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sequencing of the human genome and the elucidation of many molecular pathways that are important in disease have provided unprecedented opportunities for the development of new therapeutics. The types of molecule in development are increasingly varied, and include antisense oligonucleotides and ribozymes. Antisense technology and catalytic nucleic-acid enzymes are important tools for blocking the expression of abnormal genes. One FDA-approved antisense drug is already in the clinic for the treatment of cytomegalovirus retinitis, and other nucleic-acid therapies are undergoing clinical trials. This article reviews different strategies for modulating gene expression, and discusses the successes and problems that are associated with this type of therapy.
Collapse
Affiliation(s)
- Joanna B Opalinska
- Department of Hematology, Pommeranian Academy of Medicine, Ul Rybacka 1, 71-252 Szczecin, Poland
| | | |
Collapse
|
27
|
|
28
|
Luger SM, O'Brien SG, Ratajczak J, Ratajczak MZ, Mick R, Stadtmauer EA, Nowell PC, Goldman JM, Gewirtz AM. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 2002; 99:1150-8. [PMID: 11830460 DOI: 10.1182/blood.v99.4.1150] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antisense oligodeoxynucleotide (ODN) drugs might be more effective if their delivery was optimized and they were targeted to short-lived proteins encoded by messenger RNA (mRNA) species with equally short half-lives. To test this hypothesis, an ODN targeted to the c-myb proto-oncogene was developed and used to purge marrow autografts administered to allograft-ineligible chronic myelogenous leukemia patients. CD34(+) marrow cells were purged with ODN for either 24 (n = 19) or 72 (n = 5) hours. After purging, Myb mRNA levels declined substantially in approximately 50% of patients. Analysis of bcr/abl expression in long-term culture-initiating cells suggested that purging had been accomplished at a primitive cell level in more than 50% of patients and was ODN dependent. Day-100 cytogenetics were evaluated in surviving patients who engrafted without infusion of unmanipulated "backup" marrow (n = 14). Whereas all patients were approximately 100% Philadelphia chromosome-positive (Ph(+)) before transplantation, 2 patients had complete cytogenetic remissions; 3 patients had fewer than 33% Ph(+) metaphases; and 8 remained 100% Ph(+). One patient's marrow yielded no metaphases, but fluorescent in situ hybridization evaluation approximately 18 months after transplantation revealed approximately 45% bcr/abl(+) cells, suggesting that 6 of 14 patients had originally obtained a major cytogenetic response. Conclusions regarding clinical efficacy of ODN marrow purging cannot be drawn from this small pilot study. Nevertheless, these results lead to the speculation that enhanced delivery of ODN, targeted to critical proteins of short half-life, might lead to the development of more effective nucleic acid drugs and the enhanced clinical utility of these compounds in the future.
Collapse
MESH Headings
- Adult
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Bone Marrow Purging/methods
- Bone Marrow Transplantation/methods
- Cytogenetic Analysis
- Female
- Fusion Proteins, bcr-abl/analysis
- Gene Expression/drug effects
- Genes, myb/drug effects
- Genes, myb/genetics
- Graft Survival
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Male
- Middle Aged
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Oligodeoxyribonucleotides, Antisense/therapeutic use
- Pilot Projects
- Proto-Oncogene Mas
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/metabolism
- Transplantation, Autologous/methods
- Treatment Outcome
Collapse
Affiliation(s)
- Selina M Luger
- Division of Hematology/Oncology and the Stem Cell Biology/Therapeutics Program, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Platica M, Ivan E, Chen S, Holland JF, Gil J, Mandeli J, Platica O. Stable lower PAR expression decreased DU145 prostate cancer cell growth in SCID mice. Prostate 2001; 49:200-7. [PMID: 11746265 DOI: 10.1002/pros.1135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND PAR is a novel gene ubiquitously expressed in normal and malignant tissues with a trend towards higher expression in tumor cells. PAR biological function is unknown. Here we report the effect of lowering PAR expression on in vitro and in vivo proliferation of DU145 cells. METHODS Decreased PAR expression was achieved by stable transfection of DU145 cells with antisense PAR cDNA cloned in pCMV-Script expression vector. The proliferative potential of DU145 transfectants was studied by cell counts, colony formation in soft agar, flow cytometry, and growth in severe combined immunodeficient (SCID) mice. RESULTS DU145 transfectants exhibited a decreased cell proliferation in tissue culture and a low efficiency of colony formation in soft agar. Flow cytometry revealed an arrest of these cells in G2-M phase of mitotic cycle. A dramatic decrease of tumor growth was observed when DU145 transfectant cells were inoculated in SCID mice, compared with controls. Histological examination of these tumors showed a marked decrease in cell density and in number of mitoses while control tumors showed a high cell density and numerous mitoses. CONCLUSIONS The data presented here provide the first evidence for PAR gene cellular function and its possible implication in malignant transformation.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cell Division
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- DNA, Antisense/genetics
- DNA, Antisense/pharmacology
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Histocytochemistry
- Humans
- Male
- Membrane Proteins
- Mice
- Mice, SCID
- Neoplasm Proteins/analysis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Biosynthesis
- Proteins/analysis
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Random Allocation
- Recombinant Proteins/genetics
- Specific Pathogen-Free Organisms
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Platica
- Department of Medicine, Mount Sinai Medical Center, New York, New York 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
There is a potential role for antisense oligonucleotides in the treatment of disease. The principle of antisense technology is the sequence-specific binding of an antisense oligonucleotide to target mRNA, resulting in the prevention of gene translation. The specificity of hybridisation makes antisense treatment an attractive strategy to selectively modulate the expression of genes involved in the pathogenesis of diseases. One antisense drug has been approved for local treatment of cytomegalovirus-induced retinitis, and several antisense oligonucleotides are in clinical trials, including oligonucleotides that target the mRNA of BCL2, protein-kinase-C alpha, and RAF kinase. Antisense oligonucleotides are well tolerated and might have therapeutic activity. Here, we summarise treatment ideas in this field, summarise clinical trials that are being done, discuss the potential contribution of CpG motif-mediated effects, and look at promising molecular targets to treat human cancer with antisense oligonucleotides.
Collapse
Affiliation(s)
- I Tamm
- Department for Haematology and Oncology, Charité, Virchow-Clinic, Humboldt University, Forschungshaus, Room 2.0315, 13353, Berlin, Germany.
| | | | | |
Collapse
|
31
|
Jen KY, Gewirtz AM. Suppression of gene expression by targeted disruption of messenger RNA: available options and current strategies. Stem Cells 2000; 18:307-19. [PMID: 11007915 DOI: 10.1634/stemcells.18-5-307] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
At least three different approaches may be used for gene targeting including: A) gene knockout by homologous recombination; B) employment of synthetic oligonucleotides capable of hybridizing with DNA or RNA, and C) use of polyamides and other natural DNA-bonding molecules called lexitropsins. Targeting mRNA is attractive because mRNA is more accessible than the corresponding gene. Three basic strategies have emerged for this purpose, the most familiar being to introduce antisense nucleic acids into a cell in the hopes that they will form Watson-Crick base pairs with the targeted gene's mRNA. Duplexed mRNA cannot be translated, and almost certainly initiates processes which lead to its destruction. The antisense nucleic acid can take the form of RNA expressed from a vector which has been transfected into the cell, or take the form of a DNA or RNA oligonucleotide which can be introduced into cells through a variety of means. DNA and RNA oligonucleotides can be modified for stability as well as engineered to contain inherent cleaving activity. It has also been proven that because RNA and DNA are very similar chemical compounds, DNA molecules with enzymatic activity could also be developed. This assumption proved correct and led to the development of a "general-purpose" RNA-cleaving DNA enzyme. The attraction of DNAzymes over ribozymes is that they are very inexpensive to make and that because they are composed of DNA and not RNA, they are inherently more stable than ribozymes. Although mRNA targeting is impeccable in theory, many additional considerations must be taken into account in applying these strategies in living cells including mRNA site selection, drug delivery and intracellular localization of the antisense agent. Nevertheless, the ongoing revolution in cell and molecular biology, combined with advances in the emerging disciplines of genomics and informatics, has made the concept of nontoxic, cancer-specific therapies more viable then ever and continues to drive interest in this field.
Collapse
Affiliation(s)
- K Y Jen
- Department of Cell and Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|