1
|
Gavi F, Sighinolfi MC, Pallotta G, Assumma S, Panio E, Fettucciari D, Silvestri A, Russo P, Bientinesi R, Foschi N, Turri F, Carbonara U, Ciccarese C, Iacovelli R, Nero C, Rocco B. Multiomics in Renal Cell Carcinoma: Current Landscape and Future Directions for Precision Medicine. Curr Urol Rep 2025; 26:44. [PMID: 40418294 DOI: 10.1007/s11934-025-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
PURPOSE OF REVIEW Renal cell carcinoma (RCC) is a prevalent and increasingly diagnosed malignancy associated with high mortality and recurrence rates. Traditional diagnostic and therapeutic approaches have limitations due to the disease's molecular heterogeneity. This review aims to explore how the integration of omics sciences-genomics, transcriptomics, proteomics, and metabolomics-can enhance the diagnosis, prognosis, and treatment of RCC. RECENT FINDINGS Genomic analyses have uncovered critical mutations, including VHL, PBRM1, and BAP1, which support improved risk stratification and the development of targeted therapies. Transcriptomic and spatial transcriptomic studies have provided deeper insights into RCC heterogeneity and tumor microenvironment dynamics. Proteomic investigations have revealed potential biomarkers, while metabolomic approaches have highlighted RCC-specific metabolic shifts. Despite these advancements, several challenges persist, including intratumoral heterogeneity, difficulties in multi-omics data integration, and the limited clinical validation of biomarkers. Omics-driven approaches hold significant promise for advancing precision medicine in RCC. These technologies can facilitate earlier diagnosis, guide individualized therapies, and enhance prognostic evaluations. Future research must focus on validating multi-omic biomarkers and leveraging artificial intelligence to manage complex datasets, thereby supporting more informed clinical decision-making and personalized treatment strategies.
Collapse
Affiliation(s)
- Filippo Gavi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy.
| | - Maria Chiara Sighinolfi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Giuseppe Pallotta
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Simone Assumma
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Enrico Panio
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Daniele Fettucciari
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Antonio Silvestri
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Pierluigi Russo
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Riccardo Bientinesi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Nazario Foschi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Filippo Turri
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | | | - Chiara Ciccarese
- Department of Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Roberto Iacovelli
- Department of Oncology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Camilla Nero
- Department of Women and Child Health, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| | - Bernardo Rocco
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, 00168, Italy
| |
Collapse
|
2
|
Pal SK, Bernard-Tessier A, Grell P, Gao X, Kotecha RR, Picus J, de Braud F, Takahashi S, Wong A, Suárez C, Otero JA, Kundamal N, Yang X, Sharaby S, Roy M, Barzaghi-Rinaudo P, Tannir NM. A Phase I Dose-Escalation Study of the HIF-2 Alpha Inhibitor DFF332 in Patients with Advanced Clear-Cell Renal Cell Carcinoma. Clin Cancer Res 2025; 31:1847-1855. [PMID: 40043000 PMCID: PMC12079095 DOI: 10.1158/1078-0432.ccr-24-2618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/05/2024] [Accepted: 02/28/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE Mutations or silencing of the von Hippel-Lindau tumor suppressor gene accumulate hypoxia-inducible factors (HIF). HIF-2α is implicated in the oncogenesis of ∼50% of patients with clear-cell renal cell carcinoma (ccRCC) but has been considered "undruggable." DFF332, an orally administered novel allosteric inhibitor of HIF-2α, showed dose-dependent antitumor efficacy in preclinical models of ccRCC. PATIENTS AND METHODS This first-in-human study evaluated the safety, tolerability, antitumor activity, pharmacokinetics, and pharmacodynamics of DFF332 in patients with heavily pretreated advanced ccRCC. Preliminary data from the dose escalation of DFF332 monotherapy, administered orally at 50 or 100 mg weekly or 25, 50, 100, or 150 mg once daily in 28-day treatment cycles, are reported. RESULTS As of January 15, 2024, 40 patients (median age, 62.5 years) received DFF332 for a median duration of 12.1 weeks. Overall, two patients (5%) achieved a partial response, and 19 (48%) achieved stable disease as the best overall response. DFF332 showed a favorable safety profile, with treatment-related adverse events occurring in 25 patients (63%). Only five patients (13%) experienced treatment-related anemia, and no hypoxia was observed. The only serious treatment-related adverse event, hypertension, was reported in one patient. The maximum tolerated dose was not reached. CONCLUSIONS Although clinical responses were limited in the doses evaluated, dose exploration halted prematurely, making it difficult to draw definitive conclusions about the efficacy of DFF332. Further investigation is required to establish a recommended dose regimen, assess its efficacy and safety, and evaluate its full potential as a partner in combination studies.
Collapse
Affiliation(s)
- Sumanta K. Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Alice Bernard-Tessier
- Department of Cancer Medicine, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Xin Gao
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Ritesh R. Kotecha
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joel Picus
- Division of Oncology, Siteman Cancer Center, Washington University, St. Louis, Missouri
| | - Filippo de Braud
- Department of Oncology and Hematology, IRCCS National Cancer Institute Foundation, Milan, Italy
- Medical Oncology, University of Milan, Milan, Italy
| | - Shunji Takahashi
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Alvin Wong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Cristina Suárez
- Medical Oncology, Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier A. Otero
- Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Nicole Kundamal
- Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Xin Yang
- Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Sherif Sharaby
- Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Mike Roy
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | | | - Nizar M. Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Guerra-Andrés M, Fernández ÁF, Fontanil T. Exosomes, autophagy, and cancer: A complex triad. Int J Cancer 2025. [PMID: 40318053 DOI: 10.1002/ijc.35388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 05/07/2025]
Abstract
Cancer remains one of the leading causes of death worldwide. Despite remarkable progress in prevention, diagnosis, and therapy, the incidence of certain types of cancer persists, urging the identification of clinically relevant biomarkers and the development of novel therapeutic strategies to improve clinical outcomes and overcome treatment resistance. Exosomes, small extracellular vesicles released by diverse types of cells, have attracted interest in biomedical research due to their potential as carriers for different treatments. Moreover, exosomes play a pivotal role in intercellular communication, modulating various cellular processes. One of those is autophagy, a pro-survival pathway that is essential for human cells. Even though autophagy is traditionally described as a catabolic route, its machinery is intricately involved in various cellular responses, including vesicle formation and secretion. In this regard, the link between autophagy and exosomes is complex, bidirectional, and highly dependent on the cellular context. Interestingly, both processes have been extensively implicated in cancer pathogenesis, highlighting their potential as therapeutic targets. This review updates our understanding of how exosomes can participate in cancer development and progression, with a specific focus on their influence on tumor growth, angiogenesis, and metastasis. Additionally, the interplay between these extracellular vesicles and autophagy is minutely reviewed and discussed, as we hypothesize that this crosstalk may hold valuable clues for biomarker discovery and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Guerra-Andrés
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
| | - Álvaro F Fernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Tania Fontanil
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto Ordoñez (Astracime S.L), Oviedo, Spain
- Lovinium Biocell CO LTD., Bangkok, Thailand
| |
Collapse
|
4
|
Chen M, Liu Y, Yang X, Gu Y, Dong L, Xu H, Zhou L, Yang X. Germline Mutations in Renal Neoplasms and Their Clinicopathological Correlations. Int J Surg Pathol 2025:10668969251318038. [PMID: 40012254 DOI: 10.1177/10668969251318038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Introduction. Germline mutations have been described in multiple renal neoplasm entities in the fifth edition of the World Health Organization Classification of Urinary and Male Genital Systems. However, our knowledge of renal neoplasms with germline mutations remains limited. Methods. To expand our understanding, 15 tumors with germline mutations were retrieved from 284 renal neoplasms that underwent next-generation sequencing, including well-known VHL, FH, SDHB, FLCN, TSC1, and less common genes such as MUTYH, NF2, and BARD1. Results. Interesting findings included clear cell renal cell carcinoma (RCC) with FH germline mutation and succinate dehydrogenase (SDH)-deficient RCC with high-grade transformation. Patients with germline mutations of these uncommon altered genes in renal neoplasms, such as MUTYH, NF2, and BARD1 were diagnosed with different renal entities, including entities with favorable outcomes (renal cell carcinoma with fibromyomatous stroma) or adverse outcomes (collecting duct carcinoma and FH deficient renal cell carcinoma). Conclusions. Besides the well-known germline mutations in renal neoplasms, we described germline mutations in some genes that are common in other sites but uncommon in the kidney. Although they cannot be used to determine a definite renal entity, they may also contribute to the pathogenesis of renal neoplasms. Tumors need to be diagnosed based on morphology, immunohistochemistry, and other molecular evidence.
Collapse
Affiliation(s)
- Meihua Chen
- Department of Pathology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yang Liu
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Xianwei Yang
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Yijin Gu
- Department of Pathology, Shenzhen Bao'an District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lei Dong
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Luting Zhou
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|
5
|
Moon SW, Lee JC, Lee JH, Kim TY, Park JH. Clinical and Prognostic Value of VHL in Korean Patients with Rectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:306. [PMID: 40005423 PMCID: PMC11857133 DOI: 10.3390/medicina61020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Von Hippel-Lindau (VHL) disease is caused by mutations in the VHL gene and can develop various cancers. Hypoxia-inducible factors 1 and 2 alphas, regulated by the VHL gene, can increase the levels of vascular endothelial growth factor, thereby activating cancer progression. Here, we demonstrated clinical and prognostic values of VHL expression in rectal cancer (RC). Materials and Methods: Von Hippel-Lindau mRNA expression was examined in 60 patients with RC. Furthermore, we evaluated survival to determine the prognostic significance of VHL mRNA expression levels in RC using the Cancer Genome Atlas (TCGA) data. Results: Lower VHL expression was correlated with the recurrence (p = 0.058) and lymphatic invasion (p = 0.078), although it was not statistically significant. In TCGA data, VHL expression level was correlated with the M stage (p = 0.044); however, it had a possible association with lymphatic invasion (p = 0.068) and N stage (p = 0.104). Survival analysis showed that lower VHL gene expression predicted poorer survival in both patients with RC and TCGA data. Conclusions: This study identified a significant correlation between VHL gene expression and RC for the first time using patient tissues and TCGA data, suggesting that the VHL gene expression level could be a potential biomarker or candidate for the treatment of RC. Further studies are required to identify the molecular pathogenesis and clinical characteristics of VHL disease in RC.
Collapse
Affiliation(s)
- Sang-Won Moon
- Medical Course, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (S.-W.M.); (J.-C.L.)
| | - Jun-Chae Lee
- Medical Course, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (S.-W.M.); (J.-C.L.)
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine & Institute for Medical Science, Keimyung University, Daegu 42601, Republic of Korea;
| | - Tae-Young Kim
- Department of Anatomy, School of Medicine & Institute for Medical Science, Keimyung University, Daegu 42601, Republic of Korea;
| | - Jong Ho Park
- Department of Anatomy, School of Medicine & Institute for Medical Science, Keimyung University, Daegu 42601, Republic of Korea;
| |
Collapse
|
6
|
Abah MO, Ogenyi DO, Zhilenkova AV, Essogmo FE, Ngaha Tchawe YS, Uchendu IK, Pascal AM, Nikitina NM, Rusanov AS, Sanikovich VD, Pirogova YN, Boroda A, Moiseeva AV, Sekacheva MI. Innovative Therapies Targeting Drug-Resistant Biomarkers in Metastatic Clear Cell Renal Cell Carcinoma (ccRCC). Int J Mol Sci 2024; 26:265. [PMID: 39796121 PMCID: PMC11720203 DOI: 10.3390/ijms26010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 01/13/2025] Open
Abstract
A thorough study of Clear Cell Renal Cell Carcinoma (ccRCC) shows that combining tyrosine kinase inhibitors (TKI) with immune checkpoint inhibitors (ICI) shows promising results in addressing the tumor-promoting influences of abnormal immunological and molecular biomarkers in metastatic Clear Cell Renal Cell Carcinoma (ccRCC). These abnormal biomarkers enhance drug resistance, support tumor growth, and trigger cancer-related genes. Ongoing clinical trials are testing new treatment options that appear more effective than earlier ones. However, more research is needed to confirm their long-term safety use and potential side effects. This study highlights vital molecular and immunological biomarkers associated with drug resistance in Clear Cell Renal Cell Carcinoma (ccRCC). Furthermore, this study identifies a number of promising drug candidates and biomarkers that serve as significant contributors to the enhancement of the overall survival of ccRCC patients. Consequently, this article offers pertinent insights on both recently completed and ongoing clinical trials, recommending further toxicity study for the prolonged use of this treatment strategy for patients with metastatic ccRCC, while equipping researchers with invaluable information for the progression of current treatment strategies.
Collapse
Affiliation(s)
- Moses Owoicho Abah
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Department of Cancer Bioinformatics and Molecular Biology, Royal Society of Clinical and Academic Researchers (ROSCAR) International, Abuja 900104, Nigeria
| | - Deborah Oganya Ogenyi
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Angelina V. Zhilenkova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Freddy Elad Essogmo
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yvan Sinclair Ngaha Tchawe
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Ikenna Kingsley Uchendu
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Akaye Madu Pascal
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Natalia M. Nikitina
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander S. Rusanov
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Varvara D. Sanikovich
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Yuliya N. Pirogova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Alexander Boroda
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Aleksandra V. Moiseeva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| | - Marina I. Sekacheva
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.O.O.); (A.V.Z.); (F.E.E.); (Y.S.N.T.); (A.M.P.); (N.M.N.); (A.S.R.); (V.D.S.); (Y.N.P.); (A.B.); (A.V.M.); (M.I.S.)
| |
Collapse
|
7
|
Li Z, Yin B, Xu Y, Wang C, Li X, Lu S, Ke S, Qian B, Yu H, Bai M, Li Z, Zhou Y, Jiang H, Ma Y. Von Hippel-Lindau deficiency protects the liver against ischemia/reperfusion injury through the regulation of hypoxia-inducible factor 1α and 2α. Hepatol Commun 2024; 8:e0567. [PMID: 39585306 PMCID: PMC11596652 DOI: 10.1097/hc9.0000000000000567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/25/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Ischemia and reperfusion (I/R)-induced liver injury contributes to morbidity and mortality during hepatic surgery or liver transplantation. As a pivotal regulator of cancer and inflammation, the role of Von Hippel-Lindau (VHL) in hepatic I/R injury remains undetermined. METHODS We investigated the role of VHL in hepatic I/R injury by generating VHL conditional knockout (VHL-KO) mice. The downstream mechanisms of VHL were confirmed, and the role of HIF-2α in hepatic I/R injury was further investigated. RESULTS In this study, we discovered that VHL upregulation was associated with hepatic I/R injury in a mouse model. VHL gene knockout (VHL-KO) and overexpression (Ad-VHL) mice demonstrated that VHL aggravated liver injury, increased inflammation, and accelerated cell death in hepatic I/R injury. The VHL protein (pVHL) regulates a crucial control mechanism by targeting HIFα subunits for ubiquitin-mediated degradation. In vitro and in vivo studies demonstrated that VHL interacted with and repressed hypoxia-inducible factor 1α (HIF-1α) and hypoxia-inducible factor 2α (HIF-2α) expression during hepatic I/R injury. Notably, the inhibition of HIF-1α or 2α, as well as the concurrent inhibition of HIF-1α and 2α, abrogated the protective effect of VHL-KO. The severe stabilization of HIF-1α or 2α, as well as the simultaneous overexpression of HIF-1α and 2α, compensated for the detrimental effect of VHL. CONCLUSIONS Thus, we identified the VHL-HIF-1α/HIF-2α axis as an indispensable pathway that may be a novel target for mediating hepatic I/R injury.
Collapse
Affiliation(s)
- Zihao Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoqun Wang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Hepatobiliary Surgery, Peking University People’s Hospital, Beijing, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Miaoyu Bai
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Elkady N, Elgendy W, Badr MT, Aiad H, Samara M, Badr NM. Evaluation of the diagnostic utility of NCOA3, Maspin and VHL protein expression in pancreatic ductal adenocarcinoma: An immunohistochemical study. Ann Diagn Pathol 2024; 73:152356. [PMID: 38901088 DOI: 10.1016/j.anndiagpath.2024.152356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal tumor with a high mortality rate. The distinction between PDAC and chronic pancreatitis is sometimes challenging on routine histopathological examination, highlighting the need to identify biomarkers that can facilitate this distinction. This retrospective study was conducted to evaluate the diagnostic utility of nuclear receptor co-activator 3 (NCOA3), Maspin and Von Hippel-Lindau protein (VHL) immunostaining in PDAC. Eighty cases of PDAC, 46 cases of chronic pancreatitis and 53 normal pancreatic tissue were immunohistochemically assessed using NCOA3, Maspin and VHL antibodies on sections from a tissue microarray. NCOA3, Maspin and VHL were positive in 90 %, 100 % and 35 %, of PDAC cases respectively, whereas NCOA3, Maspin and VHL expressions were positive in 3.8 %, 0 and 100 % of normal pancreatic tissue and in 15.2 %, 21.7 % and 97.8 % of chronic pancreatitis cases respectively. Significant differences were observed between PDAC and other groups regarding NCOA3, Maspin and VHL expression (p < 0.001). The H scores of NCOA3, Maspin and VHL could significantly distinguish between PDAC and normal cases with high sensitivity (90 %, 100 % and 98.75 % respectively) and specificity (100 %, 100 % and 96.23 % respectively). Similar findings were found in the distinction between PDAC and chronic pancreatitis (Sensitivity: 90 %, 95.25 % and 98.75 %; specificity: 100 %, 100 % and 93.48 % for NCOA3, Maspin and VHL respectively). In conclusion, NCOA3 and Maspin were found to be significantly expressed in PDAC compared to non-tumorous tissue while VHL was significantly expressed in non-tumorous tissue. A panel of NCOA3, Maspin and VHL could potentially distinguish PDAC from non-tumorous pancreatic tissue.
Collapse
Affiliation(s)
- Noha Elkady
- Faculty of Medicine, Menoufia University, Egypt.
| | - Walaa Elgendy
- National Liver Institute, Menoufia University, Egypt
| | | | - Hayam Aiad
- Faculty of Medicine, Menoufia University, Egypt
| | - Manar Samara
- National Liver Institute, Menoufia University, Egypt
| | | |
Collapse
|
9
|
Stransky LA, Gao W, Schmidt LS, Bi K, Ricketts CJ, Ramesh V, James A, Difilippantonio S, Ileva L, Kalen JD, Karim B, Jeon A, Morgan T, Warner AC, Turan S, Unite J, Tran B, Choudhari S, Zhao Y, Linn DE, Yun C, Dhandapani S, Parab V, Pinheiro EM, Morris N, He L, Vigeant SM, Pignon JC, Sticco-Ivins M, Signoretti S, Van Allen EM, Linehan WM, Kaelin WG. Toward a CRISPR-based mouse model of Vhl-deficient clear cell kidney cancer: Initial experience and lessons learned. Proc Natl Acad Sci U S A 2024; 121:e2408549121. [PMID: 39365820 PMCID: PMC11474080 DOI: 10.1073/pnas.2408549121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
CRISPR is revolutionizing the ability to do somatic gene editing in mice for the purpose of creating new cancer models. Inactivation of the VHL tumor suppressor gene is the signature initiating event in the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Such tumors are usually driven by the excessive HIF2 activity that arises when the VHL gene product, pVHL, is defective. Given the pressing need for a robust immunocompetent mouse model of human ccRCC, we directly injected adenovirus-associated viruses (AAVs) encoding sgRNAs against VHL and other known/suspected ccRCC tumor suppressor genes into the kidneys of C57BL/6 mice under conditions where Cas9 was under the control of one of two different kidney-specific promoters (Cdh16 or Pax8) to induce kidney tumors. An AAV targeting Vhl, Pbrm1, Keap1, and Tsc1 reproducibly caused macroscopic ccRCCs that partially resembled human ccRCC tumors with respect to transcriptome and cell of origin and responded to a ccRCC standard-of-care agent, axitinib. Unfortunately, these tumors, like those produced by earlier genetically engineered mouse ccRCCs, are HIF2 independent.
Collapse
Affiliation(s)
- Laura A. Stransky
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Wenhua Gao
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Laura S. Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Kevin Bi
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Vijyendra Ramesh
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Amy James
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Simone Difilippantonio
- Animal Research Technical Support, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lilia Ileva
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Joseph D. Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Albert Jeon
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Tamara Morgan
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Andrew C. Warner
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Sevilay Turan
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Joanne Unite
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Bao Tran
- National Cancer Institute Center for Cancer Research, Sequencing Facility, Frederick National Laboratory for Cancer Research, Frederick, MD 21701
| | - Sulbha Choudhari
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Yongmei Zhao
- Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | | | - Changhong Yun
- Pharmacokinetics, Merck & Co., Inc., Boston, MA02115
| | | | - Vaishali Parab
- Pharmacokinetics, Merck & Co., Inc., South San Francisco, CA94080
| | | | - Nicole Morris
- Laboratory of Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Lixia He
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Sean M. Vigeant
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Jean-Christophe Pignon
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
| | - Maura Sticco-Ivins
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA02115
- Department of Pathology, Brigham and Women's Hospital, Boston, MA02115
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA02115
| | - Eliezer M. Van Allen
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA02115
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - William G. Kaelin
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
10
|
Dong X, Zhang D, Zhang X, Liu Y, Liu Y. Network modeling links kidney developmental programs and the cancer type-specificity of VHL mutations. NPJ Syst Biol Appl 2024; 10:114. [PMID: 39362887 PMCID: PMC11449910 DOI: 10.1038/s41540-024-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Elucidating the molecular dependencies behind the cancer-type specificity of driver mutations may reveal new therapeutic opportunities. We hypothesized that developmental programs would impact the transduction of oncogenic signaling activated by a driver mutation and shape its cancer-type specificity. Therefore, we designed a computational analysis framework by combining single-cell gene expression profiles during fetal organ development, latent factor discovery, and information theory-based differential network analysis to systematically identify transcription factors that selectively respond to driver mutations under the influence of organ-specific developmental programs. After applying this approach to VHL mutations, which are highly specific to clear cell renal cell carcinoma (ccRCC), we revealed important regulators downstream of VHL mutations in ccRCC and used their activities to cluster patients with ccRCC into three subtypes. This classification revealed a more significant difference in prognosis than the previous mRNA profile-based method and was validated in an independent cohort. Moreover, we found that EP300, a key epigenetic factor maintaining the regulatory network of the subtype with the worst prognosis, can be targeted by a small inhibitor, suggesting a potential treatment option for a subset of patients with ccRCC. This work demonstrated an intimate relationship between organ development and oncogenesis from the perspective of systems biology, and the method can be generalized to study the influence of other biological processes on cancer driver mutations.
Collapse
Affiliation(s)
- Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Donglei Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xian Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Abu-Remaileh M, Persky NS, Lee Y, Root DE, Kaelin WG. Total loss of VHL gene function impairs neuroendocrine cancer cell fitness due to excessive HIF2α activity. Proc Natl Acad Sci U S A 2024; 121:e2410356121. [PMID: 39320914 PMCID: PMC11459182 DOI: 10.1073/pnas.2410356121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Loss-of-function germline von Hippel-Lindau (VHL) tumor suppressor mutations cause VHL disease, which predisposes individuals to kidney cancer, hemangioblastomas, and paragangliomas. The risk that a given VHL disease family will manifest some or all these tumor types is profoundly influenced by the VHL allele it carries. For example, almost all VHL disease families that develop paraganglioma have missense VHL mutations. VHL families with null VHL alleles develop kidney cancer and hemangioblastomas without a high risk of paraganglioma. The latter is surprising because the VHL gene product, pVHL, suppresses the HIF2 transcription factor and gain-of-function HIF2 mutations are also linked to paraganglioma. Paragangliomas arise from the sympathetic or parasympathetic nervous system. Given the lack of human paraganglioma cell lines, we studied the effects of inactivating VHL in neuroblastoma cell lines, which also arise from the sympathetic nervous system. We found that total loss of pVHL function profoundly impairs the fitness of neuroblastoma cell lines in a HIF2-dependent manner both ex vivo and in vivo. This fitness defect can be rescued by pVHL variants linked to paraganglioma, but not by pVHL variants associated with a low risk of paraganglioma. These findings suggest that HIF2 activity above a critical threshold prevents the development of paraganglioma.
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
| | - Nicole S. Persky
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Yenarae Lee
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - David E. Root
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - William G. Kaelin
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02215
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
12
|
Abstract
Importance Renal cell carcinoma (RCC) is a common malignancy, with an estimated 434 840 incident cases worldwide in 2022. In the US, it is the sixth most common cancer among males and ninth among females. Observations Clear cell RCC is the most common histologic subtype (75%-80% of cases) and is characterized by inactivation of the von Hippel Lindau (VHL) tumor suppressor gene. Many patients (37%-61%) are diagnosed with RCC incidentally on an abdominal imaging study such as ultrasound or computed tomographic scan, and 70% of patients have stage I RCC at diagnosis. Although its incidence has increased approximately 1% per year from 2015 through 2019, the mortality rate of RCC has declined about 2% per year in the US from 2016 through 2020. Patients with a solid renal mass or complex cystic renal mass should be referred to urology. Treatment options for RCC confined to the kidney include surgical resection with partial or radical nephrectomy, ablative techniques (eg, cryoablation, radiofrequency ablation, radiation), or active surveillance for some patients (especially those with renal masses <2 cm). For patients with renal masses less than 4 cm in size (48% of patients), partial nephrectomy can result in a 5-year cancer-specific survival of more than 94%. For advanced or metastatic RCC, combinations of immune checkpoint inhibitors or the combination of immune checkpoint inhibitors with tyrosine kinase inhibitors are associated with tumor response of 42% to 71%, with a median overall survival of 46 to 56 months. Conclusions and Relevance RCC is a common malignancy that is often diagnosed incidentally on an abdominal imaging study. Seventy percent of patients are diagnosed with stage I RCC and 11% of patients with stage IV. First-line treatments for early-stage RCC are partial or radical nephrectomy, which can result in 5-year cancer-specific survival of more than 94%, ablative techniques, or active surveillance. New treatment options for patients with metastatic RCC include immune checkpoint inhibitors and tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Tracy L Rose
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
| | - William Y Kim
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
- Department of Genetics, University of North Carolina at Chapel Hill
- Department of Pharmacology, University of North Carolina at Chapel Hill
| |
Collapse
|
13
|
Shult C, Gunderson K, Coffey SJ, McNally B, Brandt M, Smith L, Steczynski J, Olerich ER, Schroeder SE, Severson NJ, Hati S, Bhattacharyay S. Conformational fluidity of intrinsically disordered proteins in crowded environment: a molecular dynamics simulation study. J Biomol Struct Dyn 2024:1-13. [PMID: 39285530 PMCID: PMC11910382 DOI: 10.1080/07391102.2024.2404531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 10/15/2024]
Abstract
The class of intrinsically disordered proteins lacks stable three-dimensional structures. Their flexibility allows them to engage in a wide variety of interactions with other biomolecules thus making them biologically relevant and efficient. The intrinsic disorders of these proteins, which undergo binding-induced folding, allow alterations in their topologies while conserving their binding sites. Due to the lack of well-defined three-dimensional structures in the absence of their physiological partners, the folding and the conformational dynamics of these proteins remained poorly understood. Particularly, it is unclear how these proteins exist in the crowded intracellular milieu. In the present study, molecular dynamic simulations of two intrinsically unstructured proteins and two controls (folded proteins) were conducted in the presence and absence of molecular crowders to obtain an in-depth insight into their conformational flexibility. The present study revealed that polymer crowders stabilize the disordered proteins through enthalpic as well as entropic effects that are significantly more than their monomeric counterpart. Taken together, the study delves deep into crowding effects on intrinsically disordered proteins and provides insights into how molecular crowders induce a significantly diverse ensemble of dynamic scaffolds needed to carry out diverse functions.
Collapse
Affiliation(s)
- Carolyn Shult
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Keegan Gunderson
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Stephen J. Coffey
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Brenya McNally
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Michael Brandt
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Lucille Smith
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Joshua Steczynski
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Ethan R. Olerich
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Sydney E. Schroeder
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Nathaniel J. Severson
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| | - Sudeep Bhattacharyay
- Department of Chemistry and Biochemistry, 105 Garfield Avenue, University of Wisconsin-Eau Claire, Wisconsin-54702, U.S.A
| |
Collapse
|
14
|
Larcher A, Belladelli F, Cei F, Re C, Rowe I, Montorsi F, Capitanio U, Salonia A. Centralization of care for rare genetic syndromes associated with cancer: improving outcomes and advancing research on VHL disease. Nat Rev Urol 2024; 21:565-571. [PMID: 38719914 DOI: 10.1038/s41585-024-00874-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 09/06/2024]
Abstract
Von Hippel-Lindau (VHL) disease is a rare genetic syndrome caused by a germline pathogenic variant in one VHL allele. Any somatic event disrupting the other allele induces VHL protein (pVHL) loss of function, ultimately leading to patients developing multiple tumours in multiple organs at multiple timepoints, and reducing life expectancy. Treatment of this complex, rare disease is often fragmented, as patients visit specialist clinicians in isolation at different medical centres. Consequently, patients can receive sub-optimal treatment that results in decreased quality of life and a poor experience of health care systems. In 2021, we established a comprehensive clinical centre at San Raffaele Hospital, Milan, devoted to VHL disease. The centre provides a structured programme for the diagnosis, surveillance and treatment of patients alongside research into VHL disease and involves a multidisciplinary team of dedicated physicians. This programme demonstrates the benefits of care centralization, including concentration of knowledge and services, synergy and multidisciplinary management, improved networking and patient resources, reducing health care costs, and fostering research and innovation. VHL disease provides an ideal model to assess the advantages of centralizing care for rare disease and represents an unparalleled opportunity to broaden our understanding of cancer biology in general.
Collapse
Affiliation(s)
- Alessandro Larcher
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Federico Belladelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Cei
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Re
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Isaline Rowe
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Umberto Capitanio
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
15
|
Jamshidi F, Lozano L, Tucker B, Andorf J, Sohn E, Stone E, Groves A, Zakharia Y, Boldt HC, Binkley E. Belzutifan in Individuals with von Hippel-Lindau Retinal Hemangioblastomas: Institutional Experience and Review of the Literature. Ocul Oncol Pathol 2024; 10:154-161. [PMID: 39224523 PMCID: PMC11368390 DOI: 10.1159/000539434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/17/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The systemic HIF-2 alpha inhibitor, belzutifan, has been approved for use in patients with von Hippel-Lindau disease (VHL)-associated renal cell carcinoma, central nervous system (CNS) hemangioblastomas, and pancreatic neuroendocrine tumors. This drug has also shown promise in controlling VHL retinal hemangioblastomas (RHs), but little work has been published on the use of the drug in this setting. Methods We conducted a retrospective review of patients with VHL-associated RHs followed by the retina service at our institution who were treated with systemic belzutifan. Patient age, gender, genotype, presence of systemic tumors, indication for the drug, initial dose, adjusted dose, side effects, and tumor response were recorded. We also conducted a literature search for all manuscripts describing the effect of belzutifan on VHL-associated ocular tumors. Results We identified 12 eyes of 7 patients with VHL-associated ocular tumors who were treated with belzutifan at our institution. Of these, 5 eyes of 3 patients had progressing ocular tumors when belzutifan was started. Of the 7 total patients, 2 were treated for renal cell carcinoma, 2 for CNS hemangioblastomas, 2 for RHs, and one for pancreatic neuroendocrine tumors. Initial dose was 120 mg PO daily in 6 patients and 80 mg PO daily in 1 patient. The dose was reduced in all but 1 patient due to side effects. The ocular tumors were controlled in all patients with an average follow-up of 13 months (range 4-24 months). Literature review identified 7 manuscripts that described belzutifan-mediated control of ocular tumors in patients with VHL-associated RHs in 21 patients. Conclusion The drug belzutifan shows great promise for controlling RHs and preventing vision loss in patients with VHL. Further work needs to address the optimal dose, role of the drug as a neoadjuvant therapy, and long-term efficacy and tolerability of the drug in a larger cohort of patients with ocular tumors.
Collapse
Affiliation(s)
- Farzad Jamshidi
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Lola Lozano
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Budd Tucker
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Jean Andorf
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Elliott Sohn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Edwin Stone
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Andrew Groves
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - H. Culver Boldt
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Elaine Binkley
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Sukrithan V, Perez K, Pandit-Taskar N, Jimenez C. Management of metastatic pheochromocytomas and paragangliomas: when and what. Curr Probl Cancer 2024; 51:101116. [PMID: 39024846 DOI: 10.1016/j.currproblcancer.2024.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Recently, the treatment landscape for metastatic pheochromocytomas and paragangliomas (MPPGL) has seen both progress and setbacks. We provide an up-to-date review of the multimodality management of MPPGL and discuss novel opportunities and current challenges in the treatment landscape. Given the unique clinical presentation of MPPGL, we discuss the management of hormone-related clinical sequelae and traditional modalities of therapy. Advances in the understanding of the molecular biology of these diverse tumors have enabled novel strategies such as augmenting DNA damage by targeted delivery of radionuclides such as 131I and 177Lu, abrogating tumor angiogenesis, hypoxia resistance, and DNA damage repair. Despite progress, we address the significant challenges still faced by patients and researchers engaged in efforts to improve outcomes in these rare cancers.
Collapse
Affiliation(s)
- Vineeth Sukrithan
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Singh A, Cheng D, Swaminathan J, Yang Y, Zheng Y, Gordon N, Gopalakrishnan V. REST-dependent downregulation of von Hippel-Lindau tumor suppressor promotes autophagy in SHH-medulloblastoma. Sci Rep 2024; 14:13596. [PMID: 38866867 PMCID: PMC11169471 DOI: 10.1038/s41598-024-63371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The RE1 silencing transcription factor (REST) is a driver of sonic hedgehog (SHH) medulloblastoma genesis. Our previous studies showed that REST enhances cell proliferation, metastasis and vascular growth and blocks neuronal differentiation to drive progression of SHH medulloblastoma tumors. Here, we demonstrate that REST promotes autophagy, a pathway that is found to be significantly enriched in human medulloblastoma tumors relative to normal cerebella. In SHH medulloblastoma tumor xenografts, REST elevation is strongly correlated with increased expression of the hypoxia-inducible factor 1-alpha (HIF1α)-a positive regulator of autophagy, and with reduced expression of the von Hippel-Lindau (VHL) tumor suppressor protein - a component of an E3 ligase complex that ubiquitinates HIF1α. Human SHH-medulloblastoma tumors with higher REST expression exhibit nuclear localization of HIF1α, in contrast to its cytoplasmic localization in low-REST tumors. In vitro, REST knockdown promotes an increase in VHL levels and a decrease in cytoplasmic HIF1α protein levels, and autophagy flux. In contrast, REST elevation causes a decline in VHL levels, as well as its interaction with HIF1α, resulting in a reduction in HIF1α ubiquitination and an increase in autophagy flux. These data suggest that REST elevation promotes autophagy in SHH medulloblastoma cells by modulating HIF1α ubiquitination and stability in a VHL-dependent manner. Thus, our study is one of the first to connect VHL to REST-dependent control of autophagy in a subset of medulloblastomas.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Donghang Cheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Jyothishmathi Swaminathan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yanwen Yang
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Yan Zheng
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Nancy Gordon
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 853, Houston, TX, 77030, USA.
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Brain Tumor Center, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center and UTHealth Graduate School for Biomedical Sciences, 6767 Bertner Ave, S3.8344 Mitchell BSRB, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Polinski JM, Castellano KR, Buckley KM, Bodnar AG. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin. Cell Rep 2024; 43:114021. [PMID: 38564335 DOI: 10.1016/j.celrep.2024.114021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The red sea urchin (Mesocentrotus franciscanus) is one of the Earth's longest-living animals, reported to live more than 100 years with indeterminate growth, life-long reproduction, and no increase in mortality rate with age. To understand the genetic underpinnings of longevity and negligible aging, we constructed a chromosome-level assembly of the red sea urchin genome and compared it to that of short-lived sea urchin species. Genome-wide syntenic alignments identified chromosome rearrangements that distinguish short- and long-lived species. Expanded gene families in long-lived species play a role in innate immunity, sensory nervous system, and genome stability. An integrated network of genes under positive selection in the red sea urchin was involved in genomic regulation, mRNA fidelity, protein homeostasis, and mitochondrial function. Our results implicated known longevity genes in sea urchin longevity but also revealed distinct molecular signatures that may promote long-term maintenance of tissue homeostasis, disease resistance, and negligible aging.
Collapse
Affiliation(s)
| | | | | | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
20
|
Garrido E, Ngoc HL, Guyotat J, Pelissou-Guyotat I, Jacquesson T, Delabar V, Manet R, Gallet C, Fenouil T, Streichenberger N, Vasiljevic A, Meyronet D, Jouanneau E, Ducray F, Dumot C, Picart T. Predictors of Progression in a Series of 81 Adult Patients Surgically Managed for an Intracranial Hemangioblastoma: Implications for the Postoperative Follow-Up. Cancers (Basel) 2024; 16:1261. [PMID: 38610939 PMCID: PMC11010926 DOI: 10.3390/cancers16071261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The aim was to identify predictors of progression in a series of patients managed for an intracranial hemangioblastoma, in order to guide the postoperative follow-up modalities. The characteristics of 81 patients managed for an intracranial hemangioblastoma between January 2000 and October 2022 were retrospectively analyzed. The mean age at diagnosis was of 48 ± 16 years. Eleven (14%) patients had von Hippel-Lindau disease. The most frequent tumor location was the cerebellar hemispheres (n = 51, 65%) and 11 (14%) patients had multicentric hemangioblastomas. A gross total resection was achieved in 75 (93%) patients. Eighteen (22%) patients had a local progression, with a median progression-free survival of 56 months 95% CI [1;240]. Eleven (14%) patients had a distant progression (new hemangioblastoma and/or growth of an already known hemangioblastoma). Local progression was more frequent in younger patients (39 ± 14 years vs. 51 ± 16 years; p = 0.005), and those with von Hippel-Lindau disease (n = 8, 44% vs. n = 3, 5%, p < 0.0001), multiple cerebral locations (n = 3, 17% vs. n = 2, 3%, p = 0.02), and partial tumoral resection (n = 4, 18% vs. n = 1, 2%, p = 0.0006). Therefore, it is advisable to propose a postoperative follow-up for at least 10 years, and longer if at least one predictor of progression is present.
Collapse
Affiliation(s)
- Elisabeth Garrido
- Department of Neurosurgery, Rouen University Hospital, 1 Rue de Germont, 76000 Rouen, France;
| | - Huy Le Ngoc
- Department of Neurosurgery, Hospital Bach Mai, 78 Giai Phong, Phuong Mai, Dong Da, Ha Noi 116305, Vietnam;
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
| | - Isabelle Pelissou-Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
| | - Timothée Jacquesson
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
| | - Violaine Delabar
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
| | - Romain Manet
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
| | - Clémentine Gallet
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
| | - Tanguy Fenouil
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
- Department of Neuropathology, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
| | - Nathalie Streichenberger
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- Department of Neuropathology, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- CNRS UMR 5310—INSERM U1217, Institut NeuroMyogène, 8 Avenue Rockefeller, 69008 Lyon, France
| | - Alexandre Vasiljevic
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
- Department of Neuropathology, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
| | - David Meyronet
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
- Department of Neuropathology, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
| | - Emmanuel Jouanneau
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
| | - François Ducray
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
| | - Chloe Dumot
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- CarMeN Laboratoire, INSERM, INRAER, Université Claude Bernard Lyon 1, 59 Boulevard Pinel, 69500 Bron, France
| | - Thiebaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France; (J.G.); (I.P.-G.); (T.J.); (V.D.); (R.M.); (C.G.); (E.J.); (C.D.)
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France; (T.F.); (N.S.); (A.V.); (D.M.); (F.D.)
- Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
| |
Collapse
|
21
|
Duong NX, Nguyen T, Le MK, Sawada N, Kira S, Kondo T, Inukai T, Mitsui T. NAA10 gene expression is associated with mesenchymal transition, dedifferentiation, and progression of clear cell renal cell carcinoma. Pathol Res Pract 2024; 255:155191. [PMID: 38340582 DOI: 10.1016/j.prp.2024.155191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION We aimed to investigate the expression and prognostic role of NAA10 in clear cell renal cell carcinoma (ccRCC). MATERIAL AND METHODS We performed a gene expression and survival analysis based on the human cancer genome atlas database of ccRCC patients (TCGA-KIRC). RESULTS The patients in the TCGA-KIRC (n = 537) were divided into two subgroups: NAA10-low and NAA10-high expression groups. NAA10-high ccRCC exhibited higher T stages (p = 0.002), a higher frequency of distant metastasis (p = 0.018), more advanced AJCC stages (p < 0.001), a lower overall survival time (p = 0.036), and a lower survival rate (p < 0.001). NAA10-high ccRCC was associated with increased activity of non-specific oncogenic pathways, including oxidative phosphorylation (p < 0.001) and cell cycle progression [G2 to M phase transition (p = 0.045) and E2F targets (p < 0.001)]. Additionally, the NAA10-high tumors showed reduced apoptosis via TRIAL pathways (p < 0.001) and increased levels of activity that promoted epithelial-mesenchymal transition (p = 0.026) or undifferentiation (p = 0.01). In ccRCC, NAA10 expression was found to be a negative prognostic factor in both non-metastatic (p < 0.001) and metastatic tumors (p = 0.032). CONCLUSIONS In ccRCC, NAA10 expression was shown to be a negative prognostic factor related to tumor progression rather than tumor initiation, and high NAA10 expression promoted epithelial-mesenchymal transition and undifferentiation.
Collapse
Affiliation(s)
- Nguyen Xuong Duong
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan; Department of Urology, Cho Ray Hospital, Ho Chi Minh city, Vietnam.
| | - Thao Nguyen
- Department of Pediatrics, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Minh-Khang Le
- Department of Human Pathology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Norifumi Sawada
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Satoru Kira
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Tetsuo Kondo
- Department of Human Pathology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| | - Takahiko Mitsui
- Department of Urology, University of Yamanashi Graduate School of Medical Sciences, Chuo-city 409-3898, Japan.
| |
Collapse
|
22
|
Nguyen CB, Oh E, Bahar P, Vaishampayan UN, Else T, Alva AS. Novel Approaches with HIF-2α Targeted Therapies in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2024; 16:601. [PMID: 38339352 PMCID: PMC10854987 DOI: 10.3390/cancers16030601] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Germline inactivation of the Von Hippel-Lindau (VHL) tumor suppressor is the defining hallmark in hereditary VHL disease and VHL-associated renal cell carcinoma (RCC). However, somatic VHL mutations are also observed in patients with sporadic RCC. Loss of function VHL mutations result in constitutive activation of hypoxia-inducible factor-2 alpha (HIF-2α), which leads to increased expression of HIF target genes that promote angiogenesis and tumor growth. As of 2023, belzutifan is currently the only approved HIF-2α inhibitor for both VHL-associated and sporadic metastatic RCC (mRCC). However, there is potential for resistance with HIF-2α inhibitors which warrants novel HIF-2α-targeting strategies. In this review, we discuss the potential resistance mechanisms with belzutifan and current clinical trials evaluating novel combinations of belzutifan with other targeted therapies and immune checkpoint inhibitors which may enhance the efficacy of HIF-2α targeting. Lastly, we also discuss newer generation HIF-2α inhibitors that are currently under early investigation and outline future directions and challenges with HIF-2α inhibitors for mRCC.
Collapse
Affiliation(s)
- Charles B. Nguyen
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eugene Oh
- University of Michigan Medical School, Ann Arbor, MI 48109, USA; (E.O.); (P.B.)
| | - Piroz Bahar
- University of Michigan Medical School, Ann Arbor, MI 48109, USA; (E.O.); (P.B.)
| | - Ulka N. Vaishampayan
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tobias Else
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ajjai S. Alva
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (U.N.V.); (T.E.); (A.S.A.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Yoshikawa K, Hagimoto H, Nakamura E. [The development of innovative therapeutic drugs targeting hypoxia responses]. Nihon Yakurigaku Zasshi 2024; 159:160-164. [PMID: 38692880 DOI: 10.1254/fpj.23090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin Jr, Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for their elucidation of new physiological mechanisms "How cells sense and adapt to oxygen availability". Moreover, two different drugs, HIF-PH inhibitors and HIF-2 inhibitors were also developed based on the discovery. Interestingly, those three doctors have different backgrounds as a medical oncologist, a nephrologist, and a pediatrician, respectively. They have started the research based on their own unique perspectives and eventually merged as "the elucidation of the response mechanism of living organisms to hypoxic environments". In this review, we will explain how the translational research that has begun to solve unmet clinical needs successfully contributed to the development of innovative therapeutic drugs.
Collapse
Affiliation(s)
- Kiyotsugu Yoshikawa
- Laboratory of Pharmacotherapy, Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | | | | |
Collapse
|
24
|
Afsar S, Syed RU, Bin Break MK, Alsukaybi RH, Alanzi RA, Alshobrmi AM, Alshagdali NM, Alshammari AD, Alharbi FM, Alshammari AM, Algharbi WF, Albrykan KM, Alshammari FN. The dual role of MiR-210 in the aetiology of cancer: A focus on hypoxia-inducible factor signalling. Pathol Res Pract 2024; 253:155018. [PMID: 38070222 DOI: 10.1016/j.prp.2023.155018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Tumorigenesis exemplifies the complex process of neoplasm origination, which is characterised by somatic genetic alterations and abnormal cellular growth. This multidimensional phenomenon transforms previously dormant cells into malignant equivalents, resulting in uncontrollable proliferation and clonal expansion. Various elements, including random mutations, harmful environmental substances, and genetic predispositions, influence tumorigenesis's aetiology. MicroRNAs (miRNAs) are now recognised as crucial determinants of gene expression and key players in several biological methods, including oncogenesis. A well-known hypoxia-inducible miRNA is MiR-210, which is of particular interest because of its complicated role in the aetiology of cancer and a variation of physiological and pathological situations. MiR-210 significantly impacts cancer by controlling the hypoxia-inducible factor (HIF) signalling pathway. By supporting angiogenesis, metabolic reprogramming, and cellular survival in hypoxic microenvironments, HIF signalling orchestrates adaptive responses, accelerating the unstoppable development of tumorous growth. Targeting several components of this cascade, including HIF-1, HIF-3, and FIH-1, MiR-210 plays a vital role in modifying HIF signalling and carefully controlling the HIF-mediated response and cellular fates in hypoxic environments. To understand the complexities of this relationship, careful investigation is required at the intersection of MiR-210 and HIF signalling. Understanding this relationship is crucial for uncovering the mechanisms underlying cancer aetiology and developing cutting-edge therapeutic approaches. The current review emphasises MiR-210's significance as a vital regulator of the HIF signalling cascade, with substantial implications spanning a range of tumor pathogenesis.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia
| | | | - Reem A Alanzi
- College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Alchoueiry M, Cornejo K, Henske EP. Kidney cancer: Links between hereditary syndromes and sporadic tumorigenesis. Semin Diagn Pathol 2024; 41:1-7. [PMID: 38008653 DOI: 10.1053/j.semdp.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Collapse
Affiliation(s)
- Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristine Cornejo
- Pathology Department, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Flora K, Ishihara M, Zhang Z, Bowen ES, Wu A, Ayoub T, Huang J, Cano-Ruiz C, Jackson M, Reghu K, Ayoub Y, Zhu Y, Tseng HR, Zhou ZH, Hu J, Wu L. Exosomes from Von Hippel-Lindau-Null Cancer Cells Promote Metastasis in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:17307. [PMID: 38139136 PMCID: PMC10743428 DOI: 10.3390/ijms242417307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are extracellular vesicles that modulate essential physiological and pathological signals. Communication between cancer cells that express the von Hippel-Lindau (VHL) tumor suppressor gene and those that do not is instrumental to distant metastasis in renal cell carcinoma (RCC). In a novel metastasis model, VHL(-) cancer cells are the metastatic driver, while VHL(+) cells receive metastatic signals from VHL(-) cells and undergo aggressive transformation. This study investigates whether exosomes could be mediating metastatic crosstalk. Exosomes isolated from paired VHL(+) and VHL(-) cancer cell lines were assessed for physical, biochemical, and biological characteristics. Compared to the VHL(+) cells, VHL(-) cells produce significantly more exosomes that augment epithelial-to-mesenchymal transition (EMT) and migration of VHL(+) cells. Using a Cre-loxP exosome reporter system, the fluorescent color conversion and migration were correlated with dose-dependent delivery of VHL(-) exosomes. VHL(-) exosomes even induced a complete cascade of distant metastasis when added to VHL(+) tumor xenografts in a duck chorioallantoic membrane (dCAM) model, while VHL(+) exosomes did not. Therefore, this study supports that exosomes from VHL(-) cells could mediate critical cell-to-cell crosstalk to promote metastasis in RCC.
Collapse
Affiliation(s)
- Kailey Flora
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA;
| | - Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Zhicheng Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Elizabeth S. Bowen
- Department of Computational and Systems Biology, University of California, Los Angeles, CA 90095, USA;
| | - Aimee Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Tala Ayoub
- Department of Physiology, University of California, Los Angeles, CA 90095, USA;
| | - Julian Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Celine Cano-Ruiz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Maia Jackson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Kaveeya Reghu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Yasmeen Ayoub
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA;
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
28
|
Pezzicoli G, Ciciriello F, Musci V, Salonne F, Ragno A, Rizzo M. Genomic Profiling and Molecular Characterization of Clear Cell Renal Cell Carcinoma. Curr Oncol 2023; 30:9276-9290. [PMID: 37887570 PMCID: PMC10605358 DOI: 10.3390/curroncol30100670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) treatment has undergone three major paradigm shifts in recent years, first with the introduction of molecular targeted therapies, then with immune checkpoint inhibitors, and, more recently, with immune-based combinations. However, to date, molecular predictors of response to targeted agents have not been identified for ccRCC. The WHO 2022 classification of renal neoplasms introduced the molecularly defined RCC class, which is a first step in the direction of a better molecular profiling of RCC. We reviewed the literature data on known genomic alterations of clinical interest in ccRCC, discussing their prognostic and predictive role. In particular, we explored the role of VHL, mTOR, chromatin modulators, DNA repair genes, cyclin-dependent kinases, and tumor mutation burden. RCC is a tumor whose pivotal genomic alterations have pleiotropic effects, and the interplay of these effects determines the tumor phenotype and its clinical behavior. Therefore, it is difficult to find a single genomic predictive factor, but it is more likely to identify a signature of gene alterations that could impact prognosis and response to specific treatment. To accomplish this task, the interpolation of large amounts of clinical and genomic data is needed. Nevertheless, genomic profiling has the potential to change real-world clinical practice settings.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Francesco Salonne
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (F.S.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
29
|
Barata PC, Chehrazi-Raffle A, Allman KD, Asnis-Alibozek A, Kasturi V, Pal SK. Activity of Tivozanib in Non-clear Cell Renal Cell Carcinoma: Subgroup Analysis From a Phase II Randomized Discontinuation Trial. Oncologist 2023; 28:894-900. [PMID: 37315114 PMCID: PMC10546822 DOI: 10.1093/oncolo/oyad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Non-clear cell renal cell carcinoma (nccRCC) is a blanket term for a collection of heterogeneous and biologically diverse RCC histologies, including but not limited to papillary, chromophobe, and unclassified subtypes. Tivozanib is a selective vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI) that demonstrated activity in RCC with clear cell component. The objective of this analysis was to determine the efficacy of tivozanib in histologically unclassified/mixed RCC. METHODS We identified patients with nccRCC enrolled in Study 201 (NCT00502307) between October 2007 and July 2008. This was a phase II randomized discontinuation trial of tivozanib in patients with RCC who had no prior VEGFR-targeted treatment. Clinical outcomes including investigator-assessed objective response rate (ORR), disease control rate (DCR, defined by complete response + partial response + stable disease), and progression-free survival (PFS) were examined. RESULTS Of the 272 patients enrolled, 46 (16.9%) patients had nccRCC: 11 (4%) papillary, 2 (0.7%) chromophobe, 2 (0.7%) collecting duct, and 31 (11.4%) mixed/unclassified. Of the 46 patients with nccRCC, 38 were continuously treated with tivozanib and the best ORR was 21.1% (confirmed) and 31.6% (confirmed and unconfirmed). The DCR was 73.7% and median PFS was 6.7 months (95% confidence interval, 125-366 days). There were no new safety signals compared to the ITT population. Limitations include the small number of individual nccRCC subtypes and the randomized discontinuation design. CONCLUSION Tivozanib demonstrated activity and a favorable safety profile in patients with nccRCC. These data add to the body of evidence supporting the use of VEGFR-TKI in advanced nccRCC.
Collapse
Affiliation(s)
- Pedro C Barata
- Department of Medicine, Case Comprehensive Cancer Center, Seidman Cancer Center, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Alexander Chehrazi-Raffle
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | - Sumanta K Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
30
|
Elbeltagy M, Abbassy M. Neurofibromatosis type1, type 2, tuberous sclerosis and Von Hippel-Lindau disease. Childs Nerv Syst 2023; 39:2791-2806. [PMID: 37819506 DOI: 10.1007/s00381-023-06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
Neurocutaneous syndromes (also known as phakomatoses) are heterogenous group of disorders that involve derivatives of the neuroectoderm. Each disease has diagnostic and pathognomonic criteria, once identified, thorough clinical examination to the patient and the family members should be done. Magnetic resonance imaging (MRI) is used to study the pathognomonic findings withing the CNS (Evans et al. in Am J Med Genet A 152A:327-332, 2010). This chapter includes the 4 most common syndromes faced by neurosurgeons and neurologists; neurofibromatosis types 1 and 2, tuberous sclerosis and Von Hippel-Lindau disease. Each syndrome has specific genetic anomaly that involves a tumor suppressor gene and the loss of inhibition of specific pathways. The result is a spectrum of cutaneous manifestations and neoplasms.
Collapse
Affiliation(s)
- M Elbeltagy
- Department of Neurosurgery, Cairo University, 1 University Street, Giza Governorate, 12613, Egypt.
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt.
| | - M Abbassy
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt
- Department of Neurosurgery, Alexandria University, 22 El-Gaish Rd, Al Azaritah WA Ash Shatebi, Bab Sharqi, Alexandria Governorate, 5424041, Egypt
| |
Collapse
|
31
|
Shirole NH, Kaelin WG. von-Hippel Lindau and Hypoxia-Inducible Factor at the Center of Renal Cell Carcinoma Biology. Hematol Oncol Clin North Am 2023; 37:809-825. [PMID: 37270382 PMCID: PMC11315268 DOI: 10.1016/j.hoc.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most common form of kidney cancer is clear cell renal cell carcinoma (ccRCC). Biallelic VHL tumor suppressor gene inactivation is the usual initiating event in both hereditary (VHL Disease) and sporadic ccRCCs. The VHL protein, pVHL, earmarks the alpha subunits of the HIF transcription factor for destruction in an oxygen-dependent manner. Deregulation of HIF2 drives ccRCC pathogenesis. Drugs inhibiting the HIF2-responsive growth factor VEGF are now mainstays of ccRCC treatment. A first-in-class allosteric HIF2 inhibitor was recently approved for treating VHL Disease-associated neoplasms and appears active against sporadic ccRCC in early clinical trials.
Collapse
Affiliation(s)
- Nitin H Shirole
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - William G Kaelin
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Brigham and Women's Hospital, Harvard Medical School; Howard Hughes Medical Institute.
| |
Collapse
|
32
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
33
|
Daniels AB, Tirosh A, Huntoon K, Mehta GU, Spiess PE, Friedman DL, Waguespack SG, Kilkelly JE, Rednam S, Pruthi S, Jonasch EA, Baum L, Chahoud J. Guidelines for surveillance of patients with von Hippel-Lindau disease: Consensus statement of the International VHL Surveillance Guidelines Consortium and VHL Alliance. Cancer 2023; 129:2927-2940. [PMID: 37337409 DOI: 10.1002/cncr.34896] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 06/21/2023]
Abstract
Von Hippel‐Lindau disease is a rare inherited cancer‐predisposition syndrome. The authors report the updated recommendations for the multiorgan surveillance protocols.
Collapse
Affiliation(s)
- Anthony B Daniels
- Division of Ocular Oncology and Pathology, Department of Ophthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amit Tirosh
- Neuroendocrine Tumors Service, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Tennessee, USA
| | | | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Debra L Friedman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Texas, USA
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jill E Kilkelly
- Division of Pediatric Anesthesia, Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Surya Rednam
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Sumit Pruthi
- Division of Pediatric Neuroradiology, Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric A Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Baum
- Division of Hematology/Oncology, Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
34
|
Mieville V, Griffioen AW, Benamran D, Nowak-Sliwinska P. Advanced in vitro models for renal cell carcinoma therapy design. Biochim Biophys Acta Rev Cancer 2023; 1878:188942. [PMID: 37343729 DOI: 10.1016/j.bbcan.2023.188942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Renal cell carcinoma (RCC) and its principal subtype, clear cell RCC, are the most diagnosed kidney cancer. Despite substantial improvement over the last decades, current pharmacological intervention still fails to achieve long-term therapeutic success. RCC is characterized by a high intra- and inter-tumoral heterogeneity and is heavily influenced by the crosstalk of the cells composing the tumor microenvironment, such as cancer-associated fibroblasts, endothelial cells and immune cells. Moreover, multiple physicochemical properties such as pH, interstitial pressure or oxygenation may also play an important role. These elements are often poorly recapitulated in in vitro models used for drug development. This inadequate recapitulation of the tumor is partially responsible for the current lack of an effective and curative treatment. Therefore, there are needs for more complex in vitro or ex vivo drug screening models. In this review, we discuss the current state-of-the-art of RCC models and suggest strategies for their further development.
Collapse
Affiliation(s)
- Valentin Mieville
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Daniel Benamran
- Division of Urology, Geneva University Hospitals, Geneva, Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland; Translational Research Center in Oncohaematology, Geneva, Switzerland.
| |
Collapse
|
35
|
Méndez-Vidal MJ, Lázaro Quintela M, Lainez-Milagro N, Perez-Valderrama B, Suárez Rodriguez C, Arranz Arija JÁ, Peláez Fernández I, Gallardo Díaz E, Lambea Sorrosal J, González-del-Alba A. SEOM SOGUG clinical guideline for treatment of kidney cancer (2022). Clin Transl Oncol 2023; 25:2732-2748. [PMID: 37556095 PMCID: PMC10425490 DOI: 10.1007/s12094-023-03276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/10/2023]
Abstract
Renal cancer is the seventh most common cancer in men and the tenth in women. The aim of this article is to review the diagnosis, treatment, and follow-up of renal carcinoma accompanied by recommendations with new evidence and treatment algorithms. A new pathologic classification of RCC by the World Health Organization (WHO) was published in 2022 and this classification would be considered a "bridge" to a future molecular classification. For patients with localized disease, surgery is the treatment of choice with nephron-sparing surgery recommended when feasible. Adjuvant treatment with pembrolizumab is an option for intermediate-or high-risk cases, as well as patients after complete resection of metastatic disease. More data are needed in the future, including positive overall survival data. Clinical prognostic classification, preferably IMDC, should be used for treatment decision making in mRCC. Cytoreductive nephrectomy should not be deemed mandatory in individuals with intermediate-poor IMDC/MSKCC risk who require systemic therapy. Metastasectomy can be contemplated in selected subjects with a limited number of metastases or long metachronous disease-free interval. For the population of patients with metastatic ccRCC as a whole, the combination of pembrolizumab-axitinib, nivolumab-cabozantinib, or pembrolizumab-lenvatinib can be considered as the first option based on the benefit obtained in OS versus sunitinib. In cases that have an intermediate IMDC and poor prognosis, the combination of ipilimumab and nivolumab has demonstrated superior OS compared to sunitinib. As for individuals with advanced RCC previously treated with one or two antiangiogenic tyrosine-kinase inhibitors, nivolumab and cabozantinib are the options of choice. When there is progression following initial immunotherapy-based treatment, we recommend treatment with an antiangiogenic tyrosine-kinase inhibitor. While no clear sequence can be advocated, medical oncologists and patients should be aware of the recent advances and new strategies that improve survival and quality of life in the setting of metastatic RC.
Collapse
Affiliation(s)
- María José Méndez-Vidal
- Medical Oncology Department, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martin Lázaro Quintela
- Medical Oncology Department, Hospital Alvaro Cunqueiro-Complejo Hospitalario Universitario de Vigo, Pontevedra, Spain
| | - Nuria Lainez-Milagro
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | | | | | | | | | | | - Julio Lambea Sorrosal
- Medical Oncology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | |
Collapse
|
36
|
Govindarajan A, Salgia NJ, Li H, Castro DV, Mirzapoiazova T, Armstrong B, Zhao D, Mercier BD, Dizman N, Chawla N, Zengin Z, Meza L, Tripathi N, Sayegh N, Chehrazi-Raffle A, Tripathi A, Pal SK. Characterization of papillary and clear cell renal cell carcinoma through imaging mass cytometry reveals distinct immunologic profiles. Front Immunol 2023; 14:1182581. [PMID: 37638025 PMCID: PMC10457014 DOI: 10.3389/fimmu.2023.1182581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Objective To characterize and further compare the immune cell populations of the tumor microenvironment (TME) in both clear cell and papillary renal cell carcinoma (RCC) using heavy metal-labeled antibodies in a multiplexed imaging approach (imaging mass cytometry). Materials and methods Formalin-fixed paraffin-embedded (FFPE) baseline tumor tissues from metastatic patients with clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) were retrospectively requisitioned from an institutional biorepository. Pretreated FFPE samples from 33 RCC patients (10 ccRCC, 23 pRCC) were accessioned and stained for imaging mass cytometry (IMC) analysis. Clinical characteristics were curated from an institutional RCC database. FFPE samples were prepared and stained with heavy metal-conjugated antibodies for IMC. An 11-marker panel of tumor stromal and immune markers was used to assess and quantify cellular relationships in TME compartments. To validate our time-of-flight (CyTOF) analysis, we cross-validated findings with The Cancer Genome Atlas Program (TCGA) analysis and utilized the CIBERSORTx tool to examine the abundance of main immune cell types in pRCC and ccRCC patients. Results Patients with ccRCC had a longer median overall survival than did those with pRCC (67.7 vs 26.8 mo, respectively). Significant differences were identified in the proportion of CD4+ T cells between disease subtypes (ccRCC 14.1%, pRCC 7.0%, p<0.01). Further, the pRCC cohort had significantly more PanCK+ tumor cells than did the ccRCC cohort (24.3% vs 9.5%, respectively, p<0.01). There were no significant differences in macrophage composition (CD68+) between cohorts. Our results demonstrated a significant correlation between the CyTOF and TCGA analyses, specifically validating that ccRCC patients exhibit higher levels of CD4+ T cells (ccRCC 17.60%, pRCC 15.7%, p<0.01) and CD8+ T cells (ccRCC 17.83%, pRCC 11.15%, p<0.01). The limitation of our CyTOF analysis was the large proportion of cells that were deemed non-characterizable. Conclusions Our findings emphasize the need to investigate the TME in distinct RCC histological subtypes. We observed a more immune infiltrative phenotype in the TME of the ccRCC cohort than in the pRCC cohort, where a tumor-rich phenotype was noted. As practical predictive biomarkers remain elusive across all subtypes of RCC, further studies are warranted to analyze the biomarker potential of such TME classifications.
Collapse
Affiliation(s)
- Ameish Govindarajan
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Nicholas J. Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Haiqing Li
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Daniela V. Castro
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Tamara Mirzapoiazova
- Integrative Genome Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Brian Armstrong
- Light Microscopy/Digital Imaging Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Dan Zhao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Benjamin D. Mercier
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Nazli Dizman
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Neal Chawla
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Zeynep Zengin
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Luis Meza
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Nishita Tripathi
- Huntsman Cancer Institute-University of Utah Health Care, Salt Lake City, UT, United States
| | - Nicolas Sayegh
- Huntsman Cancer Institute-University of Utah Health Care, Salt Lake City, UT, United States
| | - Alex Chehrazi-Raffle
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Abhishek Tripathi
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Sumanta K. Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
37
|
Gangat N, Szuber N, Tefferi A. JAK2 unmutated erythrocytosis: 2023 Update on diagnosis and management. Am J Hematol 2023; 98:965-981. [PMID: 36966432 DOI: 10.1002/ajh.26920] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
DISEASE OVERVIEW JAK2 unmutated or non-polycythemia vera (PV) erythrocytosis encompasses a heterogenous spectrum of hereditary and acquired entities. DIAGNOSIS Foremost in the evaluation of erythrocytosis is the exclusion of PV through JAK2 (inclusive of exons 12-15) mutation screening. Initial assessment should also include gathering of previous records on hematocrit (Hct) and hemoglobin (Hgb) levels, in order to streamline the diagnostic process by first distinguishing longstanding from acquired erythrocytosis; subsequent subcategorization is facilitated by serum erythropoietin (Epo) measurement, germline mutation screening, and review of historical data, including comorbid conditions and medication list. Hereditary erythrocytosis constitutes the main culprit in the context of longstanding erythrocytosis, especially when associated with a positive family history. In this regard, a subnormal serum Epo level suggests EPO receptor mutation. Otherwise, considerations include those associated with decreased (high oxygen affinity Hgb variants, 2,3-bisphosphoglycerate deficiency, PIEZO1 mutations, methemoglobinemia) or normal oxygen tension at 50% Hgb saturation (P50). The latter include germline oxygen sensing pathway (HIF2A-PHD2-VHL) and other rare mutations. Acquired erythrocytosis commonly results from central (e.g., cardiopulmonary disease, high-altitude habitat) or peripheral (e.g., renal artery stenosis) hypoxia. Other noteworthy conditions associated with acquired erythrocytosis include Epo-producing tumors (e.g., renal cell carcinoma, cerebral hemangioblastoma) and drugs (e.g., testosterone, erythropoiesis stimulating agents, sodium-glucose cotransporter-2 inhibitors). Idiopathic erythrocytosis is an ill-defined terminology that presumes the existence of an increased Hgb/Hct level without an identifiable etiology. Such classification often lacks accounting for normal outliers and is marred by truncated diagnostic evaluation. MANAGEMENT Current consensus treatment guidelines are not supported by hard evidence and their value is further undermined by limited phenotypic characterization and unfounded concerns for thrombosis. We are of the opinion that cytoreductive therapy and indiscriminate use of phlebotomy should be avoided in the treatment of non-clonal erythrocytosis. However, it is reasonable to consider therapeutic phlebotomy if one were to demonstrate value in symptom control, with frequency determined by symptoms rather than Hct level. In addition, cardiovascular risk optimization and low dose aspirin is often advised. FUTURE DIRECTIONS Advances in molecular hematology might result in better characterization of "idiopathic erythrocytosis" and expansion of the repertoire for germline mutations in hereditary erythrocytosis. Prospective controlled studies are needed to clarify potential pathology from JAK2 unmutated erythrocytosis, as well as to document the therapeutic value of phlebotomy.
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Natasha Szuber
- Department of Hematology, Université de Montréal, Montréal, Quebec, Canada
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
38
|
Zhang Y, Popel AS, Bazzazi H. Combining Multikinase Tyrosine Kinase Inhibitors Targeting the Vascular Endothelial Growth Factor and Cluster of Differentiation 47 Signaling Pathways Is Predicted to Increase the Efficacy of Antiangiogenic Combination Therapies. ACS Pharmacol Transl Sci 2023; 6:710-726. [PMID: 37200806 PMCID: PMC10186363 DOI: 10.1021/acsptsci.3c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 05/20/2023]
Abstract
Angiogenesis is a critical step in tumor growth, development, and invasion. Nascent tumor cells secrete vascular endothelial growth factor (VEGF) that significantly remodels the tumor microenvironment through interaction with multiple receptors on vascular endothelial cells, including type 2 VEGF receptor (VEGFR2). The complex pathways initiated by VEGF binding to VEGFR2 lead to enhanced proliferation, survival, and motility of vascular endothelial cells and formation of a new vascular network, enabling tumor growth. Antiangiogenic therapies that inhibit VEGF signaling pathways were among the first drugs that targeted stroma rather than tumor cells. Despite improvements in progression-free survival and higher response rates relative to chemotherapy in some types of solid tumors, the impact on overall survival (OS) has been limited, with the majority of tumors eventually relapsing due to resistance or activation of alternate angiogenic pathways. Here, we developed a molecularly detailed computational model of endothelial cell signaling and angiogenesis-driven tumor growth to investigate combination therapies targeting different nodes of the endothelial VEGF/VEGFR2 signaling pathway. Simulations predicted a strong threshold-like behavior in extracellular signal-regulated kinases 1/2 (ERK1/2) activation relative to phosphorylated VEGFR2 levels, as continuous inhibition of at least 95% of receptors was necessary to abrogate phosphorylated ERK1/2 (pERK1/2). Combinations with mitogen-activated protein kinase/ERK kinase (MEK) and spingosine-1-phosphate inhibitors were found to be effective in overcoming the ERK1/2 activation threshold and abolishing activation of the pathway. Modeling results also identified a mechanism of resistance whereby tumor cells could reduce pERK1/2 sensitivity to inhibitors of VEGFR2 by upregulation of Raf, MEK, and sphingosine kinase 1 (SphK1), thus highlighting the need for deeper investigation of the dynamics of the crosstalk between VEGFR2 and SphK1 pathways. Inhibition of VEGFR2 phosphorylation was found to be more effective at blocking protein kinase B, also known as AKT, activation; however, to effectively abolish AKT activation, simulations identified Axl autophosphorylation or the Src kinase domain as potent targets. Simulations also supported activating cluster of differentiation 47 (CD47) on endothelial cells as an effective combination partner with tyrosine kinase inhibitors to inhibit angiogenesis signaling and tumor growth. Virtual patient simulations supported the effectiveness of CD47 agonism in combination with inhibitors of VEGFR2 and SphK1 pathways. Overall, the rule-based system model developed here provides new insights, generates novel hypothesis, and makes predictions regarding combinations that may enhance the OS with currently approved antiangiogenic therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hojjat Bazzazi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
39
|
Chen J, Li M, Liu Y, Guan T, Yang X, Wen Y, Zhu Y, Xiao Z, Shen X, Zhang H, Tang H, Liu T. PIN1 and CDK1 cooperatively govern pVHL stability and suppressive functions. Cell Death Differ 2023; 30:1082-1095. [PMID: 36813923 PMCID: PMC10070344 DOI: 10.1038/s41418-023-01128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The VHL protein (pVHL) functions as a tumor suppressor by regulating the degradation or activation of protein substrates such as HIF1α and Akt. In human cancers harboring wild-type VHL, the aberrant downregulation of pVHL is frequently detected and critically contributes to tumor progression. However, the underlying mechanism by which the stability of pVHL is deregulated in these cancers remains elusive. Here, we identify cyclin-dependent kinase 1 (CDK1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) as two previously uncharacterized regulators of pVHL in multiple types of human cancers harboring wild-type VHL including triple-negative breast cancer (TNBC). PIN1 and CDK1 cooperatively modulate the protein turnover of pVHL, thereby conferring tumor growth, chemotherapeutic resistance and metastasis both in vitro and in vivo. Mechanistically, CDK1 directly phosphorylates pVHL at Ser80, which primes the recognition of pVHL by PIN1. PIN1 then binds to phosphorylated pVHL and facilitates the recruitment of the E3 ligase WSB1, therefore targeting pVHL for ubiquitination and degradation. Furthermore, the genetic ablation or pharmacological inhibition of CDK1 by RO-3306 and PIN1 by all-trans retinoic acid (ATRA), the standard care for Acute Promyelocytic Leukemia could markedly suppress tumor growth, metastasis and sensitize cancer cells to chemotherapeutic drugs in a pVHL dependent manner. The histological analyses show that PIN1 and CDK1 are highly expressed in TNBC samples, which negatively correlate with the expression of pVHL. Taken together, our findings reveal the previous unrecognized tumor-promoting function of CDK1/PIN1 axis through destabilizing pVHL and provide the preclinical evidence that targeting CDK1/PIN1 is an appealing strategy in the treatment of multiple cancers with wild-type VHL.
Collapse
Affiliation(s)
- Jiayi Chen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Mei Li
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yeqing Liu
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, P. R. China
| | - Tangming Guan
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiao Yang
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yalei Wen
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Yingjie Zhu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, P. R. China
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutic Sciences, Guizhou Medical University, University Town, Guiyang City and Guian New District, Guiyang, 550025, P. R. China
| | - Haoxing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, P. R. China.
| | - Hui Tang
- Department of Central Laboratory, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, P. R. China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University Heyuan Shenhe People's Hospital, Heyuan, 517000, P. R. China.
| | - Tongzheng Liu
- College of Pharmacy/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, P. R. China.
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, P. R. China.
| |
Collapse
|
40
|
D'Angelo L, Parent AS, Derwael C, Hustinx R, Seghaye MC. Unusual Cardiac Manifestations of a Pheochromocytoma in a Girl. Pediatr Rep 2023; 15:237-244. [PMID: 36976726 PMCID: PMC10056940 DOI: 10.3390/pediatric15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
We report the case of an 11-year-old girl who complained about severe asthenia, orthostatic dizziness and abdominal pain for 4 weeks. The primary investigation concluded on febrile urinary tract infection treated by antibiotics. Symptom persistence prompted cardiological and endocrinological investigations. A fluctuation in blood pressure, long QT interval, dilation of the aortic root and left ventricular hypertrophy were documented. Elevated levels of urinary catecholamines together with the presence of a right-sided adrenal mass shown via abdominal ultrasound and magnetic resonance imaging were highly suggestive of a pheochromocytoma. This was confirmed by through iodine-123-metaiodobenzylguathdine ([123I]-mIBG) scintigraphy. Genetic analysis allowed for the exclusion of pathogenic mutations in genes implicated in hereditary paragangliomas and pheochromocytomas but showed a rare somatic mutation in exon 3 of the von Hippel-Lindau gene. The patient was treated with a β-blocker and calcium channel antagonist and underwent laparoscopic right-sided adrenalectomy. Cardiac manifestations resolved soon after surgery indicating that they were secondary to the pheochromocytoma. After 5 years of follow-up, the patient remains asymptomatic without any sign of tumor recurrence. The presence of aortic root dilation, a prolonged QT-interval and left ventricular hypertrophy may be early cardiac manifestations of a pheochromocytoma in a child and should prompt this diagnosis to be evoked.
Collapse
Affiliation(s)
- Lisa D'Angelo
- Department of Pediatrics, CHU of Liège, 4000 Liège, Belgium
| | | | - Céline Derwael
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, 4000 Liège, Belgium
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, CHU of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
41
|
Missiaen R, Lesner NP, Simon MC. HIF: a master regulator of nutrient availability and metabolic cross-talk in the tumor microenvironment. EMBO J 2023; 42:e112067. [PMID: 36808622 PMCID: PMC10015374 DOI: 10.15252/embj.2022112067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 02/22/2023] Open
Abstract
A role for hypoxia-inducible factors (HIFs) in hypoxia-dependent regulation of tumor cell metabolism has been thoroughly investigated and covered in reviews. However, there is limited information available regarding HIF-dependent regulation of nutrient fates in tumor and stromal cells. Tumor and stromal cells may generate nutrients necessary for function (metabolic symbiosis) or deplete nutrients resulting in possible competition between tumor cells and immune cells, a result of altered nutrient fates. HIF and nutrients in the tumor microenvironment (TME) affect stromal and immune cell metabolism in addition to intrinsic tumor cell metabolism. HIF-dependent metabolic regulation will inevitably result in the accumulation or depletion of essential metabolites in the TME. In response, various cell types in the TME will respond to these hypoxia-dependent alterations by activating HIF-dependent transcription to alter nutrient import, export, and utilization. In recent years, the concept of metabolic competition has been proposed for critical substrates, including glucose, lactate, glutamine, arginine, and tryptophan. In this review, we discuss how HIF-mediated mechanisms control nutrient sensing and availability in the TME, the competition for nutrients, and the metabolic cross-talk between tumor and stromal cells.
Collapse
Affiliation(s)
- Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas P Lesner
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Jayarajah U, Balagobi B, Thanusan V, Gunasekara D, Abeygunasekera AM. Management of Renal Malignancies in Von Hippel-Lindau Syndrome: Lessons Learned from a Series of Six Patients from Sri Lanka. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:187-190. [PMID: 38146729 DOI: 10.4103/1319-2442.391898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Management of renal malignancies in Von Hippel-Lindau (VHL) is challenging. We present six patients [mean age = 35.1 years (range: 24-54), males = 5] with VHL syndrome with multiple bilateral renal malignancies and the lessons learned during their management. The number of tumors at the time of presentation ranged from 1 to 6, while the number of new lesions varied from 1 to 3. Different combinations of radical nephrectomy (n = 2), partial nephrectomy (n = 7), and focal therapy (n = 6) were used appropriately. Median follow-up was 36 months (range: 12-72). Two patients developed new lesions which were managed with focal therapy. Nephron-sparing approaches are successful even in bilateral, multifocal, large, and recurring renal tumors associated with VHL. Awareness about the availability of efficacious surgical and minimally invasive measures would reduce psychosocial problems faced by patients and their families due to the social stigma associated with malignancies running in a family and burden of renal replacement therapy.
Collapse
Affiliation(s)
- Umesh Jayarajah
- Department of Urology, Colombo South Teaching Hospital, Dehiwala, Western Province, Sri Lanka
| | - Balasingam Balagobi
- Department of Urology, Colombo South Teaching Hospital, Dehiwala, Western Province, Sri Lanka
| | | | - Densil Gunasekara
- Department of Radiology, Colombo South Teaching Hospital, Dehiwala, Western Province, Sri Lanka
| | | |
Collapse
|
43
|
Naseripour M, Azimi F, Talebi S, Mirshahi R, Kiaee R, Sedaghat A, Zohre AK, Khakpour G. Investigation of germline VHL variants in Iranian patients with retinal capillary hemangioblastoma and genotype-phenotype analysis. Ophthalmic Genet 2023; 44:211-217. [PMID: 36715412 DOI: 10.1080/13816810.2022.2138455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Retinal capillary hemangioblastoma (RCH), while sporadic in some cases, is the most common and earliest manifestation of von Hippel-Lindau disease (VHL). This is the first report on different types of VHL variants and genotype-phenotype correlations in Iranian families with RCH. MATERIALS AND METHODS In this prospective observational case series study, 17 families with RCH were included. PCR was performed to amplify 3 exons of VHL gene. Afterward, Sanger sequencing was performed on all PCR products. For the detection of VHL copy number variations, MLPA was used. RESULTS Our study identified 10 different types of VHL variants. Missense mutations were the most common variants found and affected the structure of α domain of the VHL protein (pVHL). The majority of mutations (72.7%) in the patients with RCH and central nervous system hemangioblastoma (CNS-HB) were located on α domain. CONCLUSION α domain of VHL may play a potential role in the pathogenesis of RCH. Our findings suggest that genotype-phenotype characteristics in those variants in α- domain may predispose patients to RCH with CNS-HB.
Collapse
Affiliation(s)
- Masood Naseripour
- Eye Research Center, the Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,Stem cell and regenerative medicine research center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azimi
- Eye Research Center, the Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Said Talebi
- Departments of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mirshahi
- Eye Research Center, the Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Kiaee
- Eye Research Center, the Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ahad Sedaghat
- Eye Research Center, the Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ataei Kachoei Zohre
- Departments of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Golnaz Khakpour
- Eye Research Center, the Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.,Departments of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Dallagnol TN, Da Cás E, Junior OR, Casali-da-Rocha JC. Comprehensive characterization and building of National Registry of von Hippel-Lindau disease in Brazil. Mol Genet Genomic Med 2023; 11:e2136. [PMID: 36625343 PMCID: PMC10094063 DOI: 10.1002/mgg3.2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Von Hippel-Lindau (VHL) disease is an autosomal dominant disorder caused by pathogenic variants in VHL gene. The common manifestations include hemangioblastomas (HB) of the central nervous system (CNS) and retina (RH); pheochromocytoma (PHEO); clear cell renal cell carcinoma (ccRCC); pancreatic and renal cysts (PRC) and pancreatic neuroendocrine neoplasm (PNEN). METHODS The first characterization of VHL in Brazil was published in 2003 and included 20 families with a history of VHL. The aim of this study was to expand the previous Brazilian cohort to include more families, as well as to collect prospectively both clinical and molecular characteristics of patients with VHL to build the VHL Brazilian Registry (VHLBR). Patients with VHL were selected through review of data from medical records of experts and from social networks of support for families with VHL in Brazil. RESULTS A total of 142 subjects representing 62 unrelated Brazilian families with VHL were registered. The mean age of VHL onset was 28.78 years old and 128 individuals (90.1%) had at least one VHL-related lesion. CNS HB was the most common manifestation occurring in 91 (71%) patients, followed by multiple PRC (48.4%), RH (39.8%), ccRCC (28.9%), PHEO (12.5%) and PNEN (7.8%). Of the 97 subjects whose presence of VHL variants was confirmed, 51 (52.6%) had missense variants, 22 (22.7%) large deletions, 10 (10.3%) frameshift, 7 (7.2%) splice site, 4 (4.1%) nonsense and 3 (3.1%) in-frame deletions. Regarding surveillance, 115 (81%) participants had at least one physician responsible for their outpatient follow-up; however, 69 (60%) of them did not report a regular frequency of tests. CONCLUSION We built the largest prospective VHLBR with organized collections of clinical and genetic data from families with VHL, which will be helpful to guide policies for VHL care and oncogenetics in Brazil. Although there have been improvements in diagnosis and clinical screening methods, VHL care in Brazil is still deficient, especially regarding surveillance and regular medical appointments with experts.
Collapse
Affiliation(s)
| | - Eduardo Da Cás
- Faculty of Medicine, Universidade Positivo, Curitiba, Brazil
| | - Odery Ramos Junior
- Department of Internal Medicine, Hospital de Clínicas - Universidade Federal do Paraná, Curitiba, Brazil
| | | |
Collapse
|
45
|
Torielli L, Serapian SA, Mussolin L, Moroni E, Colombo G. Integrating Protein Interaction Surface Prediction with a Fragment-Based Drug Design: Automatic Design of New Leads with Fragments on Energy Surfaces. J Chem Inf Model 2023; 63:343-353. [PMID: 36574607 PMCID: PMC9832486 DOI: 10.1021/acs.jcim.2c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) have emerged in the past years as significant pharmacological targets in the development of new therapeutics due to their key roles in determining pathological pathways. Herein, we present fragments on energy surfaces, a simple and general design strategy that integrates the analysis of the dynamic and energetic signatures of proteins to unveil the substructures involved in PPIs, with docking, selection, and combination of drug-like fragments to generate new PPI inhibitor candidates. Specifically, structural representatives of the target protein are used as inputs for the blind physics-based prediction of potential protein interaction surfaces using the matrix of low coupling energy decomposition method. The predicted interaction surfaces are subdivided into overlapping windows that are used as templates to direct the docking and combination of fragments representative of moieties typically found in active drugs. This protocol is then applied and validated using structurally diverse, important PPI targets as test systems. We demonstrate that our approach facilitates the exploration of the molecular diversity space of potential ligands, with no requirement of prior information on the location and properties of interaction surfaces or on the structures of potential lead compounds. Importantly, the hit molecules that emerge from our ab initio design share high chemical similarity with experimentally tested active PPI inhibitors. We propose that the protocol we describe here represents a valuable means of generating initial leads against difficult targets for further development and refinement.
Collapse
Affiliation(s)
- Luca Torielli
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy
| | - Stefano A. Serapian
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy
| | - Lara Mussolin
- Department
of Woman’s and Child’s Health, Pediatric Hematology,
Oncology and Stem Cell Transplant Center, University of Padua, Via Giustiniani, 3, Padua35128, Italy,Istituto
di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, 4 F, Padova35127, Italy
| | | | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, Via Taramelli 12, Pavia27100, Italy,
| |
Collapse
|
46
|
Berg SA, McGregor BA. The Continuing Question of Adjuvant Therapy in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:6018. [PMID: 36551504 PMCID: PMC9776072 DOI: 10.3390/cancers14246018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Treatment advances in kidney cancer continually evolve. The focus of treatment options continues with oral vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs) or intravenous immune checkpoint inhibitors (ICIs). Multiple trials exploring the role of adjuvant treatment after cytoreductive nephrectomy in high-risk clear cell renal cell carcinoma are currently ongoing. The discovery of biomarkers may help determine which patients benefit from these treatments, but these are not yet available outside clinical studies. Trials with combination therapies are also ongoing, especially using novel therapies with new mechanisms of action, and will hopefully provide more clues on proper patient and therapy selection in the adjuvant setting.
Collapse
Affiliation(s)
- Stephanie A. Berg
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley A. McGregor
- Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Negi A, Kesari KK, Voisin-Chiret AS. Estrogen Receptor-α Targeting: PROTACs, SNIPERs, Peptide-PROTACs, Antibody Conjugated PROTACs and SNIPERs. Pharmaceutics 2022; 14:pharmaceutics14112523. [PMID: 36432713 PMCID: PMC9699327 DOI: 10.3390/pharmaceutics14112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Targeting selective estrogen subtype receptors through typical medicinal chemistry approaches is based on occupancy-driven pharmacology. In occupancy-driven pharmacology, molecules are developed in order to inhibit the protein of interest (POI), and their popularity is based on their virtue of faster kinetics. However, such approaches have intrinsic flaws, such as pico-to-nanomolar range binding affinity and continuous dosage after a time interval for sustained inhibition of POI. These shortcomings were addressed by event-driven pharmacology-based approaches, which degrade the POI rather than inhibit it. One such example is PROTACs (Proteolysis targeting chimeras), which has become one of the highly successful strategies of event-driven pharmacology (pharmacology that does the degradation of POI and diminishes its functions). The selective targeting of estrogen receptor subtypes is always challenging for chemical biologists and medicinal chemists. Specifically, estrogen receptor α (ER-α) is expressed in nearly 70% of breast cancer and commonly overexpressed in ovarian, prostate, colon, and endometrial cancer. Therefore, conventional hormonal therapies are most prescribed to patients with ER + cancers. However, on prolonged use, resistance commonly developed against these therapies, which led to selective estrogen receptor degrader (SERD) becoming the first-line drug for metastatic ER + breast cancer. The SERD success shows that removing cellular ER-α is a promising approach to overcoming endocrine resistance. Depending on the mechanism of degradation of ER-α, various types of strategies of developed.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Kavindra Kumar Kesari
- Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| | - Anne Sophie Voisin-Chiret
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie University UNICAEN, 14000 Caen, France
- Correspondence: or (A.N.); or (K.K.K.); (A.S.V.-C.)
| |
Collapse
|
48
|
Cinque A, Minnei R, Floris M, Trevisani F. The Clinical and Molecular Features in the VHL Renal Cancers; Close or Distant Relatives with Sporadic Clear Cell Renal Cell Carcinoma? Cancers (Basel) 2022; 14:5352. [PMID: 36358771 PMCID: PMC9657498 DOI: 10.3390/cancers14215352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominant inherited cancer syndrome caused by germline mutations in the VHL tumor suppressor gene, characterized by the susceptibility to a wide array of benign and malign neoplasms, including clear-cell renal cell carcinoma. Moreover, VHL somatic inactivation is a crucial molecular event also in sporadic ccRCCs tumorigenesis. While systemic biomarkers in the VHL syndrome do not currently play a role in clinical practice, a new promising class of predictive biomarkers, microRNAs, has been increasingly studied. Lots of pan-genomic studies have deeply investigated the possible biological role of microRNAs in the development and progression of sporadic ccRCC; however, few studies have investigated the miRNA profile in VHL patients. Our review summarize all the new insights related to clinical and molecular features in VHL renal cancers, with a particular focus on the overlap with sporadic ccRCC.
Collapse
Affiliation(s)
- Alessandra Cinque
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Minnei
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Matteo Floris
- Nephrology, Dialysis, and Transplantation, G. Brotzu Hospital, University of Cagliari, 09134 Cagliari, Italy
| | - Francesco Trevisani
- Biorek S.r.l., San Raffaele Scientific Institute, 20132 Milan, Italy
- Urological Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy
- Unit of Urology, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
49
|
Abstract
Germline loss-of-function mutations of the VHL tumor suppressor gene cause von Hippel–Lindau disease, which is associated with an increased risk of hemangioblastomas, clear cell renal cell carcinomas (ccRCCs), and paragangliomas. This Review describes mechanisms involving the VHL gene product in oxygen sensing, protein degradation, and tumor development and current therapeutic strategies targeting these mechanisms. The VHL gene product is the substrate recognition subunit of a ubiquitin ligase that targets the α subunit of the heterodimeric hypoxia-inducible factor (HIF) transcription factor for proteasomal degradation when oxygen is present. This oxygen dependence stems from the requirement that HIFα be prolyl-hydroxylated on one (or both) of two conserved prolyl residues by members of the EglN (also called PHD) prolyl hydroxylase family. Deregulation of HIF, and particularly HIF2, drives the growth of VHL-defective ccRCCs. Drugs that inhibit the HIF-responsive gene product VEGF are now mainstays of ccRCC treatment. An allosteric HIF2 inhibitor was recently approved for the treatment of ccRCCs arising in the setting of VHL disease and has advanced to phase III testing for sporadic ccRCCs based on promising phase I/II data. Orally available EglN inhibitors are being tested for the treatment of anemia and ischemia. Five of these agents have been approved for the treatment of anemia in the setting of chronic kidney disease in various countries around the world.
Collapse
|
50
|
Kawaguchi K, Yashima K, Ikebuchi Y, Yoshida A, Kuwamoto S, Isomoto H. The First Case of Gastric Neuroendocrine Tumors Induced by a Proton Pump Inhibitor in von Hippel-Lindau Disease. Intern Med 2022; 61:2587-2592. [PMID: 35135919 PMCID: PMC9492478 DOI: 10.2169/internalmedicine.8701-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Von Hippel-Lindau (VHL) disease is a rare inherited familial syndrome complicated with various neoplasms, including neuroendocrine tumors (NETs). We herein report the first case of multiple gastric NETs in a 45-year-old man with VHL. He had multiple gastric polyps, and several endoscopic resected lesions were diagnosed as NETs. The serum gastrin level was elevated because he was taking a proton pump inhibitor (PPI). We suspected that gastrin had played a role in the development of NETs, and the remaining polyps were followed up with discontinuation of the PPI. The NETs gradually reduced in size until they became hard to notice on endoscopy and have remained nearly invisible for over eight years.
Collapse
Affiliation(s)
- Koichiro Kawaguchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| | - Kazuo Yashima
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| | - Yuichiro Ikebuchi
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| | - Akira Yoshida
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| | - Satoshi Kuwamoto
- Department of Pathology, Faculty of Medicine, Tottori University, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Japan
| |
Collapse
|