1
|
Wang X, Yang J, Yang W, Sheng H, Jia B, Cheng P, Xu S, Hong X, Jiang C, Yang Y, Wu Z, Wang J. Multiple roles of p53 in cancer development: Regulation of tumor microenvironment, m 6A modification and diverse cell death mechanisms. J Adv Res 2024:S2090-1232(24)00481-8. [PMID: 39490612 DOI: 10.1016/j.jare.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The protein p53, encoded by the most frequently mutated gene TP53 in human cancers, has diverse functions in tumor suppression. As a best known transcription factor, p53 can regulate various fundamental cellular responses, ranging from the cell-cycle arrest, DNA repair, senescence to the programmed cell death (PCD), which includes autophagy, apoptosis, ferroptosis, cuproptosis, pyroptosis and disulfidoptosis. Accumulating evidence has indicated that the tumor microenvironment (TME), N6-methyladenosine (m6A) modification and diverse PCD are important for the progression, proliferation and metastases of cancers. AIM OF REVIEW This paper aims to systematically and comprehensively summarize the multiple roles of p53 in the development of cancers from the regulation of TME, m6A Modification and diverse PCD. KEY SCIENTIFIC CONCEPTS OF REVIEW TME, a crucial local homeostasis environment, influences every step of tumorigenesis and metastasis. m6A, the most prevalent and abundant endogenous modification in eukaryotic RNAs, plays an essential role in various biological processes, containing the progression of cancers. Additionally, PCD is an evolutionarily conserved mechanism of cell suicide and a common process in living organisms. Some forms of PCD contribute to the occurrence and development of cancer. However, the complex roles of p53 within the TME, m6A modification and diverse PCD mechanisms are still not completely understood. Presently, the function roles of p53 including the wild-type and mutant p53 in different context are summarized. Additionally, the interaction between the cancer immunity, cancer cell death and RNA m6A methylation and the p53 regulation during the development and progress of cancers were discussed. Moreover, the key molecular mechanisms by which p53 participates in the regulation of TME, m6A and diverse PCD are also explored. All the findings will facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Xiangyu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Haiyang Sheng
- Global Biometrics and Data Sciences, Bristol Myers Squibb, New York City, USA
| | - Buyun Jia
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Peng Cheng
- The First Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Shanshan Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xinhui Hong
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chuanwei Jiang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Ziyin Wu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd, Lianyungang, Jiangsu, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
2
|
Wang Y, Li S, Bo X, Li Y, Wang C, Nan L, Zhang D, Liu H, Zhang J. CircRNome-wide characterisation reveals the promoting role of circAATF in anti-PD-L1 immunotherapy of gallbladder carcinoma. Clin Transl Med 2024; 14:e70060. [PMID: 39428382 PMCID: PMC11491271 DOI: 10.1002/ctm2.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Circular RNAs (circRNAs) have been shown to play important roles in tumour development and tumour immunology. However, genome-wide characterisation of circRNAs and their roles in the immunology and immunotherapy of gallbladder carcinoma (GBC) has been lacking. We present a comprehensive characterisation of the circRNA landscape in GBC, revealing GBC-specific circRNAs. Our analysis found that circRNAs are significantly enriched in cell proliferation and are involved in cancer-related hallmarks. In particular, circAATF was upregulated in GBC, which was positively correlated with AATF mRNA expression, and promoted GBC cell growth. Through integrating computational and experimental approaches, we revealed that circAATF is positively associated with the CD4+ T cell abundance and PD-L1 level, and enhances the clinical benefits of anti-PD-L1 immunotherapy for GBC. We further demonstrate that circAATF elevates the PD-L1 level by activating phosphorylated AKT and acting as a sponge for miR-142-5p. CircAATF is positively associated with CD4+ T cells and PD-L1 levels and shows potential to aid anti-PD-L1 immunotherapy for GBC. Our study provides insights into roles of circAATF in the tumour development and immunology of GBC and accelerates the development of therapeutic strategies for GBC immunotherapy. HIGHLIGHTS: We present a comprehensive characterisation of circRNA landscape in gallbladder carcinoma (GBC). CircAATF is positively associated with CD4+ T cell abundance and PD-L1 expression and is shown to promote PD-L1 treatment in mouse model. CircAATF can elevate PD-L1 level through phosphorylated AKT and linear AATF, which upregulates PD-L1 by acting as a sponge of miR-142-5p.
Collapse
Affiliation(s)
- Yueqi Wang
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaobo Bo
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Changcheng Wang
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Lingxi Nan
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Dexiang Zhang
- Department of General SurgeryXuhui District Central Hospital of ShanghaiShanghaiChina
| | - Houbao Liu
- Department of Biliary SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases Institute, Fudan UniversityShanghaiChina
- Cancer Center, Zhongshan Hospital, Fudan UniversityShanghaiChina
- Department of General SurgeryXuhui District Central Hospital of ShanghaiShanghaiChina
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
3
|
Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med 2024; 16:eadk0642. [PMID: 39292804 PMCID: PMC11522033 DOI: 10.1126/scitranslmed.adk0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Jessica M. Vera
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Sage Bionetworks, 2901 Third Ave. Suite 330, Seattle, WA 98121, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas C. Havighurst
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ishan Chakravarthy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raad H. Allawi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - KyungMann Kim
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A. Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
- Oregon Clinic, Portland, OR 97232, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
| | - Jessica R. Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M. Ong
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
4
|
Pandey S, Anang V, Schumacher MM. Tumor microenvironment induced switch to mitochondrial metabolism promotes suppressive functions in immune cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:67-103. [PMID: 39396850 DOI: 10.1016/bs.ircmb.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Understanding the intricacies of the metabolic phenotype in immune cells and its plasticity within the tumor microenvironment is pivotal in understanding the pathology and prognosis of cancer. Unfavorable conditions and cellular stress in the tumor microenvironment (TME) exert a profound impact on cellular functions in immune cells, thereby influencing both tumor progression and immune responses. Elevated AMP:ATP ratio, a consequence of limited glucose levels, activate AMP-activated protein kinase (AMPK) while concurrently repressing the activity of mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor 1-alpha (HIF-1α). The intricate balance between AMPK, mTOR, and HIF-1α activities defines the metabolic phenotype of immune cells in the TME. These Changes in metabolic phenotype are strongly associated with immune cell functions and play a crucial role in creating a milieu conducive to tumor progression. Insufficiency of nutrient and oxygen supply leads to a metabolic shift in immune cells characterized by a decrease in glycolysis and an increase in oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) rates. In most cases, this shift in metabolism is accompanied by a compromise in the effector functions of these immune cells. This metabolic adaptation prompts immune cells to turn down their effector functions, entering a quiescent or immunosuppressive state that may support tumor growth. This article discusses how tumor microenvironment alters the metabolism in immune cells leading to their tolerance and tumor progression, with emphasis on mitochondrial metabolism (OXPHOS and FAO).
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiorke Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Garutti M, Bruno R, Polesel J, Pizzichetta MA, Puglisi F. Role of tumor-infiltrating lymphocytes in melanoma prognosis and treatment strategies: A systematic review and meta-analysis. Heliyon 2024; 10:e32433. [PMID: 39183829 PMCID: PMC11341338 DOI: 10.1016/j.heliyon.2024.e32433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose Numerous studies underscore the relevance of tumor-infiltrating-lymphocytes (TILs) as important prognostic factors for melanoma. This meta-analysis aims to provide a comprehensive literature overview elucidating their role in predicting patient outcomes, specifically investigating the association between TIL density and prognosis. Methods From an initial pool of 6094 records, 16 met the eligibility criteria, encompassing a collective cohort of 16021 patients. Data on TIL counts, clinical characteristics, and survival metrics (5-year overall survival [5yOS], 10-year overall survival [10yOS], and 5-year melanoma-specific survival [5yMSS]) were extracted from each study and expressed as proportions. Results were graphically presented using forest plots, reporting the estimates from individual studies, summary estimates, and corresponding 95 % confidence intervals (CI). Results Analysis revealed a statistically significant difference in 5yOS concerning subgroup differences However, 10yOS and 5yMSS did not exhibit statistical significance. Nonetheless, a consistent trend emerged indicating a higher survival rate corresponding to increased immune cell density, ranging from absent TILs to brisk levels. Conclusions TILs present potential as a readily applicable prognostic factor. Yet, further investigations into their density and phenotypic subpopulation characteristics could enhance our understanding of their predictive value in tailoring optimal patient-specific therapies.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano, National Cancer Institute, IRCCS, 33081, Aviano, Italy
| | - Rachele Bruno
- Department of Medicine, University of Udine, 33100, Udine, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081, Aviano, Italy
| | - Maria Antonietta Pizzichetta
- CRO Aviano, National Cancer Institute, IRCCS, 33081, Aviano, Italy
- Department of Dermatology, University of Trieste, 34123, Trieste, Italy
| | - Fabio Puglisi
- CRO Aviano, National Cancer Institute, IRCCS, 33081, Aviano, Italy
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
6
|
Strum S, Andersen MH, Svane IM, Siu LL, Weber JS. State-Of-The-Art Advancements on Cancer Vaccines and Biomarkers. Am Soc Clin Oncol Educ Book 2024; 44:e438592. [PMID: 38669611 DOI: 10.1200/edbk_438592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The origins of cancer vaccines date back to the 1800s. Since then, there have been significant efforts to generate vaccines against solid and hematologic malignancies using a variety of platforms. To date, these efforts have generally been met with minimal success. However, in the era of improved methods and technological advancements, supported by compelling preclinical and clinical data, a wave of renewed interest in the field offers the promise of discovering field-changing paradigms in the management of established and resected disease using cancer vaccines. These include novel approaches to personalized neoantigen vaccine development, as well as innovative immune-modulatory vaccines (IMVs) that facilitate activation of antiregulatory T cells to limit immunosuppression caused by regulatory immune cells. This article will introduce some of the limitations that have affected cancer vaccine development over the past several decades, followed by an introduction to the latest advancements in neoantigen vaccine and IMV therapy, and then conclude with a discussion of some of the newest technologies and progress that are occurring across the cancer vaccine space. Cancer vaccines are among the most promising frontiers for breakthrough innovations and strategies poised to make a measurable impact in the ongoing fight against cancer.
Collapse
Affiliation(s)
- Scott Strum
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY
| |
Collapse
|
7
|
Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, Sarobe P, Inogés S, Díaz de Cerio AL, Santisteban M. Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 2024; 16:981. [PMID: 38473341 DOI: 10.3390/cancers16050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy modulates the immune system, overcomes immune escape and stimulates immune defenses against tumors. Dendritic cells (DCs) are professional promoters of immune responses against tumor antigens with the outstanding ability to coordinate the innate and adaptive immune systems. Evidence suggests that there is a decrease in both the number and function of DCs in cancer patients. Therefore, they represent a strong scaffold for therapeutic interventions. DC vaccination (DCV) is safe, and the antitumoral responses induced are well established in solid tumors. Although the addition of checkpoint inhibitors (CPIs) to chemotherapy has provided new options in the treatment of cancer, they have shown no clinical benefit in immune desert tumors or in those tumors with dysfunctional or exhausted T-cells. In this way, DC-based therapy has demonstrated the ability to modify the tumor microenvironment for immune enriched tumors and to potentiate systemic host immune responses as an active approach to treating cancer patients. Application of DCV in cancer seeks to obtain long-term antitumor responses through an improved T-cell priming by enhancing previous or generating de novo immune responses. To date, DCV has induced immune responses in the peripheral blood of patients without a significant clinical impact on outcome. Thus, improvements in vaccines formulations, selection of patients based on biomarkers and combinations with other antitumoral therapies are needed to enhance patient survival. In this work, we review the role of DCV in different solid tumors with their strengths and weaknesses, and we finally mention new trends to improve the efficacy of this immune strategy.
Collapse
Affiliation(s)
- Laura Hato
- Immunology, Riberalab, 03203 Alicante, Spain
| | - Angel Vizcay
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Iñaki Eguren
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Javier Rodríguez
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | | | - Pablo Sarobe
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
- CIBEREHD, 31008 Pamplona, Spain
| | - Susana Inogés
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ascensión López Díaz de Cerio
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Cell Therapy Unit, Program of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Marta Santisteban
- Medical Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
8
|
Ma T, Su G, Wu Q, Shen M, Feng X, Zhang Z. Tumor-derived extracellular vesicles: how they mediate glioma immunosuppression. Mol Biol Rep 2024; 51:235. [PMID: 38282090 DOI: 10.1007/s11033-023-09196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Gliomas, the most common malignant brain tumor, present a grim prognosis despite available treatments such as surgical resection, temozolomide (TMZ) therapy, and radiation therapy. This is due to their aggressive growth, high level of immunosuppression, and the blood-brain barrier (BBB), which obstruct the effective exchange of therapeutic drugs. Gliomas can significantly affect differentiation and function of immune cells by releasing extracellular vesicles (EVs), resulting in a systemic immunosuppressive state and a highly immunosuppressive microenvironment. In the tumor immune microenvironment (TIME), the primary immune cells are regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs). In particular, glioma-associated TAMs are chiefly composed of monocyte-derived macrophages and brain-resident microglia. These cells partially exhibit characteristics of a pro-tumorigenic, anti-inflammatory M2-type. Glioma-derived EVs can hijack TAMs to differentiate into tumor-supporting phenotypes or directly affect the maturation of peripheral blood monocytes (PBMCs) and promote the activation of MDSCs. In addition, EVs impair the ability of dendritic cells (DCs) to process antigens, subsequently hindering the activation of lymphocytes. EVs also impact the proliferation, differentiation, and activation of lymphocytes. This is primarily evident in the overall reduction of CD4 + helper T cells and CD8 + T cells, coupled with a relative increase in Tregs, which possess immunosuppressive characteristics. This study investigates thoroughly how tumor-derived EVs impair the function of immune cells and enhance immunosuppression in gliomas, shedding light on their potential implications for immunotherapy strategies in glioma treatment.
Collapse
Affiliation(s)
- Tianfei Ma
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qionghui Wu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Minghui Shen
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xinli Feng
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Zhenchang Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
10
|
Mochizuki K. Harnessing allogeneic CD4 + T cells to reinvigorate host endogenous antitumor immunity. Fukushima J Med Sci 2023; 69:157-165. [PMID: 37880140 PMCID: PMC10694512 DOI: 10.5387/fms.23-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapies developed over the past decade have been among the most promising approaches for the treatment of patients with advanced cancers. However, the overall objective response rate of ICB therapy for various cancers remains insufficient. Hence, novel strategies are required to improve the efficacy of immunotherapy for advanced cancers. The graft-versus-tumor (GVT) effect, which reflects strong antitumor immunity, is known to occur after allogeneic hematopoietic stem cell transplantation (HSCT). The GVT effect is mainly caused by transplanted donor lymphocytes that recognize and react to distinct alloantigens on tumor cells. In contrast, transplanted allogeneic cells can, in some instances, induce endogenous antitumor immunity in recipients if the graft has been rejected. Because of this ability, allogeneic cells have also been used to induce endogenous antitumor immunity without HSCT, and their beneficial immune response is referred to as the "allogenic effect." Here, we review the usefulness of allogeneic cells, particularly allogeneic CD4+ T cells, in cancer immunotherapy by highlighting their unique potential to induce host endogenous antitumor immunity.
Collapse
|
11
|
Wang X, Wen S, Du X, Zhang Y, Yang X, Zou R, Feng B, Fu X, Jiang F, Zhou G, Liu Z, Zhu W, Ma R, Feng J, Shen B. SAA suppresses α-PD-1 induced anti-tumor immunity by driving T H2 polarization in lung adenocarcinoma. Cell Death Dis 2023; 14:718. [PMID: 37925492 PMCID: PMC10625560 DOI: 10.1038/s41419-023-06198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to be crucial in the initiation, progression, and recurrence of cancer. CSCs are also known to be more resistant to cancer treatments. However, the interaction between CSCs and the immune microenvironment is complex and not fully understood. In current study we used single cell RNA sequence (scRNA-Seq, public dataset) technology to identify the characteristic of CSCs. We found that the lung adenocarcinoma cancer stem population is highly inflammatory and remodels the tumor microenvironment by secreting inflammatory factors, specifically the acute phase protein serum amyloid A (SAA). Next, we developed an ex-vivo autologous patient-derived organoids (PDOs) and peripheral blood mononuclear cells (PBMCs) co-culture model to evaluate the immune biological impact of SAA. We found that SAA not only promotes chemoresistance by inducing cancer stem transformation, but also restricts anti-tumor immunity and promotes tumor fibrosis by driving type 2 immunity, and α-SAA neutralization antibody could restrict treatment resistant and tumor fibrosis. Mechanically, we found that the malignant phenotype induced by SAA is dependent on P2X7 receptor. Our data indicate that cancer stem cells secreted SAA have significant biological impact to promote treatment resistant and tumor fibrosis by driving cancer stemness transformation and type 2 immunity polarization via P2X7 receptor. Notably, α-SAA neutralization antibody shows therapeutic potential by restricting these malignant phenotypes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaodi Wen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yihan Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiao Yang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Renrui Zou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bing Feng
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiao Fu
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China
- Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zi Liu
- Nanjing Advanced Analysis Tech. (NAAT) Co., LTD, Nanjing, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
12
|
Álvarez-Sierra D, Rodríguez-Grande J, Gómez-Brey A, Bello I, Caubet E, González Ó, Zafón C, Iglesias C, Moreno P, Ruiz N, Marín-Sánchez A, Colobran R, Pujol-Borrell R. Single cell transcriptomic analysis of Graves' disease thyroid glands reveals the broad immunoregulatory potential of thyroid follicular and stromal cells and implies a major re-interpretation of the role of aberrant HLA class II expression in autoimmunity. J Autoimmun 2023; 139:103072. [PMID: 37336012 DOI: 10.1016/j.jaut.2023.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
The study of the immune response in thyroid autoimmunity has been mostly focused on the autoantibodies and lymphocytes, but there are indications that intrinsic features of thyroid tissue cells may play a role in disrupting tolerance that needs further investigation. The overexpression of HLA and adhesion molecules by thyroid follicular cells (TFC) and our recent demonstration that PD-L1 is also moderately expressed by TFCs in autoimmune thyroid indicates that TFCs they may activate but also inhibit the autoimmune response. Intriguingly, we have recently found that in vitro cultured TFCs are able to suppress the proliferation of autologous lymphocyte T in a contact-dependent manner which is independent of the PD-1/PD-L1 signaling pathway. To get a more comprehensive picture of TFC activating and inhibitory molecules/pathways driving the autoimmune response in the thyroid glands, preparations of TFCs and stromal cells from five Graves' disease (GD) and four control thyroid glands were compared by scRNA-seq. The results confirmed the previously described interferon type I and type II signatures in GD TFCs and showed unequivocally that they express the full array of genes that intervene in the processing and presentation of endogenous and exogeneous antigens. GD TFCs lack however expression of costimulatory molecules CD80 and CD86 required for priming T cells. A moderate overexpression of CD40 by TFCs was confirmed. GD Fibroblasts showed widespread upregulation of cytokine genes. The results from this first single transcriptomic profiling of TFC and thyroid stromal cells provides a more granular view of the events occurring in GD. The new data point at an important contribution of stromal cells and prompt a major re-interpretation of the role of MHC over-expression by TFC, from deleterious to protective. Most importantly this re-interpretation could also apply to other tissues, like pancreatic beta cells, where MHC over-expression has been detected in diabetic pancreas.
Collapse
Affiliation(s)
- Daniel Álvarez-Sierra
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain.
| | - Jorge Rodríguez-Grande
- Microbiology Division, Hospital Universitario Marqués de Valdecilla - IDIVAL, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Aroa Gómez-Brey
- Transplant Coordination Department, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron. Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Irene Bello
- Thoracic Surgery and Lung Transplantation Department, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Campus Vall D'Hebron, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Enric Caubet
- Department of General Surgery, Endocrine Surgery Division, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Óscar González
- Department of General Surgery, Endocrine Surgery Division, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Carles Zafón
- Department of Endocrinology and Nutrition, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Carmela Iglesias
- Department of Histopathology, Hospital Universitari Vall D'Hebron (HUVH), Campus Vall D'Hebron Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Pablo Moreno
- Department of General Surgery, Endocrine Surgery Division, Hospital Universitari de Bellvitge (HUB), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Núria Ruiz
- Department of Histopathology, Hospital Universitari de Bellvitge (HUB), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Ana Marín-Sánchez
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Roger Colobran
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain
| | - Ricardo Pujol-Borrell
- Translational Immunology Research Group, Vall D'Hebron Institute of Research (VHIR), Campus Vall D'Hebron, Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Immunology Division, Hospital Universitari Vall D'Hebron (HUVH), Barcelona, Passeig Vall D'Hebron 119-129, 08035, Spain; Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Campus Vall D'Hebron, Barcelona, Hospital Universitari Vall D'Hebron and the Other Institutions in the Campus Vall D'Hebron Is, Passeig Vall D'Hebron 119-129, 08035, Spain; Vall d'Hebron Institute of Oncology (VHIO), Centre Cellex, C/ Natzaret, 115-117, 08035 Barcelona, Spain
| |
Collapse
|
13
|
Zhan DT, Xian HC. Exploring the regulatory role of lncRNA in cancer immunity. Front Oncol 2023; 13:1191913. [PMID: 37637063 PMCID: PMC10448763 DOI: 10.3389/fonc.2023.1191913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Imbalanced immune homeostasis in cancer microenvironment is a hallmark of cancer. Increasing evidence demonstrated that long non-coding RNAs (lncRNAs) have emerged as key regulatory molecules in directly blocking the cancer immunity cycle, apart from activating negative regulatory pathways for restraining tumor immunity. lncRNAs reshape the tumor microenvironment via the recruitment and activation of innate and adaptive lymphoid cells. In this review, we summarized the versatile mechanisms of lncRNAs implicated in cancer immunity cycle, including the inhibition of antitumor T cell activation, blockade of effector T cell recruitment, disruption of T cell homing, recruitment of immunosuppressive cells, and inducing an imbalance between antitumor effector cells (cytotoxic T lymphocytes, M1 macrophages, and T helper type 1 cells) versus immunosuppressive cells (M2 macrophages, T helper type 2 cells, myeloid derived suppressor cells, and regulatory T cells) that infiltrate in the tumor. As such, we would highlight the potential of lncRNAs as novel targets for immunotherapy.
Collapse
Affiliation(s)
- Dan-ting Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Hong-chun Xian
- Department of Plastic and Maxillofacial Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Irianto T, Gaipl US, Rückert M. Immune modulation during anti-cancer radio(immuno)therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:239-277. [PMID: 38225105 DOI: 10.1016/bs.ircmb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Cancer can affect all human organs and tissues and ranks as a prominent cause of death as well as an obstruction to increasing life expectancy. A notable breakthrough in oncology has been the inclusion of the immune system in fighting cancer, potentially prolonging life and providing long-term benefits. The concept of "immunotherapy" has been discussed from the 19th and early 20th centuries by Wilhelm Busch, William B. Coley and Paul Ehrlich. This involves distinct approaches, including vaccines, non-specific cytokines and adoptive cell therapies. However, despite the advances made in recent years, questions on how to select the best therapeutic options or how to select the best combinations to improve clinical outcomes are still relevant for scientists and clinicians. More than half of cancer patients receive radiotherapy (RT) as part of their treatment. With the advances in RT and immunotherapy approaches, it is reasonable to consider how to enhance immunotherapy with radiation and vice versa, and to investigate whether combinations of these therapies would be beneficial. In this chapter, we will discuss how the immune system responds to cancer cells and different cancer therapies with a focus on combination of RT and immunotherapy (radioimmunotherapy, RIT).
Collapse
Affiliation(s)
- Teresa Irianto
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
15
|
Ji M, Lin L, Huang Q, Hu C, Zhang M. HPV16 status might correlate to increasing tumor-infiltrating lymphocytes in hypopharyngeal cancer. Acta Otolaryngol 2023:1-8. [PMID: 37335232 DOI: 10.1080/00016489.2023.2221288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/21/2023]
Abstract
BACKGROUND Human papillomavirus (HPV) plays a major etiological role in the increasing number of patients with head and neck squamous cell carcinoma (HNSCC). OBJECTIVES This study aimed at exploring the relationship between HPV infection and prognosis in patients with hypopharyngeal carcinoma (HPSCC). METHODS We retrospectively analyzed 108 consecutive patients diagnosed with HPSCC from 2015 to 2018. Real-time fluorescent quantitative PCR and P16 immunohistochemistry were used to detect HPV infection in tissues of patients with hypopharyngeal carcinoma. The numbers of CD8, CD4 and Foxp3 cells in tumor parenchyma were obtained by immunohistochemical counting. Finally, the analysis was performed according to the clinicopathological variables and prognosis of the patients. RESULTS Among 108 patients with HPSCC, 18 cases were detected by qPCR, and 16 subtypes accounted for the majority (77.8%). Kaplan-Meier analysis showed that HPV16+, higher CD8+, higher CD4+ and higher FoxP3+ TIL infiltration was strongly associated with superior three-year disease-free survival (DFS), cancer-specific survival (CSS) and overall survival (OS). Univariate analysis showed that HPV and CD4+ TIL had higher predictive value for prognosis. CONCLUSIONS HPV16 infection is significantly related to tumor immune infiltrating cells (TILs).
Collapse
Affiliation(s)
- Mengyou Ji
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Lan Lin
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Chunyan Hu
- Department of Pathology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ming Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Al-Harbi N, Abdulla MH, Vaali-Mohammed MA, Bin Traiki T, Alswayyed M, Al-Obeed O, Abid I, Al-Omar S, Mansour L. Evidence of Association between CTLA-4 Gene Polymorphisms and Colorectal Cancers in Saudi Patients. Genes (Basel) 2023; 14:genes14040874. [PMID: 37107632 PMCID: PMC10138150 DOI: 10.3390/genes14040874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) has been identified as an immunosuppressive molecule involved in the negative regulation of T cells. It is highly expressed in several types of autoimmune diseases and cancers including colorectal cancer (CRC). (1) Objective: To explore the association between CTLA-4 single nucleotide polymorphisms (SNP) and risk to (CRC) in the Saudi population. (2) Methods: In this case-control study, 100 patients with CRC and 100 matched healthy controls were genotyped for three CTLA-4 SNPs: rs11571317 (-658C > T), rs231775 (+49A > G) and rs3087243 (CT60 G > A), using TaqMan assay method. Associations were evaluated using odds ratios (ORs) and 95% confidence intervals (95% CIs) for five inheritance models (co-dominant, dominant, recessive, over-dominant and log-additive). Furthermore, CTLA-4 expression levels were evaluated using quantitative real-time PCR (Q-RT-PCR) in colon cancer and adjacent colon tissues. (3) Results: Our result showed a significant association of the G allele (OR = 2.337, p < 0.0001) and GG genotype of the missense SNP +49A > G with increased risk of developing CRC in codominant (OR = 8.93, p < 0.0001) and recessive (OR = 16.32, p < 0.0001) models. Inversely, the AG genotype was significantly associated with decreased risk to CRC in the codominant model (OR = 0.23, p < 0.0001). In addition, the CT60 G > A polymorphism exhibited a strong association with a high risk of developing CRC for the AA genotype in codominant (OR = 3.323, p = 0.0053) and in allele models (OR = 1.816, p = 0.005). No significant association was found between -658C > T and CRC. The haplotype analysis showed that the G-A-G haplotype of the rs11571317, rs231775 and rs3087243 was associated with high risk for CRC (OR = 57.66; p < 0.001). The CTLA-4 mRNA gene expression was found significantly higher in tumors compared to normal adjacent colon samples (p < 0.001). (4) Conclusions: Our findings support an association between the CTLA-4 rs231775 (+49A > G) and rs3087243 (CT60 G > A) polymorphisms and CRC risk in the Saudi population. Further validation in a larger cohort size is needed prior to utilizing these SNPs as a potential screening marker in the Saudi population.
Collapse
Affiliation(s)
- Nouf Al-Harbi
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | | | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
| | - Omar Al-Obeed
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Islem Abid
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Suliman Al-Omar
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| |
Collapse
|
17
|
Lan YL, Wang H, Chen A, Zhang J. Update on the current knowledge of lymphatic drainage system and its emerging roles in glioma management. Immunology 2023; 168:233-247. [PMID: 35719015 DOI: 10.1111/imm.13517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 01/17/2023] Open
Abstract
The draining of brain interstitial fluid (ISF) to cerebrospinal fluid (CSF) and the subsequent draining of CSF to meningeal lymphatics is well-known. Nonetheless, its role in the development of glioma is a remarkable finding that has to be extensively understood. The glymphatic system (GS) collects CSF from the subarachnoid space and brain ISF through aquaporin-4 (AQP4) water channels. The glial limiting membrane and the perivascular astrocyte-end-feet membrane both have elevated levels of AQP4. CSF is thought to drain through the nerve sheaths of the olfactory and other cranial nerves as well as spinal meningeal lymphatics via dorsal or basal lymphatic vessels. Meningeal lymphatic vessels (MLVs) exist below the skull in the dorsal and basal regions. In this view, MLVs offer a pathway to drain macromolecules and traffic immunological cells from the CNS into cervical lymph nodes (CLNs), and thus can be used as a candidate curing strategy against glioma and other associated complications, such as neuro-inflammation. Taken together, the lymphatic drainage system could provide a route or approach for drug targeting of glioma and other neurological conditions. Nevertheless, its pathophysiological role in glioma remains elusive, which needs extensive research. The current review aims to explore the lymphatic drainage system, its role in glioma progression, and possible therapeutic techniques that target MLVs in the CNS.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongjin Wang
- Department of Neurology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Aiqin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Jagodinsky JC, Bates AM, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarty I, Nystuen EJ, Kim K, Sondel PM, Jin WJ, Morris ZS. Local TLR4 stimulation augments in situ vaccination induced via local radiation and anti-CTLA-4 checkpoint blockade through induction of CD8 T-cell independent Th1 polarization. J Immunother Cancer 2022; 10:e005103. [PMID: 36192087 PMCID: PMC9535200 DOI: 10.1136/jitc-2022-005103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Radiation therapy (RT) has been demonstrated to generate an in situ vaccination (ISV) effect in murine models and in patients with cancer; however, this has not routinely translated into enhanced clinical response to immune checkpoint inhibition (ICI). We investigated whether the commonly used vaccine adjuvant, monophosphoryl lipid A (MPL) could augment the ISV regimen consisting of combination RT and ICI. MATERIALS/METHODS We used syngeneic murine models of melanoma (B78) and prostate cancer (Myc-CaP). Tumor-bearing mice received either RT (12 Gy, day 1), RT+anti-CTLA-4 (C4, day 3, 6, 9), MPL (20 µg IT injection days 5, 7, 9), RT+C4+MPL, or PBS control. To evaluate the effect of MPL on the irradiated tumor microenvironment, primary tumor with tumor draining lymph nodes were harvested for immune cell infiltration analysis and cytokine profiling, and serum was collected for analysis of antitumor antibody populations. RESULTS Combination RT+C4+MPL significantly reduced tumor growth, increased survival and complete response rate compared with RT+C4 in both B78 and Myc-CaP models. MPL favorably reprogrammed the irradiated tumor-immune microenvironment toward M1 macrophage and Th1 TBET+CD4+ T cell polarization. Furthermore, MPL significantly increased intratumoral expression of several Th1-associated and M1-associated proinflammatory cytokines. In co-culture models, MPL-stimulated macrophages directly activated CD8 T cells and polarized CD4 cells toward Th1 phenotype. MPL treatment significantly increased production of Th1-associated, IgG2c antitumor antibodies, which were required for and predictive of antitumor response to RT+C4+MPL, and enabled macrophage-mediated antibody-dependent direct tumor cell killing by MPL-stimulated macrophages. Macrophage-mediated tumor cell killing was dependent on FcγR expression. In metastatic models, RT and MPL generated a systemic antitumor immune response that augmented response to ICIs. This was dependent on macrophages and CD4+ but not CD8+T cells. CONCLUSIONS We report the potential for MPL to augment the ISV effect of combination RT+C4 through FcγR, macrophage, and TBET+CD4+ Th1 cell dependent mechanisms. To our knowledge, this is the first report describing generation of a CD8+ T cell-independent, Th1 polarized, systemic antitumor immune response with subsequent generation of immunologic memory. These findings support the potential for vaccine adjuvants to enhance the efficacy of in situ tumor vaccine approaches.
Collapse
Affiliation(s)
- Justin C Jagodinsky
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul A Clark
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Raghava N Sriramaneni
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Thomas C Havighurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ishan Chakravarty
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Erin J Nystuen
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul M Sondel
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm (Beijing) 2022; 3:e167. [PMID: 36033422 PMCID: PMC9409637 DOI: 10.1002/mco2.167] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines made their successful public debut in the effort against the COVID-19 outbreak starting in late 2019, although the history of mRNA vaccines can be traced back decades. This review provides an overview to discuss the historical course and present situation of mRNA vaccine development in addition to some basic concepts that underly mRNA vaccines. We discuss the general preparation and manufacturing of mRNA vaccines and also discuss the scientific advances in the in vivo delivery system and evaluate popular approaches (i.e., lipid nanoparticle and protamine) in detail. Next, we highlight the clinical value of mRNA vaccines as potent candidates for therapeutic treatment and discuss clinical progress in the treatment of cancer and coronavirus disease 2019. Data suggest that mRNA vaccines, with several prominent advantages, have achieved encouraging results and increasing attention due to tremendous potential in disease management. Finally, we suggest some potential directions worthy of further investigation and optimization. In addition to basic research, studies that help to facilitate storage and transportation will be indispensable for practical applications.
Collapse
Affiliation(s)
- Yangzhuo Gu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
| | - Jiangyao Duan
- Department of Life SciencesImperial College LondonLondonUK
| | - Na Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Yuxin Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Xing Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
20
|
Yen JH, Huang WC, Lin SC, Huang YW, Chio WT, Tsay GJ, Hung MC, Huang ST. Metabolic remodeling in tumor-associated macrophages contributing to antitumor activity of cryptotanshinone by regulating TRAF6-ASK1 axis. Mol Ther Oncolytics 2022; 26:158-174. [PMID: 35860009 PMCID: PMC9271981 DOI: 10.1016/j.omto.2022.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Dampening tumor growth by converting tumor-associated macrophages (TAMs) from M2/repair-types to M1/kill-types is of high interest. Here, we show that cryptotanshinone (CPT) can function as an antitumor immune modulator that switches TAMs from an M2 to an M1 phenotype, leading to tumor regression. An orthotopic triple-negative breast cancer (TNBC) implantation model was used to determine the role and mechanism of CPT in suppressing M1-to-M2 repolarization of TAMs. Co-culturing TNBC cells with CPT-treated macrophages reduced TNBC proliferation and motility, while in TNBC orthotopic mouse models, CPT treatment inhibited breast tumor formation. Moreover, we identified that CPT inhibits mitochondrial oxidative phosphorylation and mitochondrial fusion via autophagy and transcriptional activation of the apoptosis signal-regulating kinase 1 (ASK1) pathway. Suppression of ASK1 downregulates autophagy and abolishes CPT-induced effects upon TAMs. In addition, CPT inhibits M2 macrophage differentiation and causes TRAF6 auto-ubiquitination-dependent activation of the ASK1, leading to M1 polarization. On the contrary, in M1 macrophage, CPT increases interaction of ASK1 and TRAF6 which induces ASK1 ubiquitination and degradation. Intriguingly, CPT plays opposite roles in the M1 and M2 phenotype. Our findings help to illuminate a previously unrecognized antitumor mechanism of CPT and suggest that this natural compound offers a macrophage-based approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Jia-Hau Yen
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chieh Huang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Shu-Ching Lin
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Wen Huang
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wan-Ting Chio
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Gregory J. Tsay
- Research and Development Center for Immunology, China Medical University, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- New Drug Development Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University Taichung, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 406, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Corresponding author. Mien-Chie Hung, Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, 100, Sec. 1, Jingmao Road, Beitun District, Taichung 406, Taiwan.
| | - Sheng-Teng Huang
- Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, No. 2, Yude Road, North District 40447, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
- Corresponding author Sheng-Teng Huang, School of Chinese Medicine, China Medical University; Department of Chinese Medicine, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 40447, Taiwan.
| |
Collapse
|
21
|
Bova V, Filippone A, Casili G, Lanza M, Campolo M, Capra AP, Repici A, Crupi L, Motta G, Colarossi C, Chisari G, Cuzzocrea S, Esposito E, Paterniti I. Adenosine Targeting as a New Strategy to Decrease Glioblastoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14164032. [PMID: 36011024 PMCID: PMC9406358 DOI: 10.3390/cancers14164032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Given the rising mortality rate caused by GBM, current therapies do not appear to be effective in counteracting tumor progression. The role of adenosine and its interaction with specific receptor subtypes in various physiological functions has been studied for years. Only recently, adenosine has been defined as a tumor-protective target because of its accumulation in the tumor microenvironment. Current knowledge of the adenosine pathway and its involvement in brain tumors would support research in the development of adenosine receptor antagonists that could represent alternative treatments for glioblastoma, used either alone and/or in combination with chemotherapy, immunotherapy, or both. Abstract Glioblastoma is the most commonly malignant and aggressive brain tumor, with a high mortality rate. The role of the purine nucleotide adenosine and its interaction with its four subtypes receptors coupled to the different G proteins, A1, A2A, A2B, and A3, and its different physiological functions in different systems and organs, depending on the active receptor subtype, has been studied for years. Recently, several works have defined extracellular adenosine as a tumoral protector because of its accumulation in the tumor microenvironment. Its presence is due to both the interaction with the A2A receptor subtype and the increase in CD39 and CD73 gene expression induced by the hypoxic state. This fact has fueled preclinical and clinical research into the development of efficacious molecules acting on the adenosine pathway and blocking its accumulation. Given the success of anti-cancer immunotherapy, the new strategy is to develop selective A2A receptor antagonists that could competitively inhibit binding to its endogenous ligand, making them reliable candidates for the therapeutic management of brain tumors. Here, we focused on the efficacy of adenosine receptor antagonists and their enhancement in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Gianmarco Motta
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
22
|
Hong Y, Duan P, He L, Li Q, Chen Y, Wang P, Fu Y, Liu T, Ding Z. Systematic Immunological Level Determined the Prognosis of Leptomeningeal Metastasis in Lung Cancer. Cancer Manag Res 2022; 14:1153-1164. [PMID: 35321403 PMCID: PMC8934871 DOI: 10.2147/cmar.s347323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ye Hong
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Ping Duan
- Department of Oncology, Cheng Du First People’s Hospital, Chengdu, People’s Republic of China
| | - Lang He
- Department of Oncology, The Fifth People’s Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qing Li
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Yang Fu
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Ting Liu
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Zhenyu Ding
- Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Zhenyu Ding, Department of Biotherapy, Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People’s Republic of China, Tel +86 28 8542 2562, Fax +86 28 8516 4059, Email
| |
Collapse
|
23
|
Nery MF, Rennó M, Picorelli A, Ramos E. A phylogenetic review of cancer resistance highlights evolutionary solutions to Peto’s Paradox. Genet Mol Biol 2022; 45:e20220133. [DOI: 10.1590/1678-4685-gmb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
|
24
|
Someya M, Fukushima Y, Hasegawa T, Tsuchiya T, Kitagawa M, Gocho T, Mafune S, Ikeuchi Y, Kozuka Y, Hirohashi Y, Torigoe T, Iwasaki M, Matsuura M, Saito T, Sakata KI. Radiotherapy for HPV-related cancers: prediction of therapeutic effects based on the mechanism of tumor immunity and the application of immunoradiotherapy. Jpn J Radiol 2022; 40:458-465. [PMID: 34973113 PMCID: PMC9068647 DOI: 10.1007/s11604-021-01231-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
Human papillomavirus (HPV)-related cancer is one of the diseases entities for which the applications of radiotherapy have been increasing. Recently, the process of carcinogenesis from HPV infection and the mechanism of tumor immunity that develops during disease progression have been elucidated. In this review, we will describe the mechanism of tumor immunity and how chemoradiotherapy may overcome and improve the efficacy of tumor immunity. We will also discuss the usefulness of proteins involved with tumor immunity as a predictive marker of radiotherapy response, and present an overview of ongoing clinical trials of combinations of immune checkpoint inhibitors and radiotherapy to demonstrate the promising combination therapy that has been currently emerging.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Yuki Fukushima
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomokazu Hasegawa
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Takaaki Tsuchiya
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Mio Kitagawa
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshio Gocho
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Shoh Mafune
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yutaro Ikeuchi
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoh Kozuka
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Iwasaki
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motoki Matsuura
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koh-Ichi Sakata
- Department of Radiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
25
|
Chen CT, Wu PH, Hu CC, Nien HC, Wang JT, Sheu JC, Chow LP. Aberrant Upregulation of Indoleamine 2,3-Dioxygenase 1 Promotes Proliferation and Metastasis of Hepatocellular Carcinoma Cells via Coordinated Activation of AhR and β-Catenin Signaling. Int J Mol Sci 2021; 22:ijms222111661. [PMID: 34769098 PMCID: PMC8583706 DOI: 10.3390/ijms222111661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide. Chronic liver inflammation due to hepatitis virus infection and other major effectors is a major risk factor of HCC. Indoleamine 2,3-dioxygenase 1 (IDO1), a heme enzyme highly expressed upon stimulation with proinflammatory cytokines such as interferon-γ (IFN-γ), is activated to modulate the tumor microenvironment and potentially crucial in the development of certain cancer types. Earlier studies have majorly reported an immunomodulatory function of IDO1. However, the specific role of IDO1 in cancer cells, particularly HCC, remains to be clarified. Analysis of The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA LIHC) dataset in the current study revealed a significant correlation between IDO1 expression and HCC. We further established inducible IDO1-expressing cell models by coupling lentivirus-mediated knockdown and IFN-γ induction of IDO1 in normal and HCC cells. In functional assays, proliferation and motility-related functions of HCC cells were compromised upon suppression of IDO1, which may partially be rescued by its enzymatic product, kynurenine (KYN), while normal hepatocytes were not affected. Aryl hydrocarbon receptor (AhR), a reported endogenous KYN receptor, is suggested to participate in tumorigenesis. In mechanistic studies, IDO1 activation promoted both AhR and β-catenin activity and nuclear translocation. Immunofluorescence staining and co-immunoprecipitation assays further disclosed interactions between AhR and β-catenin. In addition, we identified a Src-PTEN-PI3K/Akt-GSK-3β axis involved in β-catenin stabilization and activation following IDO1-mediated AhR activation. IDO1-induced AhR and β-catenin modulated the expression of proliferation- and EMT-related genes to facilitate growth and metastasis of HCC cells. Our collective findings provide a mechanistic basis for the design of more efficacious IDO1-targeted therapy for HCC.
Collapse
Affiliation(s)
- Chih-Ta Chen
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
| | - Pei-Hua Wu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
| | - Chia-Chi Hu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
| | - Hsiao-Ching Nien
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100, Taiwan;
| | - Jin-Town Wang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei 100, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd, Taipei 100, Taiwan; (C.-T.C.); (P.-H.W.); (C.-C.H.)
- Correspondence: ; Tel.: +886-223-123-456 (ext. 88214); Fax: +886-223-958-814
| |
Collapse
|
26
|
Jacqueline C, Dracz M, Boothman S, Minden JS, Gottschalk RA, Finn OJ. Identification of Cell Surface Molecules That Determine the Macrophage Activation Threshold Associated With an Early Stage of Malignant Transformation. Front Immunol 2021; 12:749597. [PMID: 34712237 PMCID: PMC8546176 DOI: 10.3389/fimmu.2021.749597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
The ability of immune cells to sense changes associated with malignant transformation as early as possible is likely to be important for the successful outcome of cancer immunosurveillance. In this process, the immune system faces a trade-off between elimination of cells harboring premalignant or malignant changes, and autoimmune pathologies. We hypothesized that the immune system has therefore evolved a threshold for the stage of transformation from normal to fully malignant cells that first provides a threat (danger) signal requiring a response. We co-cultured human macrophages with a unique set of genetically related human cell lines that recapitulate successive stages in breast cancer development: MCF10A (immortalized, normal); MCFNeoT (benign hyperplasia); MCFT1 (atypical hyperplasia); MCFCA1 (invasive cancer). Using cytokines-based assays, we found that macrophages were inert towards MCF10A and MCFNeoT but were strongly activated by MCFT1 and MCFCA1 to produce inflammatory cytokines, placing the threshold for recognition between two premalignant stages, the earlier stage MCFNeoT and the more advanced MCFT1. The cytokine activation threshold paralleled the threshold for enhanced phagocytosis. Using proteomic and transcriptomic approaches, we identified surface molecules, some of which are well-known tumor-associated antigens, that were absent or expressed at low levels in MCF10A and MCFNeoT but turned on or over-expressed in MCFT1 and MCFCA1. Adding antibodies specific for two of these molecules, Annexin-A1 and CEACAM1, inhibited macrophage activation, supporting their role as cancer "danger signals" recognized by macrophages.
Collapse
Affiliation(s)
- Camille Jacqueline
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew Dracz
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah Boothman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jonathan S. Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rachel A. Gottschalk
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Olivera J. Finn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Aquilani R, Brugnatelli S, Maestri R, Boschi F, Filippi B, Perrone L, Barbieri A, Buonocore D, Dossena M, Verri M. Peripheral Blood Lymphocyte Percentage May Predict Chemotolerance and Survival in Patients with Advanced Pancreatic Cancer. Association between Adaptive Immunity and Nutritional State. Curr Oncol 2021; 28:3280-3296. [PMID: 34449579 PMCID: PMC8395458 DOI: 10.3390/curroncol28050285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic Carcinoma (PC) cells have the ability to induce patient immunosuppression and to escape immunosurveillance. Low circulating lymphocytes are associated with an advanced stage of PC and reduced survival. Blood lymphocytes expressed as a percentage of Total White Blood Cells (L% TWBC) could predict chemotolerance (n° of tolerated cycles), survival time and Body Weight (BW) more effectively than lymphocytes expressed as an absolute value (LAB > 1500 n°/mm3) or lymphocytes >22%, which is the lowest limit of normal values in our laboratory. Forty-one patients with advanced PC, treated with chemotherapy, were selected for this observational retrospective study. Patients were evaluated at baseline (pre-chemotherapy), and at 6, 12 and 18 months, respectively, after diagnosis of PC. The study found L ≥ 29.7% to be a better predictor of survival (COX model, using age, sex, BW, serum creatinine, bilirubin and lymphocytes as covariates), chemotolerance (r = +0.50, p = 0.001) and BW (r = +0.35, p = 0.027) than LAB > 1500 or L > 22%. BW did not significantly correlate with chemotolerance or survival. The preliminary results of this study suggest that L ≥ 29.7% is more effective than LAB > 1500 or L > 22% at predicting chemotolerance, survival time and nutritional status. A possible impact of nutritional status on chemotherapy and survival seems to be lymphocyte-mediated given the association between BW and L%. This study may serve as the basis for future research to explore whether nutritional interventions can improve lymphopenia, and if so, how this may be possible.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Silvia Brugnatelli
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, Italy;
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Beatrice Filippi
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Lorenzo Perrone
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Annalisa Barbieri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Daniela Buonocore
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Maurizia Dossena
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Manuela Verri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| |
Collapse
|
28
|
Wildner G. Tumors, tumor therapies, autoimmunity and the eye. Autoimmun Rev 2021; 20:102892. [PMID: 34229046 DOI: 10.1016/j.autrev.2021.102892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022]
Abstract
The eye as an immune privileged organ is mostly spared from (auto)immune attacks. Intraocular inflammation like autoimmune uveitis is a rare event. Nevertheless, tumor-related destructive autoimmune responses can affect the eye, as observed in the case of cancer- associated retinopathy (CAR), an autoantibody-mediated destruction of retinal cells induced by the ectopic expression of ocular antigens by peripheral tumors. The new tumor therapies targeting immune checkpoints to enhance anti-tumor responses can also induce autoimmune responses and result in autoimmune diseases even in immune privileged organs like the eyes. Even MEK/BRAF-inhibitor therapies using small molecules to block tumor-specific signal transduction molecules have turned out to not just inhibit tumor growth and survival and render tumors more susceptible for immune recognition, but to have additional toxic effects on non-dividing retinal cells, destroying and making them potential targets of autoimmunity.
Collapse
Affiliation(s)
- Gerhild Wildner
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstr. 8, 80336 Munich, Germany.
| |
Collapse
|
29
|
Balaji S, Kim U, Muthukkaruppan V, Vanniarajan A. Emerging role of tumor microenvironment derived exosomes in therapeutic resistance and metastasis through epithelial-to-mesenchymal transition. Life Sci 2021; 280:119750. [PMID: 34171378 DOI: 10.1016/j.lfs.2021.119750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) constitutes multiple cell types including cancerous and non-cancerous cells. The intercellular communication between these cells through TME derived exosomes may either enhance or suppress the tumorigenic processes. The tumor-derived exosomes could convert an anti-tumor environment into a pro-tumor environment by inducing the differentiation of stromal cells into tumor-associated cells. The exosomes from tumor-associated stromal cells reciprocally trigger epithelial-to-mesenchymal transition (EMT) in tumor cells, which impose therapeutic resistance and metastasis. It is well known that these exosomes contain the signals of EMT, but how these signals execute chemoresistance and metastasis in tumors remains elusive. Understanding the significance and molecular signatures of exosomes transmitting EMT signals would aid in developing appropriate methods of inhibiting them. In this review, we focus on molecular signatures of exosomes that shuttle between cancer cells and their stromal populations in TME to explicate their impact on therapeutic resistance and metastasis through EMT. Especially Wnt signaling is found to be involved in multiple ways of exosomal transport and hence we decipher the biomolecules of Wnt signaling trafficked through exosomes and their potential in serving as therapeutic targets.
Collapse
Affiliation(s)
- Sekaran Balaji
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Usha Kim
- Department of Orbit, Oculoplasty and Ocular Oncology, Aravind Eye Hospital, Madurai, Tamil Nadu 625 020, India
| | - Veerappan Muthukkaruppan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India
| | - Ayyasamy Vanniarajan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu 625 020, India.
| |
Collapse
|
30
|
Chi A, He X, Hou L, Nguyen NP, Zhu G, Cameron RB, Lee JM. Classification of Non-Small Cell Lung Cancer's Tumor Immune Micro-Environment and Strategies to Augment Its Response to Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:cancers13122924. [PMID: 34208113 PMCID: PMC8230820 DOI: 10.3390/cancers13122924] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Immune checkpoint blockade (ICB) has become a major treatment for lung cancer. Better understanding of the tumor immune micro-environment (TIME) in non-small cell lung cancer (NSCLC) is urgently needed to better treat it with this type of therapy. In this review, we describe and explore how NSCLC’s TIME relates to response to ICB, as well as how to treat those with unresponsive types of TIME, which will significantly impact future research in lung cancer immunotherapy. Abstract Immune checkpoint blockade (ICB) with checkpoint inhibitors has led to significant and durable response in a subset of patients with advanced stage EGFR and ALK wild-type non-small cell lung cancer (NSCLC). This has been consistently shown to be correlated with the unique characteristics of each patient’s tumor immune micro-environment (TIME), including the composition and distribution of the tumor immune cell infiltrate; the expression of various checkpoints by tumor and immune cells, such as PD-L1; and the presence of various cytokines and chemokines. In this review, the classification of various types of TIME that are present in NSCLC and their correlation with response to ICB in NSCLC are discussed. This is conducted with a focus on the characteristics and identifiable biomarkers of different TIME subtypes that may also be used to predict NSCLC’s clinical response to ICB. Finally, treatment strategies to augment response to ICB in NSCLC with unresponsive types of TIME are explored.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Beijing Chest Hospital, Capital Medical University, Beijing 101100, China
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing 210009, China
- Correspondence: (A.C.); (X.H.)
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing 210009, China
- Correspondence: (A.C.); (X.H.)
| | - Lin Hou
- Center for Statistical Science, Tsinghua University, Beijing 100084, China;
| | - Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA;
| | - Guangying Zhu
- Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing 100029, China;
| | - Robert B. Cameron
- Division of Thoracic Surgery, Department of Surgery, University of California at Los Angeles, Los Angeles, CA 90095, USA; (R.B.C.); (J.M.L.)
| | - Jay M. Lee
- Division of Thoracic Surgery, Department of Surgery, University of California at Los Angeles, Los Angeles, CA 90095, USA; (R.B.C.); (J.M.L.)
| |
Collapse
|
31
|
González‐Tablas Pimenta M, Otero Á, Arandia Guzman DA, Pascual‐Argente D, Ruíz Martín L, Sousa‐Casasnovas P, García‐Martin A, Roa Montes de Oca JC, Villaseñor‐Ledezma J, Torres Carretero L, Almeida M, Ortiz J, Nieto A, Orfao A, Tabernero MD. Tumor cell and immune cell profiles in primary human glioblastoma: Impact on patient outcome. Brain Pathol 2021; 31:365-380. [PMID: 33314398 PMCID: PMC8018082 DOI: 10.1111/bpa.12927] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The distribution and role of tumor-infiltrating leucocytes in glioblastoma (GBM) remain largely unknown. Here, we investigated the cellular composition of 55 primary (adult) GBM samples by flow cytometry and correlated the tumor immune profile with patient features at diagnosis and outcome. GBM single-cell suspensions were stained at diagnosis (n = 44) and recurrence following radiotherapy and chemotherapy (n = 11) with a panel of 8-color monoclonal antibody combinations for the identification and enumeration of (GFAP+ CD45- ) tumor and normal astrocytic cells, infiltrating myeloid cells -i.e. microglial and blood-derived tumor-associated macrophages (TAM), M1-like, and M2-like TAM, neutrophils. and myeloid-derived suppressor cells (MDSC)- and tumor-infiltrating lymphocytes (TIL) -i.e. CD3+ T-cells and their TCD4+ , TCD8+ , TCD4- CD8- , and (CD25+ CD127lo ) regulatory (T-regs) subsets, (CD19+ CD20+ ) B-cells, and (CD16+ ) NK-cells-. Overall, GBM samples consisted of a major population (mean ± 1SD) of tumor and normal astrocytic cells (73% ± 16%) together with a significant but variable fraction of immune cells (24% ± 18%). Within myeloid cells, TAM predominated (13% ± 12%) including both microglial cells (10% ± 11%) and blood-derived macrophages (3% ± 5%), in addition to a smaller proportion of neutrophils (5% ± 9%) and MDSC (4% ± 8%). Lymphocytes were less represented and mostly included TCD4+ (0.5% ± 0.7%) and TCD8+ cells (0.6% ± 0.7%), together with lower numbers of TCD4- CD8- T-cells (0.2% ± 0.4%), T-regs (0.1% ± 0.2%), B-lymphocytes (0.1% ± 0.2%) and NK-cells (0.05% ± 0.05%). Overall, three distinct immune profiles were identified: cases with a minor fraction of leucocytes, tumors with a predominance of TAM and neutrophils, and cases with mixed infiltration by TAM, neutrophils, and T-lymphocytes. Untreated GBM patients with mixed myeloid and lymphoid immune infiltrates showed a significantly shorter patient overall survival versus the other two groups, in the absence of gains of the EGFR gene (p = 0.02). Here we show that immune cell infiltrates are systematically present in GBM, with highly variable levels and immune profiles. Patients with mixed myeloid and T-lymphoid infiltrates showed a worse outcome.
Collapse
Affiliation(s)
- María González‐Tablas Pimenta
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Centre for Cancer Research (CIC‐IBMCC; CSIC/USAL; IBSAL)Department of MedicineUniversity of SalamancaSalamancaSpain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Daniel Angel Arandia Guzman
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Daniel Pascual‐Argente
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Laura Ruíz Martín
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Pablo Sousa‐Casasnovas
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Andoni García‐Martin
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Juan Carlos Roa Montes de Oca
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Javier Villaseñor‐Ledezma
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Luis Torres Carretero
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Neurosurgery ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Maria Almeida
- Centre for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | - Javie Ortiz
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Pathology ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Adelaida Nieto
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Radiotherapy ServiceUniversity Hospital of SalamancaSalamancaSpain
| | - Alberto Orfao
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Centre for Cancer Research (CIC‐IBMCC; CSIC/USAL; IBSAL)Department of MedicineUniversity of SalamancaSalamancaSpain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400)Institute of Health Carlos IIIMadridSpain
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de SalamancaIBSAL—University Hospital of SalamancaSalamancaSpain
- Centre for Cancer Research (CIC‐IBMCC; CSIC/USAL; IBSAL)Department of MedicineUniversity of SalamancaSalamancaSpain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400)Institute of Health Carlos IIIMadridSpain
| |
Collapse
|
32
|
Farina M, Bernardi S, Gandolfi L, Zanaglio C, Morello E, Turra A, Zollner T, Gramegna D, Rambaldi B, Cattina F, Polverelli N, Malagola M, Russo D. Case Report: Late Onset of Myelodysplastic Syndrome From Donor Progenitor Cells After Allogeneic Stem Cell Transplantation. Which Lessons Can We Draw From the Reported Case? Front Oncol 2020; 10:564521. [PMID: 33178592 PMCID: PMC7591784 DOI: 10.3389/fonc.2020.564521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023] Open
Abstract
Background Myelodysplastic syndromes and acute leukemias after allogeneic stem cell transplantation (allo-SCT) are mainly caused by recurrence of the primitive leukemic clones. More rarely, they originate from donor hematopoietic stem cells, developing the so-called donor cell leukemia (DCL) or myelodysplastic syndromes (DC-MDSs). DCL and DC-MDS can be considered as an in vivo model of leukemogenesis, and even if the pathogenetic mechanisms remain speculative, a genetic predisposition of donor progenitor cells, an altered host microenvironment, and the impairment of immune surveillance are considered the main causes. Case Presentation We report a case of DC-MDS diagnosed 5 years after an allo-SCT from a matched related donor (patient’s sister) in a patient with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia (Ph+ B-ALL). The sex-mismatch allowed us to identify the donor cell origin. At the onset, the DC-MDS was characterized by chromosome seven monosomy and NRAS, RUNX1, and BCOR mutations. Because of a familiar history of colorectal neoplasia and the variant allele frequency (VAF) of NRAS mutation at the onset, this mutation was searched on germline DNA in both the donor and the recipient, but the result was negative. Moreover, after transplant (+4 months), the patient developed severe and long-lasting chronic graft-versus-host disease (cGVHD), requiring multiple lines of treatments. Because of the severe immunosuppression, recurrent infections occurred and, lately, the patient died due to septic shock. Conclusion This case report highlights the need, whenever possible, to evaluate the donor origin of the posttransplant myelodysplasia and acute leukemias. The potential key role of the impaired immune surveillance and of long-lasting immunosuppression appears to be emerging in the development of this case of DC-MDS. Finally, this case reminds the importance to investigate the familiar genetic predisposition in donors with a familiar history of neoplasia.
Collapse
Affiliation(s)
- Mirko Farina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Simona Bernardi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy.,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lisa Gandolfi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Camilla Zanaglio
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy.,CREA Laboratory (Centro di Ricerca Emato-Oncologica AIL), ASST Spedali Civili di Brescia, Brescia, Italy
| | - Enrico Morello
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alessandro Turra
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Tatiana Zollner
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Doriana Gramegna
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Benedetta Rambaldi
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Federica Cattina
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Nicola Polverelli
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michele Malagola
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Domenico Russo
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, DPT of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
33
|
Duong BTV, Wu L, Green BJ, Bavaghar-Zaeimi F, Wang Z, Labib M, Zhou Y, Cantu FJP, Jeganathan T, Popescu S, Pantea J, de Perrot M, Kelley SO. A liquid biopsy for detecting circulating mesothelial precursor cells: A new biomarker for diagnosis and prognosis in mesothelioma. EBioMedicine 2020; 61:103031. [PMID: 33045471 PMCID: PMC7553233 DOI: 10.1016/j.ebiom.2020.103031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is an aggressive cancer related to asbestos exposure. Early diagnosis is challenging due to generic symptoms and a lack of biomarkers. We previously demonstrated that mesothelial precursor cells (MPC) characterized by mesothelin (MSLN)+CD90+CD34+ could be implicated in the development of mesothelioma after asbestos exposure. Here, we aimed to determine the clinical significance of detecting MPC in blood for early-stage diagnosis and prognosis of mesothelioma. METHODS Due to the rarity of MPC in blood, it is challenging to identify this cell population using conventional techniques. Hence, we have developed a microfluidic liquid biopsy platform called MesoFind that utilizes an immunomagnetic, mesothelin capture strategy coupled with immunofluorescence to identify rare populations of cells at high sensitivity and precision. To validate our technique, we compared this approach to flow cytometry for the detection of MPC in murine blood and lavage samples. Upon successful validation of the murine samples, we then proceeded to examine circulating MPC in 23 patients with MPM, 23 asbestos-exposed individuals (ASB), and 10 healthy donors (HD) to evaluate their prognostic and diagnostic value. FINDING MPC were successfully detected in the blood of murine samples using MesoFind but were undetectable with flow cytometry. Circulating MPC were significantly higher in patients with epithelioid MPM compared to HD and ASB. The MPC subpopulation, MSLN+ and CD90+, were upregulated in ASB compared to HD suggesting an early role in pleural damage from asbestos. The MPC subpopulation, MSLN+ and CD34+, in contrast, were detected in advanced MPM and associated with markers of poor prognosis, suggesting a predominant role during cancer progression. INTERPRETATION The identification of circulating MPC presents an attractive solution for screening and early diagnosis of epithelioid mesothelioma. The presence of different subtypes of MPC have a prognostic value that could be of assistance with clinical decisions in patients with MPM. FUNDING Princess Margaret Hospital Foundation Mesothelioma Research Fund, Toronto General & Western Hospital Foundation.
Collapse
Affiliation(s)
- Bill T V Duong
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario M5S 3H6, Canada
| | - Licun Wu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada
| | - Brenda J Green
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Fatemeh Bavaghar-Zaeimi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Yuxiao Zhou
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Fernando J P Cantu
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Thurgaa Jeganathan
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Sandra Popescu
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Jennifer Pantea
- Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, 101 College St., Toronto, Ontario M5G 1L7, Canada; Division of Thoracic Surgery, Toronto General Hospital and Princess Margaret Cancer Centre, University Health Network, 200 Elizabeth St., Toronto, Ontario M5G 2C4, Canada; Department of Immunology, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, Ontario M5S 3H6, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pharmaceutical Sciences, University of Toronto, 144 College St., Toronto, Ontario M5S 3M2, Canada; Department of Biochemistry, University of Toronto, 27 King's College Circle, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
34
|
Guru SA, Sumi MP, Mir R, Waza AA, Bhat MA, Zuberi M, Lali P, Saxena A. Ectopic PD-L1 expression in JAK2 (V617F) myeloproliferative neoplasm patients is mediated via increased activation of STAT3 and STAT5. Hum Cell 2020; 33:1099-1111. [PMID: 32430672 DOI: 10.1007/s13577-020-00370-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Escalated PD-L1 expression has been identified during malignant transformation in a number of cancer types and helps cancer cells escape an effective anti-tumor immune response. The mechanisms underlying escalated production of PD-L1 in many cancers, however, are still far from clear. We studied PD-L1, STAT3 and STAT5 mRNA expression using qRT-PCR in 72 BCR/ABL1 negative myeloproliferative neoplasm (MPN) patients (39 polycythemia vera and 33 essential thrombocythemia). Furthermore, phosphorylation status of STAT3 and STAT5 was studied using immunoblotting in the same patients. All MPN patients were first screened for JAK2 (V617F) mutation by tetra-primer ARMS-PCR, followed by quantification of JAK2 (V617F) mutation burden in all V617F positive MPN patients by ASO-PCR. Patients were screened for BCR/ABL1 fusion gene transcripts to rule out Ph positive status. Our findings showed that mRNA levels of PD-L1 and STAT3 were significantly higher in JAK2 (V617F) MPN patients, while as STAT5 was insignificantly upregulated. STAT3 and STAT5 phosphorylation was seen to be higher in JAK2 (V617F) MPN patients compared to the JAK2 (WT) patients. Upregulation of PD-L1, STAT3 and STAT5 was significantly associated with JAK2 (V617F) percentage in MPN patients. PD-L1, STAT3 and STAT5 expression significantly and positively correlated with JAK2 (V617F) allele burden. In addition, significant coexpression of PD-L1 with STAT3 and STAT5 was observed in MPN patients. In summary, JAK2 (V617F) mutation is accompanied by increased PD-L1 expression and this PD-L1 over expression is mediated by JAK2 (V617F) mainly through STAT3, while as STAT5 may play a minor role.
Collapse
Affiliation(s)
- Sameer Ahamd Guru
- Multidisciplinary Research Unit (MRU), Maulana Azad Medical College and Associated Hospitals, Bahadur Shah Zafar Marg, New Delhi, 110002, India
| | - Mamta P Sumi
- Department of Gastroinstestinal Surgery, Govind Balab Pant Postgraduate Institute of Medical Education and Research (GIPMER), New Delhi, India
| | - Rashid Mir
- University of Tabuk, Tabuk, Saudi Arabia
| | - Ajaz Ahmad Waza
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Musadiq Ahmad Bhat
- Institute of Pharmacology and Toxicology-Neuropharmacology, University of Zurich Winterthurerstrasse, Zurich, Switzerland
| | - Mariyam Zuberi
- University of Illinois At Chicago College of Medicine, Chicago, USA
| | - Promod Lali
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, Bahadur Shah Zafar Marg, New Delhi, 110002, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, Bahadur Shah Zafar Marg, New Delhi, 110002, India.
| |
Collapse
|
35
|
Lee SY, Yang SB, Choi YM, Oh SJ, Kim BJ, Kook YH, Kim BJ. Heat-killed Mycobacterium paragordonae therapy exerts an anti-cancer immune response via enhanced immune cell mediated oncolytic activity in xenograft mice model. Cancer Lett 2020; 472:142-150. [PMID: 31874244 DOI: 10.1016/j.canlet.2019.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
A therapeutic strategy capable of skewing toward a Th1-type immune response is crucial for cancer treatment. Recently, we reported Mycobacterium paragordonae (Mpg) as a potential live vaccine for mycobacterium infections. In this study, we explored the immunotherapeutic potential of heat-killed Mpg (HK-Mpg) in a mouse tumor xenograft model and elucidated its underlying antitumor mechanisms. MC38 cells derived from murine colon adenocarcinoma were implanted by subcutaneously injecting mice. The anticancer effects of HK-Mpg therapy were compared with HK-M. bovis BCG, an effective adjuvant for cancer immunotherapy. HK-Mpg treatment enhanced tumor reduction and mouse survival. Furthermore, HK-Mpg treatment synergistically enhanced the anticancer therapeutic effect of cisplatin. In addition, HK-Mpg enhanced inflammatory cytokine production and recruitment of immune cell into tumor-infiltrating sites and splenocytes in vaccinated mice. Our mechanistic study demonstrates that HK-Mpg therapy elicits a strong antitumor immune response in mice, mainly through natural killer cell-mediated oncolytic activity via the activation of dendritic cells (DCs) and by enhancing inflammatory cytokines production such as IL-12 from DC. Hence, HK-Mpg can be a potential immunotherapy adjuvant, enhancing the effect of cancer chemotherapy.
Collapse
Affiliation(s)
- So-Young Lee
- Department of Biomedical Sciences, Microbiology and Immunology and Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Soo-Bin Yang
- Department of Biomedical Sciences, Microbiology and Immunology and Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Yu-Min Choi
- Department of Biomedical Sciences, Microbiology and Immunology and Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Song-Ji Oh
- Department of Biomedical Sciences, Microbiology and Immunology and Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Byung-Jun Kim
- Department of Biomedical Sciences, Microbiology and Immunology and Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Yoon-Hoh Kook
- Department of Biomedical Sciences, Microbiology and Immunology and Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea
| | - Bum-Joon Kim
- Department of Biomedical Sciences, Microbiology and Immunology and Liver Research Institute, College of Medicine, Seoul National University, Seoul, South Korea.
| |
Collapse
|
36
|
Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc Natl Acad Sci U S A 2019; 117:1119-1128. [PMID: 31888983 PMCID: PMC6969546 DOI: 10.1073/pnas.1904022116] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has revolutionized cancer treatment, yielding unprecedented long-term responses and survival. However, a significant proportion of patients remain refractory, which correlates with the absence of immune-infiltrated (“hot”) tumors. Here, we observed that FDA-approved unadjuvanted seasonal influenza vaccines administered via intratumoral injection not only provide protection against active influenza virus lung infection, but also reduce tumor growth by increasing antitumor CD8+ T cells and decreasing regulatory B cells within the tumor. Ultimately, intratumoral unadjuvanted seasonal influenza vaccine converts immunologically inactive “cold” tumors to “hot,” generates systemic responses, and sensitizes resistant tumors to checkpoint blockade. Repurposing the “flu shot” may increase response rates to immunotherapy, and based on its current FDA approval and safety profile, may be quickly translated for clinical care. Reprogramming the tumor microenvironment to increase immune-mediated responses is currently of intense interest. Patients with immune-infiltrated “hot” tumors demonstrate higher treatment response rates and improved survival. However, only the minority of tumors are hot, and a limited proportion of patients benefit from immunotherapies. Innovative approaches that make tumors hot can have immediate impact particularly if they repurpose drugs with additional cancer-unrelated benefits. The seasonal influenza vaccine is recommended for all persons over 6 mo without prohibitive contraindications, including most cancer patients. Here, we report that unadjuvanted seasonal influenza vaccination via intratumoral, but not intramuscular, injection converts “cold” tumors to hot, generates systemic CD8+ T cell-mediated antitumor immunity, and sensitizes resistant tumors to checkpoint blockade. Importantly, intratumoral vaccination also provides protection against subsequent active influenza virus lung infection. Surprisingly, a squalene-based adjuvanted vaccine maintains intratumoral regulatory B cells and fails to improve antitumor responses, even while protecting against active influenza virus lung infection. Adjuvant removal, B cell depletion, or IL-10 blockade recovers its antitumor effectiveness. Our findings propose that antipathogen vaccines may be utilized for both infection prevention and repurposing as a cancer immunotherapy.
Collapse
|
37
|
Abstract
AbstractAlthough there is a plethora of cancer associated-factors that can ultimately culminate in death (cachexia, organ impairment, metastases, opportunistic infections, etc.), the focal element of every terminal malignancy is the failure of our natural defences to control unlimited cell proliferation. The reasons why our defences apparently lack efficiency is a complex question, potentially indicating that, under Darwinian terms, solutions other than preventing cancer progression are also important contributors. In analogy with host-parasite systems, we propose to call this latter option ‘tolerance’ to cancer. Here, we argue that the ubiquity of oncogenic processes among metazoans is at least partially attributable to both the limitations of resistance mechanisms and to the evolution of tolerance to cancer. Deciphering the ecological contexts of alternative responses to the cancer burden is not a semantic question, but rather a focal point in understanding the evolutionary ecology of host-tumour relationships, the evolution of our defences, as well as why and when certain cancers are likely to be detrimental for survival.
Collapse
|
38
|
Madhubala V, Pugazhendhi A, Thirunavukarasu K. Cytotoxic and immunomodulatory effects of the low concentration of titanium dioxide nanoparticles (TiO2 NPs) on human cell lines - An in vitro study. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Bahrami A, Fereidouni M, Pirro M, Bianconi V, Sahebkar A. Modulation of regulatory T cells by natural products in cancer. Cancer Lett 2019; 459:72-85. [DOI: 10.1016/j.canlet.2019.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
40
|
Bayraktar S, Batoo S, Okuno S, Glück S. Immunotherapy in breast cancer. J Carcinog 2019; 18:2. [PMID: 31160888 PMCID: PMC6540776 DOI: 10.4103/jcar.jcar_2_19] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The idea of using the immune system to fight cancer is over 100 years old. A new molecular approach led to a better understanding of the immune system. Checkpoint regulation, understanding the roles of Tregs, Th1, and Th2, development of Chimeric antigen receptor (CAR)-T cells, as well as regulation of dendritic cells and macrophages, are just a few examples of our understating that has also led to the discovery of immune checkpoint inhibitors (ICIs) and modulators. This led the Nobel Prize committee in 2018, to award Dr. James P. Allison the Nobel Prize in medicine for the discovery of Cytotoxic T-lymphocyte-associated antigen-4, and Dr. Tasuku Honjo for the discovery of programmed cell death-1 (PD-1)/PD-1-ligand (PDL-1). Several ICIs are already approved by the regulatory authorities, and many more are currently used in studies of several solid tumors and hematologic malignancies. Positive studies have led to the US Food and Drug Administration (FDA) and European Medicines Agency approval of a number of these compounds, but none to date are approved in breast cancer (BC). Moreover, PD-1/PDL-1, MSI high (and dMMR), and tumor mutational burden are the currently “best” predictive markers for benefit from immunotherapy. BCs have some of these markers positive only in subsets but less frequently expressed than most other solid tumors, for example, malignant melanoma or non-small cell lung cancer. To improve the potential efficacy of ICI in BC, the addition of chemotherapy was one of the strategies. Many early and large clinical trials in all phases are underway in BC. We will discuss the role of immune system in BC editing, and the potential impact of immunotherapy in BC outcomes.
Collapse
Affiliation(s)
- Soley Bayraktar
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA.,Department of Medicine, Division of Medical Oncology and Hematology, Biruni University School of Medicine, Istanbul, Turkey
| | - Sameer Batoo
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Scott Okuno
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Stefan Glück
- Vice President Global Medical Affairs, Early Assets, Celgene Corporation, Summit, NJ, USA
| |
Collapse
|
41
|
Antohe M, Nedelcu RI, Nichita L, Popp CG, Cioplea M, Brinzea A, Hodorogea A, Calinescu A, Balaban M, Ion DA, Diaconu C, Bleotu C, Pirici D, Zurac SA, Turcu G. Tumor infiltrating lymphocytes: The regulator of melanoma evolution. Oncol Lett 2019; 17:4155-4161. [PMID: 30944610 PMCID: PMC6444298 DOI: 10.3892/ol.2019.9940,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 01/27/2025] Open
Abstract
Melanoma is the most severe type of skin cancer and its incidence has increased in the last decades. In the United States, it is the 6th most common cancer in both men and women. Prognosis for patients with melanoma depends on the stage of the disease at the time of diagnosis and it can be influenced by the immunologic response. Melanoma has been historically considered an immunogenic malignancy. It often contains great amount of immune cells (different subsets of T-cells, dendritic cells, macrophages, neutrophils, mast cells, B lymphocytes), which may reflect a continuous intercommunication between host and tumor. It is not established if tumor-infiltrating lymphocytes (TILs) are induced by tumor cells or by other components of the microenvironment or when they are a host direct immunologic reaction. It has been observed that in many cases, the presence of a dense TIL is associated with good prognosis. The pattern and activation state of the cells which constitute TIL is variable and modulates the clinical outcome. An important step in the understanding of tumor immunobiology is the analysis of the populations and subsets of immune cells that form TIL. Besides its prognostic significance, after approval of cytotoxic T lymphocyte antigen 4, programmed cell death-1 and programmed death-1 ligand antibodies for the treatment of melanoma, the assessment of immune infiltrate composition has become even more captivating, as it could provide new target molecules and new biomarkers for predicting the effect of the treatment and disease outcome in patients treated with immunotherapy. In this review we discuss current state of knowledge in the field of immune cells that infiltrate melanoma, resuming the potential of TIL components to become prognostic markers for natural evolution, for response to drugs or valuable targets for new medication.
Collapse
Affiliation(s)
- Mihaela Antohe
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
| | - Roxana Ioana Nedelcu
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
| | - Luciana Nichita
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | | | - Mirela Cioplea
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | - Alice Brinzea
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Infectious Diseases ‘Prof. Dr. Matei Balș’, Ambulatory Service, 021105 Bucharest, Romania
| | - Anastasia Hodorogea
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | - Andreea Calinescu
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihaela Balaban
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Adriana Ion
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Diaconu
- Department of Cellular and Molecular Pathology, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Daniel Pirici
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sabina Andrada Zurac
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gabriela Turcu
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
42
|
Antohe M, Nedelcu RI, Nichita L, Popp CG, Cioplea M, Brinzea A, Hodorogea A, Calinescu A, Balaban M, Ion DA, Diaconu C, Bleotu C, Pirici D, Zurac SA, Turcu G. Tumor infiltrating lymphocytes: The regulator of melanoma evolution. Oncol Lett 2019; 17:4155-4161. [PMID: 30944610 PMCID: PMC6444298 DOI: 10.3892/ol.2019.9940] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most severe type of skin cancer and its incidence has increased in the last decades. In the United States, it is the 6th most common cancer in both men and women. Prognosis for patients with melanoma depends on the stage of the disease at the time of diagnosis and it can be influenced by the immunologic response. Melanoma has been historically considered an immunogenic malignancy. It often contains great amount of immune cells (different subsets of T-cells, dendritic cells, macrophages, neutrophils, mast cells, B lymphocytes), which may reflect a continuous intercommunication between host and tumor. It is not established if tumor-infiltrating lymphocytes (TILs) are induced by tumor cells or by other components of the microenvironment or when they are a host direct immunologic reaction. It has been observed that in many cases, the presence of a dense TIL is associated with good prognosis. The pattern and activation state of the cells which constitute TIL is variable and modulates the clinical outcome. An important step in the understanding of tumor immunobiology is the analysis of the populations and subsets of immune cells that form TIL. Besides its prognostic significance, after approval of cytotoxic T lymphocyte antigen 4, programmed cell death-1 and programmed death-1 ligand antibodies for the treatment of melanoma, the assessment of immune infiltrate composition has become even more captivating, as it could provide new target molecules and new biomarkers for predicting the effect of the treatment and disease outcome in patients treated with immunotherapy. In this review we discuss current state of knowledge in the field of immune cells that infiltrate melanoma, resuming the potential of TIL components to become prognostic markers for natural evolution, for response to drugs or valuable targets for new medication.
Collapse
Affiliation(s)
- Mihaela Antohe
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
| | - Roxana Ioana Nedelcu
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
| | - Luciana Nichita
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | | | - Mirela Cioplea
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | - Alice Brinzea
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- National Institute for Infectious Diseases ‘Prof. Dr. Matei Balș’, Ambulatory Service, 021105 Bucharest, Romania
| | - Anastasia Hodorogea
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
| | - Andreea Calinescu
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihaela Balaban
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Adriana Ion
- Department of Pathophysiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen Diaconu
- Department of Cellular and Molecular Pathology, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Coralia Bleotu
- Department of Cellular and Molecular Pathology, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Daniel Pirici
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sabina Andrada Zurac
- Department of Pathology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Pathology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gabriela Turcu
- Department of Dermatology, Derma 360° Clinic, 011274 Bucharest, Romania
- Department of Dermatology, Colentina Clinical Hospital, 021103 Bucharest, Romania
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
43
|
Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett 2019; 208:19-29. [DOI: 10.1016/j.imlet.2019.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
|
44
|
Garnier AS, Planchais M, Riou J, Jacquemin C, Ordonez L, Saint-André JP, Croue A, Saoudi A, Delneste Y, Devys A, Boutin I, Subra JF, Duveau A, Augusto JF. Pre-transplant CD45RC expression on blood T cells differentiates patients with cancer and rejection after kidney transplantation. PLoS One 2019; 14:e0214321. [PMID: 30925186 PMCID: PMC6440623 DOI: 10.1371/journal.pone.0214321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
Background Biological biomarkers to stratify cancer risk before kidney transplantation are lacking. Several data support that tumor development and growth is associated with a tolerant immune profile. T cells expressing low levels of CD45RC preferentially secrete regulatory cytokines and contain regulatory T cell subset. In contrast, T cells expressing high levels of CD45RC have been shown to secrete proinflammatory cytokines, to drive alloreactivity and to predict acute rejection (AR) in kidney transplant patients. In the present work, we evaluated whether pre-transplant CD45RClow T cell subset was predictive of post-transplant cancer occurrence. Methods We performed an observational cohort study of 89 consecutive first time kidney transplant patients whose CD45RC T cell expression was determined by flow cytometry before transplantation. Post-transplant events including cancer, AR, and death were assessed retrospectively. Results After a mean follow-up of 11.1±4.1 years, cancer occurred in 25 patients (28.1%) and was associated with a decreased pre-transplant proportion of CD4+CD45RChigh T cells, with a frequency below 51.9% conferring a 3.7-fold increased risk of post-transplant malignancy (HR 3.71 [1.24–11.1], p = 0.019). The sensibility, specificity, negative predictive and positive predictive values of CD4+CD45RChigh<51.9% were 84.0, 54.7, 89.8 and 42.0% respectively. Confirming our previous results, frequency of CD8+CD45RChigh T cells above 52.1% was associated with AR, conferring a 20-fold increased risk (HR 21.7 [2.67–176.2], p = 0.0004). The sensibility, specificity, negative predictive and positive predictive values of CD8+CD45RChigh>52.1% were 94.5, 68.0, 34.7 and 98.6% respectively. Frequency of CD4+CD45RChigh T cells was positively correlated with those of CD8+CD45RChigh (p<0.0001), suggesting that recipients with high AR risk display a low cancer risk. Conclusion High frequency of CD45RChigh T cells was associated with AR, while low frequency was associated with cancer. Thus, CD45RC expression on T cells appears as a double-edged sword biomarker of promising interest to assess both cancer and AR risk before kidney transplantation.
Collapse
Affiliation(s)
- Anne-Sophie Garnier
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
| | - Martin Planchais
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
| | - Jérémie Riou
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, Angers, France
| | - Clément Jacquemin
- INSERM U1035, BMGIC, Immuno-dermatology ATIP-AVENIR, University of Bordeaux, Bordeaux, France
| | - Laurence Ordonez
- Université de Toulouse, Centre de physiopathologie de Toulouse Purpan, Toulouse, France
| | - Jean-Paul Saint-André
- LUNAM Université, Angers, France
- CHU Angers, Laboratoire d’anatomopathologie, Angers, France
| | - Anne Croue
- CHU Angers, Laboratoire d’anatomopathologie, Angers, France
| | - Abdelhadi Saoudi
- Université de Toulouse, Centre de physiopathologie de Toulouse Purpan, Toulouse, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Anne Devys
- Laboratoire HLA, Etablissement Français du Sang Pays de Loire, Angers, France
| | - Isabelle Boutin
- Centre de Sante, Etablissement Français du Sang Pays de Loire, Angers, France
| | - Jean-François Subra
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Agnès Duveau
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
| | - Jean-François Augusto
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
- * E-mail:
| |
Collapse
|
45
|
Adenovirus based virus-like-vaccines targeting endogenous retroviruses can eliminate growing colorectal cancers in mice. Oncotarget 2019; 10:1458-1472. [PMID: 30858929 PMCID: PMC6402721 DOI: 10.18632/oncotarget.26680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) that make up 8% of the human genome have been associated with the development and progression of cancer. The murine model system of the melanoma associated retrovirus (MelARV), which is expressed in different murine cancer cell lines, can be used to study mechanisms and therapeutic approaches against ERVs in cancer. We designed a vaccine strategy (Ad5-MelARV) of adenoviruses encoding the MelARV proteins Gag and Env that assemble in vivo into virus-like particles displaying the cancer-associated MelARV Env to the immune system. The novel vaccine was designed to induce both humoral as well as cellular immune responses in order to attack ERV expressing tumor cells. Despite a lack of antibody induction, we found that T cell responses were strong enough to prevent colorectal CT26 tumor growth and progression in BALB/c mice after a single vaccination before or after tumor challenge. A combination with the checkpoint inhibitor anti-PD-1 further increased the efficacy of the vaccination leading to complete tumor regression. Furthermore, immune responses in vaccinated mice were not restricted to only one cancer cell line but vaccinated animals were also protected from a rechallenge with the distinct breast cancer cell line 4T1. Thus, the developed vaccine strategy could represent a novel tool to successfully target diverse ERV-bearing tumors in cancer patients.
Collapse
|
46
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
Thomas F, Donnadieu E, Charriere GM, Jacqueline C, Tasiemski A, Pujol P, Renaud F, Roche B, Hamede R, Brown J, Gatenby R, Ujvari B. Is adaptive therapy natural? PLoS Biol 2018; 16:e2007066. [PMID: 30278037 PMCID: PMC6168119 DOI: 10.1371/journal.pbio.2007066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Research suggests that progression-free survival can be prolonged by integrating evolutionary principles into clinical cancer treatment protocols. The goal is to prevent or slow the proliferation of resistant malignant cell populations. The logic behind this therapy relies on ecological and evolutionary processes. These same processes would be available to natural selection in decreasing the probability of an organism's death due to cancer. We propose that organisms' anticancer adaptions include not only ones for preventing cancer but also ones for directing and retarding the evolution of life-threatening cancer cells. We term this last strategy natural adaptive therapy (NAT). The body's NAT might include a lower than otherwise possible immune response. A restrained immune response might forego maximum short-term kill rates. Restraint would forestall immune-resistant cancer cells and produce long-term durable control of the cancer population. Here, we define, develop, and explore the possibility of NAT. The discovery of NAT mechanisms could identify new strategies in tumor prevention and treatments. Furthermore, we discuss the potential risks of immunotherapies that force the immune system to ramp up the short-term kill rates of malignant cancer cells in a manner that undermines the body's NAT and accelerates the evolution of immune resistance.
Collapse
Affiliation(s)
- Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, et Contrôle, CNRS, Université de Montpellier, Montpellier, France
| | - Emmanuel Donnadieu
- Inserm, Unité 1016, Institut Cochin, Paris, France.,Cnrs, Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guillaume M Charriere
- Interactions Host Pathogen Environment, University of Montpellier, Centre National de la Recherche Scientifique, Institut français de recherche pour l'exploitation de la mer, University of Perpignan Via Domitia, Montpellier, France
| | - Camille Jacqueline
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, et Contrôle, CNRS, Université de Montpellier, Montpellier, France
| | - Aurélie Tasiemski
- Université de Lille-sciences et technologies, UMR 8198 Evo-Eco-Paleo, Villeneuve d'Ascq/CNRS/INSERM/CHU Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche 8204, Lille, France
| | - Pascal Pujol
- Service de génétique médicale et chromosomique, Unité d'oncogénétique, centre hospitalier régional et universitaire de Montpellier, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - François Renaud
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, et Contrôle, CNRS, Université de Montpellier, Montpellier, France
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution, et Contrôle, CNRS, Université de Montpellier, Montpellier, France.,Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, Sorbonne Université, BondyCedex, France.,Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rodrigo Hamede
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| | - Joel Brown
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Robert Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Beata Ujvari
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
48
|
Zhang C, Wiemels JL, Hansen HM, Gonzalez-Maya J, Endicott AA, de Smith AJ, Smirnov IV, Witte JS, Morimoto LM, Metayer C, Walsh KM. Two HLA Class II Gene Variants Are Independently Associated with Pediatric Osteosarcoma Risk. Cancer Epidemiol Biomarkers Prev 2018; 27:1151-1158. [PMID: 30038050 DOI: 10.1158/1055-9965.epi-18-0306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background: The genetic etiology of osteosarcoma remains poorly understood despite the publication of a genome-wide association study. Association between HLA genetic variants and risk of several cancers has been observed, but HLA variation is not well captured by standard SNP arrays.Methods: We genotyped 207 Californian pediatric osteosarcoma cases and 696 controls of European ancestry using a custom genome-wide array supplemented with approximately 6,000 additional probes across the MHC region. We subsequently imputed 4-digit classical HLA alleles using a reference panel of 5,225 individuals who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for ancestry-informative principal components, and top associations from the discovery analysis underwent replication in an independent dataset of 657 cases and 1,183 controls.Results: Three highly correlated HLA class II variants (r 2 = 0.33-0.98) were associated with osteosarcoma risk in discovery analyses, including HLA-DRB1*0301 (OR = 0.52; P = 3.2 × 10-3), HLA-DQA1*0501 (OR = 0.74; P = 0.031), and HLA-DQB1*0201 (OR = 0.51; P = 2.7 × 10-3). Similar associations were observed in the replication data (P range = 0.011-0.037). Meta-analysis of the two datasets identified HLA-DRB1*0301 as the most significantly associated variant (ORmeta = 0.62; P meta = 1.5 × 10-4), reaching Bonferroni-corrected statistical significance. The meta-analysis also revealed a second significant independent signal at HLA-DQA1*01:01 (ORmeta = 1.33, P meta = 1.2 × 10-3), and a third suggestive association at HLA-DQB1*0302 (ORmeta = 0.73, P meta = 6.4 × 10-3).Conclusions: Multiple independent HLA class II alleles may influence osteosarcoma risk.Impact: Additional work is needed to extend our observations to other patient populations and to clarify the potential causal mechanisms underlying these associations. Understanding immunologic contributions to the etiology of osteosarcoma may inform rational therapeutic targets. Cancer Epidemiol Biomarkers Prev; 27(10); 1151-8. ©2018 AACR.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California.,Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Julio Gonzalez-Maya
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Alyson A Endicott
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Ivan V Smirnov
- Division of Neuroepidemiology, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Libby M Morimoto
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California. .,Division of Neuro-epidemiology, Department of Neurosurgery, Duke University, Durham, North Carolina.,Children's Health and Discovery Institute, Duke University, Durham, North Carolina
| |
Collapse
|
49
|
Legut M, Sewell AK. Designer T-cells and T-cell receptors for customized cancer immunotherapies. Curr Opin Pharmacol 2018; 41:96-103. [PMID: 29852403 DOI: 10.1016/j.coph.2018.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022]
Abstract
Cancer immunotherapy, focused on harnessing and empowering the immune system against tumours, has transformed modern oncology. One of the most promising avenues in development involves using genetically engineered T-cells to target cancer antigens via specific T-cell receptors (TCRs). TCRs have a naturally low affinity towards cancer-associated antigens, and therefore show scope for improvement. Here we describe approaches to procure TCRs with enhanced affinity and specificity towards cancer, using protein engineering or selection of natural TCRs from unadulterated repertoires. In particular, we discuss novel methods facilitating the targeting of tumour-specific mutations. Finally, we provide a prospective outlook on the potential development of novel, off-the-shelf immunotherapies by leveraging recent advances in genome editing.
Collapse
Affiliation(s)
- Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, University Hospital Wales, Cardiff CF14 4XN, Wales, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Henry Wellcome Building, University Hospital Wales, Cardiff CF14 4XN, Wales, UK.
| |
Collapse
|
50
|
Peng J, Wang W, Hua S, Liu L. Roles of Extracellular Vesicles in Metastatic Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418767666. [PMID: 29881285 PMCID: PMC5987895 DOI: 10.1177/1178223418767666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2018] [Indexed: 01/29/2023]
Abstract
Cells can secrete extracellular vesicles (EVs) to communicate with neighboring or
distant cells by EVs which are composed of a lipid bilayer containing
transmembrane proteins and enclosing cytosolic proteins, lipids, and nucleic
acids. Breast Cancer is the most frequently diagnosed malignancy with more than
1 million new cases each year and ranks the leading cause of cancer mortality in
women worldwide. In this review, we will discuss recent progresses of the roles
and mechanisms of cancer-derived EVs in metastatic breast cancer, with a special
attention on tumor microenvironment construction, progression, and
chemo/radiotherapy responses. This review also covers EV roles as biomarker and
therapeutic target in clinical application.
Collapse
Affiliation(s)
- Junya Peng
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wenqian Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Surong Hua
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lulu Liu
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|