1
|
Alikarami F, Xie HM, Riedel SS, Goodrow HT, Barrett DR, Mahdavi L, Lenard A, Chen C, Yamauchi T, Danis E, Cao Z, Tran VL, Jung MM, Li Y, Huang H, Shi J, Tan K, Teachey DT, Bresnick EH, Neff TA, Bernt KM. GATA2 links stemness to chemotherapy resistance in acute myeloid leukemia. Blood 2025; 145:2179-2195. [PMID: 39841459 DOI: 10.1182/blood.2024025761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
ABSTRACT Stemness-associated cell states are linked to chemotherapy resistance in acute myeloid leukemia (AML). We uncovered a direct mechanistic link between expression of the stem cell transcription factor GATA2 and drug resistance. The GATA-binding protein 2 (GATA2) plays a central role in blood stem cell generation and maintenance. We find substantial intrapatient and interpatient variability in GATA2 expression across samples from patients with AML. GATA2 expression varies by molecular subtype and has been linked to outcome. In a murine model, KMT2A-MLL3-driven AML originating from a stem cell or immature progenitor cell population has higher Gata2 expression and is more resistant to the standard AML chemotherapy agent doxorubicin. Deletion of Gata2 resulted in a more robust induction of p53 after exposure to doxorubicin. Chromatin immunoprecipitation sequencing, RNA sequencing, and functional studies revealed that GATA2 regulates the expression of RASSF4, a modulator of the p53 inhibitor MDM2 (mouse double minute 2). GATA2 and RASSF4 are anticorrelated in human cell lines and in bulk and single-cell expression data sets from patients with AML. Knockdown of Rassf4 in Gata2-low cells resulted in doxorubicin or nutlin-3 resistance. Conversely, overexpression of Rassf4 results in sensitization of cells expressing high levels of Gata2. Finally, doxorubicin and nutlin-3 are synergistic in Gata2-high murine AML and in samples from patients with AML. We discovered a previously unappreciated role for GATA2 in dampening p53-mediated apoptosis via transcriptional regulation of RASSF4, a modulator of MDM2. This role for GATA2 directly links the expression of a stemness-associated transcription factor to chemotherapy resistance.
Collapse
MESH Headings
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Drug Resistance, Neoplasm/genetics
- Animals
- Mice
- Doxorubicin/pharmacology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Proto-Oncogene Proteins c-mdm2/metabolism
Collapse
Affiliation(s)
- Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hongbo M Xie
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Simone S Riedel
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Haley T Goodrow
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Declan R Barrett
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leila Mahdavi
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Alexandra Lenard
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Experimental Hematology, State Key Laboratory, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Taylor Yamauchi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Etienne Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhendong Cao
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vu L Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Junwei Shi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David T Teachey
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Tobias A Neff
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathrin M Bernt
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Zerella JR, Homan CC, Arts P, Lin X, Spinelli SJ, Venugopal P, Babic M, Brautigan PJ, Truong L, Arriola-Martinez L, Moore S, Hollins R, Parker WT, Nguyen H, Kassahn KS, Branford S, Feurstein S, Larcher L, Sicre de Fontbrune F, Demirdas S, de Munnik S, Antoine-Poirel H, Brichard B, Mansour S, Gordon K, Wlodarski MW, Koppayi A, Dobbins S, Mutsaers PGNJ, Nichols KE, Oak N, DeMille D, Mao R, Crawford A, McCarrier J, Basel D, Flores-Daboub J, Drazer MW, Phillips K, Poplawski NK, Birdsey GM, Pirri D, Ostergaard P, Simons A, Godley LA, Ross DM, Hiwase DK, Soulier J, Brown AL, Carmichael CL, Scott HS, Hahn CN. Germ line ERG haploinsufficiency defines a new syndrome with cytopenia and hematological malignancy predisposition. Blood 2024; 144:1765-1780. [PMID: 38991192 PMCID: PMC11530364 DOI: 10.1182/blood.2024024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT The genomics era has facilitated the discovery of new genes that predispose individuals to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ETS-related gene (ERG), a novel, autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor that is critical for definitive hematopoiesis, stem cell function, and platelet maintenance. ERG colocalizes with other transcription factors, including RUNX family transcription factor 1 (RUNX1) and GATA binding protein 2 (GATA2), on promoters or enhancers of genes that orchestrate hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 individuals with thrombocytopenia from 1 family and 14 additional ERG variants in unrelated individuals with BMF/HM, including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germ line ERG variants included cytopenias (thrombocytopenia, neutropenia, and pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, and acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense and 1 truncating), including 3 missense population variants, were functionally characterized. Thirteen potentially pathogenic erythroblast transformation specific (ETS) domain missense variants displayed loss-of-function (LOF) characteristics, thereby disrupting transcriptional transactivation, DNA binding, and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture and to promote acute erythroleukemia when transplanted into mice, concordant with these being LOF variants. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germ line ERG variants has clinical implications for patient and family diagnoses, counseling, surveillance, and treatment strategies, including selection of bone marrow donors and cell or gene therapy.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sam J. Spinelli
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Parvathy Venugopal
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Milena Babic
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peter J. Brautigan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Luis Arriola-Martinez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Sarah Moore
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rachel Hollins
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Wendy T. Parker
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hung Nguyen
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Karin S. Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Susan Branford
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lise Larcher
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | | | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Benedicte Brichard
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sahar Mansour
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- South West Thames Regional Centre for Genomics, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Kristiana Gordon
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ashwin Koppayi
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Sara Dobbins
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Desiree DeMille
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
| | - Rong Mao
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - Julie McCarrier
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Michael W. Drazer
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Graeme M. Birdsey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniela Pirri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pia Ostergaard
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lucy A. Godley
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - David M. Ross
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Devendra K. Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jean Soulier
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Anna L. Brown
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
3
|
Kugler E, Madiwale S, Yong D, Thoms JAI, Birger Y, Sykes DB, Schmoellerl J, Drakul A, Priebe V, Yassin M, Aqaqe N, Rein A, Fishman H, Geron I, Chen CW, Raught B, Liu Q, Ogana H, Liedke E, Bourquin JP, Zuber J, Milyavsky M, Pimanda J, Privé GG, Izraeli S. The NCOR-HDAC3 co-repressive complex modulates the leukemogenic potential of the transcription factor ERG. Nat Commun 2023; 14:5871. [PMID: 37735473 PMCID: PMC10514085 DOI: 10.1038/s41467-023-41067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.
Collapse
Affiliation(s)
- Eitan Kugler
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Shreyas Madiwale
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Darren Yong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Yehudit Birger
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA & Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Johannes Schmoellerl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Aneta Drakul
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Valdemar Priebe
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avigail Rein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hila Fishman
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ifat Geron
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Qiao Liu
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Elisabeth Liedke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, and Children Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Gilbert G Privé
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| | - Shai Izraeli
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- The Rina Zaizov Pediatric Hematology and Oncology Division Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| |
Collapse
|
4
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
5
|
Schandl CA, Mazzoni S, Znoyko I, Nahhas GJ, Chung D, Ding Y, Hess B, Wolff DJ. Novel high-risk acute myeloid leukemia subgroup with ERG amplification and Biallelic loss of TP53. Cancer Genet 2023; 272-273:23-28. [PMID: 36657266 DOI: 10.1016/j.cancergen.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
ETS-related gene (ERG) amplification, observed in 4-6% of acute myeloid leukemia (AML), is associated with unfavorable prognosis. To determine coincident effects of additional genomic abnormalities in AML with ERG amplification (ERGamp), we examined 11 ERGamp cases of 205 newly diagnosed AML using chromosomal microarray analysis and next generation sequencing. ERGamp cases demonstrated a distinct pattern of high genetic complexity: loss of 5q, chromothripsis and TP53 loss of function variants. Remarkably, allelic TP53 loss or loss of heterozygosity (LOH) co-occurring with TP53 inactivating mutation dramatically effected ERGamp tumor patient outcome. In the presence of homozygous TP53 loss of function, ERGamp patients demonstrated no response to induction chemotherapy with median overall survival (OS) of 3.8 months (N = 9). Two patients with heterozygous loss of TP53 function underwent alloSCT without evidence of relapse at one year. Similarly, a validation TCGA cohort, 6 of the 8 ERGamp cases with TP53 loss of function demonstrated median OS of 2.5 months. This suggests that with TP53 mutant ERGamp AML, successive loss of the second TP53 allele, typically by 17p deletion or LOH identifies a specific high-risk subtype of AML patients who are resistant to standard induction chemotherapy and need novel approaches to avert the very poor prognosis.
Collapse
Affiliation(s)
- Cynthia A Schandl
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sandra Mazzoni
- Departmant of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, USA.
| | - Iya Znoyko
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Georges J Nahhas
- Department of Public Health-Division of Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
| | - Dongjun Chung
- Department of Public Health-Division of Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
| | - Yanna Ding
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Brian Hess
- Department of Hematology and Oncology, Medical University of South Carolina Hollings Cancer Center, Charleston, SC, USA
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Zhang W, Wang J, Li W, Liu X, Zhao Y, Yang P, Zhu M, Hu K, Li S, Dong G, Yan C, He X, Zhang X, Jing H. The expression level of Neuronal Calcium Sensor 1 can predict the prognosis of cytogenetically normal AML. THE PHARMACOGENOMICS JOURNAL 2023:10.1038/s41397-023-00301-2. [PMID: 36918700 DOI: 10.1038/s41397-023-00301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/15/2023]
Abstract
Acute myeloid leukemia (AML) is malignant clonal expansion of myeloid blasts with high heterogeneity and numerous molecular biomarkers have been found to judge the prognosis in some specific classifications of AML. Furthermore, as for patients with cytogenetically normal acute myeloid leukemia (CN-AML), we need to find more new biomarkers to predict the patients' outcomes. Recently, the expression level of Neuronal Calcium Sensor 1 (NCS1) has been associated with the prognosis of breast cancer and hepatocellular carcinoma, but nothing related has been reported about hematological malignancies. Therefore, we make this study to explore the relationship between the NCS1 expression level and CN-AML. We analyzed the relation between survival and NCS1 RNA expression through 75 CN-AML patients from Cancer Genome Atlas (TCGA) database and 433 CN-AML patients (3 independent datasets) from Gene Expression Omnibus (GEO) database. Additionally, we compared the NCS1 RNA expression between 138 leukemia stem cells positive (LSCs+) samples and 89 leukemia stem cells negative (LSCs-) samples from 78 AML patients from GSE76004 dataset. In our study, CN-AML patients with high expression level of NCS1 have longer EFS or OS. In addition, the NCS1 expression level in leukemia stem cells was low (p = 0.00039). According to these findings, we concluded that the high expression of NCS1 can predict favorable prognosis in CN-AML patients. Furthermore, our work put forward that NCS1 expresses lower in LSCs+, which might be an important mechanism to explain the aggressiveness of AML.
Collapse
Affiliation(s)
- Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Wei Li
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Xiaoni Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Yali Zhao
- General Practice Medicine, The First People's Hospital of Huzhou, Huzhou, 313000, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Mingxia Zhu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Kai Hu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China
| | - Shaoxiang Li
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, 100050, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, 100050, Beijing, China
| | - Changjian Yan
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China. .,Gannan Medical University, Ganzhou, 341000, China.
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, 100050, Beijing, China.
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, 100050, Beijing, China.
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, 100191, Beijing, China.
| |
Collapse
|
7
|
Kudalkar EM, Pang C, Haag MM, Pollyea DA, Kamdar M, Xu G, Su M, Carstens B, Swisshelm K, Bao L. 21q22 amplification detection in three patients with acute myeloid leukemia: cytogenomic profiling and literature review. Mol Cytogenet 2022; 15:30. [PMID: 35799207 PMCID: PMC9264596 DOI: 10.1186/s13039-022-00606-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND 21q22 amplification is a rare cytogenetic aberration in acute myeloid leukemia (AML). So far, the cytogenomic and molecular features and clinical correlation of 21q22 amplification in AML have not been well-characterized. CASE PRESENTATION Here, we describe a case series of three AML patients with amplified 21q22 identified by fluorescence in situ hybridization using a RUNX1 probe. Two of these patients presented with therapy-related AML (t-AML) secondary to chemotherapy, while the third had de novo AML. There was one case each of FAB M0, M1 and M4. Morphologic evidence of dysplasia was identified in both t-AML cases. Phenotypic abnormalities of the myeloblasts were frequently observed. Extra copies of 21q22 were present on chromosome 21 and at least one other chromosome in two cases. Two showed a highly complex karyotype. Microarray analysis of 21q22 amplification in one case demonstrated alternating levels of high copy number gain split within the RUNX1 locus at 21q22. The same patient also had mutated TP53. Two patients died at 1.5 and 11 months post-treatment, while the third elected palliative care and died within 2 weeks. CONCLUSIONS Our results provide further evidence that 21q22 amplification in AML is associated with complex karyotypes, TP53 aberrations, and poor outcomes. Furthermore, we demonstrate that 21q22 amplification is not always intrachromosomally localized to chromosome 21 and could be a result of structural aberrations involving 21q22 and other chromosomes.
Collapse
Affiliation(s)
- Emily M Kudalkar
- Colorado Genetics Laboratory, Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Changlee Pang
- Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary M Haag
- Colorado Genetics Laboratory, Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel A Pollyea
- Division of Hematology, Department of Medicine, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manali Kamdar
- Division of Hematology, Department of Medicine, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gang Xu
- Department of Pathology, Presbyterian St. Luke Medical Center, Denver, CO, USA
| | - Meng Su
- Colorado Genetics Laboratory, Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Sema4 OpCo Inc, Stamford, CT, USA
| | - Billie Carstens
- Colorado Genetics Laboratory, Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen Swisshelm
- Colorado Genetics Laboratory, Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liming Bao
- Colorado Genetics Laboratory, Department of Pathology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Thakral D, Gupta R, Khan A. Leukemic stem cell signatures in Acute myeloid leukemia- targeting the Guardians with novel approaches. Stem Cell Rev Rep 2022; 18:1756-1773. [DOI: 10.1007/s12015-022-10349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2022] [Indexed: 11/09/2022]
|
9
|
Lee WY, Gutierrez-Lanz EA, Xiao H, McClintock D, Chan MP, Bixby DL, Shao L. ERG amplification is a secondary recurrent driver event in myeloid malignancy with complex karyotype and TP53 mutations. Genes Chromosomes Cancer 2022; 61:399-411. [PMID: 35083818 DOI: 10.1002/gcc.23027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 11/09/2022] Open
Abstract
ERG is a transcription factor encoded on chromosome 21q22.2 with important roles in hematopoiesis and oncogenesis of prostate cancer. ERG amplification has been identified as one of the most common recurrent events in acute myeloid leukemia with complex karyotype (AML-CK). In this study, we uncover 3 different modes of ERG amplification in AML-CK. Importantly, we present evidence to show that ERG amplification is distinct from intrachromosomal amplification of chromosome 21 (iAMP21), a hallmark segmental amplification frequently encompassing RUNX1 and ERG in a subset of high-risk B-lymphoblastic leukemia. We also characterize the association with TP53 aberrations and other chromosomal aberrations, including chromothripsis. Lastly, we show that ERG amplification can initially emerge as subclonal events in low grade myeloid neoplasms. These findings demonstrate that ERG amplification is a recurrent secondary driver event in AML and raise the tantalizing possibility of ERG as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Winston Y Lee
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Efrain A Gutierrez-Lanz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hong Xiao
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David McClintock
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - May P Chan
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dale L Bixby
- Division of Hematology and Medical Oncology, Department of Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lina Shao
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
11
|
A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res 2021; 111:106727. [PMID: 34700049 DOI: 10.1016/j.leukres.2021.106727] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults that affects the myeloid lineage. The recent advances have upgraded our understanding of the cytogenetic abnormalities and molecular mutations associated with AML that further aids in prognostication and risk stratification of the disease. Based on the highly heterogeneous nature of the disease and cytogenetic profile, AML patients can be stratified into favourable, intermediate and adverse-risk groups. The recurrent genetic alterations provide novel insights into the pathogenesis, clinical characteristics and also into the overall survival of the patients. In this review we are discussing about the cytogenetics of AML and the recurrent gene alterations such us NPM1, FLT3, CEBPA, TET-2, c-KIT, DNMT3A, IDH, RUNX1, AXSL1, WT1, Ras gene mutations etc. These gene mutations serve as important prognostic markers as well as potential therapeutic targets. AML patients respond to induction chemotherapy initially and subsequently achieve complete remission (CR), eventually most of them get relapsed.
Collapse
|
12
|
Thoms JAI, Truong P, Subramanian S, Knezevic K, Harvey G, Huang Y, Seneviratne JA, Carter DR, Joshi S, Skhinas J, Chacon D, Shah A, de Jong I, Beck D, Göttgens B, Larsson J, Wong JWH, Zanini F, Pimanda JE. Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood 2021; 138:1441-1455. [PMID: 34075404 DOI: 10.1182/blood.2020009707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.
Collapse
Affiliation(s)
| | - Peter Truong
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Kathy Knezevic
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gregory Harvey
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Yizhou Huang
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanna Skhinas
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Diego Chacon
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Anushi Shah
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Ineke de Jong
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Dominik Beck
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome and Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fabio Zanini
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; and
| | - John E Pimanda
- School of Medical Sciences
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Department of Haematology, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
13
|
Zhang LY, Jin Y, Xia PH, Lin J, Ma JC, Li T, Liu ZQ, Xiang HL, Cheng C, Xu ZJ, Zhou H, Qian J. Integrated analysis reveals distinct molecular, clinical, and immunological features of B7-H3 in acute myeloid leukemia. Cancer Med 2021; 10:7831-7846. [PMID: 34562306 PMCID: PMC8559480 DOI: 10.1002/cam4.4284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
The role of B7‐H3 in acute myeloid leukemia (AML) is not fully understood. Two previous studies investigating its expression and significances in AML are partially different. In this study, we aimed to systematically characterize the genomic and immune landscape in AML patients with altered B7‐H3 expression using multi‐omics data in the public domain. We found significantly increased B7‐H3 expression in AML compared to either other hematological malignancies or healthy controls. Clinically, high B7‐H3 expression was associated with old age, TP53 mutations, wild‐type WT1 and CEBPA, and the M3 and M5 FAB subtypes. Moreover, we observed that increased B7‐H3 expression correlated significantly with a poor outcome of AML patients in four independent datasets. Gene set enrichment analysis (GSEA) revealed the enrichment of the “EMT” oncogenic gene signatures in high B7‐H3 expressers. Further investigation suggested that B7‐H3 was more likely to be associated with immune‐suppressive cells (macrophages, neutrophils, dendritic cells, and Th17 cells). B7‐H3 was also positively associated with a number of checkpoint genes, such as VISTA (B7‐H5), CD80 (B7‐1), CD86 (B7‐2), and CD70. In summary, we uncovered distinct genomic and immunologic features associated with B7‐H3 expression in AML. This may lead to a better understanding of the molecular mechanisms underlying B7‐H3 dysregulation in AML and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling-Yi Zhang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Pei-Hui Xia
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ting Li
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Zi-Qi Liu
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - He-Lin Xiang
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Chen Cheng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Hong Zhou
- School of Medical Science and Laboratory Medicine, Jiangsu University, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| |
Collapse
|
14
|
Park MS, Lee YE, Kim HR, Shin JH, Cho HW, Lee JH, Shin MG. Phospholipase C Beta 2 Protein Overexpression Is a Favorable Prognostic Indicator in Newly Diagnosed Normal Karyotype Acute Myeloid Leukemia. Ann Lab Med 2021; 41:409-413. [PMID: 33536360 PMCID: PMC7884198 DOI: 10.3343/alm.2021.41.4.409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022] Open
Abstract
Phospholipase C beta 2 (PLC-β2) regulates various essential functions in cell signaling, differentiation, growth, and mobility. We investigated the clinical implications of PLC-β2 protein expression in newly diagnosed normal karyotype acute myeloid leukemia (NK-AML). The PLC-β2 expression status in bone marrow tissues obtained from 101 patients with NK-AML was determined using semiquantitative immunohistochemistry (IHC). IHC results were compared with those for known prognostic markers. Using a cutoff score for positivity of 7.0, the PLC-β2 overexpression group showed superior overall survival (OS) (72.6% vs. 26.5%; P=0.016) and low hazard ratio (HR) (0.453; P=0.019) compared with the PLC-β2 low-expression group. The PLC-β2 overexpression group showed no significant gain in event-free survival (50.6% vs. 43.0%, P=0.465) and HR (0.735; P=0.464). Among the known prognostic markers, only FLT3-ITD positivity was associated with a significantly low OS and high HR. In conclusion, PLC-β2 overexpression was associated with favorable OS in NK-AML patients. Our results suggest that PLC-β2 expression assessment using IHC allows prognosis prediction in NK-AML.
Collapse
Affiliation(s)
- Mi Suk Park
- Department of Medical Laboratory Science, Gimhae College, Gimhae, Korea
| | - Young Eun Lee
- Brain Korea 21 Plus Program, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hye Ran Kim
- College of Korean Medicine, Dongshin University, Naju, Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun Wook Cho
- Department of Biology, Sunchon National University, Sunchon, Korea
| | - Jun Hyung Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung Geun Shin
- Brain Korea 21 Plus Program, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea.,Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
15
|
Gene expression signature predicts relapse in adult patients with cytogenetically normal acute myeloid leukemia. Blood Adv 2021; 5:1474-1482. [PMID: 33683341 DOI: 10.1182/bloodadvances.2020003727] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Although ∼80% of adult patients with cytogenetically normal acute myeloid leukemia (CN-AML) achieve a complete remission (CR), more than half of them relapse. Better identification of patients who are likely to relapse can help to inform clinical decisions. We performed RNA sequencing on pretreatment samples from 268 adults with de novo CN-AML who were younger than 60 years of age and achieved a CR after induction treatment with standard "7+3" chemotherapy. After filtering for genes whose expressions were associated with gene mutations known to impact outcome (ie, CEBPA, NPM1, and FLT3-internal tandem duplication [FLT3-ITD]), we identified a 10-gene signature that was strongly predictive of patient relapse (area under the receiver operating characteristics curve [AUC], 0.81). The signature consisted of 7 coding genes (GAS6, PSD3, PLCB4, DEXI, JMY, NRP1, C10orf55) and 3 long noncoding RNAs. In multivariable analysis, the 10-gene signature was strongly associated with relapse (P < .001), after adjustment for the FLT3-ITD, CEBPA, and NPM1 mutational status. Validation of the expression signature in an independent patient set from The Cancer Genome Atlas showed the signature's strong predictive value, with AUC = 0.78. Implementation of the 10-gene signature into clinical prognostic stratification could be useful for identifying patients who are likely to relapse.
Collapse
|
16
|
Trib1 promotes acute myeloid leukemia progression by modulating the transcriptional programs of Hoxa9. Blood 2021; 137:75-88. [PMID: 32730594 DOI: 10.1182/blood.2019004586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
The pseudokinase Trib1 functions as a myeloid oncogene that recruits the E3 ubiquitin ligase COP1 to C/EBPα and interacts with MEK1 to enhance extracellular signal-regulated kinase (ERK) phosphorylation. A close genetic effect of Trib1 on Hoxa9 has been observed in myeloid leukemogenesis, where Trib1 overexpression significantly accelerates Hoxa9-induced leukemia onset. However, the mechanism underlying how Trib1 functionally modulates Hoxa9 transcription activity is unclear. Herein, we provide evidence that Trib1 modulates Hoxa9-associated super-enhancers. Chromatin immunoprecipitation sequencing analysis identified increased histone H3K27Ac signals at super-enhancers of the Erg, Spns2, Rgl1, and Pik3cd loci, as well as increased messenger RNA expression of these genes. Modification of super-enhancer activity was mostly achieved via the degradation of C/EBPα p42 by Trib1, with a slight contribution from the MEK/ERK pathway. Silencing of Erg abrogated the growth advantage acquired by Trib1 overexpression, indicating that Erg is a critical downstream target of the Trib1/Hoxa9 axis. Moreover, treatment of acute myeloid leukemia (AML) cells with the BRD4 inhibitor JQ1 showed growth inhibition in a Trib1/Erg-dependent manner both in vitro and in vivo. Upregulation of ERG by TRIB1 was also observed in human AML cell lines, suggesting that Trib1 is a potential therapeutic target of Hoxa9-associated AML. Taken together, our study demonstrates a novel mechanism by which Trib1 modulates chromatin and Hoxa9-driven transcription in myeloid leukemogenesis.
Collapse
|
17
|
Superenhancing AML with Trib1. Blood 2021; 137:8-9. [PMID: 33410899 DOI: 10.1182/blood.2020008315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Mehralizadeh H, Aliparasti MR, Talebi M, Salekzamani S, Almasi S, Raeisi M, Yousefi M, Movassaghpour A. WT-1, BAALC, and ERG Expressions in Iranian Patients with Acute Myeloid Leukemia Pre- and Post-chemotherapy. Adv Pharm Bull 2021; 11:197-203. [PMID: 33747867 PMCID: PMC7961226 DOI: 10.34172/apb.2021.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose: Acute myeloid leukemia (AML) is the most prevalent acute leukemia in adults. It possesses different cytogenetic and molecular features. The expression of Wilms tumor-1 (WT1), brain and acute leukemia, cytoplasmic (BAALC) and ETS-related gene (ERG) might be considered as prognostic factors in AML patients. The aim of this study was to determine the mRNA expressions of WT-1, BAALC and ERG genes in bone marrow of mononuclear cells and their effects on complete remission in the Iranian AML patients, pre- and post- chemotherapy. Methods: Forty AML patients with normal karyotype were evaluated. The mRNA gene expressions were measured with quantitative real-time PCR in bone marrow of mononuclear cells of AML patients at the baseline and after chemotherapy. The subtypes of AML and flow cytometry panel were also assessed. Complete remission (CR) after the treatment was addressed for all patients. Results: The mRNA expressions of WT-1, BAALC and ERG were significantly decreased after the treatment (p = 0.001, 0.017, 0.036). WT-1 mRNA expression was inversely correlated with CR after chemotherapy (P =0.024). There was also significant correlation between baseline expression of BAALC and CR (P =0.046). No significant correlation was observed between ERG and CR pre- and post- chemotherapy (P =0.464 and 0.781). There was also significant correlation between BAALC mRNA expression and CD34+ (P <0.001). Conclusion: The present study showed that WT-1 decreased significantly after standard chemotherapy which could have favorable effects on CR. Also, the high expression of BAALC could have a poor prognostic role in AML patients. The identification of these gene expressions can be an efficient approach in targeted therapy among AML patients.
Collapse
Affiliation(s)
| | | | - Mehdi Talebi
- Department of Applied Cell Science, School of Advance Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Salekzamani
- Department of Nutrition, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shohreh Almasi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliAkbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biol Toxicol 2021; 37:873-890. [PMID: 33469864 DOI: 10.1007/s10565-021-09581-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.
Collapse
|
20
|
Hasan SK, Patkar NV, Rajamanickam D, Gokarn A, Lucena-Araujo AR, Tembhare P, Bagal B, Kadam Amare P, Jain H, Gujral S, Sengar M, Subramanian PG, Khattry N. Over expression of brain and acute leukemia, cytoplasmic and ETS-related gene is associated with poor outcome in acute myeloid leukemia. Hematol Oncol 2020; 38:808-816. [PMID: 32893896 DOI: 10.1002/hon.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 11/07/2022]
Abstract
The high expression of brain and acute leukemia, cytoplasmic (BAALC) and ETS-related gene (ERG) has been reported to influence the outcome in acute myeloid leukemia (AML), but due to limited prospective studies, their role as prognostic factors is unclear. At diagnosis, the prognostic value of BAALC and ERG expression with respect to other cytogenetic and molecular markers was analyzed in 149 AML patients. Patients were divided into quartiles which resulted in the formation of four groups (G1-G4) based on expression values of BAALC and ERG and clinical response defined across groups. Groups with similar survival probabilities were merged together and categorized subsequently as high versus low expressers. Patients with high BAALC and ERG expression had significantly lower overall survival (OS; BAALC: p = 0.001 at 5 years 29.4% vs. 69.8%; ERG: p < 0.0001 at 5 years 4% vs. 50.4%) and disease-free survival (BAALC: p = 0.001 at 5 years 19.5% vs. 69.8%; ERG: p < 0.0001 at 5 years 4.2% vs. 47%). Patients were further stratified combining BAALC and ERG expression in an integrative prognostic risk score (IPRS). After a median follow-up of 54 months (95% CI 45-63 months) among survivors, IPRS for high versus low expressers was a significant predictor for OS (BAALC + ERG: 4% vs. 71.6%, p < 0.0001) and DFS (BAALC + ERG: 4.5% vs. 74.1%, p < 0.0001). In a multivariate model, IPRS of BAALC + ERG expression retained prognostic significance for OS (hazard ratio [HR] 2.96, 95%CI 1.91-4.59, p < 0.001) and DFS (HR 3.61, 95%CI 2.26-5.76, p < 0.001).
Collapse
Affiliation(s)
- Syed Khizer Hasan
- Cell and Tumor Biology Group, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nikhil V Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Deepan Rajamanickam
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Anant Gokarn
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | | | - Prashant Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | | | - Hasmukh Jain
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| | | | - Navin Khattry
- Department of Medical Oncology, Adult Hematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, India
| |
Collapse
|
21
|
Papaioannou D, Volinia S, Nicolet D, Świerniak M, Petri A, Mrózek K, Bill M, Pepe F, Walker CJ, Walker AE, Carroll AJ, Kohlschmidt J, Eisfeld AK, Powell BL, Uy GL, Kolitz JE, Wang ES, Kauppinen S, Dorrance A, Stone RM, Byrd JC, Bloomfield CD, Garzon R. Clinical and functional significance of circular RNAs in cytogenetically normal AML. Blood Adv 2020; 4:239-251. [PMID: 31945158 PMCID: PMC6988408 DOI: 10.1182/bloodadvances.2019000568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Circular RNAs (circRNAs) are noncoding RNA molecules that display a perturbed arrangement of exons, called backsplicing. To examine the prognostic and biologic significance of circRNA expression in cytogenetically normal acute myeloid leukemia (CN-AML), we conducted whole-transcriptome profiling in 365 younger adults (age 18-60 years) with CN-AML. We applied a novel pipeline, called Massive Scan for circRNA, to identify and quantify circRNA expression. We validated the high sensitivity and specificity of our pipeline by performing RNase R treatment and RNA sequencing in samples of AML patients and cell lines. Unsupervised clustering analyses identified 3 distinct circRNA expression-based clusters with different frequencies of clinical and molecular features. After dividing our cohort into training and validation data sets, we identified 4 circRNAs (circCFLAR, circKLHL8, circSMC1A, and circFCHO2) that were prognostic in both data sets; high expression of each prognostic circRNA was associated with longer disease-free, overall, and event-free survival. In multivariable analyses, high circKLHL8 and high circFCHO2 expression were independently associated with better clinical outcome of CN-AML patients, after adjusting for other covariates. To examine the biologic relevance of circRNA expression, we performed knockdown screening experiments in a subset of prognostic and gene mutation-related candidate circRNAs. We identified circFBXW7, but not its linear messenger RNA, as a regulator of the proliferative capacity of AML blasts. In summary, our findings underscore the molecular associations, prognostic significance, and functional relevance of circRNA expression in CN-AML.
Collapse
Affiliation(s)
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | - Michał Świerniak
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Marius Bill
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Felice Pepe
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Allison E Walker
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
- Alliance Statistics and Data Center, The Ohio State University, Columbus, OH
| | | | - Bayard L Powell
- The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC
| | - Geoffrey L Uy
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY
| | - Eunice S Wang
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY; and
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | | | - Richard M Stone
- Dana-Farber Cancer Institute, Harvard University, Boston, MA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
22
|
Lin SY, Miao YR, Hu FF, Hu H, Zhang Q, Li Q, Chen Z, Guo AY. A 6-Membrane Protein Gene score for prognostic prediction of cytogenetically normal acute myeloid leukemia in multiple cohorts. J Cancer 2020; 11:251-259. [PMID: 31892991 PMCID: PMC6930412 DOI: 10.7150/jca.35382] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Cytogenetically normal acute myeloid leukemia (CN-AML) is a large proportion of AMLs with diverse prognostic outcomes. Identifying membrane protein genes as prognostic factors to stratify CN-AML patients will be critical to improve their outcomes. Purpose: This study aims to identify prognostic factors to stratify CN-AML patients to choose better treatments and improve their outcomes. Methods: CN-AML data were from TCGA cohort (n = 79) and four GEO datasets. We identified independent prognostic genes by Cox regression and Kaplan-Meier methods, and constructed linear regression model using LASSO algorithm. The prediction error curve was calculated using R package “pec”. Results: Based on independent prognostic membrane genes, we constructed a regression model for CN-AML prognosis prediction: score = (0.0492 * CD52) - (0.0018 * CD96) + (0.0131 * EMP1) + (0.2058 * TSPAN2) + (0.0234 * STAB1) - (0.3658 * MBTPS1), which was named as MPG6 (6-Membrane Protein Gene) score. Tested in multiple CN-AML datasets, consistent results showed that CN-AML patients with high MPG6 score had poor survival, higher WBC count and shorter EFS. Comparing with other reported scoring models, the benchmark result of MPG6 achieved better association with survival in multiple cohorts. Moreover, by combining with other clinical indicators in CN-AML, MPG6 could improve the performance of survival prediction and serve as a robust prognostic factor. Conclusions: We identified the MPG6 score as a stable indicator with great potential for clinical application in risk stratification and outcome prediction in CN-AML.
Collapse
Affiliation(s)
- Sheng-Yan Lin
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ya-Ru Miao
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fei-Fei Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
23
|
Lin SY, Hu FF, Miao YR, Hu H, Lei Q, Zhang Q, Li Q, Wang H, Chen Z, Guo AY. Identification of STAB1 in Multiple Datasets as a Prognostic Factor for Cytogenetically Normal AML: Mechanism and Drug Indications. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:476-484. [PMID: 31670197 PMCID: PMC6831857 DOI: 10.1016/j.omtn.2019.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/23/2023]
Abstract
Cytogenetically normal acute myeloid leukemia (CN-AML) presents with diverse outcomes in different patients and is categorized as an intermediate prognosis group. It is important to identify prognostic factors for CN-AML risk stratification. In this study, using the TCGA CN-AML dataset, we found that the scavenger receptor stabilin-1 (STAB1) is a prognostic factor for poor outcomes and validated it in three other independent CN-AML datasets. The high STAB1 expression (STAB1high) group had shorter event-free survival compared with the low STAB1 expression (STAB1low) group in both the TCGA dataset (n = 79; p = 0.0478) and GEO: GSE6891 dataset (n = 187; p = 0.0354). Differential expression analysis between the STAB1high and STAB1low groups revealed that upregulated genes in the STAB1high group were enriched in pathways related to cell adhesion and migration and immune responses. We confirmed that STAB1 suppression inhibits cell growth in KG1a and NB4 leukemia cells. Expression correlation analyses between STAB1 and cancer drug targets suggested that patients in the STAB1low group are more sensitive to the BCL2 inhibitor venetoclax, and we confirmed it in cell lines. In conclusion, we identified STAB1 as a prognostic factor for CN-AML in multiple datasets, explored its underlying mechanism, and provided potential therapeutic indications.
Collapse
Affiliation(s)
- Sheng-Yan Lin
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei-Fei Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya-Ru Miao
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Hu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Lei
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
24
|
Thoms JAI, Beck D, Pimanda JE. Transcriptional networks in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:859-874. [PMID: 31369171 DOI: 10.1002/gcc.22794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease characterized by a diverse range of recurrent molecular aberrations that occur in many different combinations. Components of transcriptional networks are a common target of these aberrations, leading to network-wide changes and deployment of novel or developmentally inappropriate transcriptional programs. Genome-wide techniques are beginning to reveal the full complexity of normal hematopoietic stem cell transcriptional networks and the extent to which they are deregulated in AML, and new understandings of the mechanisms by which AML cells maintain self-renewal and block differentiation are starting to emerge. The hope is that increased understanding of the network architecture in AML will lead to identification of key oncogenic dependencies that are downstream of multiple network aberrations, and that this knowledge will be translated into new therapies that target these dependencies. Here, we review the current state of knowledge of network perturbation in AML with a focus on major mechanisms of transcription factor dysregulation, including mutation, translocation, and transcriptional dysregulation, and discuss how these perturbations propagate across transcriptional networks. We will also review emerging mechanisms of network disruption, and briefly discuss how increased knowledge of network disruption is already being used to develop new therapies.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Dominik Beck
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Not Only Mutations Matter: Molecular Picture of Acute Myeloid Leukemia Emerging from Transcriptome Studies. JOURNAL OF ONCOLOGY 2019; 2019:7239206. [PMID: 31467542 PMCID: PMC6699387 DOI: 10.1155/2019/7239206] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
The last two decades of genome-scale research revealed a complex molecular picture of acute myeloid leukemia (AML). On the one hand, a number of mutations were discovered and associated with AML diagnosis and prognosis; some of them were introduced into diagnostic tests. On the other hand, transcriptome studies, which preceded AML exome and genome sequencing, remained poorly translated into clinics. Nevertheless, gene expression studies significantly contributed to the elucidation of AML pathogenesis and indicated potential therapeutic directions. The power of transcriptomic approach lies in its comprehensiveness; we can observe how genome manifests its function in a particular type of cells and follow many genes in one test. Moreover, gene expression measurement can be combined with mutation detection, as high-impact mutations are often present in transcripts. This review sums up 20 years of transcriptome research devoted to AML. Gene expression profiling (GEP) revealed signatures distinctive for selected AML subtypes and uncovered the additional within-subtype heterogeneity. The results were particularly valuable in the case of AML with normal karyotype which concerns up to 50% of AML cases. With the use of GEP, new classes of the disease were identified and prognostic predictors were proposed. A plenty of genes were detected as overexpressed in AML when compared to healthy control, including KIT, BAALC, ERG, MN1, CDX2, WT1, PRAME, and HOX genes. High expression of these genes constitutes usually an unfavorable prognostic factor. Upregulation of FLT3 and NPM1 genes, independent on their mutation status, was also reported in AML and correlated with poor outcome. However, transcriptome is not limited to the protein-coding genes; other types of RNA molecules exist in a cell and regulate genome function. It was shown that microRNA (miRNA) profiles differentiated AML groups and predicted outcome not worse than protein-coding gene profiles. For example, upregulation of miR-10a, miR-10b, and miR-196b and downregulation of miR-192 were found as typical of AML with NPM1 mutation whereas overexpression of miR-155 was associated with FLT3-internal tandem duplication (FLT3-ITD). Development of high-throughput technologies and microarray replacement by next generation sequencing (RNA-seq) enabled uncovering a real variety of leukemic cell transcriptomes, reflected by gene fusions, chimeric RNAs, alternatively spliced transcripts, miRNAs, piRNAs, long noncoding RNAs (lncRNAs), and their special type, circular RNAs. Many of them can be considered as AML biomarkers and potential therapeutic targets. The relations between particular RNA puzzles and other components of leukemic cells and their microenvironment, such as exosomes, are now under investigation. Hopefully, the results of this research will shed the light on these aspects of AML pathogenesis which are still not completely understood.
Collapse
|
26
|
Combining gene mutation with gene expression analysis improves outcome prediction in acute promyelocytic leukemia. Blood 2019; 134:951-959. [PMID: 31292112 DOI: 10.1182/blood.2019000239] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
By combining the analysis of mutations with aberrant expression of genes previously related to poorer prognosis in both acute promyelocytic leukemia (APL) and acute myeloid leukemia, we arrived at an integrative score in APL (ISAPL) and demonstrated its relationship with clinical outcomes of patients treated with all-trans retinoic acid (ATRA) in combination with anthracycline-based chemotherapy. Based on fms-like tyrosine kinase-3-internal tandem duplication mutational status; the ΔNp73/TAp73 expression ratio; and ID1, BAALC, ERG, and KMT2E gene expression levels, we modeled ISAPL in 159 patients (median ISAPL score, 3; range, 0-10). ISAPL modeling identified 2 distinct groups of patients, with significant differences in early mortality (P < .001), remission (P = .004), overall survival (P < .001), cumulative incidence of relapse (P = .028), disease-free survival (P = .03), and event-free survival (P < .001). These data were internally validated by using a bootstrap resampling procedure. At least for patients treated with ATRA and anthracycline-based chemotherapy, ISAPL modeling may identify those who need to be treated differently to maximize their chances for a cure.
Collapse
|
27
|
Papaioannou D, Nicolet D, Ozer HG, Mrózek K, Volinia S, Fadda P, Carroll AJ, Kohlschmidt J, Kolitz JE, Wang ES, Stone RM, Byrd JC, Garzon R, Bloomfield CD. Prognostic and Biologic Relevance of Clinically Applicable Long Noncoding RNA Profiling in Older Patients with Cytogenetically Normal Acute Myeloid Leukemia. Mol Cancer Ther 2019; 18:1451-1459. [PMID: 31164409 DOI: 10.1158/1535-7163.mct-18-1125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/29/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023]
Abstract
We have previously shown that expression levels of 48 long noncoding RNAs (lncRNA) can generate a prognostic lncRNA score that independently associates with outcome of older patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the techniques used to identify and measure prognostic lncRNAs (i.e., RNA sequencing and microarrays) are not tailored for clinical testing. Herein, we report on an assay (based on the nCounter platform) that is designed to produce targeted measurements of prognostic lncRNAs in a clinically applicable manner. We analyzed a new cohort of 76 older patients with CN-AML and found that the nCounter assay yielded reproducible measurements and that the lncRNA score retained its prognostic value; patients with high lncRNA scores had lower complete remission (CR) rates (P = 0.009; 58% vs. 87%), shorter disease-free (P = 0.05; 3-year rates: 0% vs. 21%), overall (OS; P = 0.02, 3-year rates: 10% vs. 29%), and event-free survival (EFS; P = 0.002, 3-year rates: 0% vs. 18%) than patients with low lncRNA scores. In multivariable analyses, the lncRNA score independently associated with CR rates (P = 0.02), OS (P = 0.02), and EFS (P = 0.02). To gain biological insights, we examined our initial cohort of 71 older patients with CN-AML, previously analyzed with RNA sequencing. Genes involved in immune response and B-cell receptor signaling were enriched in patients with high lncRNA scores. We conclude that clinically applicable lncRNA profiling is feasible and potentially useful for risk stratification of older patients with CN-AML. Furthermore, we identify potentially targetable molecular pathways that are active in the high-risk patients with high lncRNA scores.
Collapse
Affiliation(s)
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Alliance Statistics and Data Center, The Ohio State University, Columbus, Ohio
| | - Hatice G Ozer
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Alliance Statistics and Data Center, The Ohio State University, Columbus, Ohio
| | - Jonathan E Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, New York
| | - Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Richard M Stone
- Dana-Farber/Partners Cancer Care, Harvard University, Boston, Massachusetts
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | |
Collapse
|
28
|
Li Y, Shao H, Da Z, Pan J, Fu B. High expression of SLC38A1 predicts poor prognosis in patients with de novo acute myeloid leukemia. J Cell Physiol 2019; 234:20322-20328. [PMID: 31344987 DOI: 10.1002/jcp.28632] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Yan Li
- Department of Hematology Xiangya Hospital Central South University Changsha P.R. China
| | - Haigang Shao
- Department of Hematology The Third Xiangya Hospital of the Central South University Changsha P.R. China
| | - Zhenzhen Da
- Department of Hematology Xiangya Hospital Central South University Changsha P.R. China
| | - Jinlan Pan
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Jiangsu Institute of Hematology The First Affiliated Hospital of Soochow University Suzhou P.R. China
| | - Bin Fu
- Department of Hematology Xiangya Hospital Central South University Changsha P.R. China
| |
Collapse
|
29
|
Hsing M, Wang Y, Rennie PS, Cox ME, Cherkasov A. ETS transcription factors as emerging drug targets in cancer. Med Res Rev 2019; 40:413-430. [PMID: 30927317 DOI: 10.1002/med.21575] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which have been implicated in development and progression of a variety of cancers. While one family member, ERG, has been rigorously studied in the context of prostate cancer where it plays a critical role, other ETS factors keep emerging as potential hallmark oncodrivers. In recent years, numerous studies have reported initial discoveries of small molecule inhibitors of ETS proteins and opened novel avenues for ETS-directed cancer therapies. This review summarizes the state of the art data on therapeutic targeting of ETS family members and highlights the corresponding drug discovery strategies.
Collapse
Affiliation(s)
- Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Ibáñez M, Carbonell-Caballero J, Such E, García-Alonso L, Liquori A, López-Pavía M, Llop M, Alonso C, Barragán E, Gómez-Seguí I, Neef A, Hervás D, Montesinos P, Sanz G, Sanz MA, Dopazo J, Cervera J. The modular network structure of the mutational landscape of Acute Myeloid Leukemia. PLoS One 2018; 13:e0202926. [PMID: 30303964 PMCID: PMC6179200 DOI: 10.1371/journal.pone.0202926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is associated with the sequential accumulation of acquired genetic alterations. Although at diagnosis cytogenetic alterations are frequent in AML, roughly 50% of patients present an apparently normal karyotype (NK), leading to a highly heterogeneous prognosis. Due to this significant heterogeneity, it has been suggested that different molecular mechanisms may trigger the disease with diverse prognostic implications. We performed whole-exome sequencing (WES) of tumor-normal matched samples of de novo AML-NK patients lacking mutations in NPM1, CEBPA or FLT3-ITD to identify new gene mutations with potential prognostic and therapeutic relevance to patients with AML. Novel candidate-genes, together with others previously described, were targeted resequenced in an independent cohort of 100 de novo AML patients classified in the cytogenetic intermediate-risk (IR) category. A mean of 4.89 mutations per sample were detected in 73 genes, 35 of which were mutated in more than one patient. After a network enrichment analysis, we defined a single in silico model and established a set of seed-genes that may trigger leukemogenesis in patients with normal karyotype. The high heterogeneity of gene mutations observed in AML patients suggested that a specific alteration could not be as essential as the interaction of deregulated pathways.
Collapse
Affiliation(s)
- Mariam Ibáñez
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Departamento de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - José Carbonell-Caballero
- ProCURE, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Esperanza Such
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Luz García-Alonso
- European Molecular Biology Laboratory—European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Alessandro Liquori
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - María López-Pavía
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Marta Llop
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Department of Medical Pathology, Hospital Universitario La Fe, Valencia, Spain
| | - Carmen Alonso
- Hematology Service, Hospital Arnau de Villanoba, Valencia, Spain
| | - Eva Barragán
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Department of Medical Pathology, Hospital Universitario La Fe, Valencia, Spain
| | - Inés Gómez-Seguí
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Alexander Neef
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Pau Montesinos
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Guillermo Sanz
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Miguel Angel Sanz
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
| | - Joaquín Dopazo
- Functional Genomics Node, Spanish National Institute of Bioinformatics at CIPF, Valencia, Spain
- Bioinformatics of Rare Diseases (BIER), CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla, Spain
- * E-mail: (JC); (JD)
| | - José Cervera
- Hematology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigacion Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, Madrid, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- * E-mail: (JC); (JD)
| |
Collapse
|
31
|
High ETS2 expression predicts poor prognosis in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Ann Hematol 2018; 98:519-525. [PMID: 30022221 DOI: 10.1007/s00277-018-3440-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
|
32
|
Khatami M. Cancer; an induced disease of twentieth century! Induction of tolerance, increased entropy and 'Dark Energy': loss of biorhythms (Anabolism v. Catabolism). Clin Transl Med 2018; 7:20. [PMID: 29961900 PMCID: PMC6026585 DOI: 10.1186/s40169-018-0193-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of health involves a synchronized network of catabolic and anabolic signals among organs/tissues/cells that requires differential bioenergetics from mitochondria and glycolysis (biological laws or biorhythms). We defined biological circadian rhythms as Yin (tumoricidal) and Yang (tumorigenic) arms of acute inflammation (effective immunity) involving immune and non-immune systems. Role of pathogens in altering immunity and inducing diseases and cancer has been documented for over a century. However, in 1955s decision makers in cancer/medical establishment allowed public (current baby boomers) to consume million doses of virus-contaminated polio vaccines. The risk of cancer incidence and mortality sharply rose from 5% (rate of hereditary/genetic or innate disease) in 1900s, to its current scary status of 33% or 50% among women and men, respectively. Despite better hygiene, modern detection technologies and discovery of antibiotics, baby boomers and subsequent 2-3 generations are sicker than previous generations at same age. American health status ranks last among other developed nations while America invests highest amount of resources for healthcare. In this perspective we present evidence that cancer is an induced disease of twentieth century, facilitated by a great deception of cancer/medical establishment for huge corporate profits. Unlike popularized opinions that cancer is 100, 200 or 1000 diseases, we demonstrate that cancer is only one disease; the severe disturbances in biorhythms (differential bioenergetics) or loss of balance in Yin and Yang of effective immunity. Cancer projects that are promoted and funded by decision makers are reductionist approaches, wrong and unethical and resulted in loss of millions of precious lives and financial toxicity to society. Public vaccination with pathogen-specific vaccines (e.g., flu, hepatitis, HPV, meningitis, measles) weakens, not promotes, immunity. Results of irresponsible projects on cancer sciences or vaccines are increased population of drug-dependent sick society. Outcome failure rates of claimed 'targeted' drugs, 'precision' or 'personalized' medicine are 90% (± 5) for solid tumors. We demonstrate that aging, frequent exposures to environmental hazards, infections and pathogen-specific vaccines and ingredients are 'antigen overload' for immune system, skewing the Yin and Yang response profiles and leading to induction of 'mild', 'moderate' or 'severe' immune disorders. Induction of decoy or pattern recognition receptors (e.g., PRRs), such as IRAK-M or IL-1dRs ('designer' molecules) and associated genomic instability and over-expression of growth promoting factors (e.g., pyruvate kinases, mTOR and PI3Ks, histamine, PGE2, VEGF) could lead to immune tolerance, facilitating cancer cells to hijack anabolic machinery of immunity (Yang) for their increased growth requirements. Expression of constituent embryonic factors would negatively regulate differentiation of tumor cells through epithelial-mesenchymal-transition and create "dual negative feedback loop" that influence tissue metabolism under hypoxic conditions. It is further hypothesized that induction of tolerance creates 'dark energy' and increased entropy and temperature in cancer microenvironment allowing disorderly cancer proliferation and mitosis along with increased glucose metabolism via Crabtree and Pasteur Effects, under mitophagy and ribophagy, conditions that are toxic to host survival. Effective translational medicine into treatment requires systematic and logical studies of complex interactions of tumor cells with host environment that dictate clinical outcomes. Promoting effective immunity (biological circadian rhythms) are fundamental steps in correcting host differential bioenergetics and controlling cancer growth, preventing or delaying onset of diseases and maintaining public health. The author urges independent professionals and policy makers to take a closer look at cancer dilemma and stop the 'scientific/medical ponzi schemes' of a powerful group that control a drug-dependent sick society before all hopes for promoting public health evaporate.
Collapse
Affiliation(s)
- Mahin Khatami
- Inflammation, Aging and Cancer, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
33
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
34
|
Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, Knights AJ, Pardo M, Yu L, Choudhary JS, Metzakopian E, Iyer V, Yun H, Park N, Varela I, Bautista R, Collord G, Dovey O, Garyfallos DA, De Braekeleer E, Kondo S, Cooper J, Göttgens B, Bullinger L, Northcott PA, Adams D, Vassiliou GS, Huntly BJP. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. Nat Genet 2018; 50:883-894. [PMID: 29736013 PMCID: PMC6029661 DOI: 10.1038/s41588-018-0114-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 01/22/2023]
Abstract
The histone H3 Lys27-specific demethylase UTX (or KDM6A) is targeted by loss-of-function mutations in multiple cancers. Here, we demonstrate that UTX suppresses myeloid leukemogenesis through noncatalytic functions, a property shared with its catalytically inactive Y-chromosome paralog, UTY (or KDM6C). In keeping with this, we demonstrate concomitant loss/mutation of KDM6A (UTX) and UTY in multiple human cancers. Mechanistically, global genomic profiling showed only minor changes in H3K27me3 but significant and bidirectional alterations in H3K27ac and chromatin accessibility; a predominant loss of H3K4me1 modifications; alterations in ETS and GATA-factor binding; and altered gene expression after Utx loss. By integrating proteomic and genomic analyses, we link these changes to UTX regulation of ATP-dependent chromatin remodeling, coordination of the COMPASS complex and enhanced pioneering activity of ETS factors during evolution to AML. Collectively, our findings identify a dual role for UTX in suppressing acute myeloid leukemia via repression of oncogenic ETS and upregulation of tumor-suppressive GATA programs.
Collapse
Affiliation(s)
- Malgorzata Gozdecka
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Eshwar Meduri
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Milena Mazan
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | | | - Monika Dudek
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Andrew J Knights
- Genomics of Gene Regulation, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Vivek Iyer
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Haiyang Yun
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Naomi Park
- Sequencing Research Group, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-Sodercan), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Ruben Bautista
- New Pipeline Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Grace Collord
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Oliver Dovey
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | - Saki Kondo
- Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jonathan Cooper
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Berthold Göttgens
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council, Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lars Bullinger
- Department of Internal Medicine III, Ulm University Medical Centre, Ulm, Germany
- Medical Department, Division of Hematology, Oncology and Tumour Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Paul A Northcott
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - George S Vassiliou
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK.
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK.
| | - Brian J P Huntly
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research and Wellcome Trust-Medical Research Council, Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK.
| |
Collapse
|
35
|
Fang JF, Yuan HN, Song YF, Sun PB, Zheng XL, Wang XJ. E-26 Transformation-specific Related Gene Expression and Outcomes in Cytogenetically Normal Acute Myeloid Leukemia: A Meta-analysis. Chin Med J (Engl) 2018; 130:1481-1490. [PMID: 28584213 PMCID: PMC5463480 DOI: 10.4103/0366-6999.207474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: The E-26 transformation-specific related gene (ERG) is frequently expressed in cytogenetically normal acute myeloid leukemia (CN-AML). Herein, we performed a meta-analysis to investigate the relationship between the prognostic significance of ERG expression and CN-AML. Methods: A systematic review of PubMed database and other search engines were used to identify the studies between January 2005 and November 2016. A total of 667 CN-AML patients were collected from seven published studies. Of the 667 patients underwent intensive chemotherapy, 429 had low expression of ERG and 238 had high expression of ERG. Summary odds ratio (OR) and the 95% confidence interval (CI) for the ERG expression and CN-AML were calculated using fixed- or random-effects models. Heterogeneity was assessed using Chi-squared-based Q-statistic test and I2 statistics. All statistical analyses were performed using R.3.3.1 software packages (R Foundation for Statistical Computing, Vienna, Austria) and RevMan5.3 (Cochrane Collaboration, Copenhagen, Denmark). Results: Overall, patients with high ERG expression had a worse relapse (OR = 2.5127, 95% CI: 1.5177–4.1601, P = 0.0003) and lower complete remission (OR = 0. 3495, 95% CI: 0.2418–0.5051, P < 0.0001). With regard to the known molecular markers, both internal tandem duplications of the fms-related tyrosine kinase 3 gene (OR = 3.8634, 95% CI: 1.8285–8.1626, P = 0.004) and brain and acute leukemia, cytoplasmic (OR = 3.1538, 95% CI: 2.0537–4.8432, P < 0.0001) were associated with the ERG expression. In addition, the results showed a statistical significance between French-American-British (FAB) classification subtype (minimally differentiated AML and AML without maturation, OR = 4.7902, 95% CI: 2.7772–8.2624, P < 0.0001; acute monocytic leukemia, OR = 0.2324, 95% CI: 0.0899–0.6006, P = 0.0026) and ERG expression. Conclusion: High ERG expression might be used as a strong adverse prognostic factor in CN-AML.
Collapse
Affiliation(s)
- Jian-Fei Fang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013; Institute of Lung Cancer, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Hai-Ning Yuan
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Yong-Fei Song
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Pei-Bei Sun
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Xiao-Liang Zheng
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Xiao-Ju Wang
- Center for Molecular Medicine, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013; Institute of Lung Cancer, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| |
Collapse
|
36
|
Steeghs EMP, Bakker M, Hoogkamer AQ, Boer JM, Hartman QJ, Stalpers F, Escherich G, de Haas V, de Groot-Kruseman HA, Pieters R, den Boer ML. High STAP1 expression in DUX4-rearranged cases is not suitable as therapeutic target in pediatric B-cell precursor acute lymphoblastic leukemia. Sci Rep 2018; 8:693. [PMID: 29330417 PMCID: PMC5766593 DOI: 10.1038/s41598-017-17704-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Approximately 25% of the pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cases are genetically unclassified. More thorough elucidation of the pathobiology of these genetically unclassified (‘B-other’) cases may identify novel treatment options. We analyzed gene expression profiles of 572 pediatric BCP-ALL cases, representing all major ALL subtypes. High expression of STAP1, an adaptor protein downstream of the B-cell receptor (BCR), was identified in BCR-ABL1-like and non-BCR-ABL1-like B-other cases. Limma analysis revealed an association between high expression of STAP1 and BCR signaling genes. However, STAP1 expression and pre-BCR signaling were not causally related: cytoplasmic Igμ levels were not abnormal in cases with high levels of STAP1 and stimulation of pre-BCR signaling did not induce STAP1 expression. To elucidate the role of STAP1 in BCP-ALL survival, expression was silenced in two human BCP-ALL cell lines. Knockdown of STAP1 did not reduce the proliferation rate or viability of these cells, suggesting that STAP1 is not a likely candidate for precision medicines. Moreover, high expression of STAP1 was not predictive for an unfavorable prognosis of BCR-ABL1-like and non-BCR-ABL1-like B-other cases. Remarkably, DUX4-rearrangements and intragenic ERG deletions, were enriched in cases harboring high expression of STAP1.
Collapse
Affiliation(s)
- Elisabeth M P Steeghs
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marjolein Bakker
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Alex Q Hoogkamer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Judith M Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Quirine J Hartman
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Femke Stalpers
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Gabriele Escherich
- COALL - German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia, University Medical Centre Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Valerie de Haas
- DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | | | - Rob Pieters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands
| | - Monique L den Boer
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands. .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands. .,DCOG, Dutch Childhood Oncology Group, The Hague, The Netherlands.
| |
Collapse
|
37
|
McKeown MR, Corces MR, Eaton ML, Fiore C, Lee E, Lopez JT, Chen MW, Smith D, Chan SM, Koenig JL, Austgen K, Guenther MG, Orlando DA, Lovén J, Fritz CC, Majeti R. Superenhancer Analysis Defines Novel Epigenomic Subtypes of Non-APL AML, Including an RARα Dependency Targetable by SY-1425, a Potent and Selective RARα Agonist. Cancer Discov 2017; 7:1136-1153. [PMID: 28729405 PMCID: PMC5962349 DOI: 10.1158/2159-8290.cd-17-0399] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023]
Abstract
We characterized the enhancer landscape of 66 patients with acute myeloid leukemia (AML), identifying 6 novel subgroups and their associated regulatory loci. These subgroups are defined by their superenhancer (SE) maps, orthogonal to somatic mutations, and are associated with distinct leukemic cell states. Examination of transcriptional drivers for these epigenomic subtypes uncovers a subset of patients with a particularly strong SE at the retinoic acid receptor alpha (RARA) gene locus. The presence of a RARA SE and concomitant high levels of RARA mRNA predisposes cell lines and ex vivo models to exquisite sensitivity to a selective agonist of RARα, SY-1425 (tamibarotene). Furthermore, only AML patient-derived xenograft (PDX) models with high RARA mRNA were found to respond to SY-1425. Mechanistically, we show that the response to SY-1425 in RARA-high AML cells is similar to that of acute promyelocytic leukemia treated with retinoids, characterized by the induction of known retinoic acid response genes, increased differentiation, and loss of proliferation.Significance: We use the SE landscape of primary human AML to elucidate transcriptional circuitry and identify novel cancer vulnerabilities. A subset of patients were found to have an SE at RARA, which is predictive for response to SY-1425, a potent and selective RARα agonist, in preclinical models, forming the rationale for its clinical investigation in biomarker-selected patients. Cancer Discov; 7(10); 1136-53. ©2017 AACR.See related commentary by Wang and Aifantis, p. 1065.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
| | - M Ryan Corces
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center Stanford University School of Medicine, Stanford, California
| | | | - Chris Fiore
- Syros Pharmaceuticals, Cambridge, Massachusetts
| | - Emily Lee
- Syros Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie L Koenig
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center Stanford University School of Medicine, Stanford, California
| | | | | | | | - Jakob Lovén
- Syros Pharmaceuticals, Cambridge, Massachusetts
| | | | - Ravindra Majeti
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center Stanford University School of Medicine, Stanford, California.
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
38
|
Pozzo AR, Faria FCCD, Carvalho LOD, Pinho MBD, Maia RC. DNA microarray expression profiling of a new t(8;13) AML case allows identification of possible leukemogenic transformation markers. Rev Bras Hematol Hemoter 2017; 39:368-371. [PMID: 29150113 PMCID: PMC5693272 DOI: 10.1016/j.bjhh.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/10/2022] Open
|
39
|
Fu L, Fu H, Wu Q, Pang Y, Xu K, Zhou L, Qiao J, Ke X, Xu K, Shi J. High expression of ETS2 predicts poor prognosis in acute myeloid leukemia and may guide treatment decisions. J Transl Med 2017; 15:159. [PMID: 28724426 PMCID: PMC5518161 DOI: 10.1186/s12967-017-1260-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022] Open
Abstract
Background ETS2 is a downstream effector of the RAS/RAF/ERK pathway, which plays a critical role in the development of malignant tumor. However, the clinical impact of ETS2 expression in AML remains unknown. Methods In this study, we evaluated the prognostic significance of ETS2 expression using two relatively large cohorts of AML patients. Results In the first cohort, compared to low expression of ETS2 (ETS2low), high expression of ETS2 (ETS2high) showed significant shorter OS, EFS and RFS in the current treatments including the allogeneic HCT group (n = 72) and the chemotherapy group (n = 100). Notably, among ETS2high patients, those received allogeneic HCT had longer OS, EFS and RFS than those with chemotherapy alone (allogeneic HCT, n = 39 vs. chemotherapy, n = 47), but treatment modules play insignificant role in the survival of ETS2low patients (allogeneic HCT, n = 33 vs. chemotherapy, n = 53). Moreover, gene/microRNA expression data provides insights into the biological changes associated with varying ETS2 expression levels in AML. The prognostic value of ETS2 was further validated in the second AML cohort (n = 329). Conclusions Our results indicate that ETS2high is a poor prognostic factor in AML and may guide treatment decisions towards allogeneic HCT. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1260-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Huaping Fu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Yifan Pang
- Department of Medicine, Wil-liam Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Keman Xu
- Northeastern University, Boston, MA, 02115, USA
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianlin Qiao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jinlong Shi
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China. .,Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China. .,Department of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
40
|
Papaioannou D, Nicolet D, Volinia S, Mrózek K, Yan P, Bundschuh R, Carroll AJ, Kohlschmidt J, Blum W, Powell BL, Uy GL, Kolitz JE, Wang ES, Eisfeld AK, Orwick SJ, Lucas DM, Caligiuri MA, Stone RM, Byrd JC, Garzon R, Bloomfield CD. Prognostic and biologic significance of long non-coding RNA profiling in younger adults with cytogenetically normal acute myeloid leukemia. Haematologica 2017; 102:1391-1400. [PMID: 28473620 PMCID: PMC5541873 DOI: 10.3324/haematol.2017.166215] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Long non-coding ribonucleic acids (RNAs) are a novel class of RNA molecules, which are increasingly recognized as important molecular players in solid and hematologic malignancies. Herein we investigated whether long non-coding RNA expression is associated with clinical and molecular features, as well as outcome of younger adults (aged <60 years) with de novo cytogenetically normal acute myeloid leukemia. Whole transcriptome profiling was performed in a training (n=263) and a validation set (n=114). Using the training set, we identified 24 long non-coding RNAs associated with event-free survival. Linear combination of the weighted expression values of these transcripts yielded a prognostic score. In the validation set, patients with high scores had shorter disease-free (P<0.001), overall (P=0.002) and event-free survival (P<0.001) than patients with low scores. In multivariable analyses, long non-coding RNA score status was an independent prognostic marker for disease-free (P=0.01) and event-free survival (P=0.002), and showed a trend for overall survival (P=0.06). Among multiple molecular alterations tested, which are prognostic in cytogenetically normal acute myeloid leukemia, only double CEBPA mutations, NPM1 mutations and FLT3-ITD associated with distinct long non-coding RNA signatures. Correlation of the long non-coding RNA scores with messenger RNA and microRNA expression identified enrichment of genes involved in lymphocyte/leukocyte activation, inflammation and apoptosis in patients with high scores. We conclude that long non-coding RNA profiling provides meaningful prognostic information in younger adults with cytogenetically normal acute myeloid leukemia. In addition, expression of prognostic long non-coding RNAs associates with oncogenic molecular pathways in this disease. clinicaltrials.gov Identifier: 00048958 (CALGB-8461), 00899223 (CALGB-9665), and 00900224 (CALGB-20202).
Collapse
Affiliation(s)
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,The Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Pearlly Yan
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ralf Bundschuh
- Department of Physics, Department of Chemistry & Biochemistry, Division of Hematology, Department of Internal Medicine, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, AL, USA
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,The Alliance for Clinical Trials in Oncology Statistics and Data Center, Mayo Clinic, Rochester, MN, USA
| | - William Blum
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Bayard L Powell
- The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, USA
| | - Geoffrey L Uy
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan E Kolitz
- Hofstra North Shore-Long Island Jewish School of Medicine, Lake Success, NY, USA
| | | | | | - Shelley J Orwick
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - David M Lucas
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Richard M Stone
- Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | - John C Byrd
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ramiro Garzon
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Clara D Bloomfield
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
41
|
Thirant C, Ignacimouttou C, Lopez CK, Diop M, Le Mouël L, Thiollier C, Siret A, Dessen P, Aid Z, Rivière J, Rameau P, Lefebvre C, Khaled M, Leverger G, Ballerini P, Petit A, Raslova H, Carmichael CL, Kile BT, Soler E, Crispino JD, Wichmann C, Pflumio F, Schwaller J, Vainchenker W, Lobry C, Droin N, Bernard OA, Malinge S, Mercher T. ETO2-GLIS2 Hijacks Transcriptional Complexes to Drive Cellular Identity and Self-Renewal in Pediatric Acute Megakaryoblastic Leukemia. Cancer Cell 2017; 31:452-465. [PMID: 28292442 DOI: 10.1016/j.ccell.2017.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/22/2016] [Accepted: 02/09/2017] [Indexed: 12/17/2022]
Abstract
Chimeric transcription factors are a hallmark of human leukemia, but the molecular mechanisms by which they block differentiation and promote aberrant self-renewal remain unclear. Here, we demonstrate that the ETO2-GLIS2 fusion oncoprotein, which is found in aggressive acute megakaryoblastic leukemia, confers megakaryocytic identity via the GLIS2 moiety while both ETO2 and GLIS2 domains are required to drive increased self-renewal properties. ETO2-GLIS2 directly binds DNA to control transcription of associated genes by upregulation of expression and interaction with the ETS-related ERG protein at enhancer elements. Importantly, specific interference with ETO2-GLIS2 oligomerization reverses the transcriptional activation at enhancers and promotes megakaryocytic differentiation, providing a relevant interface to target in this poor-prognosis pediatric leukemia.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Cathy Ignacimouttou
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | | | - Lou Le Mouël
- Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Clarisse Thiollier
- Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Aurélie Siret
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Phillipe Dessen
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Zakia Aid
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Julie Rivière
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | | | | | | | | | | | | | - Hana Raslova
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | | | - Benjamin T Kile
- Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Eric Soler
- INSERM UMR967, 92265 Fontenay-aux-Roses, France
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | | | - Jürg Schwaller
- University Children's Hospital Beider Basel (UKBB), Departement of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - William Vainchenker
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Camille Lobry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Nathalie Droin
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; INSERM U523, CNRS UMS3655, Gustave Roussy, 94800 Villejuif, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France; Université Paris-Sud, 91405 Orsay, France.
| |
Collapse
|
42
|
Zhao HZ, Jia M, Luo ZB, Xu XJ, Li SS, Zhang JY, Guo XP, Tang YM. ETS-related gene is a novel prognostic factor in childhood acute lymphoblastic leukemia. Oncol Lett 2017; 13:455-462. [PMID: 28123582 DOI: 10.3892/ol.2016.5397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/24/2016] [Indexed: 11/05/2022] Open
Abstract
The ETS-related gene (ERG) has been demonstrated to be associated with overall survival in cytogenetically normal acute myeloid leukemia and acute T cell-lymphoblastic leukemia (T-ALL) in adult patients. However, there are no data available regarding the impact of ERG expression on childhood ALL. In the present study, ERG expression levels were analyzed in bone marrow samples from 119 ALL pediatric patients. ALL patients demonstrated higher ERG expression compared with the controls (P<0.0001). In addition, low ERG expression identified a group of patients with higher white blood cell counts (P=0.011), higher percentages of T-ALL immunophenotype (P=0.027), and higher relapse rates (P=0.009). Survival analyses demonstrated that low ERG expression was associated with inferior relapse-free survival (RFS) in childhood ALL (P=0.036) and was an independent prognostic factor in multivariable analyses for RFS. In conclusion, low ERG expression is associated with poor outcomes and may be used to serve as a molecular prognostic marker to identify patients with a high risk of relapse in childhood ALL.
Collapse
Affiliation(s)
- Hai-Zhao Zhao
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming Jia
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| | - Ze-Bin Luo
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao-Jun Xu
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| | - Si-Si Li
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing-Ying Zhang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao-Ping Guo
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| | - Yong-Min Tang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Zhejiang University, Ministry of Education, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
43
|
An mRNA expression signature for prognostication in de novo acute myeloid leukemia patients with normal karyotype. Oncotarget 2016; 6:39098-110. [PMID: 26517675 PMCID: PMC4770759 DOI: 10.18632/oncotarget.5390] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/30/2015] [Indexed: 12/28/2022] Open
Abstract
Although clinical features, cytogenetics, and mutations are widely used to predict prognosis in patients with acute myeloid leukemia (AML), further refinement of risk stratification is necessary for optimal treatment, especially in cytogenetically normal (CN) patients. We sought to generate a simple gene expression signature as a predictor of clinical outcome through analyzing the mRNA arrays of 158 de novo CN AML patients. We compared the gene expression profiles of patients with poor response to induction chemotherapy with those who responded well. Forty-six genes expressed differentially between the two groups. Among them, expression of 11 genes was significantly associated with overall survival (OS) in univariate Cox regression analysis in 104 patients who received standard intensive chemotherapy. We integrated the z-transformed expression levels of these 11 genes to generate a risk scoring system. Higher risk scores were significantly associated with shorter OS (median 17.0 months vs. not reached, P < 0.001) in ours and another 3 validation cohorts. In addition, it was an independent unfavorable prognostic factor by multivariate analysis (HR 1.116, 95% CI 1.035~1.204, P = 0.004). In conclusion, we developed a simple mRNA expression signature for prognostication in CN-AML patients. This prognostic biomarker will help refine the treatment strategies for this group of patients.
Collapse
|
44
|
Weber S, Haferlach T, Haferlach C, Kern W. Comprehensive study on ERG gene expression in normal karyotype acute myeloid leukemia: ERG expression is of limited prognostic value, whereas the accumulation of adverse prognostic markers stepwise worsens the prognosis. Blood Cancer J 2016; 6:e507. [PMID: 27935581 PMCID: PMC5223155 DOI: 10.1038/bcj.2016.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- S Weber
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - T Haferlach
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - C Haferlach
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - W Kern
- MLL Munich Leukemia Laboratory, Munich, Germany
| |
Collapse
|
45
|
Sperr WR, Zach O, Pöll I, Herndlhofer S, Knoebl P, Weltermann A, Streubel B, Jaeger U, Kundi M, Valent P. Karyotype plus NPM1 mutation status defines a group of elderly patients with AML (≥60 years) who benefit from intensive post-induction consolidation therapy. Am J Hematol 2016; 91:1239-1245. [PMID: 27643573 DOI: 10.1002/ajh.24560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022]
Abstract
Although it is generally appreciated that a subset of elderly patients with acute myeloid leukemia (AML) may benefit from intensive consolidation, little is known about variables predicting such benefit. We analyzed 192 consecutive patients with de novo AML aged ≥60 years who were treated with intensive chemotherapy. About 115 patients (60%) achieved complete hematologic remission (CR). Among several parameters, the karyotype was the only independent variable predicting CR (P < 0.05). About 92% (105/115) of the CR-patients received up to four consolidation cycles of intermediate dose ARA-C. Median continuous CR (CCR) and disease-free survival (DFS) were 1.3 and 1.1 years, respectively. CCR, DFS, and survival at 5 years were 23%, 18%, and 15%, respectively. Only karyotype and mutated NPM1 (NPM1mut) were independent predictors of survival. NPM1mut showed a particular prognostic impact in patients with normal (CN) or non-monosomal (Mkneg) karyotype by Haemato-Oncology Foundation for Adults in the Netherlands (HOVON)-criteria, or intermediate karyotype by Southwest Oncology Group (SWOG)-criteria. The median CCR was 0.94, 1.6, 0.9, and 0.5 years for core-binding-factor, CN/Mkneg-NPM1mut, CN/Mkneg-NPM1-wild-type AML, and AML with monosomal karyotype, respectively, and the 5-year survival was 25%, 39%, 2%, and 0%, respectively (P < 0.05). Similar results (0.9, 1.5, 0.9, and 0.5 years) were obtained using modified SWOG criteria and NPM1 mutation status (P < 0.05). In summary, elderly patients with CN/Mkneg-NPM1mut or CBF AML can achieve long term CCR when treated with intensive induction and consolidation therapy whereas most elderly patients with CN/Mkneg-NPM1wt or Mkpos AML may not benefit from intensive chemotherapy. For these patients either hematopoietic-stem-cell-transplantation or alternative treatments have to be considered. Am. J. Hematol. 91:1239-1245, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaVienna Austria
- Ludwig Boltzmann Cluster Oncology, Medical University of ViennaVienna Austria
| | - Otto Zach
- Department of Internal Medicine IHospital of the ElisabethinenLinz Austria
| | - Iris Pöll
- Department of Internal Medicine IHospital of the ElisabethinenLinz Austria
| | - Susanne Herndlhofer
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaVienna Austria
- Ludwig Boltzmann Cluster Oncology, Medical University of ViennaVienna Austria
| | - Paul Knoebl
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaVienna Austria
| | - Ansgar Weltermann
- Department of Internal Medicine IHospital of the ElisabethinenLinz Austria
| | - Berthold Streubel
- Department of Obstetrics and GynecologyMedical University of ViennaVienna Austria
| | - Ulrich Jaeger
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaVienna Austria
- Ludwig Boltzmann Cluster Oncology, Medical University of ViennaVienna Austria
| | - Michael Kundi
- Institute of Environmental Health, Medical University of ViennaVienna Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaVienna Austria
- Ludwig Boltzmann Cluster Oncology, Medical University of ViennaVienna Austria
| |
Collapse
|
46
|
Zhang J, McCastlain K, Yoshihara H, Xu B, Chang Y, Churchman ML, Wu G, Li Y, Wei L, Iacobucci I, Liu Y, Qu C, Wen J, Edmonson M, Payne-Turner D, Kaufmann KB, Takayanagi SI, Wienholds E, Waanders E, Ntziachristos P, Bakogianni S, Wang J, Aifantis I, Roberts KG, Ma J, Song G, Easton J, Mulder HL, Chen X, Newman S, Ma X, Rusch M, Gupta P, Boggs K, Vadodaria B, Dalton J, Liu Y, Valentine ML, Ding L, Lu C, Fulton RS, Fulton L, Tabib Y, Ochoa K, Devidas M, Pei D, Cheng C, Yang J, Evans WE, Relling MV, Pui CH, Jeha S, Harvey RC, Chen IML, Willman CL, Marcucci G, Bloomfield CD, Kohlschmidt J, Mrózek K, Paietta E, Tallman MS, Stock W, Foster MC, Racevskis J, Rowe JM, Luger S, Kornblau SM, Shurtleff SA, Raimondi SC, Mardis ER, Wilson RK, Dick JE, Hunger SP, Loh ML, Downing JR, Mullighan CG. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet 2016; 48:1481-1489. [PMID: 27776115 PMCID: PMC5144107 DOI: 10.1038/ng.3691] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
Chromosomal rearrangements deregulating hematopoietic transcription factors are common in acute lymphoblastic leukemia (ALL). Here we show that deregulation of the homeobox transcription factor gene DUX4 and the ETS transcription factor gene ERG is a hallmark of a subtype of B-progenitor ALL that comprises up to 7% of B-ALL. DUX4 rearrangement and overexpression was present in all cases and was accompanied by transcriptional deregulation of ERG, expression of a novel ERG isoform, ERGalt, and frequent ERG deletion. ERGalt uses a non-canonical first exon whose transcription was initiated by DUX4 binding. ERGalt retains the DNA-binding and transactivation domains of ERG, but it inhibits wild-type ERG transcriptional activity and is transforming. These results illustrate a unique paradigm of transcription factor deregulation in leukemia in which DUX4 deregulation results in loss of function of ERG, either by deletion or induced expression of an isoform that is a dominant-negative inhibitor of wild-type ERG function.
Collapse
Affiliation(s)
- Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kelly McCastlain
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Hiroki Yoshihara
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yunchao Chang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Gang Wu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Lei Wei
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yu Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ji Wen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael Edmonson
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Kerstin B. Kaufmann
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Shin-ichiro Takayanagi
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Oncology Research Laboratories, Kyowa Hakko Kirin Co., Ltd., Machida-shi, Tokyo, 194-8533, Japan
| | - Erno Wienholds
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Esmé Waanders
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Human Genetics, Radboud University Medical Center and Radboud Center for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | - Sofia Bakogianni
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Jingjing Wang
- Department of Pathology, New York University School of Medicine, New York, NY
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Kathryn G. Roberts
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Jing Ma
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Guangchun Song
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Heather L. Mulder
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Scott Newman
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kristy Boggs
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Bhavin Vadodaria
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - James Dalton
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yanling Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Marcus L Valentine
- Cytogenetics Core Facility, St. Jude Children’s Research Hospital, Memphis, TN
| | - Li Ding
- McDonnell Genome Institute, Washington University, St Louis, MO
| | - Charles Lu
- McDonnell Genome Institute, Washington University, St Louis, MO
| | | | - Lucinda Fulton
- McDonnell Genome Institute, Washington University, St Louis, MO
| | - Yashodhan Tabib
- McDonnell Genome Institute, Washington University, St Louis, MO
| | - Kerri Ochoa
- McDonnell Genome Institute, Washington University, St Louis, MO
| | - Meenakshi Devidas
- Department of Biostatistics, Colleges of Medicine, Public Health & Health Profession, University of Florida, Gainesville, FL
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Jun Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Richard C. Harvey
- Department of Pathology, The Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - I-Ming L Chen
- Department of Pathology, The Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | - Cheryl L. Willman
- Department of Pathology, The Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM
| | | | | | | | - Krzysztof Mrózek
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | | | | | - Wendy Stock
- University of Chicago Medical Center, Chicago, IL
| | - Matthew C. Foster
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC
| | - Janis Racevskis
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Montefiore Medical Center, New York, NY
| | - Jacob M. Rowe
- Department of Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Selina Luger
- Department of Pediatrics, Benioff Children’s Hospital, University of California at San Francisco, San Francisco, CA
| | - Steven M. Kornblau
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Sheila A Shurtleff
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Susana C. Raimondi
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | - John E. Dick
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stephen P Hunger
- Department of Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital, University of California at San Francisco, San Francisco, CA
| | - James R. Downing
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | |
Collapse
|
47
|
Nibourel O, Guihard S, Roumier C, Pottier N, Terre C, Paquet A, Peyrouze P, Geffroy S, Quentin S, Alberdi A, Abdelali RB, Renneville A, Demay C, Celli-Lebras K, Barbry P, Quesnel B, Castaigne S, Dombret H, Soulier J, Preudhomme C, Cheok MH. Copy-number analysis identified new prognostic marker in acute myeloid leukemia. Leukemia 2016; 31:555-564. [PMID: 27686867 DOI: 10.1038/leu.2016.265] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/08/2023]
Abstract
Recent advances in genomic technologies have revolutionized acute myeloid leukemia (AML) understanding by identifying potential novel actionable genomic alterations. Consequently, current risk stratification at diagnosis not only relies on cytogenetics, but also on the inclusion of several of these abnormalities. Despite this progress, AML remains a heterogeneous and complex malignancy with variable response to current therapy. Although copy-number alterations (CNAs) are accepted prognostic markers in cancers, large-scale genomic studies aiming at identifying specific prognostic CNA-based markers in AML are still lacking. Using 367 AML, we identified four recurrent CNA on chromosomes 11 and 21 that predicted outcome even after adjusting for standard prognostic risk factors and potentially delineated two new subclasses of AML with poor prognosis. ERG amplification, the most frequent CNA, was related to cytarabine resistance, a cornerstone drug of AML therapy. These findings were further validated in The Cancer Genome Atlas data. Our results demonstrate that specific CNA are of independent prognostic relevance, and provide new molecular information into the genomic basis of AML and cytarabine response. Finally, these CNA identified two potential novel risk groups of AML, which when confirmed prospectively, may improve the clinical risk stratification and potentially the AML outcome.
Collapse
Affiliation(s)
- O Nibourel
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - S Guihard
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - C Roumier
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - N Pottier
- CHU Lille University Hospital, Department of Biochemistry and Molecular Biology, Lille, France
| | - C Terre
- Hospital of Versailles, Department of Hematology, Chesnay, France
| | - A Paquet
- University Côte d'Azur, CNRS Institute of Molecular and Cellular Pharmacology, Sophia-Antipolis, Nice, France
| | - P Peyrouze
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - S Geffroy
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - S Quentin
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - A Alberdi
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - R B Abdelali
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - A Renneville
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - C Demay
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - K Celli-Lebras
- University Paris 7, Department of Hematology, Paris, France
| | - P Barbry
- University Côte d'Azur, CNRS Institute of Molecular and Cellular Pharmacology, Sophia-Antipolis, Nice, France
| | - B Quesnel
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| | - S Castaigne
- Hospital of Versailles, Department of Hematology, Chesnay, France
| | - H Dombret
- University Paris 7, Department of Hematology, Paris, France
| | - J Soulier
- University Paris Diderot, INSERM U944 Saint-Louis Hospital, Department of Hematology, Paris, France
| | - C Preudhomme
- CHU Lille University Hospital, Department of Hematology, Lille, France
| | - M H Cheok
- INSERM UMR-S1172, Institute for Cancer Research of Lille, Factors of Leukemia Cell Persistance, Lille Cedex, France
| |
Collapse
|
48
|
Fransecky L, Neumann M, Heesch S, Schlee C, Ortiz-Tanchez J, Heller S, Mossner M, Schwartz S, Mochmann LH, Isaakidis K, Bastian L, Kees UR, Herold T, Spiekermann K, Gökbuget N, Baldus CD. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL. J Hematol Oncol 2016; 9:95. [PMID: 27658391 PMCID: PMC5034449 DOI: 10.1186/s13045-016-0324-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/09/2016] [Indexed: 11/25/2022] Open
Abstract
Background GATA3 is pivotal for the development of T lymphocytes. While its effects in later stages of T cell differentiation are well recognized, the role of GATA3 in the generation of early T cell precursors (ETP) has only recently been explored. As aberrant GATA3 mRNA expression has been linked to cancerogenesis, we investigated the role of GATA3 in early T cell precursor acute lymphoblastic leukemia (ETP-ALL). Methods We analyzed GATA3 mRNA expression by RT-PCR (n = 182) in adult patients with T-ALL. Of these, we identified 70 of 182 patients with ETP-ALL by immunophenotyping. DNA methylation was assessed genome wide (Illumina Infinium® HumanMethylation450 BeadChip platform) in 12 patients and GATA3-specifically by pyrosequencing in 70 patients with ETP-ALL. The mutational landscape of ETP-ALL with respect to GATA3 expression was investigated in 18 patients and validated by Sanger sequencing in 65 patients with ETP-ALL. Gene expression profiles (Affymetrix Human genome U133 Plus 2.0) of an independent cohort of adult T-ALL (n = 83) were used to identify ETP-ALL and investigate GATA3low and GATA3high expressing T-ALL patients. In addition, the ETP-ALL cell line PER-117 was investigated for cytotoxicity, apoptosis, GATA3 mRNA expression, DNA methylation, and global gene expression before and after treatment with decitabine. Results In our cohort of 70 ETP-ALL patients, 33 % (23/70) lacked GATA3 expression and were thus defined as GATA3low. DNA methylation analysis revealed a high degree of GATA3 CpG island methylation in GATA3low compared with GATA3high ETP-ALL patients (mean 46 vs. 21 %, p < 0.0001). Genome-wide expression profiling of GATA3low ETP-ALL exhibited enrichment of myeloid/lymphoid progenitor (MLP) and granulocyte/monocyte progenitor (GMP) genes, while T cell-specific signatures were downregulated compared to GATA3high ETP-ALL. Among others, FLT3 expression was upregulated and mutational analyses demonstrated a high rate (79 %) of FLT3 mutations. Hypomethylating agents induced reversal of GATA3 silencing, and gene expression profiling revealed downregulation of hematopoietic stem cell genes and upregulation of T cell differentiation. Conclusions We propose GATA3low ETP-ALL as a novel stem cell-like leukemia with implications for the use of myeloid-derived therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0324-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Fransecky
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - M Neumann
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - S Heesch
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - C Schlee
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - J Ortiz-Tanchez
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - S Heller
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - M Mossner
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - S Schwartz
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - L H Mochmann
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - K Isaakidis
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - L Bastian
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - U R Kees
- Division of Children´s Leukaemia and Cancer, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - T Herold
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - K Spiekermann
- Department of Internal Medicine 3, University Hospital Grosshadern, Ludwig-Maximilians-Universität (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - N Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University Hospital, Frankfurt/Main, Germany
| | - C D Baldus
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
49
|
Xu B, Naughton D, Busam K, Pulitzer M. ERG Is a Useful Immunohistochemical Marker to Distinguish Leukemia Cutis From Nonneoplastic Leukocytic Infiltrates in the Skin. Am J Dermatopathol 2016; 38:672-7. [PMID: 26909589 PMCID: PMC5026187 DOI: 10.1097/dad.0000000000000491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leukemia cutis (LC) and reactive myeloid infiltrates in the skin may be difficult to distinguish pathologically, sometimes even after an extensive immunohistochemical work-up. This poses a serious clinical dilemma, as the prognosis and treatment of either condition are markedly different. Although most reactive myeloid infiltrates require a simple course of corticosteroids before the symptoms regress, the development of LC may require chemotherapeutic or transplant-variant interventions. Erythroblast transformation specific regulated gene-1 (ERG) is a member of the erythroblast transformation specific family of transcription factors, which are downstream effectors of mitogenic signaling transduction pathways. ERG is a key regulator of cell proliferation, differentiation, angiogenesis, inflammation, and apoptosis and has recently been found to be overexpressed in acute myeloid and lymphoblastic leukemia. In this study, the authors aimed to explore the diagnostic utility of ERG immunohistochemistry in LC by comparing the frequency and expression level of ERG immunostain in 32 skin biopsies, 16 with LC and 16 with reactive leukocytic infiltrates. A significantly higher frequency of ERG positivity was detected in LC (13/16, 81.4%), compared with reactive conditions (0/16). In addition, the expression level of ERG in LC, calculated using H score (mean ± standard error of mean, 188 ± 24), was significantly higher than that in nonneoplastic leukocytic infiltrate (28 ± 8). Our results strongly suggest that ERG expression is potentially an extremely useful marker to distinguish between cases of LC from those of reactive myeloid infiltrates in the skin with a positive predictive value of 100% and negative predictive value of 84.2%.
Collapse
Affiliation(s)
- Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | |
Collapse
|
50
|
Soliman A, Aal AA, Afify R, Ibrahim N. BAALC and ERG Expression in Egyptian Patients with Acute Myeloid Leukemia, Relation to Survival and Response to Treatment. Open Access Maced J Med Sci 2016; 4:264-70. [PMID: 27335598 PMCID: PMC4908743 DOI: 10.3889/oamjms.2016.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/16/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022] Open
Abstract
AIM: Aim was to detect Brain and Acute Leukemia, Cytoplasmic (BAALC) and ETS-related gene (ERG) expression in patients with acute myeloid leukemia (AML) as well as to study their biologic and prognostic impact on the disease outcome and survival. PATIENTS AND METHODS: The current study was carried out on 44 patients with denovo acute myeloid leukemia, as well as 44 age and sex matched controls. The quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was performed for estimation of BAALC and ERG expression. RESULTS: The current study was carried out on 44 patients with denovo acute myeloid leukemia, as well as 44 age and sex matched controls. The quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was performed for estimation of BAALC and ERG expression. BAALC was expressed in 36 (81.82%) of AML cases versus 10 (22.72%) of the control group which was highly statistically significant (P < 0.001). While ERG was positive in 39(88.64%) of cases and 8(18.18 %) of controls and that was also highly statistically significant (P < 0.001). CONCLUSION: Further researches still needed to clarify the role of BAALC and ERG in the pathogenesis of leukemia and their importance as targets for treatment of AML.
Collapse
Affiliation(s)
- Aml Soliman
- Cairo University, Clinical Pathology, Cairo, Egypt
| | | | - Reham Afify
- Cairo University, Clinical Pathology, Cairo, Egypt
| | - Noha Ibrahim
- Cairo University, Clinical Pathology, Cairo, Egypt
| |
Collapse
|