1
|
Posa A. Spike protein-related proteinopathies: A focus on the neurological side of spikeopathies. Ann Anat 2025; 260:152662. [PMID: 40254264 DOI: 10.1016/j.aanat.2025.152662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The spike protein (SP) is an outward-projecting transmembrane glycoprotein on viral surfaces. SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), responsible for COVID-19 (Coronavirus Disease 2019), uses SP to infect cells that express angiotensin converting enzyme 2 (ACE2) on their membrane. Remarkably, SP has the ability to cross the blood-brain barrier (BBB) into the brain and cause cerebral damage through various pathomechanisms. To combat the COVID-19 pandemic, novel gene-based products have been used worldwide to induce human body cells to produce SP to stimulate the immune system. This artificial SP also has a harmful effect on the human nervous system. STUDY DESIGN Narrative review. OBJECTIVE This narrative review presents the crucial role of SP in neurological complaints after SARS-CoV-2 infection, but also of SP derived from novel gene-based anti-SARS-CoV-2 products (ASP). METHODS Literature searches using broad terms such as "SARS-CoV-2", "spike protein", "COVID-19", "COVID-19 pandemic", "vaccines", "COVID-19 vaccines", "post-vaccination syndrome", "post-COVID-19 vaccination syndrome" and "proteinopathy" were performed using PubMed. Google Scholar was used to search for topic-specific full-text keywords. CONCLUSIONS The toxic properties of SP presented in this review provide a good explanation for many of the neurological symptoms following SARS-CoV-2 infection and after injection of SP-producing ASP. Both SP entities (from infection and injection) interfere, among others, with ACE2 and act on different cells, tissues and organs. Both SPs are able to cross the BBB and can trigger acute and chronic neurological complaints. Such SP-associated pathologies (spikeopathies) are further neurological proteinopathies with thrombogenic, neurotoxic, neuroinflammatory and neurodegenerative potential for the human nervous system, particularly the central nervous system. The potential neurotoxicity of SP from ASP needs to be critically examined, as ASPs have been administered to millions of people worldwide.
Collapse
Affiliation(s)
- Andreas Posa
- University Clinics and Outpatient Clinics for Radiology, Neuroradiology and Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, Halle 06120, Germany.
| |
Collapse
|
2
|
Nehete PN, Nehete BP, Chitta S. Virus Protein-Specific Immune Responses in Selective Depletion of Lymphocyte Populations Using Monoclonal Antibodies in Bolivian Squirrel Monkeys ( Saimiri boliviensis boliviensisv). Viral Immunol 2025; 38:12-22. [PMID: 39745246 PMCID: PMC12054706 DOI: 10.1089/vim.2024.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
The increasing use of immune suppressive monoclonal antibodies in the treatment of organ transplant recipients and patients with oncologic, neurological, and autoimmune diseases can lead to serious morbidity and mortality from the reactivation of viral agents that persist in humans. The squirrel monkey polyomaviruses are naturally found in Bolivian squirrel monkeys (SQM) and may be a useful model for the study of polyomavirus-associated pathogenesis and experimental treatment and prevention strategies. Two diverse groups of squirrel monkeys were given, a single dose of an anti-B cell antibody (rituximab) resulting in complete depletion of B cells (CD20+), while an anti-CD8 monoclonal antibody (7 pt-3F9) resulted in a transient depletion of CD8+ lymphocytes compared with control animals (group with no infusion with either of the monoclonal antibodies). The animals remained clinically healthy, with no pathological symptoms suggesting that the intensity and/or duration of immune suppression were inadequate to trigger pathogenic reactivation of the latent polyoma and herpes viruses. We observed a transient reduction in circulating plasma cytokines, IL-2, IFN-γ, and IL-12 reduced JC and BK viral protein-specific proliferative responses in both the CD8 and CD20 depletion groups. This study clearly elucidates the consequences of the use of depletion monoclonal antibodies in immune suppression modalities in the treatment of human malignancies and during transplantation, and SQM acts as a good model in the selection of dosage at which activation of latent viruses is at a minimum, with no pathological consequences.
Collapse
Affiliation(s)
- Pramod N. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Bharti P. Nehete
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Sriram Chitta
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
3
|
Šenigl F, Soikkeli AI, Prost S, Schatz DG, Slavková M, Hejnar J, Alinikula J. The SV40 virus enhancer functions as a somatic hypermutation-targeting element with potential tumorigenic activity. Tumour Virus Res 2024; 18:200293. [PMID: 39490533 PMCID: PMC11564006 DOI: 10.1016/j.tvr.2024.200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
Simian virus 40 (SV40) is a monkey virus with tumorigenic potential in rodents and is associated with several types of human cancers, including lymphomas. A related Merkel cell polyomavirus causes carcinoma in humans by expressing truncated large tumor antigen (LT), with truncations caused by APOBEC family of cytidine deaminase-induced mutations. AID (activation-induced cytidine deaminase), a member of the APOBEC family, is the initiator of the antibody diversification process known as somatic hypermutation and its aberrant expression and targeting is a frequent source of lymphomagenesis. In this study, we investigated whether AID could cause mutations in SV40 LT. We demonstrate that the SV40 enhancer has strong somatic hypermutation targeting activity in several cell types and that AID-induced mutations accumulate in SV40 LT in B cells and kidney cells and cause truncated LT expression in B cells. Our results argue that the ability of the SV40 enhancer to target somatic hypermutation to LT is a potential source of LT truncation events that could contribute to tumorigenesis in various cell types, thereby linking SV40 infection with malignant development through a novel mutagenic pathway.
Collapse
Affiliation(s)
- Filip Šenigl
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, 14220, Czech Republic.
| | - Anni I Soikkeli
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland; Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Salomé Prost
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, 14220, Czech Republic
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven.CT, 06520-8011, USA
| | - Martina Slavková
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, 14220, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, 14220, Czech Republic
| | - Jukka Alinikula
- Institute of Biomedicine, University of Turku, Turku, 20520, Finland.
| |
Collapse
|
4
|
Xu H, Xiang X, Ding W, Dong W, Hu Y. The Research Progress on Immortalization of Human B Cells. Microorganisms 2023; 11:2936. [PMID: 38138080 PMCID: PMC10746006 DOI: 10.3390/microorganisms11122936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Human B cell immortalization that maintains the constant growth characteristics and antibody expression of B cells in vitro is very critical for the development of antibody drugs and products for the diagnosis and bio-therapeutics of human diseases. Human B cell immortalization methods include Epstein-Barr virus (EBV) transformation, Simian virus 40 (SV40) virus infection, in vitro genetic modification, and activating CD40, etc. Immortalized human B cells produce monoclonal antibodies (mAbs) very efficiently, and the antibodies produced in this way can overcome the immune rejection caused by heterologous antibodies. It is an effective way to prepare mAbs and an important method for developing therapeutic monoclonal antibodies. Currently, the US FDA has approved more than 100 mAbs against a wide range of illnesses such as cancer, autoimmune diseases, infectious diseases, and neurological disorders. This paper reviews the research progress of human B cell immortalization, its methods, and future directions as it is a powerful tool for the development of monoclonal antibody preparation technology.
Collapse
Affiliation(s)
- Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Xinxin Xiang
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Hengyang Medical College, University of South China, Hengyang 421200, China
| | - Weizhe Ding
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- Peking-Tsinghua-NIBS Joint Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Jiading District, Shanghai 201802, China;
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Yueyang Road 320, Shanghai 200031, China; (X.X.); (W.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Gomez K, Schiavoni G, Nam Y, Reynier JB, Khamnei C, Aitken M, Palmieri G, Cossu A, Levine A, van Noesel C, Falini B, Pasqualucci L, Tiacci E, Rabadan R. Genomic landscape of virus-associated cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.14.23285775. [PMID: 36824731 PMCID: PMC9949223 DOI: 10.1101/2023.02.14.23285775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It has been estimated that 15%-20% of human cancers are attributable to infections, mostly by carcinogenic viruses. The incidence varies worldwide, with a majority affecting developing countries. Here, we present a comparative analysis of virus-positive and virus-negative tumors in nine cancers linked to five viruses. We find that virus-positive tumors occur more frequently in males and show geographical disparities in incidence. Genomic analysis of 1,658 tumors reveals virus-positive tumors exhibit distinct mutation signatures and driver gene mutations and possess a lower somatic mutation burden compared to virus-negative tumors of the same cancer type. For example, compared to the respective virus-negative counterparts, virus-positive cases across different cancer histologies had less often mutations of TP53 and deletions of 9p21.3/ CDKN2 A- CDKN1A ; Epstein-Barr virus-positive (EBV+) gastric cancer had more frequent mutations of EIF4A1 and ARID1A and less marked mismatch repair deficiency signatures; and EBV-positive cHL had fewer somatic genetic lesions of JAK-STAT, NF-κB, PI3K-AKT and HLA-I genes and a less pronounced activity of the aberrant somatic hypermutation signature. In cHL, we also identify germline homozygosity in HLA class I as a potential risk factor for the development of EBV-positive Hodgkin lymphoma. Finally, an analysis of clinical trials of PD-(L)1 inhibitors in four virus-associated cancers suggested an association of viral infection with higher response rate in patients receiving such treatments, which was particularly evident in gastric cancer and head and neck squamous cell carcinoma. These results illustrate the epidemiological, genetic, prognostic, and therapeutic trends across virus-associated malignancies.
Collapse
|
6
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
7
|
Bally M, Block S, Höök F, Larson G, Parveen N, Rydell GE. Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context. Anal Bioanal Chem 2021; 413:7157-7178. [PMID: 34490501 PMCID: PMC8421089 DOI: 10.1007/s00216-021-03510-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
Collapse
Affiliation(s)
- Marta Bally
- Department of Clinical Microbiology & Wallenberg Centre for Molecular Medicine, Umeå University, 901 85, Umeå, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| | - Göran Larson
- Department of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska University Hospital, Bruna Stråket 16, 413 45, Gothenburg, Sweden.
| | - Nagma Parveen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Gustaf E Rydell
- Department of Infectious Diseases, Sahlgrenska Academy at the University of Gothenburg, 413 46, Gothenburg, Sweden
| |
Collapse
|
8
|
Amere Subbarao S. Cancer vs. SARS-CoV-2 induced inflammation, overlapping functions, and pharmacological targeting. Inflammopharmacology 2021; 29:343-366. [PMID: 33723711 PMCID: PMC7959277 DOI: 10.1007/s10787-021-00796-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is an intrinsic defence mechanism triggered by the immune system against infection or injury. Chronic inflammation allows the host to recover or adapt through cellular and humoral responses, whereas acute inflammation leads to cytokine storms resulting in tissue damage. In this review, we present the overlapping outcomes of cancer inflammation with virus-induced inflammation. The study emphasises how anti-inflammatory drugs that work against cancer inflammation may work against the inflammation caused by the viral infection. It is established that the cytokine storm induced in response to SARS-CoV-2 infection contributes to disease-associated mortality. While cancer remains the second among the diseases associated with mortality worldwide, cancer patients' mortality rates are often observed upon extended periods after illness, usually ranging from months to years. However, the mortality rates associated with COVID-19 disease are robust. The cytokine storm induced by SARS-CoV-2 infection appeared to be responsible for the multi-organ failure and increased mortality rates. Since both cancer and COVID-19 disease share overlapping inflammatory mechanisms, repurposing some anticancer and anti-inflammatory drugs for COVID-19 may lower mortality rates. Here, we review some of these inflammatory mechanisms and propose some potential chemotherapeutic agents to intervene in them. We also discuss the repercussions of anti-inflammatory drugs such as glucocorticoids and hydroxychloroquine with zinc or antiviral drugs such as ivermectin and remdesivir against SARS-CoV-2 induced cytokine storm. In this review, we emphasise on various possibilities to reduce SARS-CoV-2 induced cytokine storm.
Collapse
|
9
|
Harnish JM, Link N, Yamamoto S. Drosophila as a Model for Infectious Diseases. Int J Mol Sci 2021; 22:2724. [PMID: 33800390 PMCID: PMC7962867 DOI: 10.3390/ijms22052724] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, has been used to understand fundamental principles of genetics and biology for over a century. Drosophila is now also considered an essential tool to study mechanisms underlying numerous human genetic diseases. In this review, we will discuss how flies can be used to deepen our knowledge of infectious disease mechanisms in vivo. Flies make effective and applicable models for studying host-pathogen interactions thanks to their highly conserved innate immune systems and cellular processes commonly hijacked by pathogens. Drosophila researchers also possess the most powerful, rapid, and versatile tools for genetic manipulation in multicellular organisms. This allows for robust experiments in which specific pathogenic proteins can be expressed either one at a time or in conjunction with each other to dissect the molecular functions of each virulent factor in a cell-type-specific manner. Well documented phenotypes allow large genetic and pharmacological screens to be performed with relative ease using huge collections of mutant and transgenic strains that are publicly available. These factors combine to make Drosophila a powerful tool for dissecting out host-pathogen interactions as well as a tool to better understand how we can treat infectious diseases that pose risks to public health, including COVID-19, caused by SARS-CoV-2.
Collapse
Affiliation(s)
- J. Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; (J.M.H.); (N.L.)
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, BCM, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, BCM, Houston, TX 77030, USA
| |
Collapse
|
10
|
Lin J, Jiang W, Shi Y, Cai W. Metagenomic Sequencing Revealed the Potential Pathogenic Threats of Banknotes. ACS OMEGA 2021; 6:3499-3507. [PMID: 33585735 PMCID: PMC7876676 DOI: 10.1021/acsomega.0c04546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Banknotes have long been suspected to be biologically "dirty" due to their frequent human contact, which may transmit human microbial pathogens. Still, it is an unsettled issue whether the microbes on banknotes pose a real threat to human health. In several previous studies, metagenomic sequencing was used to reveal the diversities of microbes on banknotes but live microorganism culture and functional verification were lacking. In this study, we collected banknotes of RMB in China as well as dollar bills in the United States and analyzed the microbial biodiversity and drug resistance genes carried by the identified microbes by metagenomic sequencing and in vitro culture methods. We identified eight major genera of drug-resistant bacteria through screening of 30 antibiotics, and the blood agar plate culture uncovered six pathogenic fungal species. Numerous phage and six dangerous viral sequences were also found. These results should substantiate our concern about the potential risk of banknotes to human health.
Collapse
Affiliation(s)
- Jun Lin
- Institute
of Applied Genomics, Fuzhou University, Fuzhou 350108, China
- School
of Basic Medical Sciences, Fujian Medical
University, Fuzhou 350108, China
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, China
- Fujian
Key Laboratory of Marine Enzyme Engineering, Fuzhou University, No.2 Xueyuan Road, Fuzhou 350108, China
| | - Wenqian Jiang
- Institute
of Applied Genomics, Fuzhou University, Fuzhou 350108, China
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Yang Shi
- Institute
of Applied Genomics, Fuzhou University, Fuzhou 350108, China
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Weiwen Cai
- Institute
of Applied Genomics, Fuzhou University, Fuzhou 350108, China
- College
of Biological Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| |
Collapse
|
11
|
Honda T, Ando M, Ando J, Ishii M, Sakiyama Y, Ohara K, Toyota T, Ohtaka M, Masuda A, Terao Y, Nakanishi M, Nakauchi H, Komatsu N. Sustainable Tumor-Suppressive Effect of iPSC-Derived Rejuvenated T Cells Targeting Cervical Cancers. Mol Ther 2020; 28:2394-2405. [PMID: 32710827 PMCID: PMC7646217 DOI: 10.1016/j.ymthe.2020.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy utilizing induced pluripotent stem cell (iPSC) technology has great potential. Functionally rejuvenated cytotoxic T lymphocytes (CTLs) can survive long-term as young memory T cells in vivo, with continuous tumor eradication. Banking of iPSCs as an unlimited “off-the-shelf” source of therapeutic T cells may be feasible. To generate safer iPSCs, we reprogrammed human papilloma virus type 16 (HPV16) E6-specific CTLs by Sendai virus vector without cotransduction of SV40 large T antigen. The iPSCs efficiently differentiated into HPV16-specific rejuvenated CTLs that demonstrated robust cytotoxicity against cervical cancer. The tumor-suppressive effect of rejuvenated CTLs was stronger and more persistent than that of original peripheral blood CTLs. These rejuvenated HPV16-specific CTLs provide a sustained tumor-suppressive effect even for epithelial cancers and constitute promising immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Tadahiro Honda
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Miki Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Jun Ando
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Midori Ishii
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yumi Sakiyama
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuo Ohara
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tokuko Toyota
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Building G, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ayako Masuda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba Center Inc. (TCI), Building G, 2-1-6 Sengen, Tsukuba, Ibaraki 305-0047, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| | - Norio Komatsu
- Department of Hematology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
12
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
13
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
14
|
Hmeljak J, Kern I, Cör A. No Implication of Simian virus 40 in pathogenesis of Malignant Pleural Mesothelioma in Slovenia. TUMORI JOURNAL 2018; 96:667-73. [DOI: 10.1177/030089161009600504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background and aim Malignant mesothelioma is predominantly caused by asbestos exposure, although the association of Simian virus 40 in its pathogenesis is currently still under debate. Simian virus 40, a DNA rhesus monkey virus with oncogenic properties, accidentally contaminated early batches of polio vaccine in the 1960s. In the 1990s, viral sequences and proteins were discovered in several human tumors, which triggered research to find a link between Simian virus 40 and human cancers, especially malignant mesothelioma. The aim of our study was to establish an effective laboratory procedure for Simian virus 40 detection and to investigate the presence of Simian virus 40 DNA and small t antigen in mesothelioma samples from Slovenian patients. Methods and study design Paraffin-embedded malignant pleural mesothelioma specimens from 103 Slovenian patients were collected and used for total DNA isolation and real-time polymerase chain reaction for Simian virus 40 small t and large T DNA analysis. Special attention was devoted to primer design, good laboratory practice and polymerase chain reaction contamination prevention. Polymerase chain reaction products were sequenced and BLAST aligned. One 5 μm thick paraffin section from each patient's tissue block was stained with hematoxylin and eosin for histological typing and one for immunohistochemical detection of Simian virus 40 small t antigen using a monoclonal antibody against Simian virus 40 (Pab280). SV40-expressing Wi-38 cells were used as positive control in both PCR and immunohistochemistry. Results In real-time polymerase chain reaction analyses, only 4 samples gave products with primer pairs amplifying small t antigen and were inconsistent and poorly reproducible. BLAST alignment showed no homology with any deposited SV40 sequences. No immunopositive staining for SV40 small t antigen was found in any of the samples. Conclusions We found no evidence of SV40 presence in tissue samples from 103 Slovenian patients with malignant pleural mesothelioma. Asbestos exposure remains the main risk factor for malignant pleural mesothelioma in Slovenia. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
- Julija Hmeljak
- University of Primorska, College of Health Care Izola, Polje 42, Izola
| | - Izidor Kern
- University Clinic of Respiratory and Allergic Diseases, Golnik 36, Golnik, Slovenia
| | - Andrej Cör
- University of Primorska, College of Health Care Izola, Polje 42, Izola
| |
Collapse
|
15
|
Chang Y, Moore PS, Weiss RA. Human oncogenic viruses: nature and discovery. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160264. [PMID: 28893931 PMCID: PMC5597731 DOI: 10.1098/rstb.2016.0264] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Seven kinds of virus collectively comprise an important cause of cancer, particularly in less developed countries and for people with damaged immune systems. Discovered over the past 54 years, most of these viruses are common infections of humankind for which malignancy is a rare consequence. Various cofactors affect the complex interaction between virus and host and the likelihood of cancer emerging. Although individual human tumour viruses exert their malignant effects in different ways, there are common features that illuminate mechanisms of oncogenesis more generally, whether or not there is a viral aetiology.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Yuan Chang
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Res Pav 1.8, Pittsburgh, PA 15213, USA
| | - Patrick S Moore
- University of Pittsburgh Cancer Institute, 5117 Centre Ave, Res Pav 1.8, Pittsburgh, PA 15213, USA
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, Cruciform Bldg 1.3, Gower Street, London WC1 6BT, UK
| |
Collapse
|
16
|
Malhotra J, Waterboer T, Pawlita M, Michel A, Cai Q, Zheng W, Gao YT, Lan Q, Rothman N, Langseth H, Grimsrud TK, Yuan JM, Koh WP, Wang R, Arslan AA, Zeleniuch-Jacquotte A, Boffetta P. Serum biomarkers of polyomavirus infection and risk of lung cancer in never smokers. Br J Cancer 2016; 115:1131-1139. [PMID: 27632373 PMCID: PMC5117783 DOI: 10.1038/bjc.2016.285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Lung cancer in never smokers is a significant contributor of cancer mortality worldwide. In this analysis, we explored the role of nine human polyomaviruses, including JC virus (JCV), BK virus (BKV) and Merkel cell virus (MCV), in lung cancer development in never smokers as there are data to support that polyomaviruses are potentially carcinogenic in the human lung. METHODS We used multiplex serology to detect serum antibodies to polyomaviruses in a nested case-control design combining lung cancer cases and controls from four cohort studies - NYU Women's Health Study (NYU-WHS), Janus Serum Bank, Shanghai Women's Health Study and Singapore Chinese Health Study (SCHS). RESULTS The final analyses included 511 cases and 508 controls. Seroprevalence for each polyomavirus showed significant heterogeneity by study, but overall there were no statistically significant differences between cases and controls. In total, 69.1% of the cases and 68.7% of the controls were seropositive for JCV VP1 antibody. Seropositivity for BKV was higher at 89.0% in cases and 89.8% in controls and lower for MCV at 59.3% in cases and 61.6% in controls. Similar results were obtained after adding an additional retrospective case-control study (Xuanwei study) to the analysis. CONCLUSIONS Our results do not support the hypothesis that seropositivity for polyomaviruses is associated with increased lung cancer risk in never smokers. Future research to evaluate relationship between polyomavirus infection and lung carcinogenesis should focus more on evaluating the presence of virus or viral nucleic acids (DNA or RNA) in lung tumour samples.
Collapse
Affiliation(s)
- Jyoti Malhotra
- Icahn School of Medicine at Mount Sinai, 17 East 102 St, Floor 4 West, Room 110, New York, NY, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Tim Waterboer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Qiuyin Cai
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wei Zheng
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Qing Lan
- National Cancer Institute, Rockville, MD, USA
| | | | - Hilde Langseth
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Tom K Grimsrud
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Jian-Min Yuan
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Woon-Puay Koh
- Duke-NUS Graduate Medical School Singapore, and Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Renwei Wang
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Alan A Arslan
- New York University School of Medicine, New York, NY, USA
| | | | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, 17 East 102 St, Floor 4 West, Room 110, New York, NY, USA
| |
Collapse
|
17
|
Gossai A, Waterboer T, Hoen AG, Farzan SF, Nelson HH, Michel A, Willhauck‐Fleckenstein M, Christensen BC, Perry AE, Pawlita M, Karagas MR. Human polyomaviruses and incidence of cutaneous squamous cell carcinoma in the New Hampshire skin cancer study. Cancer Med 2016; 5:1239-50. [PMID: 26899857 PMCID: PMC4924382 DOI: 10.1002/cam4.674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/02/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
Squamous cell carcinoma (SCC) of the skin is a malignancy arising from epithelial keratinocytes. Experimental and epidemiologic evidence raise the possibility that human polyomaviruses (PyV) may be associated with the occurrence of SCC. To investigate whether the risk for SCC was associated with PyV infection, seropositivity to 10 PyV types was assessed following diagnosis in a population-based case-control study conducted in the United States. A total of 253 SCC cases and 460 age group and gender-matched controls were included. Antibody response against each PyV was measured using a multiplex serology-based glutathione S-transferase capture assay of recombinantly expressed VP1 capsid proteins. Odds ratios (OR) for SCC associated with seropositivity to each PyV type were estimated using logistic regression, with adjustment for potentially confounding factors. SCC cases were seropositive for a greater number of PyVs than controls (P = 0.049). Those who were JC seropositive had increased odds of SCC when compared to those who were JC seronegative (OR = 1.37, 95% CI: 0.98-1.90), with an increasing trend in SCC risk with increasing quartiles of seroreactivity (P for trend = 0.04). There were no clear associations between SCC risk and serostatus for other PyV types. This study provides limited evidence that infection with certain PyVs may be related to the occurrence of SCC in the general population of the United States.
Collapse
Affiliation(s)
- Anala Gossai
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
| | - Tim Waterboer
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Anne G. Hoen
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
| | - Shohreh F. Farzan
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
- New York UniversityNew York, New York
| | | | | | | | | | - Ann E. Perry
- Geisel School of Medicine at DartmouthHanoverNew Hampshire
| | | | | |
Collapse
|
18
|
Meinke G, Phelan PJ, Shin J, Gagnon D, Archambault J, Bohm A, Bullock PA. Structural Based Analyses of the JC Virus T-Antigen F258L Mutant Provides Evidence for DNA Dependent Conformational Changes in the C-Termini of Polyomavirus Origin Binding Domains. PLoS Pathog 2016; 12:e1005362. [PMID: 26735515 PMCID: PMC4703215 DOI: 10.1371/journal.ppat.1005362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 11/21/2022] Open
Abstract
The replication of human polyomavirus JCV, which causes Progressive Multifocal Leukoencephalopathy, is initiated by the virally encoded T-antigen (T-ag). The structure of the JC virus T-ag origin-binding domain (OBD) was recently solved by X-ray crystallography. This structure revealed that the OBD contains a C-terminal pocket, and that residues from the multifunctional A1 and B2 motifs situated on a neighboring OBD molecule dock into the pocket. Related studies established that a mutation in a pocket residue (F258L) rendered JCV T-ag unable to support JCV DNA replication. To establish why this mutation inactivated JCV T-ag, we have solved the structure of the F258L JCV T-ag OBD mutant. Based on this structure, it is concluded that the structural consequences of the F258L mutation are limited to the pocket region. Further analyses, utilizing the available polyomavirus OBD structures, indicate that the F258 region is highly dynamic and that the relative positions of F258 are governed by DNA binding. The possible functional consequences of the DNA dependent rearrangements, including promotion of OBD cycling at the replication fork, are discussed.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul J. Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, United States of America
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Andrew Bohm
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter A. Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Røe OD, Stella GM. Malignant pleural mesothelioma: history, controversy and future of a manmade epidemic. Eur Respir Rev 2015; 24:115-31. [PMID: 25726562 PMCID: PMC9487774 DOI: 10.1183/09059180.00007014] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Asbestos is the term for a family of naturally occurring minerals that have been used on a small scale since ancient times. Industrialisation demanded increased mining and refining in the 20th century, and in 1960, Wagner, Sleggs and Marchand from South Africa linked asbestos to mesothelioma, paving the way to the current knowledge of the aetiology, epidemiology and biology of malignant pleural mesothelioma. Pleural mesothelioma is one of the most lethal cancers, with increasing incidence worldwide. This review will give some snapshots of the history of pleural mesothelioma discovery, and the body of epidemiological and biological research, including some of the controversies and unresolved questions. Translational research is currently unravelling novel circulating biomarkers for earlier diagnosis and novel treatment targets. Current breakthrough discoveries of clinically promising noninvasive biomarkers, such as the 13-protein signature, microRNAs and the BAP1 mesothelioma/cancer syndrome, are highlighted. The asbestos history is a lesson to not be repeated, but here we also review recent in vivo and in vitro studies showing that manmade carbon nanofibres could pose a similar danger to human health. This should be taken seriously by regulatory bodies to ensure thorough testing of novel materials before release in the society. Malignant pleural mesothelioma is a cancer with increasing death tolls due to the past and present use of asbestoshttp://ow.ly/DhA2y
Collapse
|
20
|
Risk of second cancers in merkel cell carcinoma: a meta-analysis of population based cohort studies. J Skin Cancer 2014; 2014:184245. [PMID: 25574398 PMCID: PMC4276678 DOI: 10.1155/2014/184245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/22/2014] [Indexed: 02/07/2023] Open
Abstract
The risk of second cancers in Merkel cell carcinoma (MCC) remains uncertain since risk estimates vary worldwide. The global MCC population is growing and there is a demand for better knowledge of prognosis of this disease. The Cochrane Database of Systematic Reviews, MEDLINE, and EMBASE search engines were searched for the relevant literature between January 1999 and September 2014 by use of explicit search criteria. The main outcome was second malignancies associated with MCC patients measured by standardized incidence ratios (SIRs) or other estimates of risks. Five papers fulfilled the inclusion criteria and reported SIRs of second cancer in MCC which varied from 1.07 to 2.80. Performing meta-analysis using random effects model revealed that there was an increased risk for second malignancies due to MCC (SIR, 1.52; 95% CI, 1.10–2.11). There was a significant increase in risk for malignant melanoma (SIR, 3.09; 95% CI, 2.02–4.73) as compared to all common second malignancies among the studies. Updated knowledge about risk of second malignancies in MCC will help in better assessment of the disease prognosis and will help in optimizing the medical and surgical treatment, radiotherapy, follow-up, and surveillance procedures.
Collapse
|
21
|
Moens U, Van Ghelue M, Ehlers B. Are human polyomaviruses co-factors for cancers induced by other oncoviruses? Rev Med Virol 2014; 24:343-60. [PMID: 24888895 DOI: 10.1002/rmv.1798] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/16/2022]
Abstract
Presently, 12 human polyomaviruses are known: BK polyomavirus (BKPyV), JCPyV, KIPyV, WUPyV, Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, Trichodysplasia spinulosa-associated polyomavirus, HPyV9, HPyV10, STLPyV and HPyV12. In addition, the non-human primate polyomavirus simian virus 40 (SV40) seems to circulate in the human population. MCPyV was first described in 2008 and is now accepted to be an etiological factor in about 80% of the rare but aggressive skin cancer Merkel cell carcinoma. SV40, BKPyV and JCPyV or part of their genomes can transform cells, including human cells, and induce tumours in animal models. Moreover, DNA and RNA sequences and proteins of these three viruses have been discovered in tumour tissue. Despite these observations, their role in cancer remains controversial. So far, an association between cancer and the other human polyomaviruses is lacking. Because human polyomavirus DNA has been found in a broad spectrum of cell types, simultaneous dwelling with other oncogenic viruses is possible. Co-infecting human polyomaviruses may therefore act as a co-factor in the development of cancer, including those induced by other oncoviruses. Reviewing studies that report co-infection with human polyomaviruses and other tumour viruses in cancer tissue fail to detect a clear link between co-infection and cancer. Directions for future studies to elaborate on a possible auxiliary role of human polyomaviruses in cancer are suggested, and the mechanisms by which human polyomaviruses may synergize with other viruses in oncogenic transformation are discussed.
Collapse
Affiliation(s)
- Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, Molecular Inflammation Research Group, Tromsø, Norway
| | | | | |
Collapse
|
22
|
Matrix and backstage: cellular substrates for viral vaccines. Viruses 2014; 6:1672-700. [PMID: 24732259 PMCID: PMC4014716 DOI: 10.3390/v6041672] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 01/04/2023] Open
Abstract
Vaccines are complex products that are manufactured in highly dynamic processes. Cellular substrates are one critical component that can have an enormous impact on reactogenicity of the final preparation, level of attenuation of a live virus, yield of infectious units or antigens, and cost per vaccine dose. Such parameters contribute to feasibility and affordability of vaccine programs both in industrialized countries and developing regions. This review summarizes the diversity of cellular substrates for propagation of viral vaccines from primary tissue explants and embryonated chicken eggs to designed continuous cell lines of human and avian origin.
Collapse
|
23
|
Colvin EK, Weir C, Ikin RJ, Hudson AL. SV40 TAg mouse models of cancer. Semin Cell Dev Biol 2014; 27:61-73. [PMID: 24583142 DOI: 10.1016/j.semcdb.2014.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/09/2023]
Abstract
The discovery of a number of viruses with the ability to induce tumours in animals and transform human cells has vastly impacted cancer research. Much of what is known about tumorigenesis today regarding tumour drivers and tumour suppressors has been discovered through experiments using viruses. The SV40 virus has proven extremely successful in generating transgenic models of many human cancer types and this review provides an overview of these models and seeks to give evidence as to their relevance in this modern era of personalised medicine and technological advancements.
Collapse
Affiliation(s)
- Emily K Colvin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Chris Weir
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Rowan J Ikin
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
24
|
Kler S, Wang JCY, Dhason M, Oppenheim A, Zlotnick A. Scaffold properties are a key determinant of the size and shape of self-assembled virus-derived particles. ACS Chem Biol 2013; 8:2753-61. [PMID: 24093474 DOI: 10.1021/cb4005518] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Controlling the geometry of self-assembly will enable a greater diversity of nanoparticles than now available. Viral capsid proteins, one starting point for investigating self-assembly, have evolved to form regular particles. The polyomavirus SV40 assembles from pentameric subunits and can encapsidate anionic cargos. On short ssRNA (≤814 nt), SV40 pentamers form 22 nm diameter capsids. On RNA too long to fit a T = 1 particle, pentamers forms strings of 22 nm particles and heterogeneous particles of 29-40 nm diameter. However, on dsDNA SV40 forms 50 nm particles composed of 72 pentamers. A 7.2-Å resolution cryo-EM image reconstruction of 22 nm particles shows that they are built of 12 pentamers arranged with T = 1 icosahedral symmetry. At 3-fold vertices, pentamers each contribute to a three-helix triangle. This geometry of interaction is not seen in crystal structures of T = 7 viruses and provides a structural basis for the smaller capsids. We propose that the heterogeneous particles are actually mosaics formed by combining different geometries of interaction from T = 1 capsids and virions. Assembly can be trapped in novel conformations because SV40 interpentamer contacts are relatively strong. The implication is that by virtue of their large catalog of interactions, SV40 pentamers have the ability to self-assemble on and conform to a broad range of shapes.
Collapse
Affiliation(s)
- Stanislav Kler
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Joseph Che-Yen Wang
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mary Dhason
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Ariella Oppenheim
- Department
of Hematology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
Zheng HC, Noguchi A, Kikuchi K, Ando T, Nakamura T, Takano Y. Gene expression profiling of lens tumors, liver and spleen in α-crystallin/SV40 T antigen transgenic mice treated with Juzen-taiho-to. Mol Med Rep 2013; 9:547-52. [PMID: 24337676 DOI: 10.3892/mmr.2013.1854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/05/2013] [Indexed: 11/06/2022] Open
Abstract
The autogenic lens tumors induced by the Simian vacuolating virus 40 (SV40) T antigen in α-crystallin/SV40 T antigen transgenic (TG) mice, provide a tool to screen anti-tumor reagents in vivo and to clarify the underlying mechanisms. Juzen-taiho-to, a Chinese medicine composed of 10 herbs, was frequently used as an alternative medicine for cancer patients by clinicians and occasionally it was demonstrated to have beneficial effects on the prognosis and general condition of cancer patients. However, it was not scientifically verified. In the present study, the anti-tumor effects and underlying mechanisms of Juzen-taiho-to in the TG mice model was examined using cDNA microarray analysis and the results were confirmed by real-time PCR. The TG mice demonstrated a higher cumulative survival rate after treatment with the drug compared with the control group (P<0.05). Gene chip profiles demonstrated that cell functions involving the membrane, glycoprotein, cell membrane, signal and ionic channel for the lens tumor, the cell cycle, DNA replication, homeobox, mitosis and cell division for the spleen and the acetylation, mitochondrion, ribosomal protein, ribonucleoprotein for the liver, were altered by the administration of Juzen‑taiho-to. The important canonical pathways were those of the mitogen-activated protein kinase (MAPK), the cell cycle and the ribosome for the altered genes of the lens tumor, spleen and liver after drug administration, respectively. From real-time PCR, in the eyeball, epidermal growth factor receptor (Egfr), Rasgrf1 and heat shock protein 1B (Hspa1b) mRNAs were found to be significantly lower in treated lenses than in those not exposed to the drug, while Rps25 mRNA demonstrated the opposite association in the liver. It was suggested that Juzen-taiho-to may prolong the survival time of SV40 T antigen TG mice by improving their nutritional condition, inhibiting the MAPK pathway and strengthening the immune system without causing hepatic toxicity.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Cancer Research Center, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Akira Noguchi
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑0815, Japan
| | - Keiji Kikuchi
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑0815, Japan
| | | | - Takafumi Nakamura
- Department of Obstetrics and Gynecology, Kawasaki Medical School, Kurasiki, Okayama 701-0192, Japan
| | - Yasuo Takano
- Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa 241‑0815, Japan
| |
Collapse
|
26
|
Zhdanov AV, Waters AHC, Golubeva AV, Dmitriev RI, Papkovsky DB. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:51-62. [PMID: 23891695 DOI: 10.1016/j.bbabio.2013.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca(2+) or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment.
Collapse
Affiliation(s)
- Alexander V Zhdanov
- Biochemistry Department, University College Cork, Cavanagh Pharmacy Building, College Road, Cork, Ireland.
| | | | | | | | | |
Collapse
|
27
|
Dela Cruz FN, Giannitti F, Li L, Woods LW, Del Valle L, Delwart E, Pesavento PA. Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States. Emerg Infect Dis 2013; 19:77-84. [PMID: 23260029 PMCID: PMC3558004 DOI: 10.3201/eid1901.121078] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010-May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons.
Collapse
|
28
|
Amber K, McLeod MP, Nouri K. The Merkel cell polyomavirus and its involvement in Merkel cell carcinoma. Dermatol Surg 2013; 39:232-8. [PMID: 23387356 DOI: 10.1111/dsu.12079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The discovery of the Merkel cell polyomavirus (MCV) in a large number of Merkel cell carcinomas (MCCs) has led to many investigations into its potential role as an oncovirus. Many studies have recently explored the differences between MCCs infected and not infected with MCV. OBJECTIVE To review the role of MCV in MCC and its potential to influence diagnosis, prognosis, and treatment. METHODS AND MATERIALS An extensive literature search was performed on MCV and its relationship with other polyomaviruses and MCC. The immune system's role in MCC was also investigated. RESULTS We included 60 articles regarding MCC and MCV and seven pertinent to general processes involved with MCC and MCV. CONCLUSION Merkel cell polyomavirus appears to affect many aspects of MCC. An understanding of this virus may aid in future therapy options and current pathology protocols in diagnosing MCC. The host's immune function appears to affect MCV's ability to cause cellular transformation leading to MCC.
Collapse
Affiliation(s)
- Kyle Amber
- Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | |
Collapse
|
29
|
Abstract
During the past 6 years, focused virus hunting has led to the discovery of nine new human polyomaviruses, including Merkel cell polyomavirus, which has been linked to Merkel cell carcinoma, a lethal skin cell cancer. The discovery of so many new and highly divergent human polyomaviruses raises key questions regarding their evolution, tropism, latency, reactivation, immune evasion and contribution to disease. This Review describes the similarities and differences among the new human polyomaviruses and discusses how these viruses might interact with their human host.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
30
|
Spurgeon ME, Lambert PF. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology 2013; 435:118-30. [PMID: 23217622 DOI: 10.1016/j.virol.2012.09.029] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/24/2022]
Abstract
A marked escalation in the rate of discovery of new types of human polyomavirus has occurred over the last five years largely owing to recent technological advances in their detection. Among the newly discovered viruses, Merkel Cell Polyomavirus (MCPyV or MCV) has gained the most attention due to its link with a rare human cancer. Infection with MCPyV is common in the human population, and the virus is detected in several anatomical locations, but most frequently in skin. Study of MCPyV molecular virology has been complicated by the lack of straightforward cell culture models, but recent in vitro studies are making strides towards understanding the virus life cycle, its cellular tropism, and mode of transmission. While MCPyV shares several traditional traits with other human polyomaviruses, the burst of research since its discovery reveals insight into a virus with many unique genetic and mechanistic features. The evidence for a causal link between MCPyV and the rare neuroendocrine cancer, Merkel Cell Carcinoma (MCC), is compelling. A majority of MCCs contain clonally integrated viral DNA, express viral T antigen transcripts and protein, and exhibit an addiction to the viral large T and small t antigen oncoproteins. The MCPyV large T antigen contains MCC tumor-specific mutations that ablate its replication capacity but preserve its oncogenic functions, and the small t antigen promotes an environment favorable for cap-dependent translation. The mechanisms of MCPyV-induced transformation have not been fully elucidated, but the likely etiological role of this new polyomavirus in human cancer provides a strong opportunity to expand knowledge of virus-host interactions and viral oncology.
Collapse
Affiliation(s)
- Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | |
Collapse
|
31
|
Delourme J, Dhalluin X, Cortot AB, Lafitte JJ, Scherpereel A. [Malignant pleural mesothelioma: diagnosis and treatment]. REVUE DE PNEUMOLOGIE CLINIQUE 2013; 69:26-35. [PMID: 23333048 DOI: 10.1016/j.pneumo.2012.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/30/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor issued from the mesothelial surface of the pleural space. A previous exposure to asbestos is the main risk factor of mesothelioma. Clinical signs are most of the time late and unspecific. Chest CT-scan, a key imaging procedure, usually shows a (unilateral) pleurisy associated with pleural nodular thickening. PET-scan associated with CT-scan may help to differenciate MPM from pleural benign tumors but it is not recommended for the diagnosis of MPM, as well as chest resonance magnetic imaging and blood or pleural fluid biomarkers, including soluble mesothelin still under investigation. The diagnosis of MPM is based on histology using essentially immunohistochemistry on pleural biopsies best obtained by thoracoscopy. The treatment of MPM relies mostly on chemotherapy. Surgery, pleurectomy/decortication or extrapleural pneumonectomy, is not recommended outside a clinical trial, as well as adjuvant chest radiotherapy. Prophylactic irradiation of chest scars and drains, validated by the French guidelines in 2005, is however highly discussed at the international level. Finally, numerous research studies presently assess the value of targeted therapies and biomarkers in MPM, opening new perspectives in the management of this cancer.
Collapse
Affiliation(s)
- J Delourme
- Service de pneumologie et d'oncologie thoracique, hôpital Calmette, CHRU de Lille, boulevard Professeur-Jules-Leclercq, 59037 Lille cedex, France
| | | | | | | | | |
Collapse
|
32
|
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine—live. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
33
|
|
34
|
Costa C, Cavallo R. Polyomavirus-associated nephropathy. World J Transplant 2012; 2:84-94. [PMID: 24175200 PMCID: PMC3782238 DOI: 10.5500/wjt.v2.i6.84] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/14/2012] [Accepted: 10/31/2012] [Indexed: 02/05/2023] Open
Abstract
Polyomaviruses BK and JC are ubiquitous viruses with high seroprevalence rates in general population. Following primary infection, polyomaviruses BK and JC persist latently in different sites, particularly in the reno-urinary tract. Reactivation from latency may occur in normal subjects with asymptomatic viruria, while it can be associated to nephropathy (PVAN) in kidney transplantat recipients. PVAN may occur in 1%-10% of renal transplant patients with loss of the transplanted organ in 30% up to 80% of the cases. Etiology of PVAN is mainly attributable to BK virus, although approximately 5% of the cases may be due to JC. Pathogenesis of PVAN is still unknown, although viral replication and the lack of immune control play a major role. Immunosuppression represents the condicio sine qua non for the development of PVAN and the modulation of anti-rejection treatment represents the first line of intervention, given the lack of specific antiviral agents. At moment, an appropriate immunemodulation can only be accomplished by early identification of viral reactivacation by evaluation of polyomavirus load on serum and/or urine specimens, particularly in the first year post-trasplantation. Viro-immunological monitoring of specific cellular immune response could be useful to identify patients unable to recover cellular immunity posttransplantation, that are at higher risk of viral reactivation with development of PVAN. Herein, the main features of polyomaviruses BK and JC, biological properties, clinical characteristics, etiopathogenesis, monitoring and diagnosing of PVAN will be described and discussed, with an extended citation of related relevant literature data.
Collapse
Affiliation(s)
- Cristina Costa
- Cristina Costa, Rossana Cavallo, Virology Unit, University Hospital San Giovanni Battista di Torino, 10126 Turin, Italy
| | | |
Collapse
|
35
|
Han SY, North JP, Canavan T, Kim N, Yu SS. Merkel Cell Carcinoma. Hematol Oncol Clin North Am 2012; 26:1351-74. [DOI: 10.1016/j.hoc.2012.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Chan CYY, Tambyah PA. Preflucel®: a Vero-cell culture-derived trivalent influenza vaccine. Expert Rev Vaccines 2012; 11:759-73. [PMID: 22913252 DOI: 10.1586/erv.12.55] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vaccination is the principal means to reduce the impact of influenza infection. Effective vaccination programs require a reliable and safe production system. Traditionally, influenza vaccines are produced in embryonated chicken eggs. Over the last two decades, new cell culture-derived vaccines have been licensed and manufactured, and other vaccines are still in various phases of development. Vero cells have been used for the development of a wide variety of vaccines including influenza vaccines. Pandemic and avian influenza vaccines derived from Vero cells have been shown to be well tolerated and immunogenic in animal and Phase I-II clinical studies. A Phase III randomized, double-blind, placebo-controlled trial of a trivalent influenza vaccine produced in Vero-cell culture was conducted in 7250 adults aged 18-49 years. Overall protective efficacy for antigenically matched influenza vaccine was 78.5%. The vaccine was well tolerated with no treatment-related serious adverse events and compared favorably with egg-derived vaccines from previous trials. Vero-cell-derived influenza vaccines have the potential to be an important parts of the influenza vaccine strategy, especially if an avian-derived strain becomes predominant or the demand outstrips the capacity of egg-based production systems.
Collapse
Affiliation(s)
- Candice Yuen-Yue Chan
- Division of Infectious Diseases, Department of Medicine, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | | |
Collapse
|
37
|
Alwin Prem Anand A, Gowri Sankar S, Kokila Vani V. Immortalization of neuronal progenitors using SV40 large T antigen and differentiation towards dopaminergic neurons. J Cell Mol Med 2012; 16:2592-610. [PMID: 22863662 PMCID: PMC4118228 DOI: 10.1111/j.1582-4934.2012.01607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Transplantation is common in clinical practice where there is availability of the tissue and organ. In the case of neurodegenerative disease such as Parkinson's disease (PD), transplantation is not possible as a result of the non-availability of tissue or organ and therefore, cell therapy is an innovation in clinical practice. However, the availability of neuronal cells for transplantation is very limited. Alternatively, immortalized neuronal progenitors could be used in treating PD. The neuronal progenitor cells can be differentiated into dopaminergic phenotype. Here in this article, the current understanding of the molecular mechanisms involved in the differentiation of dopaminergic phenotype from the neuronal progenitors immortalized with SV40 LT antigen is discussed. In addition, the methods of generating dopaminergic neurons from progenitor cells and the factors that govern their differentiation are elaborated. Recent advances in cell-therapy based transplantation in PD patients and future prospects are discussed.
Collapse
|
38
|
Cummings Macri S, Knight HL, Miller AD. Mesenchymoproliferative enteropathy associated with dual simian polyomavirus and rhesus cytomegalovirus infection in a simian immunodeficiency virus-infected rhesus macaque (Macaca mulatta). Vet Pathol 2012; 50:715-21. [PMID: 23051916 DOI: 10.1177/0300985812463405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Opportunistic viral infections are common in simian immunodeficiency virus-infected rhesus macaques and include simian polyomavirus 40 (SV40), which causes interstitial nephritis, pneumonia, meningoencephalitis, and progressive multifocal leukoencephalopathy and rhesus cytomegalovirus (Macacine herpesvirus-3), which is associated with many pathologic manifestations, including the formation of neutrophil-rich gastrointestinal masses. Herein we report the findings of a simian immunodeficiency virus-infected rhesus macaque that presented to necropsy with multiple nodular masses restricted to the proximal jejunum. Histologically, the masses within the lamina propria were composed of abundant, loosely organized, mesenchymal tissue forming broad interlacing whorls and sheets admixed with variable numbers of neutrophils. Cells within the mesenchymoproliferative nodules contained numerous basophilic, intranuclear inclusion bodies with only scattered cytomegalic cells. Immunohistochemistry for rhesus cytomegalovirus and SV40 demonstrated variable numbers of immunopositive cells within the affected nodules. This report is the first description of SV40-associated pathology in the small intestine of a rhesus macaque and highlights the role that opportunistic viral infections can have on gastrointestinal pathology in immunosuppressed rhesus macaques.
Collapse
Affiliation(s)
- S Cummings Macri
- Harvard Medical School, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | | | | |
Collapse
|
39
|
Shiels MS, Engels EA. Increased risk of histologically defined cancer subtypes in human immunodeficiency virus-infected individuals: clues for possible immunosuppression-related or infectious etiology. Cancer 2012; 118:4869-76. [PMID: 22359254 PMCID: PMC3366173 DOI: 10.1002/cncr.27454] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/09/2011] [Accepted: 12/29/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Malignancies that occur in excess among human immunodeficiency virus (HIV)-infected individuals may be caused by immunosuppression or infections. Because histologically defined cancer subtypes have not been systematically evaluated, their risk was assessed among people with acquired immunodeficiency syndrome (AIDS). METHODS Analyses included 569,268 people with AIDS from the HIV/AIDS Cancer Match Study, a linkage of 15 US population-based HIV/AIDS and cancer registries during 1980 to 2007. Standardized incidence ratios (SIRs) were estimated to compare cancer risk in people with AIDS to the general population overall, and stratified by age, calendar period (a proxy of changing HIV therapies), and time since onset of AIDS (a proxy of immunosuppression). RESULTS Sixteen individual cancer histologies or histology groupings manifested significantly elevated SIRs. Risks were most elevated for adult T cell leukemia/lymphoma (SIR = 11.3), neoplasms of histiocytes and accessory lymphoid cells (SIR = 10.7), giant cell carcinoma (SIR = 7.51), and leukemia not otherwise specified (SIR = 6.69). SIRs ranged from 1.4 to 4.6 for spindle cell carcinoma, bronchioloalveolar adenocarcinoma, adnexal and skin appendage neoplasms, sarcoma not otherwise specified, spindle cell sarcoma, leiomyosarcoma, mesothelioma, germ cell tumors, plasma cell tumors, immunoproliferative diseases, acute lymphocytic leukemia, and myeloid leukemias. For several of these cancer subtypes, significant declines in SIRs were observed across calendar periods (consistent with decreasing risk with improved HIV therapies) or increase in SIRs with time since onset of AIDS (ie, prolonged immunosuppression). CONCLUSIONS The elevated risk of certain cancer subtypes in people with AIDS may point to an etiologic role of immunosuppression or infection. Future studies are needed to further investigate these associations and evaluate candidate infectious agents.
Collapse
Affiliation(s)
- Meredith S Shiels
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA.
| | | |
Collapse
|
40
|
Abstract
CONTEXT Despite asbestos being identified as the single most important cause of malignant mesothelioma, the tumor is known to occur in only 10% to 20% of heavily exposed individuals. In addition, about 20% of the patients have no history of asbestos exposure even after detailed assessment. Therefore, there has been speculation for some time that asbestos alone may not be sufficient to cause mesothelioma and that other factors may be involved either as cocarcinogens or as independent mechanisms of cancer causation. OBJECTIVE To give a brief review of nonasbestos fiber erionite and therapeutic radiation as 2 established examples of asbestos-independent mechanisms, of the potential emerging role of man-made fibers such as carbon nanotubes, and of polyoma virus SV40 (simian virus 40) as a potential example of the cocarcinogenic mode of involvement. DATA SOURCES Relevant recent literature has been surveyed to portray and provide the evidence in favor of the examples. CONCLUSIONS Erionite has emerged as the most important example of nonasbestos-mediated cause of mesothelioma in regions such as Turkey where exposure to this type of fiber is highly prevalent. Recently, the polyoma virus SV40 has been unexpectedly discovered as an effective cocarcinogen of asbestos in the causation of animal mesothelioma, though despite considerable research, its potential role in human mesothelioma remains unproven.
Collapse
Affiliation(s)
- Bharat Jasani
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, United Kingdom.
| | | |
Collapse
|
41
|
Schrama D, Becker JC. Merkel cell carcinoma--pathogenesis, clinical aspects and treatment. J Eur Acad Dermatol Venereol 2012; 25:1121-9. [PMID: 21923810 DOI: 10.1111/j.1468-3083.2011.04032.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine carcinoma of the skin demonstrating a high rate of recurrence and metastasis. Indeed, 5-year rates for MCC specific survival are only about 60%. Although MCCs' incidence is rapidly increasing, it is still a very rare tumour. In this regard, the American Cancer Society had estimated for 2008 almost 1500 new cases in the USA. Recently, the newly identified Merkel cell polyomavirus has been found associated with most of the MCC cases. Nevertheless, the pathogenesis of MCC is not yet fully understood. Here, we will summarize recent findings of the pathogenesis of MCC, present an overview of clinical aspects and discuss treatment options for MCCs.
Collapse
Affiliation(s)
- D Schrama
- Division of General Dermatology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
42
|
Qi F, Carbone M, Yang H, Gaudino G. Simian virus 40 transformation, malignant mesothelioma and brain tumors. Expert Rev Respir Med 2012; 5:683-97. [PMID: 21955238 DOI: 10.1586/ers.11.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Simian virus 40 (SV40) is a DNA virus isolated in 1960 from contaminated polio vaccines, that induces mesotheliomas, lymphomas, brain and bone tumors, and sarcomas, including osteosarcomas, in hamsters. These same tumor types have been found to contain SV40 DNA and proteins in humans. Mesotheliomas and brain tumors are the two tumor types that have been most consistently associated with SV40, and the range of positivity has varied about from 6 to 60%, although a few reported 100% of positivity and a few reported 0%. It appears unlikely that SV40 infection alone is sufficient to cause human malignancy, as we did not observe an epidemic of cancers following the administration of SV40-contaminated vaccines. However, it seems possible that SV40 may act as a cofactor in the pathogenesis of some tumors. In vitro and animal experiments showing cocarcinogenicity between SV40 and asbestos support this hypothesis.
Collapse
Affiliation(s)
- Fang Qi
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | | |
Collapse
|
43
|
|
44
|
Seguin SP, Evans CW, Nebane-Akah M, McKellip S, Ananthan S, Tower NA, Sosa M, Rasmussen L, White EL, Maki BE, Matharu DS, Golden JE, Aubé J, Brodsky JL, Noah JW. High-throughput screening identifies a bisphenol inhibitor of SV40 large T antigen ATPase activity. ACTA ACUST UNITED AC 2011; 17:194-203. [PMID: 21948801 DOI: 10.1177/1087057111421630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The authors conducted a high-throughput screening campaign for inhibitors of SV40 large T antigen ATPase activity to identify candidate antivirals that target the replication of polyomaviruses. The primary assay was adapted to 1536-well microplates and used to screen the National Institutes of Health Molecular Libraries Probe Centers Network library of 306 015 compounds. The primary screen had an Z value of ~0.68, signal/background = 3, and a high (5%) DMSO tolerance. Two counterscreens and two secondary assays were used to prioritize hits by EC(50), cytotoxicity, target specificity, and off-target effects. Hits that inhibited ATPase activity by >44% in the primary screen were tested in dose-response efficacy and eukaryotic cytotoxicity assays. After evaluation of hit cytotoxicity, drug likeness, promiscuity, and target specificity, three compounds were chosen for chemical optimization. Chemical optimization identified a class of bisphenols as the most effective biochemical inhibitors. Bisphenol A inhibited SV40 large T antigen ATPase activity with an IC(50) of 41 µM in the primary assay and 6.2 µM in a cytoprotection assay. This compound class is suitable as probes for biochemical investigation of large T antigen ATPase activity, but because of their cytotoxicity, further optimization is necessary for their use in studying polyomavirus replication in vivo.
Collapse
Affiliation(s)
- Sandlin P Seguin
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chang Y, Moore PS. Merkel cell carcinoma: a virus-induced human cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:123-44. [PMID: 21942528 DOI: 10.1146/annurev-pathol-011110-130227] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Merkel cell polyomavirus (MCV) is the first polyomavirus directly linked to human cancer, and its recent discovery helps to explain many of the enigmatic features of Merkel cell carcinoma (MCC). MCV is clonally integrated into MCC tumor cells, which then require continued MCV oncoprotein expression to survive. The integrated viral genomes have a tumor-specific pattern of tumor antigen gene mutation that incapacitates viral DNA replication. This human cancer virus provides a new model in which a common, mostly harmless member of the human viral flora can initiate cancer if it acquires a precise set of mutations in a host with specific susceptibility factors, such as age and immune suppression. Identification of this tumor virus has led to new opportunities for early diagnosis and targeted treatment of MCC.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
46
|
|
47
|
New Virus Discovery in the 21st Century. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Houben R, Adam C, Baeurle A, Hesbacher S, Grimm J, Angermeyer S, Henzel K, Hauser S, Elling R, Bröcker EB, Gaubatz S, Becker JC, Schrama D. An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. Int J Cancer 2011; 130:847-56. [PMID: 21413015 DOI: 10.1002/ijc.26076] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/04/2011] [Indexed: 01/01/2023]
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive skin cancer that frequently harbours Merkel cell polyomavirus (MCV) DNA integrated in the genome of the tumor cells. In our study, we elaborate our recent finding that MCV-positive MCC cell lines require the expression of the viral T antigens (TA). Indeed, in a xeno-transplantation model, we prove that TA expression is essential also in an in vivo situation, as knock down of TA leads to tumor regression. Moreover, rescuing TA short hairpin RNA (shRNA)-treated MCV-positive MCC cells by ectopic expression of shRNA-insensitive TAs clearly demonstrates that the observed effect is caused by TA knockdown. Notably, introduction of a mutation in the LTA protein interfering with LTA binding to the retinoblastoma protein (RB) ablated this rescue. The importance of this interaction was further confirmed as LTA-specific knockdown leads to explicit cell growth inhibition. In summary, the presented data demonstrate that established MCV-positive MCC tumors critically depend on TA expression, in particular the LTA and RB interaction, for sustained tumor growth. Consequently, interference with LTA/RB interaction appears as promising strategy to treat MCC.
Collapse
Affiliation(s)
- Roland Houben
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Murata H, Macauley J, Lewis AM, Peden K. Plaque purification as a method to mitigate the risk of adventitious-agent contamination in influenza vaccine virus seeds. Vaccine 2011; 29:3155-61. [PMID: 21354480 DOI: 10.1016/j.vaccine.2011.02.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 02/12/2011] [Accepted: 02/16/2011] [Indexed: 01/31/2023]
Abstract
At present, the seed viruses for the manufacture of licensed seasonal inactivated influenza vaccines in the United States are derived from primary egg isolates as a result of concerns associated with adventitious agents. According to the prevailing view, the passage of influenza viruses through eggs serves as a filtering step to remove potential contaminating viruses. We have investigated the feasibility of addressing adventitious-agent risk by subjecting influenza virus to a plaque-purification procedure using MDCK cells. SV40 and canine adenovirus-1 (representing viruses for which MDCK cells are non-permissive and permissive, respectively) were used as challenge viruses to model agents of concern that might be co-isolated along with the influenza virus. By mixing influenza virus strain A/PR/8/34 with varying amounts of each challenge virus and then performing a plaque assay for influenza virus using MDCK cells, we have attempted to determine the efficiency by which the challenge virus is removed. Our data suggest that substantial removal can be achieved even after a single round of plaque purification. If cell-derived isolates were deemed to be acceptable following a plaque-purification procedure, the manufacture of seasonal influenza vaccine would be facilitated by: (1) the expansion of the repertoire of viruses from which seed virus candidates could be generated for licensed egg-derived vaccines as well as for vaccines manufactured in mammalian cells; and (2) the mitigation of adventitious-agent risk associated with the seed virus, and hence the elimination of the need to passage seed viruses in eggs for vaccines manufactured in mammalian cells.
Collapse
Affiliation(s)
- Haruhiko Murata
- Laboratory of DNA Viruses, Division of Viral Products, CBER, FDA, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
50
|
Galed-Placed I, Valbuena-Ruvira L. Decoy cells and malignant cells coexisting in the urine from a transplant recipient with BK virus nephropathy and bladder adenocarcinoma. Diagn Cytopathol 2010; 39:933-7. [PMID: 22081531 DOI: 10.1002/dc.21579] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/26/2010] [Indexed: 01/10/2023]
Abstract
The search for decoy cells (DC) in urine is widely used as screening for BK virus (BKV) reactivation in transplant recipients. BKV cytopathic effect of DC must not be confused with high-grade urothelial carcinoma. This report presents a case of coexistence of DC and malignant cells in the urine from a transplant recipient with BKV-associated nephropathy (BKVN) and bladder adenocarcinoma. A 38-year-old female with type 1 diabetes mellitus and end-stage renal disease underwent a simultaneous pancreas and kidney transplant. Four years post-transplantation, BK virus studies were performed for renal dysfunction. Isolated DC and DC in casts were identified in urine. Also, the tests for BKV DNA were positive in serum and renal allograft biopsy. BKVN was treatment-resistant and the patient returned to hemodialysis. A kidney transplant nephrectomy was performed 2 years later. The next urine cytology showed, in addition to DC, other distinct cells with nuclear atypia highly suggestive of malignancy. Some cells showed both, malignant and DC features. A bladder adenocarcinoma was diagnosed on biopsy and BKV proteins were demonstrated on tumor cells, supporting a possible role for BKV in the oncogenic pathway in this clinical setting. The presence of DC in the urine from a transplant recipient is the hallmark of BKV activation, but it does not exclude the existence of carcinoma. Furthermore, the presence of highly atypical cells should raise, not eliminate, the possibility of neoplastic transformation of the bladder.
Collapse
Affiliation(s)
- Ignacio Galed-Placed
- Section of Cytology, Department of Pathology, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain.
| | | |
Collapse
|