1
|
Selvi S, Real CM, Gentiluomo M, Balounova K, Vokacova K, Cumova A, Mohlenikova-Duchonova B, Rizzato C, Halasova E, Vodickova L, Smolkova B, Hemminki K, Campa D, Vodicka P. Genomic instability, DNA damage response and telomere homeostasis in pancreatic cancer. Semin Cancer Biol 2025; 113:59-73. [PMID: 40378535 DOI: 10.1016/j.semcancer.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
Pancreatic cancer (PC) is becoming one of the most serious health problems at present, but its causes and risk factors are still unclear. One of the drivers in pancreatic carcinogenesis is altered genomic (DNA) integrity with subsequent genomic instability in cancer cells. The latter comprises a) DNA damage response and DNA repair mechanisms, b) DNA replication and mitosis, c) epigenetic regulation, and d) telomere maintenance. In our review we addressed the above aspects in relation to the most abundant and severe form of PC, pancreatic ductal adenocarcinoma (PDAC). In summary, the interactions between the DNA damage response, telomere homeostasis and mitotic regulation are not comprehensively understood at present, including the epigenetic factors entering the trait of genomic stability maintenance. In addition, the complexity of telomere homeostasis in relation to PDAC risk, prognosis and prediction also warrants further investigations.
Collapse
Affiliation(s)
- Saba Selvi
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Carmen Macías Real
- Cancer Predisposition and Biomarkers Group, Instituto de Investigacion Sanitaria de Santiago, Santiago de Compostela, Spain
| | | | - Katerina Balounova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klara Vokacova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | | | - Cosmeri Rizzato
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia
| | - Ludmila Vodickova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, FRG 69120, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Pavel Vodicka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic.
| |
Collapse
|
2
|
Chen X, Miao J, Huang X, Han X, Zheng L, Chen J, Chen L, Li L. Multiphoton imaging-based quantifiable collagen signatures for predicting outcomes in patients with pancreatic ductal adenocarcinoma. Sci Rep 2025; 15:4414. [PMID: 39910233 PMCID: PMC11799447 DOI: 10.1038/s41598-025-88984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a clinical challenge due to its poor prognosis and high mortality rate. Here, we aimed to enhance the prognostic prediction of patients with PDAC by studying collagen features in tumor microenvironment using multiphoton microscopy (MPM) combining with image processing technique. We identified eight distinct tumor-associated collagen signatures (TACS1-8) from multiphoton images of PDAC tissues and developed an optical biomarker, TACS-score, based on the TACS1-8 using ridge regression analysis. Additionally, we also extracted 142 microscopic TACS (M-TACS) from second-harmonic generation (SHG) images and constructed a new robust biomarker, M-TACS-score, using the least absolute shrinkage and selection operator (LASSO) regression analysis. Our statistical results demonstrate that as two new optical biomarkers, TACS- and M-TACS-score, are independent prognostic factors and have good discriminatory ability (high AUC) as well as risk stratification (high HR) comparing with traditional clinical model (combining seven clinical risk factors, age, sex, TNM stage, tumor location and differentiation, perineural and lymph-vascular invasion) in predicting overall survival (OS) of patients with PDAC, highlighting their potential prognostic and predictive value. A combination of label-free multiphoton imaging technique and computer-aided image processing method may offer a novel and promising approach for finding new biomarkers to improve prognosis prediction and thereby tailor treatment strategies more effectively.
Collapse
Affiliation(s)
- Xiwen Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Jikui Miao
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Xiahui Han
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Liqin Zheng
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Linying Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China.
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
3
|
Zhou Y, Qiu C, Fu Q, Li T, Zhang X, Zhu C, Qin X, Wu B. Pan-Cancer Analysis of Oncogenic Role of RAD54L and Experimental Validation in Hepatocellular Carcinoma. J Inflamm Res 2023; 16:3997-4017. [PMID: 37719938 PMCID: PMC10503553 DOI: 10.2147/jir.s426558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023] Open
Abstract
Background RAD54L is a prominent member of the SWI2/SNF2 protein family, primarily involved in the homologous recombination repair (HRR) process, thereby playing a pivotal role in the repair of DNA double-strand breaks (DSBs). RAD54L has been implicated in the development of numerous tumors. Consequently, we aimed to investigate the potential contribution of RAD54L in pan-cancer. Methods Various databases and analytical tools were employed for bioinformatics analysis. Moreover, in vitro experiments were conducted to corroborate the findings from the bioinformatics analysis and delve deeper into the role of RAD54L in hepatocellular carcinoma (HCC). Results RAD54L expression demonstrated a significant elevation in the majority of tumors, and its overexpression was strongly associated with unfavorable survival outcomes. RAD54L displayed robust correlations with the infiltration levels of various immune cells, including cancer associated fibroblasts (CAFs), endothelial cells, and myeloid-derived suppressor cells (MDSCs). Additionally, associations were observed between RAD54L and key factors such as tumor mutation burden (TMB), microsatellite instability (MSI), multiple immune checkpoints, and immune cell infiltration. Moreover, a close relationship was observed between RAD54L expression levels in HCC and clinicopathological characteristics, as well as immune cell infiltration. Experimental techniques including qRT-PCR, Western blotting, colony-forming, Cell Counting Kit-8 (CCK-8), wound-healing, and transwell assays were employed, which collectively demonstrated that RAD54L promoted the proliferation and migration of HCC cells. Conclusion RAD54L exhibits robust expression in both pan-cancer and HCC, exerting a significant influence on the proliferation and migration of HCC cells. These findings highlight its potential as a promising biomarker for pan-cancer and a prospective target for immunotherapy.
Collapse
Affiliation(s)
- Yongzhen Zhou
- Department of General Surgery, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
- Graduate School, Bengbu Medical College, Bengbu, 233003, People’s Republic of China
| | - Chenjie Qiu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, 213000, People’s Republic of China
| | - Qingsheng Fu
- Graduate School, Bengbu Medical College, Bengbu, 233003, People’s Republic of China
| | - Tao Li
- Department of General Surgery, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Xudong Zhang
- Department of General Surgery, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Chunfu Zhu
- Department of General Surgery, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Xihu Qin
- Department of General Surgery, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Baoqiang Wu
- Department of General Surgery, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
- Graduate School, Bengbu Medical College, Bengbu, 233003, People’s Republic of China
| |
Collapse
|
4
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
5
|
Yuan W, Shang Z, Shen K, Yu Q, Lv Q, Cao Y, Wang J, Yang Y. Case report: Germline RECQL mutation potentially involved in hereditary predisposition to acute leukemia. Front Oncol 2023; 13:1066083. [PMID: 36998465 PMCID: PMC10043295 DOI: 10.3389/fonc.2023.1066083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
The pathogenesis of acute leukemia is still complex and vague. Most types of acute leukemia are related to somatic gene mutations, and familial incidence is rare. Here we report a case of familial leukemia. The proband presented to our hospital with vaginal bleeding and disseminated intravascular coagulation at the age of 42 and was diagnosed with acute promyelocytic leukemia with typical PML-RARα fusion gene caused by t(15;17)(q24;q21) translocation. By taking the history, we found that the patient’s second daughter had been diagnosed with B-cell acute leukemia with ETV6-RUNX1 fusion gene at age 6. Then we performed whole exome sequencing in peripheral blood mononuclear cells from these two patients at remission status and identified 8 shared germline gene mutations. Using functional annotation and Sanger sequencing validation, we finally focused on a single nucleotide variant in RecQ like helicase (RECQL), rs146924988, which was negative in the proband’s healthy eldest daughter. This gene variant potentially led to a relative lack of RECQL protein, disordered DNA repair and chromatin rearrangement, which may mediate the occurrence of fusion genes, as driving factors for leukemia. This study identified a novel possible leukemia-related germline gene variant and provided a new understanding for the screening and pathogenesis of hereditary predisposition syndromes.
Collapse
Affiliation(s)
- Wei Yuan
- Department and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Shang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kefeng Shen
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Yu
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuxia Lv
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yi Yang,
| |
Collapse
|
6
|
Lai J, Chen W, Zhao A, Huang J. Determination of a DNA repair-related gene signature with potential implications for prognosis and therapeutic response in pancreatic adenocarcinoma. Front Oncol 2022; 12:939891. [PMID: 36353555 PMCID: PMC9638008 DOI: 10.3389/fonc.2022.939891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is one of the leading causes of cancer death worldwide. Alterations in DNA repair-related genes (DRGs) are observed in a variety of cancers and have been shown to affect the development and treatment of cancers. The aim of this study was to develop a DRG-related signature for predicting prognosis and therapeutic response in PAAD. Methods We constructed a DRG signature using least absolute shrinkage and selection operator (LASSO) Cox regression analysis in the TCGA training set. GEO datasets were used as the validation set. A predictive nomogram was constructed based on multivariate Cox regression. Calibration curve and decision curve analysis (DCA) were applied to validate the performance of the nomogram. The CIBERSORT and ssGSEA algorithms were utilized to explore the relationship between the prognostic signature and immune cell infiltration. The pRRophetic algorithm was used to estimate sensitivity to chemotherapeutic agents. The CellMiner database and PAAD cell lines were used to investigate the relationship between DRG expression and therapeutic response. Results We developed a DRG signature consisting of three DRGs (RECQL, POLQ, and RAD17) that can predict prognosis in PAAD patients. A prognostic nomogram combining the risk score and clinical factors was developed for prognostic prediction. The DCA curve and the calibration curve demonstrated that the nomogram has a higher net benefit than the risk score and TNM staging system. Immune infiltration analysis demonstrated that the risk score was positively correlated with the proportions of activated NK cells and monocytes. Drug sensitivity analysis indicated that the signature has potential predictive value for chemotherapy. Analyses utilizing the CellMiner database showed that RAD17 expression is correlated with oxaliplatin. The dynamic changes in three DRGs in response to oxaliplatin were examined by RT-qPCR, and the results show that RAD17 is upregulated in response to oxaliplatin in PAAD cell lines. Conclusion We constructed and validated a novel DRG signature for prediction of the prognosis and drug sensitivity of patients with PAAD. Our study provides a theoretical basis for further unraveling the molecular pathogenesis of PAAD and helps clinicians tailor systemic therapies within the framework of individualized treatment.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weijie Chen
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Aiyue Zhao
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingshan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
7
|
Xiong J, Wu R, He A, Hou P, Wang J, Zhang R, Liao W, Wu L, Li E. Comprehensive analysis of the effects of KIF2C on prognosis, biological functions and immune infiltration in PAAD. Tissue Cell 2022; 78:101900. [DOI: 10.1016/j.tice.2022.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
8
|
Rad54L promotes bladder cancer progression by regulating cell cycle and cell senescence. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:185. [PMID: 36071250 DOI: 10.1007/s12032-022-01751-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/13/2022] [Indexed: 10/14/2022]
Abstract
Bladder cancer (BCa) is the most prevalent cancer of the urinary system, but its pathogenesis is still poorly understood. Several reports have suggested that gene damage repair is highly correlated with tumor development and drug resistance, in which homologous recombination repair gene Rad54L seems to play an important role, through yet unclear mechanisms. Therefore, this study stratified cancer patients by Rad54L expression in BCa tissue, and high Rad54L expression was associated with a poor prognosis. Mechanistically, we demonstrate that high Rad54L expression promotes abnormal bladder tumor cell proliferation by changing the cell cycle and cell senescence. In addition, this study also suggests that Rad54L may be associated with p53, p21, and pRB in BCa tissue. In summary, this study exposes Rad54L as potential a prognostic biomarker and precision treatment target in BCa.
Collapse
|
9
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
10
|
Zhu Y, Peng X, Wang X, Ying P, Wang H, Li B, Li Y, Zhang M, Cai Y, Lu Z, Niu S, Yang N, Zhong R, Tian J, Chang J, Miao X. Systematic analysis on expression quantitative trait loci identifies a novel regulatory variant in ring finger and WD repeat domain 3 associated with prognosis of pancreatic cancer. Chin Med J (Engl) 2022; 135:1348-1357. [PMID: 35830250 PMCID: PMC9433068 DOI: 10.1097/cm9.0000000000002180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is an extremely lethal malignancy. Identification of the functional genes and genetic variants related to PAAD prognosis is important and challenging. Previously identified prognostic genes from several expression profile analyses were inconsistent. The regulatory genetic variants that affect PAAD prognosis were largely unknown. METHODS Firstly, a meta-analysis was performed with seven published datasets to systematically explore the candidate prognostic genes for PAAD. Next, to identify the regulatory variants for those candidate genes, expression quantitative trait loci analysis was implemented with PAAD data resources from The Cancer Genome Atlas. Then, a two-stage association study in a total of 893 PAAD patients was conducted to interrogate the regulatory variants and find the prognostic locus. Finally, a series of biochemical experiments and phenotype assays were carried out to demonstrate the biological function of variation and genes in PAAD progression process. RESULTS A total of 128 genes were identified associated with the PAAD prognosis in the meta-analysis. Fourteen regulatory loci in 12 of the 128 genes were discovered, among which, only rs4887783, the functional variant in the promoter of Ring Finger and WD Repeat Domain 3 ( RFWD3 ), presented significant association with PAAD prognosis in both stages of the population study. Dual-luciferase reporter and electrophoretic mobility shift assays demonstrated that rs4887783-G allele, which predicts the worse prognosis, enhanced the binding of transcript factor REST, thus elevating RFWD3 expression. Further phenotypic assays revealed that excess expression of RFWD3 promoted tumor cell migration without affecting their proliferation rate. RFWD3 was highly expressed in PAAD and might orchestrate the genes in the DNA repair process. CONCLUSIONS RFWD3 and its regulatory variant are novel genetic factors for PAAD prognosis.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, Hubei 430030, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
11
|
Li J, Xiang C, Wang Y, Zhou Y, Cao S, Ling X, Ye J, Zheng J, Shao L, Zhong H, Han Y. The genomic characteristics of different progression patterns in advanced non-small cell lung cancer patients treated with immune checkpoint inhibitors. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:779. [PMID: 34268392 PMCID: PMC8246171 DOI: 10.21037/atm-20-6910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/04/2021] [Indexed: 02/04/2023]
Abstract
Background Fast progression (FP), hyperprogressive disease (HPD), and early death (ED) are the newly reported cancer progression patterns in response to immune checkpoint inhibitor (ICI) treatment. This study aimed to investigate the clinical and genomic characteristics of FP, HPD, and ED following the ICI treatment of advanced non-small cell lung cancer (NSCLC). Methods We retrospectively reviewed 117 patients with advanced NSCLC who were treated with ICIs from March 2017 to October 2019. FP was defined as (I) time to treatment failure (TTF) <1.5 months; and (II) ≥50% increase in the sum of the longest diameter (SLD) of target lesions. HPD was defined as (I) TTF <2 months; and (II) ≥50% change in tumor growth rate compared with before ICI initiation. ED was defined as overall survival (OS) <3 months. Tissue samples from 18 FP/HPD/ED patients and 5 partial response (PR) patients were subjected to genomic profiling. Genomic data from 693 tumor mutational burden- and histology-matched lung cancer samples were retrieved from an internal database as a control. Results FP, HPD, and ED occurred in 7.21%, 9.38%, and 11.97% patients, respectively. The progression-free survival was comparable among the 3 groups. The median overall survival for FP, HPD, and ED were 3.19, 11.2, and 1.84 months, respectively. The genomic landscape revealed 1 EGFR amplification, 1 ALK fusion, 6 KRAS mutations, 1 ERBB2 amplification, 1 MET amplification, and 1 RET fusion among the 18 patients with FP/HPD/ED. Compared with the Control group, ED patients showed higher mutation frequencies for KRAS (P<0.01), CDKN1B (P<0.01), and NTRK1 (P=0.04). Mutations in RAD54L (P=0.018) and MYC (P=0.04) were more common in FP patients; HPD patients showed more frequent RAD54L mutations (P<0.001). Conclusions We demonstrated different genomic characteristics across different progression patterns following ICI treatment, which might assist clinicians in the prediction of a patient’s response, identifying candidates for more effective ICI therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Wang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhui Cao
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuxinyi Ling
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Junyi Ye
- Department of Medicine and Clinical Research, Burning Rock Biotech, Guangzhou, China
| | - Jingjing Zheng
- Department of Medicine and Clinical Research, Burning Rock Biotech, Guangzhou, China
| | - Lin Shao
- Department of Medicine and Clinical Research, Burning Rock Biotech, Guangzhou, China
| | - Hua Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Qian D, Li Q, Zhu Y, Li D. Comprehensive Analysis of Key Proteins Involved in Radioresistance of Prostate Cancer by Integrating Protein-protein Interaction Networks. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200605143510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Radioresistance remains a significant obstacle in the treatment of prostate
cancer (PCa). The mechanisms underlying the radioresistance in PCa remained to be further
investigated.
Methods:
GSE53902 dataset was used in this study to identify radioresistance-related mRNAs.
Protein-protein interaction (PPI) network was constructed based on STRING analysis. DAVID
system was used to predict the potential roles of radioresistance-related mRNAs.
Results:
We screened and re-annotated the GSE53902 dataset to identify radioresistance-related
mRNAs. A total of 445 up-regulated and 1036 down-regulated mRNAs were identified in
radioresistance PCa cells. Three key PPI networks consisting of 81 proteins were further constructed
in PCa. Bioinformatics analysis revealed that these genes were involved in regulating MAP kinase
activity, response to hypoxia, regulation of the apoptotic process, mitotic nuclear division, and
regulation of mRNA stability. Moreover, we observed that radioresistance-related mRNAs, such as
PRC1, RAD54L, PIK3R3, ASB2, FBXO32, LPAR1, RNF14, and UBA7, were dysregulated and
correlated to the survival time in PCa.
Conclusion:
We thought this study would be useful to understand the mechanisms underlying
radioresistance of PCa and identify novel prognostic markers for PCa.
Collapse
Affiliation(s)
- Duocheng Qian
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Quan Li
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Yansong Zhu
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| |
Collapse
|
13
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
14
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
15
|
Mutations in conserved functional domains of human RecQ helicases are associated with diseases and cancer: A review. Biophys Chem 2020; 265:106433. [DOI: 10.1016/j.bpc.2020.106433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
|
16
|
Benedict B, van Bueren MA, van Gemert FP, Lieftink C, Guerrero Llobet S, van Vugt MA, Beijersbergen RL, Te Riele H. The RECQL helicase prevents replication fork collapse during replication stress. Life Sci Alliance 2020; 3:3/10/e202000668. [PMID: 32820027 PMCID: PMC7441523 DOI: 10.26508/lsa.202000668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022] Open
Abstract
Most tumors lack the G1/S phase checkpoint and are insensitive to antigrowth signals. Loss of G1/S control can severely perturb DNA replication as revealed by slow replication fork progression and frequent replication fork stalling. Cancer cells may thus rely on specific pathways that mitigate the deleterious consequences of replication stress. To identify vulnerabilities of cells suffering from replication stress, we performed an shRNA-based genetic screen. We report that the RECQL helicase is specifically essential in replication stress conditions and protects stalled replication forks against MRE11-dependent double strand break (DSB) formation. In line with these findings, knockdown of RECQL in different cancer cells increased the level of DNA DSBs. Thus, RECQL plays a critical role in sustaining DNA synthesis under conditions of replication stress and as such may represent a target for cancer therapy.
Collapse
Affiliation(s)
- Bente Benedict
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marit Ae van Bueren
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frank Pa van Gemert
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Atm van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
17
|
RecQ DNA Helicase Rqh1 Promotes Rad3 ATR Kinase Signaling in the DNA Replication Checkpoint Pathway of Fission Yeast. Mol Cell Biol 2020; 40:MCB.00145-20. [PMID: 32541066 DOI: 10.1128/mcb.00145-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Rad3 is the orthologue of ATR and the sensor kinase of the DNA replication checkpoint in Schizosaccharomyces pombe Under replication stress, it initiates checkpoint signaling at the forks necessary for maintaining genome stability and cell survival. To better understand the checkpoint initiation process, we have carried out a genetic screen in fission yeast by random mutation of the genome, looking for mutants defective in response to the replication stress induced by hydroxyurea. In addition to the previously reported mutant with a C-to-Y change at position 307 encoded by tel2 (tel2-C307Y mutant) (Y.-J. Xu, S. Khan, A. C. Didier, M. Wozniak, et al., Mol Cell Biol 39:e00175-19, 2019, https://doi.org/10.1128/MCB.00175-19), this screen has identified six mutations in rqh1 encoding a RecQ DNA helicase. Surprisingly, these rqh1 mutations, except for a start codon mutation, are all in the helicase domain, indicating that the helicase activity of Rqh1 plays an important role in the replication checkpoint. In support of this notion, integration of two helicase-inactive mutations or deletion of rqh1 generated a similar Rad3 signaling defect, and heterologous expression of human RECQ1, BLM, and RECQ4 restored the Rad3 signaling and partially rescued a rqh1 helicase mutant. Therefore, the replication checkpoint function of Rqh1 is highly conserved, and mutations in the helicase domain of these human enzymes may cause the checkpoint defect and contribute to the cancer predisposition syndromes.
Collapse
|
18
|
Jain CK, Mukhopadhyay S, Ganguly A. RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy. Anticancer Agents Med Chem 2020; 20:1311-1326. [PMID: 32418530 DOI: 10.2174/1871520620666200518082433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Replication fork reversal and restart has gained immense interest as a central response mechanism to replication stress following DNA damage. Although the exact mechanism of fork reversal has not been elucidated precisely, the involvement of diverse pathways and different factors has been demonstrated, which are central to this phenomenon. RecQ helicases known for their vital role in DNA repair and maintaining genome stability has recently been implicated in the restart of regressed replication forks. Through interaction with vital proteins like Poly (ADP) ribose polymerase 1 (PARP1), these helicases participate in the replication fork reversal and restart phenomenon. Most therapeutic agents used for cancer chemotherapy act by causing DNA damage in replicating cells and subsequent cell death. These DNA damages can be repaired by mechanisms involving fork reversal as the key phenomenon eventually reducing the efficacy of the therapeutic agent. Hence the factors contributing to this repair process can be good selective targets for developing more efficient chemotherapeutic agents. In this review, we have discussed in detail the role of various proteins in replication fork reversal and restart with special emphasis on RecQ helicases. Involvement of other proteins like PARP1, recombinase rad51, SWI/SNF complex has also been discussed. Since RecQ helicases play a central role in the DNA damage response following chemotherapeutic treatment, we propose that targeting these helicases can emerge as an alternative to available intervention strategies. We have also summarized the current research status of available RecQ inhibitors and siRNA based therapeutic approaches that targets RecQ helicases. In summary, our review gives an overview of the DNA damage responses involving replication fork reversal and provides new directions for the development of more efficient and sustainable chemotherapeutic approaches.
Collapse
Affiliation(s)
- Chetan K Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Swagata Mukhopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
19
|
Mou J, Hu T, Wang Z, Chen W, Wang Y, Zhang W. ATM gene polymorphisms are associated with poor prognosis of non-small cell lung cancer receiving radiation therapy. Aging (Albany NY) 2020; 12:7465-7479. [PMID: 32329754 PMCID: PMC7202543 DOI: 10.18632/aging.103094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/30/2020] [Indexed: 04/07/2023]
Abstract
We investigated the prognostic significance of ataxia telangiectasia mutated (ATM) single nucleotide polymorphisms (SNPs) in 720 Han Chinese non-small cell lung cancer (NSCLC) patients who underwent radiation or chemoradiation therapy. Kaplan-Meier survival curves showed that overall survival (OS) and disease-free survival (DFS) rates were significantly associated with two ATM SNPs, rs664143 and rs189037. Patients with the rs664143 GA or AA genotype had poorer DFS (hazard ratio (HR) = 1.40, 95% confidence interval (CI) = 1.05-1.86, P = 0.021) and OS (HR = 1.28, 95%CI = 1.12-1.78, P = 0.040) than those with the rs664143 GG phenotype. Patients with the rs189037 AG/GG genotypes had poorer prognoses than those with the rs189037 AA genotype (AG/GG vs. AA: DFS, HR = 1.44, 95%CI = 1.06-1.95, P=0.019; OS, HR = 1.16, 95%CI = 1.16-1.17-2.21, P=0.004). These results were confirmed by subgroup analysis based on clinical factors such as smoking, histology, tumor stage, treatment, and radiation dose, all of which were significantly associated with DFS and OS rates in NSCLC patients. These findings show that ATM rs664143 and rs189037 variants determine prognosis in NSCLC patients that have undergone radiation or chemoradiation therapies.
Collapse
Affiliation(s)
- Junjun Mou
- Department of Radiotherapy, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Tao Hu
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Zhiwu Wang
- Department of Chemoradiotherapy, Tangshan People’s Hospital, Tangshan 063000, China
| | - Wei Chen
- Training Department, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Yang Wang
- Department of Radiotherapy, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, China
| | - Wei Zhang
- Department of Radiotherapy, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Yantai 264000, Shandong, China
| |
Collapse
|
20
|
Qiu HZ, Huang J, Xiang CC, Li R, Zuo ED, Zhang Y, Shan L, Cheng X. Screening and Discovery of New Potential Biomarkers and Small Molecule Drugs for Cervical Cancer: A Bioinformatics Analysis. Technol Cancer Res Treat 2020; 19:1533033820980112. [PMID: 33302814 PMCID: PMC7734488 DOI: 10.1177/1533033820980112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second most common type of malignant tumor survival rate is low in advanced stage, metastatic, and recurrent CC patients. This study aimed at identifying potential genes and drugs for CC diagnosis and targeting therapies. METHODS Three GEO mRNA microarray datasets of CC tissues and non-cancerous tissues were analyzed for differentially expressed genes (DEGs) by limma package. GO (Gene Ontologies) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used to explore the relationships between the DEGs. Protein-protein interaction (PPI) of these genes was established by the STRING database. MCODE was used for screening significant modules in the PPI networks to select hub genes. Biochemical mechanisms of the hub genes were investigated with Metascape. GEPIA database was used for validating the core genes. According to these DEGs, molecular candidates for CC were recognized from the CMAP database. RESULTS We identified 309 overlapping DEGs in the 2 tissue-types. Pathway analysis revealed that the DEGs were involved in cell cycle, DNA replication, and p53 signaling. PPI networks between overlapping DEGs showed 68 high-connectivity DEGs that were chosen as hub genes. The GEPIA database showed that the expression levels of RRM2, CDC45, GINS2, HELLS, KNTC1, MCM2, MYBL2, PCNA, RAD54 L, RFC4, RFC5, TK1, TOP2A, and TYMS in CC tissues were significantly different from those in the healthy tissues and were significantly relevant to the OS of CC. We found 10 small molecules from the CMAP database that could change the trend of gene expression in CC tissues, including piperlongumine and chrysin. CONCLUSIONS The 14 DEGs identified in this study could serve as novel prognosis biomarkers for the detection and forecasting of CC. Small molecule drugs like piperlongumine and chrysin could be potential therapeutic drugs for CC treatment.
Collapse
Affiliation(s)
- Hui-Zhu Qiu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Ji Huang
- Department of Pharmacy, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Cheng-Cheng Xiang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Rong Li
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Er-Dong Zuo
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Yuan Zhang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Li Shan
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| |
Collapse
|
21
|
Fong CYK, Burke E, Cunningham D, Starling N. Up-to-Date Tailored Systemic Treatment in Pancreatic Ductal Adenocarcinoma. Gastroenterol Res Pract 2019; 2019:7135437. [PMID: 31582971 PMCID: PMC6748185 DOI: 10.1155/2019/7135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 12/24/2022] Open
Abstract
Despite intensive research efforts, pancreatic ductal adenocarcinoma is still regarded as an aggressive and life-limiting malignancy. Combination chemotherapy regimens that underpin the current treatment approach in the advanced setting have led to incremental survival gains in recent years but have failed to confer patients with a median overall survival that exceeds 12 months from diagnosis. Research has since focussed on understanding the role and interplay between various components of the desmoplastic stroma and tumour microenvironment, in addition to developing targeted therapies based on molecular features to improve the prognosis associated with this malignancy. This review will summarise the available systemic treatment options and discuss potential methods to refine the resolution of patient selection to enhance responses to currently available therapies. Furthermore, it will explore newer approaches anticipated to come to the fore of future clinical practice, such as agents targeting the DNA damage response and tumour microenvironment as well as immunotherapy-based combinations.
Collapse
Affiliation(s)
| | - Emma Burke
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - David Cunningham
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Naureen Starling
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| |
Collapse
|
22
|
Parvathaneni S, Sharma S. The DNA repair helicase RECQ1 has a checkpoint-dependent role in mediating DNA damage responses induced by gemcitabine. J Biol Chem 2019; 294:15330-15345. [PMID: 31444271 DOI: 10.1074/jbc.ra119.008420] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/15/2019] [Indexed: 12/18/2022] Open
Abstract
The response of cancer cells to therapeutic drugs that cause DNA damage depends on genes playing a role in DNA repair. RecQ-like helicase 1 (RECQ1), a DNA repair helicase, is critical for genome stability, and loss-of-function mutations in the RECQ1 gene are associated with increased susceptibility to breast cancer. In this study, using a CRISPR/Cas9-edited cell-based model, we show that the genetic or functional loss of RECQ1 sensitizes MDA-MB-231 breast cancer cells to gemcitabine, a nucleoside analog used in chemotherapy for triple-negative breast cancer. RECQ1 loss led to defective ATR Ser/Thr kinase (ATR)/checkpoint kinase 1 (ChK1) activation and greater DNA damage accumulation in response to gemcitabine treatment. Dual deficiency of MUS81 structure-specific endonuclease subunit (MUS81) and RECQ1 increased gemcitabine-induced, replication-associated DNA double-stranded breaks. Consistent with defective checkpoint activation, a ChK1 inhibitor further sensitized RECQ1-deficient cells to gemcitabine and increased cell death. Our results reveal an important role for RECQ1 in controlling cell cycle checkpoint activation in response to gemcitabine-induced replication stress.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, D. C. 20059
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, D. C. 20059 .,National Human Genome Center, Howard University College of Medicine, Washington, D. C. 20059
| |
Collapse
|
23
|
Alshabi AM, Shaikh IA, Vastrad C. Exploring the Molecular Mechanism of the Drug-Treated Breast Cancer Based on Gene Expression Microarray. Biomolecules 2019; 9:biom9070282. [PMID: 31311202 PMCID: PMC6681318 DOI: 10.3390/biom9070282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
: Breast cancer (BRCA) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers expressed during estradiol and tamoxifen treatment of BRCA. The microarray dataset of E-MTAB-4975 from Array Express database was downloaded, and the differential expressed genes (DEGs) between estradiol-treated BRCA sample and tamoxifen-treated BRCA sample were identified by limma package. The pathway and gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes-miRNA interaction network and target genes-transcription factor (TF) interaction network were performed using bioinformatics tools. The expression, prognostic values, and mutation of hub genes were validated by SurvExpress database, cBioPortal, and human protein atlas (HPA) database. A total of 856 genes (421 up-regulated genes and 435 down-regulated genes) were identified in T47D (overexpressing Split Ends (SPEN) + estradiol) samples compared to T47D (overexpressing Split Ends (SPEN) + tamoxifen) samples. Pathway and GO enrichment analysis revealed that the DEGs were mainly enriched in response to lysine degradation II (pipecolate pathway), cholesterol biosynthesis pathway, cell cycle pathway, and response to cytokine pathway. DEGs (MCM2, TCF4, OLR1, HSPA5, MAP1LC3B, SQSTM1, NEU1, HIST1H1B, RAD51, RFC3, MCM10, ISG15, TNFRSF10B, GBP2, IGFBP5, SOD2, DHF and MT1H) , which were significantly up- and down-regulated in estradiol and tamoxifen-treated BRCA samples, were selected as hub genes according to the results of protein-protein interaction (PPI) network, module analysis, target genes-miRNA interaction network and target genes-TF interaction network analysis. The SurvExpress database, cBioPortal, and Human Protein Atlas (HPA) database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. A comprehensive bioinformatics analysis was performed, and potential therapeutic applications of estradiol and tamoxifen were predicted in BRCA samples. The data may unravel the future molecular mechanisms of BRCA.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, ChanabasavaNilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
24
|
Xu H, Xu Y, Ouyang T, Li J, Wang T, Fan Z, Fan T, Lin B, Xie Y. Low expression of RECQL is associated with poor prognosis in Chinese breast cancer patients. BMC Cancer 2018; 18:662. [PMID: 29914420 PMCID: PMC6007067 DOI: 10.1186/s12885-018-4585-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022] Open
Abstract
Background RECQL is a number of the RecQ DNA helicase family and plays an important role in maintaining genome stability. Although several studies have reported that RECQL mutations were correlated with the susceptibility to breast cancer, the effect on prognosis in breast cancer was not yet clarified. Here, we explored the association between RECQL expression level and survival in patients with breast cancer. Methods In the first cohort, the RECQL mRNA expression level was evaluated in 774 primary breast cancer patients using a quantitative real-time PCR assay. Then, in the second independent cohort, the level of RECQL protein expression was detected in 322 patients with breast cancer using immunohistochemistry assay. Survival curves of patients with RECQL expression were compared using the Kaplan-Meier method with log-rank test. Results In the first cohort of 774 breast cancer patients, the low expression level of RECQL mRNA was significantly correlated with aggressive clinicopathological characteristics, including the positive lymph node status (P = 0.026), HER2 overexpression (P < 0.001), ER negative status (P = 0.047) and high tumor grade (P = 0.041). Moreover, the low expression level of RECQL mRNA was significantly associated with poor distant recurrence-free survival (DRFS, unadjusted hazard ratio (HR): 2.77, 95% confidence interval (CI): 1.88–4.09, P < 0.001) and disease-specific survival (DSS, unadjusted HR: 3.10, 95% CI: 1.84–5.20,P < 0.001), and it remained an independent unfavorable factor for DRFS and DSS (DRFS: adjusted HR: 3.04, 95% CI: 1.89–4.87, P < 0.001; DSS: adjusted HR: 4.25, 95% CI: 2.12–8.46, P < 0.001). In the second cohort of 322 breast cancer patients, low expression of RECQL protein was also subject to poor survival in breast cancer, and it was an independent prognosis factor of poor DRFS by multivariate analysis (DRFS: adjusted HR: 2.12, 95% CI: 1.16–3.88, P = 0.015). Conclusions Breast cancer patients with low RECQL expression had a worse survival. The expression level of RECQL may be a potential prognosis factor for breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4585-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiying Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Ye Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Jinfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tianfeng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Zhaoqing Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Tie Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Benyao Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China
| | - Yuntao Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Beijing Cancer Hospital & Institute, Peking University Cancer Hospital, Beijing, 100142, People's Republic of China.
| |
Collapse
|
25
|
Zhen DB, Coveler A, Zanon S, Reni M, Chiorean EG. Biomarker-driven and molecularly targeted therapies for pancreatic adenocarcinoma. Semin Oncol 2018; 45:107-115. [PMID: 30391013 DOI: 10.1053/j.seminoncol.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a deadly disease with few effective treatment options. Our knowledge of molecular alterations in PDAC has significantly grown and helped identify new therapeutic targets. The success of immune checkpoint inhibition in mismatch repair deficient tumors, PARP inhibitors for tumors with DNA repair defects, and targeting hyaluronan with PEGPH20 in patients with high expressing (hyaluronan-high) tumors are examples of promising biomarker-driven therapies. We review the major biological mechanisms in PDAC and discuss current and future directions for molecularly targeted therapies in this disease.
Collapse
Affiliation(s)
- David B Zhen
- Division of Medical Oncology, Department of Medicine, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrew Coveler
- Division of Medical Oncology, Department of Medicine, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Silvia Zanon
- Department of Medical Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, San Raffaele Scientific Institute, Milan, Italy.
| | - E Gabriela Chiorean
- Division of Medical Oncology, Department of Medicine, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
26
|
Bai X, Wang J, Huo L, Xie Y, Xie W, Xu G, Wang M. Serine/Threonine Kinase CHEK1-Dependent Transcriptional Regulation of RAD54L Promotes Proliferation and Radio Resistance in Glioblastoma. Transl Oncol 2017; 11:140-146. [PMID: 29287241 PMCID: PMC6002345 DOI: 10.1016/j.tranon.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence indicates that Checkpoint kinase 1 (CHEK1) plays an essential role in tumor cells and that it could induce cell proliferation and could be related to prognosis in multiple types of cancer. However, the biological role and molecular mechanism of CHEK1 in GBM still remain unclear. In this study, we identified that CHEK1 expression was enriched in glioblastoma (GBM) tumors and was functionally required for tumor proliferation and that its expression was associated to poor prognosis in GBM patients. Mechanically, CHEK1 induced radio resistance in GBM cells, and CHEK1 knockdown increased cell apoptosis when combined with radiotherapy via regulation of the DNA repair/recombination protein 54L (RAD54L) expression. Therapeutically, we found that CHEK1 inhibitor attenuated tumor growth both in vitro and in vivo. Collectively, CHEK1 promotes proliferation, induces radio resistance in GBM, and could become a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaaxin, China, 710061
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaaxin, China, 710061
| | - Longwei Huo
- Department of Neurosurgery, The First Hospital of Yulin, Yulin, Shaanxi, China, 719000
| | - Yuchen Xie
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaaxin, China, 710061
| | - Wanfu Xie
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaaxin, China, 710061
| | - Gaofeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaaxin, China, 710061
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaaxin, China, 710061.
| |
Collapse
|
27
|
Yan Z, Tong X, Ma Y, Liu S, Yang L, Yang X, Yang X, Bai M, Fan H. Association between ATM gene polymorphisms, lung cancer susceptibility and radiation-induced pneumonitis: a meta-analysis. BMC Pulm Med 2017; 17:205. [PMID: 29246212 PMCID: PMC5731205 DOI: 10.1186/s12890-017-0555-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/07/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous studies have suggested that DNA double-strand break (DSB) repair is an important protective pathway after damage. The ataxia telangiectasia mutated (ATM) gene plays an important role in the DNA DSB repair pathway. DNA damage is a major cytotoxic effect that can be caused by radiation, and the ability to repair DNA after damage varies among different tissues. Impaired DNA repair pathways are associated with high sensitivity to radiation exposure. Hence, ATM gene polymorphisms are thought to influence the risk of cancer and radiation-induced pneumonitis (RP) risk in cancer patients treated with radiotherapy. However, the results of previous studies are inconsistent. We therefore conducted this comprehensive meta-analysis. METHODS A systematic literature search was performed in the PubMed, Embase, China National Knowledge Internet (CNKI) and Wanfang databases to identify studies that investigated the association between the ATM gene polymorphisms and both lung cancer and RP radiotherapy-treated lung cancer (the last search was conducted on Dec.10, 2015). The odds ratio (OR) and 95% confidence interval (CI) were used to investigate the strength of these relationships. Funnel plots and Begg's and Egger's tests were conducted to assess the publication bias. All analyses were performed in STATA 13.0 software. RESULTS Ten eligible case-control studies (4731 cases and 5142 controls) on lung cancer susceptibility and four (192 cases and 772 controls) on RP risk were included. The results of the overall and subgroup analyses indicated that in the ATM gene, the rs189037 (-111G > A, -4519G > A), rs664677 (44831C > T, 49238C > T) and rs664143 (131,717 T > G) polymorphisms were significantly associated with lung cancer susceptibility (OR = 1.21, 95% CI = 1.04-1.39, P = 0.01; OR = 1.26, 95% CI = 1.06-1.49, P = 0.01; OR = 1.43, 95% CI = 1.15-1.78, P < 0.01). Additionally, the rs189037 variant was significantly associated with RP risk (OR = 1.74, 95% CI = 1.02-2.97, P = 0.04). No publication bias was found in the funnel plots, Begg's tests or Egger's tests. CONCLUSIONS The results indicate that the ATM rs189037, rs664677 and rs664143 gene polymorphisms are risk factors for lung cancer, while the ATM rs189037 variant was significantly associated with RP risk.
Collapse
Affiliation(s)
- Zhipeng Yan
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Xiang Tong
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Yao Ma
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Department of Internal Medicine, No.4 West China Teaching Hospital, Sichuan University, Renming South Road 3rd Section 18, Chengdu, 610041, China
| | - Sitong Liu
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Lingjing Yang
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.,Department of Respiration, East Branch, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, No. 585 Honghe North Road, Chengdu, 610110, China
| | - Xin Yang
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Xue Yang
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Min Bai
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China
| | - Hong Fan
- Department of Respiratory Medicine and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Guoxuexiang 37, Chengdu, 610041, China.
| |
Collapse
|
28
|
Parvathaneni S, Lu X, Chaudhary R, Lal A, Madhusudan S, Sharma S. RECQ1 expression is upregulated in response to DNA damage and in a p53-dependent manner. Oncotarget 2017; 8:75924-75942. [PMID: 29100281 PMCID: PMC5652675 DOI: 10.18632/oncotarget.18237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022] Open
Abstract
Sensitivity of cancer cells to DNA damaging chemotherapeutics is determined by DNA repair processes. Consequently, cancer cells may upregulate the expression of certain DNA repair genes as a mechanism to promote chemoresistance. Here, we report that RECQ1, a breast cancer susceptibility gene that encodes the most abundant RecQ helicase in humans, is a p53-regulated gene, potentially acting as a defense against DNA damaging agents. We show that RECQ1 mRNA and protein levels are upregulated upon treatment of cancer cells with a variety of DNA damaging agents including the DNA-alkylating agent methylmethanesulfonate (MMS). The MMS-induced upregulation of RECQ1 expression is p53-dependent as it was observed in p53-proficient but not in isogenic p53-deficient cells. The RECQ1 promoter is bound by endogenous p53 and is responsive to p53 in luciferase reporter assays suggesting that RECQ1 is a direct target of p53. Treatment with the chemotherapeutic drugs temozolomide and fotemustine also increased RECQ1 mRNA levels whereas depletion of RECQ1 enhanced cellular sensitivity to these agents. These results identify a previously unrecognized p53-mediated upregulation of RECQ1 expression in response to DNA damage and implicate RECQ1 in the repair of DNA lesions including those induced by alkylating and other chemotherapeutic agents.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| | - Xing Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| | - Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Srinivasan Madhusudan
- Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG51PB, UK
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, 20059, USA
| |
Collapse
|
29
|
do Espírito Santo GF, Galera BB, Duarte EC, Chen ES, Azis L, Damazo AS, Saba GT, de Sousa Gehrke F, Guerreiro da Silva IDC, Waisberg J. Prognostic significance of vascular endothelial growth factor polymorphisms in colorectal cancer patients. World J Gastrointest Oncol 2017; 9:78-86. [PMID: 28255429 PMCID: PMC5314204 DOI: 10.4251/wjgo.v9.i2.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the associations of the genetic polymorphisms of vascular endothelial growth factor A (VEGF-A) -1498C>T and -634G>C, with the survival of patients with colorectal cancer (CRC).
METHODS A prospective cohort consisting of 131 Brazilians patients consecutively operated on with a curative intention as a result of sporadic colorectal carcinoma was studied. DNA was extracted from peripheral blood and its amplification and allelic discrimination for each genetic polymorphism was performed using the technique of polymerase chain reaction (PCR) in real-time. The real-time PCR technique was used to identify the VEGF-A -1498C>T (rs833031) and -634G>C (rs2010963) polymorphisms. Genotyping was validated for VEGF-A -1498C>T polymorphism in 129 patients and for VEGF-A -634G>C polymorphism in 118 patients. The analysis of association between categorical variables was performed using logistic regression, survival by Kaplan-Meier method and multivariate analysis by the Cox regression method.
RESULTS In the univariate analysis there was a significant association (OR = 0.32; P = 0.048) between genotype CC of the VEGF-A -1498C>T polymorphism and the presence of CRC liver metastasis. There was no association between VEGF-A -1498C>T polymorphism and VEGF-A -634G>C polymorphism with further clinical or anatomopathologic variables. The genotype CC of the VEGF-A -1498C>T polymorphism was significantly correlated with the 5-year survival (P = 0.032), but not significant difference (P = 0.27) was obtained with the VEGF-A -634G>C polymorphism with the 5-year survival in the univariate analysis. The genotype CT (HR = 2.79) and CC (HR = 4.67) of the polymorphism VEGF-A -1498C>T and the genotype CC (HR = 3.76) of the polymorphism VEGF-A -634C>G acted as an independent prognostic factor for the risk of death in CRC patients.
CONCLUSION The CT and CC genotypes of the VEGF-A -1498C>T and the CC genotype of the VEGF-A -634C>G polymorphisms are prognostic factors of survival in Brazilians patients with sporadic colorectal carcinoma.
Collapse
|
30
|
Birhanu G, Javar HA, Seyedjafari E, Zandi-Karimi A. Nanotechnology for delivery of gemcitabine to treat pancreatic cancer. Biomed Pharmacother 2017; 88:635-643. [PMID: 28142120 DOI: 10.1016/j.biopha.2017.01.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most deadly and quickly fatal human cancers with a 5-year mortality rate close to 100%. Its prognosis is very poor, mainly because of its hostile biological behavior and late onset of symptoms for clinical diagnosis; these bring limitations on therapeutic interventions. Factors contributing for the difficulties in treating PC include: high rate of drug resistance, fast metastasis to different organs, poor prognosis and relapse of the tumor after therapy. After being approved by US FDA 1997, Gemcitabine (Gem) is the first line and the gold standard drug for all stages of advanced PC till now. However, its efficacy is unsatisfactory, mainly due to; its chemical instability and poor cellular uptake, resulting in an extremely short half-life and low bioavailability. To solve this drawbacks and increase the therapeutic outcome important progress has been achieved in the field of nanotechnology and offers a promising and effective alternative. This review mainly focus on the most commonly investigated nanoparticle (NP) delivery systems of Gem for PC treatment and the latest progresses achieved. Novel nanocarriers with better tumor targeting efficiencies and maximum treatment outcome to treat this deadly due are given much attention.
Collapse
Affiliation(s)
- Gebremariam Birhanu
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran; School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Ali Zandi-Karimi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
31
|
Sarnecka AK, Zagozda M, Durlik M. An Overview of Genetic Changes and Risk of Pancreatic Ductal Adenocarcinoma. J Cancer 2016; 7:2045-2051. [PMID: 27877219 PMCID: PMC5118667 DOI: 10.7150/jca.15323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
The pancreatic carcinoma is a leading cause of death in cancer carriers worldwide. The early diagnostic is difficult due to late stage during diagnosis, lack of characteristic symptoms and also multifactor basis. In cancer development take part both, environmental and genetic factors, alone or in conjunction with each other. The nonspecific biomarkers of cancers are a reason for the search for more accurate factors which allow for fast and personalized diagnostics. Some of cancers have identified molecular (metabolic, biochemical or genetic) markers but in most cases the only clue is patient`s interview and abnormal levels of organ functions markers. Possible genetic basis of cancer suggests to widen studies on connection between environmental factors with both, nuclear and mitochondrial, genes changes.
Collapse
Affiliation(s)
- Agnieszka K Sarnecka
- Department of Surgical Research & Transplantology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.; Central Clinical Hospital, Ministry of Internal Affairs, Warsaw, Poland
| | - Malgorzata Zagozda
- Department of Surgical Research & Transplantology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.; Central Clinical Hospital, Ministry of Internal Affairs, Warsaw, Poland
| | - Marek Durlik
- Department of Surgical Research & Transplantology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.; Central Clinical Hospital, Ministry of Internal Affairs, Warsaw, Poland
| |
Collapse
|
32
|
Teo MY, O’Reilly EM. Is it time to split strategies to treat homologous recombinant deficiency in pancreas cancer? J Gastrointest Oncol 2016; 7:738-749. [PMID: 27747088 PMCID: PMC5056255 DOI: 10.21037/jgo.2016.05.04] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a highly lethal malignancy which tends to present with late stage disease. To date, identification of oncogenic drivers and aberrations has not led to effective targeted therapy. Approximately 5-15% of pancreatic cancer has an inheritable component. In fact, pancreatic adenocarcinoma is now recognized as a BRCA1/2-related cancer. Germline BRCA1/2 mutations can be found in up to 3.6-7% of unselected pancreatic cancer patients although the rates are significantly higher amongst patients with Ashkenazi Jewish ancestry. Germline mutations of other components of DNA repair and homologous recombination have also been identified although at much lower frequency. Large sequencing efforts have further identified somatic mutations in these genes in a small subset of pancreatic cancers. Small series and case reports have suggested that pancreatic cancers harboring BRCA1/2 or other homologous repair gene mutations demonstrate enhanced response to platinum-based chemotherapy although this has not been prospectively validated. Clinical trials with poly (ADP-ribose) polymerase (PARP) inhibitors as monotherapy or in combination with chemotherapy in different clinical settings are currently on-going. A subtype of pancreatic adenocarcinoma as characterized by deficiency in homologous recombination exists although the optimal management strategy remains to be fully elucidated.
Collapse
Affiliation(s)
| | - Eileen M. O’Reilly
- Memorial Sloan Kettering Cancer Center, NY, USA
- Weill Cornell Medical College, NY, USA
| |
Collapse
|
33
|
Abstract
Identifying and characterizing novel genetic risk factors for BRCA1/2 negative breast cancers is highly relevant for early diagnosis and development of a management plan. Mutations in a number of DNA repair genes have been associated with genomic instability and development of breast and various other cancers. Whole exome sequencing efforts by 2 groups have led to the discovery in distinct populations of multiple breast cancer susceptibility mutations in RECQL, a gene that encodes a DNA helicase involved in homologous recombination repair and response to replication stress. RECQL pathogenic mutations were identified that truncated or disrupted the RECQL protein or introduced missense mutations in its helicase domain. RECQL mutations may serve as a useful biomarker for breast cancer. Targeting RECQL associated tumors with novel DNA repair inhibitors may provide a new strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Taraswi Banerjee
- a Laboratory of Molecular Gerontology; National Institute on Aging (NIH); NIH Biomedical Research Center ; Baltimore , MD USA
| | - Robert M Brosh
- a Laboratory of Molecular Gerontology; National Institute on Aging (NIH); NIH Biomedical Research Center ; Baltimore , MD USA
| |
Collapse
|
34
|
Sami F, Gary RK, Fang Y, Sharma S. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain. Mutat Res 2016; 790:8-18. [PMID: 27248010 DOI: 10.1016/j.mrfmmm.2016.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/16/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology.
Collapse
Affiliation(s)
- Furqan Sami
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA
| | - Ronald K Gary
- Department of Chemistry and Biochemistry, University of Nevada, 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street NW, Washington DC 20059, USA.
| |
Collapse
|
35
|
Association and Intragenic Single-Nucleotide Polymorphism Interactions of the XRCC1 Polymorphisms for Pancreatic Cancer Susceptibility. Pancreas 2016; 45:546-51. [PMID: 26418909 DOI: 10.1097/mpa.0000000000000482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES X-ray repair cross-complementing group 1 (XRCC1) gene is an important candidate gene for influencing human cancer risks. This study examined the main and interactive effect of 9 single-nucleotide polymorphisms (SNPs) (Arg194Trp, Arg280His, Arg399Gln, c.1254C>T, c.1517G>C, c.1471G>A, C310T, 539del542, and T1915C) of XRCC1 in contribution to pancreatic cancer (PC). METHODS A total of 298 PC patients and 298 healthy controls were enrolled. Selected SNPs in XRCC1 were genotyped. The generalized multifactor dimensionality reduction method investigated gene-gene interactions. RESULTS Single-locus analyses showed that, in the codominant model, the GO genotype of 539del542 might have a higher risk for PC (odds ratio [OR], 1.47; 95% confidence interval [95% CI], 1.05-2.08). For T1915C polymorphism, the TC and CC genotypes both had a higher risk for PC (OR, 1.76; 95% CI, 1.25-2.48; OR, 1.83; 95% CI, 1.05-3.19, respectively); and a similar result was observed in the dominant model (OR, 1.77; 95% CI, 1.28-2.46). A tendency of association between Arg280His and PC was also detected in the dominant model (OR, 0.70; 95% CI, 0.48-1.00). Furthermore, the generalized multifactor dimensionality reduction method showed that the 4-locus model was significant, involving Arg280His, 539del542, T1915C, and c.1517G>C (P < 0.05). CONCLUSIONS Thus, XRCC1 polymorphisms may contribute to the risk of PC independently or in an interactive manner.
Collapse
|
36
|
Shinozuka K, Tang H, Jones RB, Li D, Nieto Y. Impact of Polymorphic Variations of Gemcitabine Metabolism, DNA Damage Repair, and Drug-Resistance Genes on the Effect of High-Dose Chemotherapy for Relapsed or Refractory Lymphoid Malignancies. Biol Blood Marrow Transplant 2015; 22:843-9. [PMID: 26743341 DOI: 10.1016/j.bbmt.2015.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
The goal of this study was to determine whether single nucleotide polymorphisms (SNPs) in genes involved in gemcitabine metabolism, DNA damage repair, multidrug resistance, and alkylator detoxification influence the clinical outcome of patients with refractory/relapsed lymphoid malignancies receiving high-dose gemcitabine/busulfan/melphalan (Gem/Bu/Mel) with autologous stem cell support. We evaluated 21 germline SNPs of the gemcitabine metabolism genes CDA, deoxycytidine kinase, and hCNT3; DNA damage repair genes RECQL, X-ray repair complementing 1, RAD54L, ATM, ATR, MLH1, MSH2, MSH3, TREX1, EXO1, and TP73; and multidrug-resistance genes MRP2 and MRP5; as well as glutathione-S-transferase GSTP1 in 153 patients with relapsed or refractory lymphoma or myeloma receiving Gem/Bu/Mel. We studied the association of genotypes with overall survival (OS), progression-free survival (PFS), and nonhematological grade 3 or 4 toxicity. CDA C111T and TREX1 Ex14-460C>T genotypes had a significant effect on OS (P = .007 and P = .005, respectively), and CDA C111T, ATR C340T, and EXO1 P757L genotypes were significant predictors for severe toxicity (P = .037, P = .024, and P = .025, respectively) in multivariable models that adjusted for clinical variables. The multi-SNP risk score analysis identified the combined genotypes of TREX1 Ex14-460 TT and hCNT3 Ex5 +25A>G AA as significant predictors for OS and the combination of MRP2 Ex10 + 40GG/GA and MLH1 IVS12-169 TT as significant predictor for PFS. Polymorphic variants of certain genes involved in gemcitabine metabolism and DNA damage repair pathways may be potential biomarkers for clinical outcome in patients with refractory/relapsed lymphoid tumors receiving Gem/Bu/Mel.
Collapse
Affiliation(s)
- Keiji Shinozuka
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hongwei Tang
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy B Jones
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
37
|
Jiang YN, Yan HQ, Huang XB, Wang YN, Li Q, Gao FG. Interleukin 6 trigged ataxia-telangiectasia mutated activation facilitates lung cancer metastasis via MMP-3/MMP-13 up-regulation. Oncotarget 2015; 6:40719-33. [PMID: 26528698 PMCID: PMC4747364 DOI: 10.18632/oncotarget.5825] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/23/2015] [Indexed: 12/24/2022] Open
Abstract
Our previous studies show that the phosphorylation of ataxia-telangiectasia mutated (ATM) induced by interleukin 6 (IL-6) treatment contributes to multidrug resistance formation in lung cancer cells, but the exact role of ATM activation in IL-6 increased metastasis is still elusive. In the present study, matrix metalloproteinase-3 (MMP-3) and MMP-13 were firstly demonstrated to be involved in IL-6 correlated cell migration. Secondly, IL-6 treatment not only increased MMP-3/MMP-13 expression but also augmented its activities. Thirdly, the inhibition of ATM phosphorylation efficiently abolished IL-6 up-regulating MMP-3/MMP-13 expression and increasing abilities of cell migration. Most importantly, the in vivo test showed that the inhibition of ATM abrogate the effect of IL-6 on lung cancer metastasis via MMP-3/MMP-13 down-regulation. Taken together, these findings demonstrate that IL-6 inducing ATM phosphorylation increases the expression of MMP-3/MMP-13, augments the abilities of cell migration, and promotes lung cancer metastasis, indicating that ATM is a potential target molecule to overcome IL-6 correlated lung cancer metastasis.
Collapse
Affiliation(s)
- Yi Na Jiang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hong Qiong Yan
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xiao Bo Huang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yi Nan Wang
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qing Li
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
| | - Feng Guang Gao
- Department of Immunology, Basic Medicine Science, Medical College, Xiamen University, Xiamen 361005, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Shang Hai Jiao Tong University, Shanghai 200032, People's Republic of China
| |
Collapse
|
38
|
Li D, Moughan J, Crane C, Hoffman JP, Regine WF, Abrams RA, Safran H, Liu C, Chang P, Freedman GM, Winter KA, Guha C, Abbruzzese JL. RECQ1 A159C Polymorphism Is Associated With Overall Survival of Patients With Resected Pancreatic Cancer: A Replication Study in NRG Oncology Radiation Therapy Oncology Group 9704. Int J Radiat Oncol Biol Phys 2015; 94:554-60. [PMID: 26725729 DOI: 10.1016/j.ijrobp.2015.10.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/29/2015] [Accepted: 10/29/2015] [Indexed: 11/18/2022]
Abstract
PURPOSE To confirm whether a previously observed association between RECQ1 A159C variant and clinical outcome of resectable pancreatic cancer patients treated with preoperative chemoradiation is reproducible in another patient population prospectively treated with postoperative chemoradiation. METHODS AND MATERIALS Patients were selected, according to tissue availability, from eligible patients with resected pancreatic cancer who were enrolled on the NRG Oncology Radiation Therapy Oncology Group 9704 trial of 5-fluorouacil (5-FU)-based chemoradiation preceded and followed by 5-FU or gemcitabine. Deoxyribonucleic acid was extracted from paraffin-embedded tissue sections, and genotype was determined using the Taqman method. The correlation between genotype and overall survival was analyzed using a Kaplan-Meier plot, log-rank test, and multivariate Cox proportional hazards models. RESULTS In the 154 of the study's 451 eligible patients with evaluable tissue, genotype distribution followed Hardy-Weinberg equilibrium (ie, 37% had genotype AA, 43% AC, and 20% CC). The RECQ1 variant AC/CC genotype carriers were associated with being node positive compared with the AA carrier (P=.03). The median survival times (95% confidence interval [CI]) for AA, AC, and CC carriers were 20.6 (16.3-26.1), 18.8 (14.2-21.6), and 14.2 (10.3-21.0) months, respectively. On multivariate analysis, patients with the AC/CC genotypes were associated with worse survival than patients with the AA genotype (hazard ratio [HR] 1.54, 95% CI 1.07-2.23, P=.022). This result seemed slightly stronger for patients on the 5-FU arm (n=82) (HR 1.64, 95% CI 0.99-2.70, P=.055) than for patients on the gemcitabine arm (n=72, HR 1.46, 95% CI 0.81-2.63, P=.21). CONCLUSIONS Results of this study suggest that the RECQ1 A159C genotype may be a prognostic or predictive factor for resectable pancreatic cancer patients who are treated with adjuvant 5-FU before and after 5-FU-based chemoradiation. Further study is needed in patients treated with gemcitabine to determine whether an association exists.
Collapse
Affiliation(s)
- Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jennifer Moughan
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - Christopher Crane
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John P Hoffman
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - William F Regine
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | | | - Howard Safran
- Brown University Oncology Group, Providence, Rhode Island
| | - Chang Liu
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gary M Freedman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn A Winter
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York
| | | |
Collapse
|
39
|
RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 2015; 23:12-28. [PMID: 25555679 DOI: 10.1016/j.arr.2014.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/04/2023]
Abstract
Genome instability represents a primary hallmark of aging and cancer. RecQL helicases (i.e., RECQL1, WRN, BLM, RECQL4, RECQL5) as well as poly(ADP-ribose) polymerases (PARPs, in particular PARP1) represent two central quality control systems to preserve genome integrity in mammalian cells. Consistently, both enzymatic families have been linked to mechanisms of aging and carcinogenesis in mice and humans. This is in accordance with clinical and epidemiological findings demonstrating that defects in three RecQL helicases, i.e., WRN, BLM, RECQL4, are related to human progeroid and cancer predisposition syndromes, i.e., Werner, Bloom, and Rothmund Thomson syndrome, respectively. Moreover, PARP1 hypomorphy is associated with a higher risk for certain types of cancer. On a molecular level, RecQL helicases and PARP1 are involved in the control of DNA repair, telomere maintenance, and replicative stress. Notably, over the last decade, it became apparent that all five RecQL helicases physically or functionally interact with PARP1 and/or its enzymatic product poly(ADP-ribose) (PAR). Furthermore, a profound body of evidence revealed that the cooperative function of RECQLs and PARP1 represents an important factor for maintaining genome integrity. In this review, we summarize the status quo of this molecular cooperation and discuss open questions that provide a basis for future studies to dissect the cooperative functions of RecQL helicases and PARP1 in aging and carcinogenesis.
Collapse
|
40
|
Li XL, Lu X, Parvathaneni S, Bilke S, Zhang H, Thangavel S, Vindigni A, Hara T, Zhu Y, Meltzer PS, Lal A, Sharma S. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion. Cell Cycle 2015; 13:2431-45. [PMID: 25483193 DOI: 10.4161/cc.29419] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis.
Collapse
Affiliation(s)
- Xiao Ling Li
- a Regulatory RNAs and Cancer Section; Genetics Branch; National Cancer Institute; National Institutes of Health; Bethesda, MD USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Du Z, Zhang W, Zhou Y, Yu D, Chen X, Chang J, Qiao Y, Zhang M, Huang Y, Wu C, Xiao Z, Tan W, Lin D. Associations of ATM Polymorphisms With Survival in Advanced Esophageal Squamous Cell Carcinoma Patients Receiving Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 93:181-9. [PMID: 26094126 DOI: 10.1016/j.ijrobp.2015.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/02/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate whether single nucleotide polymorphisms (SNPs) in the ataxia telangiectasia mutated (ATM) gene are associated with survival in patients with esophageal squamous cell carcinoma (ESCC) receiving radiation therapy or chemoradiation therapy or surgery only. METHODS AND MATERIALS Four tagSNPs of ATM were genotyped in 412 individuals with clinical stage III or IV ESCC receiving radiation therapy or chemoradiation therapy, and in 388 individuals with stage I, II, or III ESCC treated with surgery only. Overall survival time of ESCC among different genotypes was estimated by Kaplan-Meier plot, and the significance was examined by log-rank test. The hazard ratios (HRs) and 95% confidence intervals (CIs) for death from ESCC among different genotypes were computed by a Cox proportional regression model. RESULTS We found 2 SNPs, rs664143 and rs664677, associated with survival time of ESCC patients receiving radiation therapy. Individuals with the rs664143A allele had poorer median survival time compared with the rs664143G allele (14.0 vs 20.0 months), with the HR for death being 1.45 (95% CI 1.12-1.89). Individuals with the rs664677C allele also had worse median survival time than those with the rs664677T allele (14.0 vs 23.5 months), with the HR of 1.57 (95% CI 1.18-2.08). Stratified analysis showed that these associations were present in both stage III and IV cancer and different radiation therapy techniques. Significant associations were also found between the SNPs and locosregional progression or progression-free survival. No association between these SNPs and survival time was detected in ESCC patients treated with surgery only. CONCLUSION These results suggest that the ATM polymorphisms might serve as independent biomarkers for predicting prognosis in ESCC patients receiving radiation therapy.
Collapse
Affiliation(s)
- Zhongli Du
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuling Zhou
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dianke Yu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiabin Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Qiao
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefen Xiao
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis (Beijing Key Laboratory for Carcinogenesis and Cancer Prevention), Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Zhao L, Wang YX, Xi M, Liu SL, Zhang P, Luo LL, Liu MZ. Association between E-cadherin (CDH1) polymorphisms and pancreatic cancer risk in Han Chinese population. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:5753-5760. [PMID: 26191293 PMCID: PMC4503164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023]
Abstract
This study was designed to investigate the associations between E-cadherin (CDH1) gene polymorphisms and pancreatic cancer (PC) risk predisposition. We undertook a case-control study to analyze three E-cadherin polymorphisms (+54T>C, -160C>A and -347G→GA) in an Han Chinese population, by extraction of genomic DNA from the peripheral blood of 368 patients with PC and 376 control participants and performed E-cadherin genotyping using DNA sequencing. Overall, no statistically significant association was observed in +54T>C. Nevertheless, -347G→GA genotype was at increased risk of PC (P=0.022; odds ratio (OR)=1.128, CI 95%: 1.017-1.251). Furthermore, -347GA/GA genotype pancreatic cancers were more significantly common in cases of advanced T stage, lymph node metastasis and clinical pathological stage than G or G/GA genotypes PC. However, -160C>A genotype demonstrated a protective effect in PCs (P=0.017; OR=0.883, CI 95%: 0.798-0.977). In conclusion, polymorphism in -347G→GA was observed to be associated with susceptibility of PC. However, -160C>A polymorphism indicated to play a protective role in susceptibility to PC. Nevertheless, further investigation with a larger sample size is needed to support our results.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Radiation Oncology, Sun Yat-Sen University Cancer CenterGuangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer CenterGuangzhou, China
| | - Ying-Xue Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, China
| | - Mian Xi
- Department of Radiation Oncology, Sun Yat-Sen University Cancer CenterGuangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer CenterGuangzhou, China
| | - Shi-Liang Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer CenterGuangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer CenterGuangzhou, China
| | - Peng Zhang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer CenterGuangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer CenterGuangzhou, China
| | - Li-Ling Luo
- Department of Radiation Oncology, Sun Yat-Sen University Cancer CenterGuangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer CenterGuangzhou, China
| | - Meng-Zhong Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer CenterGuangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer CenterGuangzhou, China
| |
Collapse
|
43
|
Futami K, Furuichi Y. RECQL1 and WRN DNA repair helicases: potential therapeutic targets and proliferative markers against cancers. Front Genet 2015; 5:441. [PMID: 25620975 PMCID: PMC4288340 DOI: 10.3389/fgene.2014.00441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
RECQL1 and WRN helicases in the human RecQ helicase family participate in maintaining genome stability, DNA repair, replication, and recombination pathways in the cell cycle. They are expressed highly in rapidly proliferating cells and tumor cells, suggesting that they have important roles in the replication of a genome. Although mice deficient in these helicases are indistinguishable from wild-type mice, their embryonic fibroblasts are sensitive to DNA damage. In tumor cells, silencing the expression of RECQL1 or WRN helicase by RNA interference induces mitotic catastrophe that eventually kills tumor cells at the mitosis stage of the cell cycle. By contrast, the same gene silencing by cognate small RNA (siRNA) never kills normal cells, although cell growth is slightly delayed. These findings indicate that RECQL1 and WRN helicases are ideal molecular targets for cancer therapy. The molecular mechanisms underlying these events has been studied extensively, which may help development of anticancer drugs free from adverse effects by targeting DNA repair helicases RECQL1 and WRN. As expected, the anticancer activity of conventional genotoxic drugs is significantly augmented by combined treatment with RECQL1- or WRN-siRNAs that prevents DNA repair in cancer cells. In this review, we focus on studies that clarified the mechanisms that lead to the specific killing of cancer cells and introduce efforts to develop anticancer RecQ-siRNA drugs free from adverse effects.
Collapse
|
44
|
Sharma S. An appraisal of RECQ1 expression in cancer progression. Front Genet 2014; 5:426. [PMID: 25538733 PMCID: PMC4257099 DOI: 10.3389/fgene.2014.00426] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/26/2022] Open
Abstract
RECQ1 is the most abundant member of the human RecQ family of DNA helicases genetically linked with cancer predisposition syndromes and well known for their functions in genome stability maintenance through DNA repair. Despite being the first discovered RecQ homolog in humans, biological functions of RECQ1 have remained largely underappreciated and its relevance to cellular transformation is yet unclear. RECQ1 is overexpressed and amplified in many clinical cancer samples. In silico evaluation of RECQ1 mRNA expression across the NCI-60 cancer cell lines predicts an association of RECQ1 with cancer cell migration, invasion, and metastasis. Consistent with this, latest work implicates RECQ1 in regulation of gene expression, especially of those associated with cancer progression. Functionally, silencing RECQ1 expression significantly reduces cell proliferation, migration, and invasion. Collectively, these results propose that discerning the role of RECQ1 in conferring proliferative and invasive phenotype to cancer cells could be useful in developing therapeutic strategies to block primary tumor progression and metastasis.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University , Washington, DC, USA
| |
Collapse
|
45
|
Roco A, Cayún J, Contreras S, Stojanova J, Quiñones L. Can pharmacogenetics explain efficacy and safety of cisplatin pharmacotherapy? Front Genet 2014; 5:391. [PMID: 25452763 PMCID: PMC4231946 DOI: 10.3389/fgene.2014.00391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022] Open
Abstract
Several recent pharmacogenetic studies have investigated the variability in both outcome and toxicity in cisplatin-based therapies. These studies have focused on the genetic variability of therapeutic targets that could affect cisplatin response and toxicity in diverse type of cancer including lung, gastric, ovarian, testicular, and esophageal cancer. In this review, we seek to update the reader in this area of investigation, focusing primarily on DNA reparation enzymes and cisplatin metabolism through Glutathione S-Transferases (GSTs). Current evidence indicates a potential application of pharmacogenetics in therapeutic schemes in which cisplatin is the cornerstone of these treatments. Therefore, a collaborative effort is required to study these molecular characteristics in order to generate a genetic panel with clinical utility.
Collapse
Affiliation(s)
- Angela Roco
- Servicio de Salud Metropolitano Occidente Santiago, Chile ; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Juan Cayún
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Stephania Contreras
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Jana Stojanova
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Luis Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| |
Collapse
|
46
|
Garige M, Sharma S. Cellular deficiency of Werner syndrome protein or RECQ1 promotes genotoxic potential of hydroquinone and benzo[a]pyrene exposure. Int J Toxicol 2014; 33:373-81. [PMID: 25228686 DOI: 10.1177/1091581814547422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The 5 known RecQ helicases in humans (RECQ1, BLM, WRN, RECQL4, and RECQ5) have demonstrated roles in diverse genome maintenance mechanisms but their functions in safeguarding the genome from environmental toxicants are poorly understood. Here, we have evaluated a potential role of WRN (mutated in Werner syndrome) and RECQ1 (the most abundant homolog of WRN) in hydroquinone (HQ)- and benzo[a]pyrene (BaP)-induced genotoxicity. Silencing of WRN or RECQ1 expression in HeLa cells increased their sensitivity to HQ and BaP but elicited distinct DNA damage response. The RECQ1-depleted cells exhibited increased replication protein A phosphorylation, Chk1 activation, and DNA double-strand breaks (DSBs) as compared to control or WRN-depleted cells following exposure to BaP treatment. The BaP-induced DSBs in RECQ1-depleted cells were dependent on DNA-dependent protein kinase activity. Notably, loss of WRN in RECQ1-depleted cells ameliorated BaP toxicity. Collectively, our results provide first indication of nonredundant participation of WRN and RECQ1 in protection from the potentially carcinogenic effects of BaP and HQ.
Collapse
Affiliation(s)
- Mamatha Garige
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, NW, Washington, DC, USA
| |
Collapse
|
47
|
Liu C, Huang H, Wang C, Kong Y, Zhang H, Zhang H. Association between OGG1 gene single nucleotide polymorphisms and risk of pancreatic cancer in Chinese. Med Oncol 2014; 31:40. [PMID: 24935623 DOI: 10.1007/s12032-014-0040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 11/24/2022]
Abstract
Previous studies have suggested that the 8-oxoguanine DNA glycosylase gene (OGG1) has potentially influenced the risk of pancreatic cancer. The objective of this study was to assess the association between single nucleotide polymorphisms (SNPs) of OGG1 gene and risk of pancreatic cancer. A case-control study has been conducted in 370 pancreatic cancer patients and 395 healthy controls. Genotypes were determined using the polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing methods. The association analysis was evaluated by the unconditional logistic regression test. Our data suggested that the distributions of alleles and genotypes were statistically different between pancreatic cancer patients and healthy controls. The c.307G>C SNP was associated with the decreased risk of pancreatic cancer (C vs. G: OR 0.73, 95 % CI 0.59-0.91, P = 0.006). As for c.828A>G SNP, the significantly decreased risk of pancreatic cancer was detected (G vs. A: OR 0.74, 95 % CI 0.59-0.92, P = 0.006). The allele C of c.307G>C and allele G of c.828A>G SNPs might be associated with a protection from pancreatic cancer. Findings from this study indicate that OGG1 SNPs are associated with pancreatic cancer risk in Chinese Han population and could be useful molecular biomarkers for assessing the risk of pancreatic cancer.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Hepatobiliary Surgery, The Air Force General Hospital of People's Liberation Army, No. 30 Fucheng Road, Haidian District, Beijing, 100142, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
48
|
He G, Chen G, Chen W, Zhang W, Cao J, Ye Q. Lack of association of XRCC1 rs1799782 genetic polymorphism with risk of pancreatic cancer: a meta-analysis. Tumour Biol 2014; 35:4545-50. [PMID: 24435745 DOI: 10.1007/s13277-013-1598-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Emerging evidence suggests that genetic polymorphisms in X-ray repair cross-complementation group 1 (XRCC1) gene could be associated with pancreatic cancer risk. However, previous published studies on the association between XRCC1 rs1799782 genetic polymorphism and pancreatic cancer risk reported inconsistent results. For better understanding of the effects of XRCC1 rs1799782 genetic polymorphism on pancreatic cancer risk, we conducted a meta-analysis of previous published studies by calculating the pooled odds ratio (OR) with a 95% confidence interval (95% CI). A total of five eligible studies with 1,144 pancreatic cancer cases and 2,925 controls were eventually enrolled. Overall, we found that the XRCC1 rs1799782 genetic polymorphism was not associated with pancreatic cancer risk in total population under all genetic models (TT vs. CC: OR = 1.11, 95% CI 0.76-1.63, P = 0.583; CT vs. CC: OR = 1.39, 95% CI 0.92-2.10, P = 0.118; TT/CT vs. CC: OR = 1.39, 95% CI 0.92-2.10, P = 0.121; TT vs. CT/CC OR = 1.07, 95% CI 0.73-1.55, P = 0.743; T vs. C: OR = 1.31, 95% CI 0.93-1.86, P = 0.125). In the subgroup analysis based on ethnicity, there was no statistically significant association between XRCC1 rs1799782 genetic polymorphism and pancreatic cancer risk in Asians/Caucasians under all genetic models (all P values > 0.05). No publication bias was detected in this study. Our meta-analysis suggests that the XRCC1 rs1799782 genetic polymorphism is not significantly associated with pancreatic cancer risk. Considering the limited sample size and ethnicity enrolled in this meta-analysis, further larger scaled studies are needed to provide a more precise estimation on the association.
Collapse
Affiliation(s)
- Gengsheng He
- Center of Transplant Surgery, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Sami F, Sharma S. Probing Genome Maintenance Functions of human RECQ1. Comput Struct Biotechnol J 2013; 6:e201303014. [PMID: 24688722 PMCID: PMC3962141 DOI: 10.5936/csbj.201303014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/19/2013] [Accepted: 09/29/2013] [Indexed: 12/28/2022] Open
Abstract
The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the genome stability in all kingdoms of life. Human RecQ homologs include RECQ1, BLM, WRN, RECQ4, and RECQ5β. Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects (Bloom Syndrome and Rothmund Thomson Syndrome) to premature aging (Werner Syndrome), all these patients have a high risk of cancer predisposition. Here, we present an overview of recent progress towards elucidating functions of RECQ1 helicase, the most abundant but poorly characterized RecQ homolog in humans. Consistent with a conserved role in genome stability maintenance, deficiency of RECQ1 results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal instability, increased DNA damage and greater sensitivity to certain genotoxic stress. Delineating what aspects of RECQ1 catalytic functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in DNA metabolism. Recent studies have identified functional specialization of RECQ1 in DNA repair; however, identification of fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed from studying one homolog to be extrapolated and generalized to other RecQ homologs.
Collapse
Affiliation(s)
- Furqan Sami
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| |
Collapse
|
50
|
Association between single-nucleotide polymorphisms of OGG1 gene and pancreatic cancer risk in Chinese Han population. Tumour Biol 2013; 35:809-13. [DOI: 10.1007/s13277-013-1111-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/12/2013] [Indexed: 12/28/2022] Open
|