1
|
Chen C, Zou P, Wu X. Development and Validation of an Immune Prognostic Index Related to Infiltration of CD4+ and CD8+ T Cells in Colorectal Cancer. Mol Biotechnol 2025; 67:2758-2773. [PMID: 39026041 DOI: 10.1007/s12033-024-01237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Colorectal cancer (CRC) is a highly prevalent cancer worldwide, but treatment outcomes can vary significantly among patients with similar clinical or historical stages. This study aimed to investigate the differences in immune cell abundance associated with malignant progression in CRC patients. We utilized data from patients with CRC obtained from The Cancer Genome Atlas as our training set. To assess immune cell infiltration levels, an immune cell risk score (ICRS) was calculated. Furthermore, we performed network analysis to identify effective T cell-related genes (ETRGs) and subsequently constructed an effective T cell prognostic index (ETPI). The performance of the ETPI was evaluated through external validation using four Gene Expression Omnibus datasets. Additionally, a nomogram analysis and drug sensitivity analysis were conducted to explore the clinical utility of the ETRGs. We also examined the expression of ETRGs in clinical samples. Based on the ICRS, we identified activated CD4+ and CD8+ T cells as protective factors in terms of prognosis. Six ETRGs were identified to develop the ETPI, which exhibited remarkable prognostic performance. In the external validation of immunotherapy, the low ETPI group demonstrated a significantly lower recurrence rate. To optimize therapeutic strategies, we developed a nomogram. Notably, patients with different ETPI values exhibited varying responses to tumor pathway inhibitors. Finally, we observed higher protein expression of certain ETRGs in normal tissues compared to tumors. Our findings suggest that the ETPI may contribute to the precise selection of patients based on tumor microenvironment and key genomic landscape interactions, thereby optimizing drug benefits and informing clinical strategies in future.
Collapse
Affiliation(s)
- Chengru Chen
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518033, Guangdong Province, China
| | - Peng Zou
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518033, Guangdong Province, China
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518033, Guangdong Province, China.
| |
Collapse
|
2
|
Zhou S, Qin Z, Cai S, Ma T, Lin L, Feng L, Gao X, Ma D. Prognostic value of immune infiltration in colorectal cancer: Development of a histopathology-related immunoscore via multiplexed immunohistochemistry. Surgery 2025; 182:109350. [PMID: 40233469 DOI: 10.1016/j.surg.2025.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Our objective was to evaluate the prognostic value of immune infiltration within the intratumoral and peritumoral tissues and to establish a novel histopathology-related immunoscore associated with postoperative colorectal cancer prognosis. METHODS In the tissue microarrays, a total of 104 patients with colorectal cancer were enrolled and randomly assigned to the derivation cohort (n = 61) or the validation cohort (n = 43). Eighteen prognostic immune biomarkers in both intratumoral and peritumoral tissues were examined by the multiplexed immunohistochemistry method, with quantification performed through digital pathology. The histopathology-related immunoscore score was constructed using least absolute shrinkage and selection operator Cox analysis by selected immune features. On the basis of the Cox regression analysis, 3 predictive models were established. Harrell C-statistics were used to assess the performance of those models. RESULTS The area under the curve was 0.743 (confidence interval, 0.457-1.000) in the derivation cohort and 0.739 (confidence interval, 0.538-0.940) in the validation cohort. Subsequently, the groups were classified on the basis of the optimal cutoff value, with the high-risk group exhibiting a poorer prognosis. Furthermore, 3 predictive clinical models were constructed, incorporating the significant risk factors and histopathology-related immunoscore score. The first model incorporating both histopathology-related immunoscore score and statistically significant factors identified through univariate analysis demonstrated superior predictive capability for survival across all 3 models, with an area under the curve of 0.852 and C-index of 0.837. CONCLUSION The histopathology-related immunoscore score offers a novel means of estimating of survival in patients with colorectal cancer. These findings indicated that the immunoscore and the clinical factors might serve as complementary tools to TNM staging to improve the accuracy of patient survival prediction.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China; Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhaofu Qin
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shunv Cai
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ting Ma
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Luyi Lin
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Longhai Feng
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xinyi Gao
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, China.
| | - Dening Ma
- Department of Colorectal Surgery, Zhejiang Cancer Hospital, Hangzhou, China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Sun H, Cao Z, Zhao B, Zhou D, Chen Z, Zhang B. An elevated percentage of CD4⁺CD25⁺CD127 low regulatory T cells in peripheral blood indicates a poorer prognosis in hepatocellular carcinoma after curative hepatectomy. BMC Gastroenterol 2025; 25:340. [PMID: 40335903 PMCID: PMC12060481 DOI: 10.1186/s12876-025-03940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Previous studies suggest the percentage of CD4⁺CD25⁺CD127low regulatory T cells (Tregs) in peripheral blood of patients with hepatocellular carcinoma (HCC) was significantly higher than that in healthy, which may be a significant predictor of HCC clinical outcome, and we examined the utility of Tregs in predicting prognosis in HCC after curative hepatectomy. METHODS 77 diagnosed HCC patients from August 2018 to March 2023 were selected as research objects, we retrospectively analyzed whether the preoperative percentage of CD4⁺CD25⁺CD127low Tregs in peripheral blood predicts prognosis after curative hepatectomy in HCC patients. The percentage of CD4⁺CD25⁺CD127low Tregs was detected by flow cytometry. RESULTS The percentage of CD4⁺CD25⁺CD127low Tregs was significantly elevated in patients who developed recurrence and death (p < 0.050). X-tile software was used to calculate optimal cut-off value of Treg percentage (5.85%), and patients were divided into two groups with high and low Treg percentage. Patients with higher preoperative Treg percentage had a significantly poorer prognosis (p < 0.050). Cox regression demonstrated the percentage of CD4⁺CD25⁺CD127low Tregs was an independent indicator for poor prognosis after hepatectomy. The Recurrence-free survival (RFS) (the log-rank test, p < 0.001) and Overall survival (OS) (the log-rank test, p = 0.008) in patients with higher Treg percentage were significantly lower than that in patients with lower Treg percentage. The results were confirmed by the subgroup analysis. CONCLUSION The percentage of CD4⁺CD25⁺ CD127low Tregs in peripheral blood is associated with poor prognosis in HCC patients. It can be suggested as a potential prognostic indicator for HCC patients after hepatectomy and complement existing risk stratification tools. Measuring the percentage of CD4⁺CD25⁺ CD127low Tregs may contribute to the formulation of treatment strategies and the improvement of the prognosis for HCC patients.
Collapse
Affiliation(s)
- Haoran Sun
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Zepeng Cao
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Baochen Zhao
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Dachen Zhou
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Zhongbiao Chen
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Bin Zhang
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China.
| |
Collapse
|
4
|
Pan Y, Zhou H, Sun Z, Zhu Y, Zhang Z, Han J, Liu Y, Wang Q. Regulatory T cells in solid tumor immunotherapy: effect, mechanism and clinical application. Cell Death Dis 2025; 16:277. [PMID: 40216744 PMCID: PMC11992189 DOI: 10.1038/s41419-025-07544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 01/12/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
The tumor-immune response is mobilized to suppress tumorigenesis, while the immune microenvironment and lymph node microenvironment are formed gradually during tumor progression. In fact, tumor surface antigens are not easily recognized by antigen-presenting cells. So it is hard for the immune system to kill the newly formed tumor cells effectively. In a normal immune environment, immune function is always suppressed to maintain the stability of the body, and regulatory T cells play an important role in maintaining immune suppression. However, during tumorigenesis, the suppression of regulatory T cell immune functions is more likely to contribute to tumor cell proliferation and migration leading directly to tumor progression. Therefore, focusing on the role of regulatory T cells in tumor immunity could improve tumor immunotherapy outcomes in the clinic. Regulatory T cells are more mature in hematologic system tumors than in solid tumors. However, there are continuing efforts to apply regulatory T cells for immunotherapy in solid tumors. This review describes the role of regulatory T cells in solid tumor immunotherapy from the perspective of prognosis, immune microenvironment remodeling, and current clinical applications. This summary could help us better understand the mechanisms of regulatory T cells in solid tumor immunotherapy and further expand their clinical application.
Collapse
Affiliation(s)
- Yan Pan
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Hanqiong Zhou
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yichen Zhu
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Zhe Zhang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Jing Han
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China
| | - Yang Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, Zhengzhou, 451162, China.
| |
Collapse
|
5
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2025; 48:295-312. [PMID: 39325360 PMCID: PMC11996958 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
6
|
Yamada R, Arima K, Yano H, Fujiwara Y, Yamashita K, Kanemitsu K, Hanada N, Yasunaga JI, Iwatsuki M, Mikami Y, Komohara Y. Impact of HTLV-1 infection on clinicopathological characteristics and tumour immune microenvironment in colorectal cancer. Virchows Arch 2025:10.1007/s00428-025-04074-w. [PMID: 40111448 DOI: 10.1007/s00428-025-04074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Recent advances in anti-cancer therapy have indicated the significance of the tumour immune microenvironment in tumour progression and resistance to anti-cancer therapy. This study investigated primary colorectal cancer (CRC) tissues resected from 180 cases in a single institute in a region highly endemic for human T-cell leukaemia virus type 1 (HTLV-1) carriers. Among those 180 cases, 35 HTLV-1 carriers were identified. CRC patients who were HTLV-1 carriers were significantly older (mean age: 76.9 vs. 72.7 years, P = 0.0341), with a lower incidence of lymph node metastases (pN0: 91% vs. 65%, P = 0.0085), and lower tumour stages (stage III or IV: 11% vs. 36%, P = 0.0117) compared to non-carriers. HTLV-1 carriers tended to show a lower incidence of relapse, although the difference was not significant (P = 0.2272). The density of forkhead box P3-positive regulatory T cells (Tregs) was significantly higher in HTLV-1 carriers (median density: 132 vs. 89 cells/mm2, P = 0.0051). In situ hybridisation showed cells positive for HTLV-1 basic leucine zipper factor, likely representing lymphocytes located in stroma around the cancer nest. Our findings indicate that lymph node metastasis was significantly suppressed in CRC patients infected with HTLV-1. Since HTLV-1 infection reportedly impairs the immunosuppressive functions of Tregs, anti-cancer immune responses are potentially enhanced in CRC patients who are HTLV-1 carriers.
Collapse
Affiliation(s)
- Rin Yamada
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Kota Arima
- Department of Surgery, Izumi General Medical Center, Kagoshima, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Kohei Yamashita
- Department of Surgery, Izumi General Medical Center, Kagoshima, Japan
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Kanemitsu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Norihisa Hanada
- Department of Surgery, Izumi General Medical Center, Kagoshima, Japan
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University Hospital, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
7
|
Qin Y, Miyake T, Muramoto K, Maekawa T, Nishina Y, Wang Y, Shimizu T, Tani M. Fibroblast Activation Protein-α Expression in Cancer-Associated Fibroblasts Shows the Poor Survival of Colorectal Cancer via Immune-Mediated Pathways : Implications of FAP in Cancer-Associated Fibroblasts Link Immune Dysregulation to Adverse Survival in Colorectal Cancer. Ann Surg Oncol 2025; 32:1941-1952. [PMID: 39623187 DOI: 10.1245/s10434-024-16593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 02/12/2025]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) and immune cells, the key components of the tumor microenvironment (TME), play critical roles in oncogenesis. Despite the recognized function of fibroblast activation protein-α (FAP), a specific biomarker of CAFs in cancer progression, its role in the survival of patients with colorectal cancer (CRC) and tumor immune microenvironment (TIME) remains unclear. METHODS We investigated 180 pathological sections obtained from 178 consecutive patients with CRC who underwent surgical resection at Shiga University of Medical Science Hospital between January 2013 and December 2015. FAP expression levels and CD3 and CD8 densities at the invasive margin and center of tumor were assessed using immunohistochemical (IHC) staining. Furthermore, we used single-cell RNA sequencing (scRNA-seq) of CAFs in a separate cohort of 10 untreated patients with CRC derived from the Gene Expression Omnibus database. RESULTS According to IHC evaluation, high FAP expression in patients with CRC showed a correlation with reduced tumor-infiltrating lymphocyte (TIL) distribution and poor survival. Based on the FAP transcription levels obtained through scRNA-seq analysis, CAFs were grouped into high and low FAP expression groups. Elevated FAP expression was correlated with decreased expression of T- and B-cell biomarkers, suggesting an association with an immunosuppressive TME promotion. Several genes associated with cancer-related immune-mediated pathways (CXCL12, COL11A1, CCL11, and COL10A1) were significantly upregulated in FAP-positive CAFs. CONCLUSIONS This study highlights the effects of FAP expression on survival of patients with CRC, its interaction with TILs, and relevant signaling pathways, and underscores potential immunotherapeutic targets for future investigation.
Collapse
Affiliation(s)
- Yubo Qin
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
- Department of Emergency Center, Inner Mongolia Autonomous Region People's Hospital, Hohhot, China
| | - Toru Miyake
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan.
| | - Keiji Muramoto
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Takeru Maekawa
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yusuke Nishina
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Ying Wang
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Tomoharu Shimizu
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
8
|
Dzhalilova D, Silina M, Kosyreva A, Fokichev N, Makarova O. Morphofunctional changes in the immune system in colitis-associated colorectal cancer in tolerant and susceptible to hypoxia mice. PeerJ 2025; 13:e19024. [PMID: 40028198 PMCID: PMC11869898 DOI: 10.7717/peerj.19024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Background One of the effective strategies for the treatment of tumor diseases, including colitis-associated colorectal cancer (CAC), is immunotherapy. During inflammation, NF-κB is activated, which is connected with the hypoxia-inducible factor-HIF, regulating the immune cells functioning and influences the CAC development. Organisms differ according to their hypoxia resistance and HIF expression. Therefore, the aim of the study was to characterize the thymus, spleen and mesenteric lymph nodes morphofunctional features, as well as changes in the subpopulation composition of peripheral blood cells and mesenteric lymph nodes in tolerant and susceptible to hypoxia C57Bl/6 mice in CAC. Methods Hypoxia tolerance was assessed by gasping time measurement in hypobaric decompression chamber. Based on the outcome, the mice were assigned to three groups characterized as 'tolerant to hypoxia', 'normal', and 'susceptible to hypoxia'. A month after determining hypoxia resistance CAC was modeled by intraperitoneal azoxymethane (AOM) administration and three cycles of dextran sulfate sodium consumption. Mice were sacrificed on the 141st day after the AOM administration, a morphological, morphometric and immunohistochemical study of tumors, morphological and morphometric study of thymus and spleen, and subpopulation composition of peripheral blood cells and mesenteric lymph nodes assessment were carried out. Results Tumors in tolerant and susceptible to hypoxia mice were represented by glandular intraepithelial neoplasia and adenocarcinomas, the area of which was larger in susceptible mice. Immunohistochemical study revealed a more pronounced Ki-67+ staining in tumors of susceptible mice. In CAC, only in tolerant mice, expansion of the thymic cortex was observed relative to the control group, while in susceptible ones, no changes were detected. Only in susceptible to hypoxia mice, spleen germinal centers of lymphoid follicles enlargement were observed. Only in susceptible mice during CAC, in comparison to the control group, the relative and absolute number of B-lymphocytes and relative-cytotoxic T-lymphocytes in blood increased. The relative cytotoxic T-lymphocytes and NK cells number in peripheral blood during CAC was higher in susceptible to hypoxia mice compared to tolerant ones. In susceptible to hypoxia mice, more pronounced changes in the mesenteric lymph nodes subpopulation composition of cells were revealed-only in them the absolute and relative number of B-lymphocytes and NK cells, the absolute number of cytotoxic T-lymphocytes increased, and the relative number of macrophages decreased. Conclusions Morphofunctional differences in the thymus, spleen, mesenteric lymph nodes and blood immune cells reactions indicated the more pronounced immune response to the CAC development in susceptible to hypoxia mice, which should be taken into account in experimental studies.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), Moscow, Russia
| | - Nikolai Fokichev
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
9
|
Huang X, Feng D, Mitra S, Andretta ES, Hooshdaran NB, Ghelani AP, Wang EY, Frost JN, Lawless VR, Vancheswaran A, Jiang Q, Leslie CS, Rudensky A. Opposing Functions of Distinct Regulatory T Cell Subsets in Colorectal Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637083. [PMID: 39975175 PMCID: PMC11839124 DOI: 10.1101/2025.02.07.637083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Regulatory T (Treg) cells contribute to solid organ cancer progression, except in colorectal cancer (CRC) despite being abundantly present. Here, we demonstrate that two distinct tumoral IL-10⁺ and IL-10⁻ Treg cell subsets exert opposing functions by counteracting and promoting CRC tumor growth, respectively. The tumor restraining activity of IL-10⁺ Treg cells was mediated by their suppression of effector CD4 T cell production of IL-17, which directly stimulates CRC tumor cell proliferation. Consistently, IL-10⁻ Treg cells were more abundant in both mouse and human CRC tumors than in tumor-adjacent normal tissues, whereas IL-10+ Treg cells exhibited the opposite distribution. Furthermore, relative abundance of IL-10⁺ and IL-10⁻ Treg cells correlated with better and worse disease prognoses in human CRC, respectively. This functional dichotomy between Treg cell subsets provides a rationale for therapeutic strategies to selectively target pro-tumoral Treg cells while preserving their anti-tumoral counterparts across barrier tissue cancers that harbor both subsets.
Collapse
|
10
|
Revilla SA, Frederiks CL, Prekovic S, Mocholi E, Kranenburg O, Coffer PJ. Tumor-derived colorectal cancer organoids induce a unique Treg cell population by directing CD4 + T cell differentiation. iScience 2025; 28:111827. [PMID: 39995881 PMCID: PMC11848486 DOI: 10.1016/j.isci.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
In colorectal cancer (CRC), increased numbers of tumor-infiltrating CD4+ regulatory T (Treg) cells correlate with tumor development, immunotherapy failure, and poor prognosis. To assess how CRC tumors directly modulate Treg cell differentiation, we developed an in vitro co-culture system using CD4+ T cells from Foxp3eGFP mice and CRC tumor-derived organoids. Co-culture resulted in a significant increase in Treg cell numbers. RNA-sequencing identified a distinct transcriptional profile of CRC organoid-induced Treg cells, with upregulation of genes associated with CRC Treg cells in vivo. High expression of genes upregulated in CRC organoid-induced Treg cells correlates with shorter progression-free intervals and overall survival in CRC patients. Human CRC organoids similarly induced Treg cells with enhanced suppressive capacity and upregulated genes linked to CRC Treg cells in vivo. This model provides insights into how CRC tumors modulate CD4+ T cell differentiation and can identify approaches to disrupt Treg cells and stimulate anti-tumor immunity.
Collapse
Affiliation(s)
- Sonia Aristin Revilla
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cynthia L. Frederiks
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Prekovic
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Enric Mocholi
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J. Coffer
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
11
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Ribeiro de Souza B, Oliveira G, Leme G, Brum Reis I, Augusto Tossini Cabral F, Lima Baggio de Paula J, Henrique da Silva Santos D, Ronca Felizzola C, Durán N, Anglesio M, José Fávaro W. A novel serous ovarian carcinoma model induced by DMBA: Results from OncoTherad® (MRB-CFI-1) immunotherapy preclinical testing. Biomed Pharmacother 2025; 182:117755. [PMID: 39693910 DOI: 10.1016/j.biopha.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The term ovarian carcinoma (OC) refers to a heterogeneous collection of five distinct diseases known as histotypes. While histotype-specific treatment is still a clinical challenge in OC, well-characterized models are required for testing new therapeutic strategies. We employed OncoTherad® (MRB-CFI-1), an interferon (IFN-γ)-stimulating nano-immunotherapy mediated by Toll-like receptors (TLR) 2/4, in association or not with Erythropoietin (EPO) in a chemically-induced ovarian cancer model. Besides characterization of the therapies effects, we also assessed whether the animal model was representative of human OC by providing histotype classification. MAIN METHODS Thirty-five Fischer rats were distributed into five groups: Control (Sham surgery); Cancer (7,12-dimethylbenzoanthracene - DMBA injection in the ovarian bursa, 1.25 mg/kg); OncoTherad® (20 mg/kg intraperitoneal); EPO (8.4 µg/kg intraperitoneal); and OncoTherad+EPO (same doses). Ovaries were formalin-fixed into paraffin-embedded blocks. TLR pathway and the inflammatory response profile were evaluated by immunohistochemistry (IHC). After DNA extraction and tissue microarray construction, we assessed typical gene mutations directly (Sanger sequencing) or indirectly (IHC surrogates) and examined biomarkers of different OC histotypes. KEY FINDINGS OC induction decreased TLR2, TLR4, and proinflammatory cytokines. OncoTherad® alone or associated with EPO modulated the OC microenvironment to a cytotoxic immune profile through stimulation of the TLR4-mediated non-canonical pathway. EPO stimulated TLR2-mediated canonical pathway and notably increased Tregs. SIGNIFICANCE The features analyzed favored interpretation of our DMBA-induced tumor model as predominantly low-grade, serous carcinoma-like, in which treatments with OncoTherad® and EPO showed immunomodulatory properties related to the reduction of ovarian lesions.
Collapse
Affiliation(s)
- Bianca Ribeiro de Souza
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Gabriela Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Giovana Leme
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ianny Brum Reis
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Felippe Augusto Tossini Cabral
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Juliane Lima Baggio de Paula
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniel Henrique da Silva Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudia Ronca Felizzola
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nelson Durán
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Michael Anglesio
- Department of Obstetrics and Gynecology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wagner José Fávaro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Maruyama S, Imamura Y, Toihata T, Haraguchi I, Takamatsu M, Yamashita M, Nakashima Y, Oki E, Taguchi K, Yamamoto M, Mine S, Okamura A, Kanamori J, Nunobe S, Sano T, Kitano S, Noda T, Watanabe M. FOXP3+/CD8+ ratio associated with aggressive behavior in RUNX3-methylated diffuse esophagogastric junction tumor. Cancer Sci 2025; 116:178-191. [PMID: 39440906 PMCID: PMC11711055 DOI: 10.1111/cas.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
The tumor immune microenvironment is increasingly becoming a key consideration in developing treatment regimens for aggressive cancers, with evidence that regulatory T cells (Tregs) attenuate the antitumor response by interrupting cytotoxic T cells (CD8+). Here, we hypothesized the prognostic relevance of the proportions of Tregs (marked by forkhead box protein 3 [FOXP3]) and CD8+ cells in diffuse, non-Epstein-Barr virus (EBV)/non-microsatellite instability (MSI)-high gastroesophageal adenocarcinomas (GEAs), which are clinically characterized as more aggressive, immunologically inactive tumors as compared with their intestinal counterparts. Cell-count ratios of FOXP3+/CD8+ expression were calculated at the intratumoral region and invasive margin discretely on digital images from 303 chemo-naive non-EBV/non-MSI-high esophagogastric junction (EGJ) adenocarcinomas. A significant modifying prognostic effect of tumor histology was observed between 5-year EGJ cancer-specific survival and the FOXP3+/CD8+ ratio at the invasive margin in pStage I-III tumors (p for interaction = 0.022; hazard ratio [HR] = 8.47 and 95% confidence interval [CI], 2.04-35.19 for high ratio [vs. low] for diffuse; HR = 1.57 and 95% CI, 0.88-2.83 for high ratio [vs. low] for intestinal). A high FOXP3+/CD8+ ratio at the invasive margin was associated with RUNX3 methylation (p = 0.035) and poor prognosis in RUNX3-methylated diffuse histological subtype (5-year EGJ cancer-specific survival, 52.3% for high and 100% for low, p = 0.015). Multiomics data from The Cancer Genome Atlas linked CCL28 with RUNX3-suppressed diffuse histological subtypes of non-EBV/non-MSI-high GEA. Our data suggest that a high FOXP3+/CD8+ ratio at the invasive margin might indicate tumor immune escape via CCL28, particularly in the RUNX3-methylated diffuse histological subtype.
Collapse
Affiliation(s)
- Suguru Maruyama
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikumi Haraguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makiko Yamashita
- Advanced Medical Development Center, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Taguchi
- Department of Pathology, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Manabu Yamamoto
- Department of Gastroenterological Surgery, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Akihiko Okamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun Kanamori
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Souya Nunobe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Sano
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigehisa Kitano
- Advanced Medical Development Center, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
14
|
Guo Y, Xie F, Liu X, Ke S, Chen J, Zhao Y, Li N, Wang Z, Yi G, Shen Y, Li D, Zhu C, Zhang Z, Zhao G, Lu H, Li B, Zhao W. Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells. J Mol Cell Biol 2024; 16:mjad067. [PMID: 37935468 PMCID: PMC11587560 DOI: 10.1093/jmcb/mjad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
The enrichment of regulatory T cells (Tregs) in the tumour microenvironment (TME) has been recognized as one of the major factors in the initiation and development of resistance to immune checkpoint inhibitors. C-C motif chemokine receptor 8 (CCR8), a marker of activated suppressive Tregs, has a significant impact on the functions of Tregs in the TME. However, the regulatory mechanism of CCR8 in Tregs remains unclear. Here, we revealed that a high level of TNF-α in the colorectal cancer (CRC) microenvironment upregulated CCR8 expression in Tregs via the TNFR2/NF-κB signalling pathway and the FOXP3 transcription factor. Furthermore, in both anti-programmed cell death protein 1 (anti-PD1)-responsive and anti-PD1-unresponsive tumour models, PD1 blockade induced CCR8+ Treg infiltration. In both models, Tnfr2 depletion or TNFR2 blockade suppressed tumour progression by reducing CCR8+ Treg infiltration and thus augmented the efficacy of anti-PD1 therapy. Finally, we identified that TNFR2+CCR8+ Tregs but not total Tregs were positively correlated with adverse prognosis in patients with CRC and gastric cancer. Our work reveals the regulatory mechanisms of CCR8 in Tregs and identifies TNFR2 as a promising target for immunotherapy.
Collapse
Affiliation(s)
- Yixian Guo
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Xie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Liu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieqiong Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Yi
- Biotheus Inc., Zhuhai 519080, China
| | - Yanying Shen
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lu
- GI Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
15
|
Cotan HT, Emilescu RA, Iaciu CI, Orlov-Slavu CM, Olaru MC, Popa AM, Jinga M, Nitipir C, Schreiner OD, Ciobanu RC. Prognostic and Predictive Determinants of Colorectal Cancer: A Comprehensive Review. Cancers (Basel) 2024; 16:3928. [PMID: 39682117 DOI: 10.3390/cancers16233928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health burden, necessitating a thorough understanding of prognostic and predictive factors to enhance patient outcomes. This systematic review aims to comprehensively evaluate prognostic and predictive determinants in CRC, encompassing both traditional and emerging biomarkers. A systematic search of major electronic databases was conducted to identify relevant studies published from 1995 up to 2024. Eligible articles were critically appraised, and data extraction was performed according to predefined criteria. The prognostic determinants examined included clinicopathological features such as tumor stage, grade, and lymph node involvement, as well as molecular biomarkers including RAS, BRAF, and MSI status. Predictive determinants encompassed biomarkers influencing response to targeted therapies and immunotherapy, such as HER2 and Immunoscore. The review also explores novel prognostic and predictive markers, including tumor microenvironment characteristics and liquid biopsy-based biomarkers. Synthesizing evidence from diverse studies, this review provides insights into the prognostic and predictive landscape of CRC, highlighting the potential clinical implications of identified determinants. Understanding the multifaceted nature of prognostic and predictive factors in CRC is imperative for the advancement of personalized treatment strategies and improvement of patient outcomes.
Collapse
Affiliation(s)
- Horia T Cotan
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Radu A Emilescu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristian I Iaciu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cristina M Orlov-Slavu
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mihaela C Olaru
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Ana M Popa
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Mariana Jinga
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Cornelia Nitipir
- General Medicine Faculty, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
| | - Oliver Daniel Schreiner
- Regional Institute of Oncology Iasi, 2-4 General Henri Mathias Berthelot Street, 700483 Iasi, Romania
- Department 3-Medical Sciences, Grigore T. Popa University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| | - Romeo Cristian Ciobanu
- Department of Electrical Measurements and Materials, Gheorghe Asachi Technical University, 700050 Iasi, Romania
| |
Collapse
|
16
|
Huang T, Jiang K, Li L, Li G, Cao Y, Huang X. Hsa_circ_0000423 promotes colorectal cancer EMT and immune escape by competitive adsorption of miR-369-3p mediating CCND1 expression. Discov Oncol 2024; 15:634. [PMID: 39520607 PMCID: PMC11550305 DOI: 10.1007/s12672-024-01501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This investigation evaluated the mechanism of hsa_circ_0000423 in colorectal cancer (CRC). METHODS The hsa_circ_0000423 gene was identified by bioinformatics analyses of GEO circRNA microarrays, and its expression in CRC was investigated. Based on this, in vitro experiments were conducted. Assays with dual luciferase reporter and RIP were conducted to detect interactions between hsa_circ_0000423, miR-369-3p and CCND1. Cell proliferation was measured by MTT and colony formation assay assays, apoptosis was detected by flow cytometry, migration and invasion were detected by Transwell, and expression of EMT-related proteins was detected by Western Blot. SW480 cells and T cells were co-cultured to assess immune escape. RESULTS hsa_circ_0000423 and CCND1 were elevated in CRC while miR-369-3p was downregulated Silencing hsa_circ_0000423 resulted in reduced CCND1 expression by upregulating miR-369-3p. Overexpressing CCND1 or down-regulating miR-369-3p both interrupted the anti-tumor role of silencing hsa_circ_0000423 on CRC cells. CONCLUSION Hsa_circ_0000423 promotes CCND1 expression through competitive binding of miR-369-3p and promotes CRC cell development and immune escape.
Collapse
Affiliation(s)
- TianFu Huang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Youjiang Medical Universityfor Nationalities, Baise, 533000, Guangxi Zhuang, China
| | - KaiHai Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China
| | - LinTao Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China
| | - GuangSheng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China
| | - YuSheng Cao
- Department of General Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Zhuang, China
| | - XuSen Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2Nd Road, Baise, 533000, Guangxi Zhuang, China.
| |
Collapse
|
17
|
Shigematsu Y, Saito R, Amori G, Kanda H, Takahashi Y, Takeuchi K, Takahashi S, Inamura K. Fusobacterium nucleatum, immune responses, and metastatic organ diversity in colorectal cancer liver metastasis. Cancer Sci 2024; 115:3248-3255. [PMID: 39140431 PMCID: PMC11447885 DOI: 10.1111/cas.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The presence of Fusobacterium nucleatum is associated with an immunosuppressive tumor immune microenvironment (TIM) in primary colorectal cancer (CRC), contributing to tumor progression. Its persistence in CRC liver metastasis tissues raises questions about its role in modulating local and systemic immune responses and influencing recurrence patterns. This retrospective cohort study of 218 patients with CRC liver metastasis investigated the association of F. nucleatum in CRC liver metastasis tissues with systemic inflammation, TIM alterations, and the number of metastatic organs involved in recurrence. Two-step polymerase chain reaction (PCR), including digital PCR, detected F. nucleatum in 42% (92/218) of fresh-frozen specimens of CRC liver metastases. Compared with the F. nucleatum-none group, the F. nucleatum-high group showed higher C-reactive protein levels (0.82 vs. 0.22 mg/dL; Ptrend = 0.02), lower numbers of CD8+ cells (33.2 vs. 65.3 cells/mm2; Ptrend = 0.04) and FOXP3+ cells (11.3 vs. 21.7 cells/mm2; Ptrend = 0.01) in the TIM, and a greater number of metastatic organs involved in recurrence (1.6 vs. 1.1; p < 0.001). The presence of F. nucleatum in CRC liver metastasis tissues was associated with increased systemic inflammation, TIM alterations, and a greater number of metastatic organs involved in recurrence. These findings suggest a potential contribution of F. nucleatum to the metastatic propensity of CRC cells and could inform future research to enhance understanding of the interaction between tumor, host, and microbes in the metastatic process.
Collapse
Affiliation(s)
- Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
- Division of Pathology, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Rumiko Saito
- Department of Medical Oncology, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Clinical Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
- Graduate School of EngineeringChiba Institute of TechnologyChibaJapan
| | - Gulanbar Amori
- Department of Pathology, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
- Division of Pathology, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
- Division of Tumor PathologyJichi Medical UniversityTochigiJapan
| | - Hiroaki Kanda
- Department of PathologySaitama Cancer CenterSaitamaJapan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
- Division of Pathology, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
- Pathology Project for Molecular Targets, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Shunji Takahashi
- Department of Medical Oncology, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
- Department of Clinical Chemotherapy, Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
- Division of Pathology, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
- Division of Tumor PathologyJichi Medical UniversityTochigiJapan
| |
Collapse
|
18
|
Ge J, Yin X, Chen L. Regulatory T cells: masterminds of immune equilibrium and future therapeutic innovations. Front Immunol 2024; 15:1457189. [PMID: 39290699 PMCID: PMC11405253 DOI: 10.3389/fimmu.2024.1457189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Regulatory T cells (Tregs), a subset of CD4+T cells marked by the expression of the transcription factor forkhead box protein 3 (Foxp3), are pivotal in maintaining immune equilibrium and preventing autoimmunity. In our review, we addressed the functional distinctions between Foxp3+Tregs and other T cells, highlighting their roles in autoimmune diseases and cancer. We uncovered the dual nature of Tregs: they prevented autoimmune diseases by maintaining self-tolerance while contributing to tumor evasion by suppressing anti-tumor immunity. This study underscored the potential for targeted therapeutic strategies, such as enhancing Treg activity to restore balance in autoimmune diseases or depleting Foxp3+Tregs to augment anti-tumor immune responses in cancer. These insights laid the groundwork for future research and clinical applications, emphasizing the critical role of Foxp3+Tregs in immune regulation and the advancement of next-generation immunotherapies.
Collapse
Affiliation(s)
- Junwei Ge
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xuan Yin
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Yu A, Fan Z, Ma L, Tang J, Liu W, Han Z, Wang H. The relationship between the tertiary lymphoid structure and immune-infiltrating cells in gastrointestinal cancers: A systematic review and meta-analysis. Immun Inflamm Dis 2024; 12:e70003. [PMID: 39259184 PMCID: PMC11389262 DOI: 10.1002/iid3.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVES This study systematically evaluated the relationship between tertiary lymphoid structures (TLS) and clinical pathological features as well as immune infiltrating cells in gastrointestinal cancers. METHODS We searched Web of science, Pubmed, Embase, and Cochrane Library for studies that met the requirements as of July 1, 2023, and the odds ratio, the corresponding 95% confidence interval or mean and standard deviation, were included in the analysis. FINDINGS We eventually included 20 studies, involving a total of 4856 patients. TLS were found to be significantly associated with T stage, N stage, TNM stage, and tumor size. Moreover, patients with positive TLS showed significantly elevated expression of T-cell related markers, including CD3, CD4, CD8, CD45RO; B-cell related markers, such as CD11c and CD20; and dendritic cell-related marker CD103. On the other hand, positive TLS correlated significantly with low expression of FOXP3 and CD68. Additionally, there was a significant positive association between TLS and overall infiltration of tumor-infiltrating lymphocytes. CONCLUSION The presence of TLS is significantly correlated with the infiltration of various immune cells in gastrointestinal cancers. To determine the ideal balance between the presence of mature TLS and appropriate immune cell infiltration, further high-quality and multicenter clinical studies need to be conducted.
Collapse
Affiliation(s)
- Aoyang Yu
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhixiang Fan
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Luyao Ma
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Juanjuan Tang
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Wenlou Liu
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Zhengxiang Han
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| | - Hongmei Wang
- Department of OncologyThe Affifiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
20
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
21
|
Wankhede D, Yuan T, Kloor M, Halama N, Brenner H, Hoffmeister M. Clinical significance of combined tumour-infiltrating lymphocytes and microsatellite instability status in colorectal cancer: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol 2024; 9:609-619. [PMID: 38734024 DOI: 10.1016/s2468-1253(24)00091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Microsatellite instability (MSI) status and tumour-infiltrating lymphocytes (TIL) are established prognostic factors in colorectal cancer. Previous studies evaluating the combination of TIL and MSI status identified distinct colorectal cancer subtypes with unique prognostic associations. However, these studies were often limited by sample size, particularly for MSI-high (MSI-H) tumours, and there is no comprehensive summary of the available evidence. We aimed to review the literature to compare the survival outcomes associated with the subtypes derived from the integrated MSI-TIL classification in patients with colorectal cancer. METHODS In this systematic review and network meta-analysis, we searched PubMed, Embase, Scopus, and the Cochrane Library without language restrictions, for articles published between Jan 1, 1990, and March 13, 2024. Patient cohorts comparing different combinations of TIL (high or low) and MSI status (MSI or microsatellite stable [MSS]) in patients with surgically resected colorectal cancer were included. Studies were excluded if they focused on neoadjuvant therapy or on other immune markers such as B cells or macrophages. Methodological quality assessment was done with the Newcastle-Ottawa scale; data appraisal and extraction was done independently by two reviewers. Summary estimates were extracted from published reports. The primary outcomes were overall survival, disease-free survival, and cancer-specific survival. A frequentist network meta-analysis was done to compare hazard ratios (HRs) and 95% CI for each outcome. The MSI-TIL subgroups were prognostically ranked based on P-score, bias, magnitude, and precision of associations with each outcome. The protocol is registered with PROSPERO (CRD42023461108). FINDINGS Of 302 studies initially identified, 21 studies (comprising 14 028 patients) were included in the systematic review and 19 (13 029 patients) in the meta-analysis. Nine studies were identified with a low risk of bias and the remaining ten had a moderate risk of bias. The MSI-TIL-high (MSI-TIL-H) subtype exhibited longer overall survival (HR 0·45, 95% CI 0·34-0·61; I2=77·7%), disease-free survival (0·43, 0·32-0·58; I2=61·6%), and cancer-specific survival (0·53, 0·43-0·66; I2=0%), followed by the MSS-TIL-H subtype for overall survival (HR 0·53, 0·41-0·69; I2=77·7%), disease-free survival (0·52, 0·41-0·64; I2=61·6%), and cancer-specific survival (0·55, 0·47-0·64; I2=0%) than did patients with MSS-TIL-low tumours (MSS-TIL-L). Patients with the MSI-TIL-L subtype had similar overall survival (0·88, 0·66-1·18; I2=77·7%) and disease-free survival (0·93, 0·69-1·26; I2=61·6%), but a modestly longer cancer-specific survival (0·72, 0·57-0·90; I2=0%) than did the MSS-TIL-L subtype. Results from the direct and indirect evidence were strongly congruous. INTERPRETATION The findings from this network meta-analysis suggest that better survival was only observed among patients with TIL-H colorectal cancer, regardless of MSI or MSS status. The integrated MSI-TIL classification should be further explored as a predictive tool for clinical decision-making in early-stage colorectal cancer. FUNDING German Research Council (HO 5117/2-2).
Collapse
Affiliation(s)
- Durgesh Wankhede
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Niels Halama
- Department of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany; Helmholtz Institute for Translational Oncology, Mainz, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
22
|
Shiomi K, Ichinoe M, Ushiwata A, Eshima K, Nagashio R, Hayashi S, Sonoda D, Kondo Y, Maruyama R, Mikubo M, Murakumo Y, Satoh Y. Insight into the significance of Foxp3 + tumor-infiltrating lymphocytes in squamous cell lung cancer. Clin Transl Oncol 2024; 26:1708-1715. [PMID: 38402536 PMCID: PMC11178642 DOI: 10.1007/s12094-024-03392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/15/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Although developing a better understanding of tumor-infiltrating Foxp3 + lymphocytes (Foxp3 + TILs) might provide essential knowledge to predict response to immunotherapy and prognosis, our current knowledge about Foxp3 + TILs is inadequate. This study investigated the prognostic significance of tumor-infiltrating Foxp3 + lymphocytes (Foxp3 + TILs) in squamous cell lung cancer (SQ-LC) objectively. METHODS Among patients with SQ-LC surgically resected in our institution between 2011 and 2017, those with pathological stage IA3-IIIA were immunohistochemically studied to evaluate Foxp3 + TILs in their tumor stroma. The impact of Foxp3 + TILs on relapse-free survival (RFS) was analyzed with Kaplan-Meier survival analysis and multivariate analysis using a Cox proportional hazards model/Fine-Gray model. RESULTS This study analyzed 100 patients. Multivariate analysis showed that a large number of Foxp3 + TILs in the stroma does not associate with a poor prognosis, rather that a large number of Foxp3 + TILs (≥ 64 cells) tend to be associated with a more favorable prognosis than a small number of Foxp3 + TILs (< 64 cells) (large vs small number: HR, 0.56; 95% CI, 0.17-1.83; P = 0.34). Exploratory analysis also showed that in the two populations divided by a difference in Foxp3 expression levels, similar trends to the main analysis were observed. CONCLUSION Our results showed that a large number of Foxp3 + TILs in the stroma may not associate with a poor prognosis in SQ-LC. To use the seemingly complicated information of Foxp3 + TILs as biomarkers, better understanding the diversity and heterogeneity of Foxp3 + TILs and analyzing their subpopulations that increase in the TME may be needed.
Collapse
Affiliation(s)
- Kazu Shiomi
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan.
| | - Masaaki Ichinoe
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Ai Ushiwata
- Department of Clinical Medicine (Biostatistics), Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Koji Eshima
- Department of Biosciences, Kitasato University School of Sciences, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Ryo Nagashio
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Shoko Hayashi
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Dai Sonoda
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Yasuto Kondo
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Raito Maruyama
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Masashi Mikubo
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| | - Yukitoshi Satoh
- Department of Thoracic Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, Sagamihara-Shi, Kanagawa, 252-0374, Japan
| |
Collapse
|
23
|
Papachristos AJ, Serrao-Brown H, Gill AJ, Clifton-Bligh R, Sidhu SB. Medullary Thyroid Cancer: Molecular Drivers and Immune Cellular Milieu of the Tumour Microenvironment-Implications for Systemic Treatment. Cancers (Basel) 2024; 16:2296. [PMID: 39001359 PMCID: PMC11240419 DOI: 10.3390/cancers16132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
In this review, we explore the underlying molecular biology of medullary thyroid carcinoma (MTC) and its interplay with the host immune system. MTC is consistently driven by a small number of specific pathogenic variants, beyond which few additional genetic events are required for tumorigenesis. This explains the exceedingly low tumour mutational burden seen in most MTC, in contrast to other cancers. However, because of the low tumour mutational burden (TMB), there is a correspondingly low level of tumour-associated neoantigens that are presented to the host immune system. This reduces tumour visibility and vigour of the anti-tumour immune response and suggests the efficacy of immunotherapy in MTC is likely to be poor, acknowledging this inference is largely based on the extrapolation of data from other tumour types. The dominance of specific RET (REarranged during Transfection) pathogenic variants in MTC tumorigenesis rationalizes the observed efficacy of the targeted RET-specific tyrosine kinase inhibitors (TKIs) in comparison to multi-kinase inhibitors (MKIs). Therapeutic durability of pathway inhibitors is an ongoing research focus. It may be limited by the selection pressure TKI treatment creates, promoting survival of resistant tumour cell clones that can escape pathway inhibition through binding-site mutations, activation of alternate pathways, and modulation of the cellular and cytokine milieu of the tumour microenvironment (TME).
Collapse
Affiliation(s)
- Alexander J Papachristos
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Hazel Serrao-Brown
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Anthony J Gill
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Roderick Clifton-Bligh
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Department of Endocrinology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Stanley B Sidhu
- Northern Clinical School, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- Endocrine Surgical Unit, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
24
|
Hansen FJ, David P, Weber GF. The Multifaceted Functionality of Plasmacytoid Dendritic Cells in Gastrointestinal Cancers: A Potential Therapeutic Target? Cancers (Basel) 2024; 16:2216. [PMID: 38927922 PMCID: PMC11201847 DOI: 10.3390/cancers16122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal (GI) tumors pose a significant global health burden, necessitating the exploration of novel therapeutic approaches. Plasmacytoid dendritic cells (pDCs) play a crucial role in tumor immunity, exhibiting both anti-tumor and pro-tumor effects. This review aims to summarize the role of pDCs in different types of GI tumors and assess their potential as therapeutic targets. In gastric cancer, hepatocellular carcinoma, and intrahepatic cholangiocarcinoma, increased infiltration of pDCs was associated with a worse outcome, whereas in esophageal cancer, pancreatic cancer, and colorectal cancer, pDC infiltration improved the outcome. Initial animal studies of gastric cancer and hepatocellular carcinoma showed that pDCs could be a successful therapeutic target. In conclusion, pDCs play a multifaceted role in GI tumors, influencing both anti-tumor immunity and tumor progression. Further research is needed to optimize their clinical application and explore combinatorial approaches.
Collapse
Affiliation(s)
| | - Paul David
- Department of General and Visceral Surgery, Medical Faculty of Friedrich-Alexander-University Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Georg F. Weber
- Department of General and Visceral Surgery, Medical Faculty of Friedrich-Alexander-University Erlangen, University Hospital Erlangen, 91054 Erlangen, Germany;
| |
Collapse
|
25
|
Szentkereszty M, Ladányi A, Gálffy G, Tóvári J, Losonczy G. Density of tumor-infiltrating NK and Treg cells is associated with 5 years progression-free and overall survival in resected lung adenocarcinoma. Lung Cancer 2024; 192:107824. [PMID: 38761665 DOI: 10.1016/j.lungcan.2024.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Surgical resection of pulmonary adenocarcinoma is considered to be curative but progression-free survival (PFS) has remained highly variable. Antitumor immune response may be important, however, the prognostic significance of tumor-infiltrating natural killer (NK) and regulatory T (Treg) lymphocytes is uncertain. Resected pulmonary adenocarcinoma tissues (n = 115) were studied by immunohistochemical detection of NKp46 and FoxP3 positivity to identify NK and Treg cells, respectively. Association of cell densities with clinicopathological features and progression-free survival (PFS) as well as overall survival (OS) were analyzed with a follow-up time of 60 months. Both types of immune cells were accumulated predominantly in tumor stroma. NK cell density showed association with female gender, non-smoking and KRAS wild-type status. According to Kaplan-Meier analysis, PFS and OS proved to be longer in patients with high NK or Treg cell densities (p = 0.0293 and p = 0.0375 for PFS, p = 0.0310 and p = 0.0448 for OS, respectively). Evaluating the prognostic effect of the combination of NK and Treg cell density values revealed that PFS and OS were significantly longer in NKhigh/Treghigh cases compared to the other groups combined (p = 0.0223 and p = 0.0325, respectively). Multivariate Cox regression analysis indicated that high NK cell density was independent predictor of longer PFS while high NK and high Treg cell densities both proved significant predictors of longer OS. The NKhigh/Treghigh combination also proved to be an independent prognostic factor for both PFS and OS. In conclusion, NK and Treg cells can be components of the innate and adaptive immune response at action against progression of pulmonary adenocarcinoma.
Collapse
Affiliation(s)
- Márton Szentkereszty
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary; Tumor Pathology Center, National Institute of Oncology, Budapest, Hungary
| | - Andrea Ladányi
- Tumor Pathology Center, National Institute of Oncology, Budapest, Hungary; National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Gabriella Gálffy
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary; Pulmonology Hospital of Törökbálint, Törökbálint, Hungary
| | - József Tóvári
- National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - György Losonczy
- Department of Pulmonology, Semmelweis University Clinical Center, Budapest, Hungary.
| |
Collapse
|
26
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
27
|
Dakal TC, George N, Xu C, Suravajhala P, Kumar A. Predictive and Prognostic Relevance of Tumor-Infiltrating Immune Cells: Tailoring Personalized Treatments against Different Cancer Types. Cancers (Basel) 2024; 16:1626. [PMID: 38730579 PMCID: PMC11082991 DOI: 10.3390/cancers16091626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
TIICs are critical components of the TME and are used to estimate prognostic and treatment responses in many malignancies. TIICs in the tumor microenvironment are assessed and quantified by categorizing immune cells into three subtypes: CD66b+ tumor-associated neutrophils (TANs), FoxP3+ regulatory T cells (Tregs), and CD163+ tumor-associated macrophages (TAMs). In addition, many cancers have tumor-infiltrating M1 and M2 macrophages, neutrophils (Neu), CD4+ T cells (T-helper), CD8+ T cells (T-cytotoxic), eosinophils, and mast cells. A variety of clinical treatments have linked tumor immune cell infiltration (ICI) to immunotherapy receptivity and prognosis. To improve the therapeutic effectiveness of immune-modulating drugs in a wider cancer patient population, immune cells and their interactions in the TME must be better understood. This study examines the clinicopathological effects of TIICs in overcoming tumor-mediated immunosuppression to boost antitumor immune responses and improve cancer prognosis. We successfully analyzed the predictive and prognostic usefulness of TIICs alongside TMB and ICI scores to identify cancer's varied immune landscapes. Traditionally, immune cell infiltration was quantified using flow cytometry, immunohistochemistry, gene set enrichment analysis (GSEA), CIBERSORT, ESTIMATE, and other platforms that use integrated immune gene sets from previously published studies. We have also thoroughly examined traditional limitations and newly created unsupervised clustering and deconvolution techniques (SpatialVizScore and ProTICS). These methods predict patient outcomes and treatment responses better. These models may also identify individuals who may benefit more from adjuvant or neoadjuvant treatment. Overall, we think that the significant contribution of TIICs in cancer will greatly benefit postoperative follow-up, therapy, interventions, and informed choices on customized cancer medicines.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Nancy George
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India;
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of the City of Hope, Monrovia, CA 91010, USA;
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana P.O. 690525, Kerala, India;
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| |
Collapse
|
28
|
Takahashi S, Minnie SA, Ensbey KS, Schmidt CR, Sekiguchi T, Legg SRW, Zhang P, Koyama M, Olver SD, Collinge AD, Keshmiri S, Comstock ML, Varelias A, Green DJ, Hill GR. Regulatory T cells suppress myeloma-specific immunity during autologous stem cell mobilization and transplantation. Blood 2024; 143:1656-1669. [PMID: 38295333 PMCID: PMC11103090 DOI: 10.1182/blood.2023022000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
ABSTRACT Autologous stem cell transplantation (ASCT) is the standard of care consolidation therapy for eligible patients with myeloma but most patients eventually progress, an event associated with features of immune escape. Novel approaches to enhance antimyeloma immunity after ASCT represent a major unmet need. Here, we demonstrate that patient-mobilized stem cell grafts contain high numbers of effector CD8 T cells and immunosuppressive regulatory T cells (Tregs). We showed that bone marrow (BM)-residing T cells are efficiently mobilized during stem cell mobilization (SCM) and hypothesized that mobilized and highly suppressive BM-derived Tregs might limit antimyeloma immunity during SCM. Thus, we performed ASCT in a preclinical myeloma model with or without stringent Treg depletion during SCM. Treg depletion generated SCM grafts containing polyfunctional CD8 T effector memory cells, which dramatically enhanced myeloma control after ASCT. Thus, we explored clinically tractable translational approaches to mimic this scenario. Antibody-based approaches resulted in only partial Treg depletion and were inadequate to recapitulate this effect. In contrast, a synthetic interleukin-2 (IL-2)/IL-15 mimetic that stimulates the IL-2 receptor on CD8 T cells without binding to the high-affinity IL-2Ra used by Tregs efficiently expanded polyfunctional CD8 T cells in mobilized grafts and protected recipients from myeloma progression after ASCT. We confirmed that Treg depletion during stem cell mobilization can mitigate constraints on tumor immunity and result in profound myeloma control after ASCT. Direct and selective cytokine signaling of CD8 T cells can recapitulate this effect and represent a clinically testable strategy to improve responses after ASCT.
Collapse
Affiliation(s)
- Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Simone A. Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kathleen S. Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Christine R. Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Samuel R. W. Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Stuart D. Olver
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Sara Keshmiri
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Melissa L. Comstock
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Damian J. Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Geoffrey R. Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Ke S, Lei Y, Guo Y, Xie F, Yu Y, Geng H, Zhong Y, Xu D, Liu X, Yu F, Xia X, Zhang Z, Zhu C, Ling W, Li B, Zhao W. CD177 drives the transendothelial migration of Treg cells enriched in human colorectal cancer. Clin Transl Immunology 2024; 13:e1506. [PMID: 38596253 PMCID: PMC11003710 DOI: 10.1002/cti2.1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Objectives Regulatory T (Treg) cells regulate immunity in autoimmune diseases and cancers. However, immunotherapies that target tumor-infiltrating Treg cells often induce unwanted immune responses and tissue inflammation. Our research focussed on exploring the expression pattern of CD177 in tumor-infiltrating Treg cells with the aim of identifying a potential target that can enhance immunotherapy effectiveness. Methods Single-cell RNA sequencing (scRNA-seq) data and survival data were obtained from public databases. Twenty-one colorectal cancer patient samples, including fresh tumor tissues, peritumoral tissues and peripheral blood mononuclear cells (PBMCs), were analysed using flow cytometry. The transendothelial activity of CD177+ Treg cells was substantiated using in vitro experiments. Results ScRNA-seq and flow cytometry results indicated that CD177 was exclusively expressed in intratumoral Treg cells. CD177+ Treg cells exhibited greater activation status and expressed elevated Treg cell canonical markers and immune checkpoint molecules than CD177- Treg cells. We further discovered that both intratumoral CD177+ Treg cells and CD177-overexpressing induced Treg (iTreg) cells had lower levels of PD-1 than their CD177- counterparts. Moreover, CD177 overexpression significantly enhanced the transendothelial migration of Treg cells in vitro. Conclusions These results demonstrated that Treg cells with higher CD177 levels exhibited an enhanced activation status and transendothelial migration capacity. Our findings suggest that CD177 may serve as an immunotherapeutic target and that overexpression of CD177 may improve the efficacy of chimeric antigen receptor T (CAR-T) cell therapy.
Collapse
Affiliation(s)
- Shouyu Ke
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Lei
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixian Guo
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Xie
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yimeng Yu
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Danhua Xu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xu Liu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fengrong Yu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Ling
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bin Li
- Center for Immune‐Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
31
|
Swatler J, De Luca M, Rotella I, Lise V, Mazza EMC, Lugli E. CD4+ Regulatory T Cells in Human Cancer: Subsets, Origin, and Molecular Regulation. Cancer Immunol Res 2024; 12:393-399. [PMID: 38562083 DOI: 10.1158/2326-6066.cir-23-0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/18/2023] [Accepted: 12/20/2023] [Indexed: 04/04/2024]
Abstract
CD4+CD25hiFOXP3+ regulatory T cells (Treg) play major roles in the maintenance of immune tolerance, prevention of inflammation, and tissue homeostasis and repair. In contrast with these beneficial roles, Tregs are abundant in virtually all tumors and have been mechanistically linked to disease progression, metastases development, and therapy resistance. Tregs are thus recognized as a major target for cancer immunotherapy. Compared with other sites in the body, tumors harbor hyperactivated Treg subsets whose molecular characteristics are only beginning to be elucidated. Here, we describe current knowledge of intratumoral Tregs and discuss their potential cellular and tissue origin. Furthermore, we describe currently recognized molecular regulators that drive differentiation and maintenance of Tregs in cancer, with a special focus on those signals regulating their chronic immune activation, with relevant implications for cancer progression and therapy.
Collapse
Affiliation(s)
- Julian Swatler
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Marco De Luca
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Ivano Rotella
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - Veronica Lise
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | | | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan
| |
Collapse
|
32
|
Kawada T, Yanagisawa T, Rajwa P, Motlagh RS, Mostafaei H, Quhal F, Laukhtina E, Pallauf M, König F, Pradere B, Araki M, Nasu Y, Shariat SF. The Prognostic Value of Tumor Infiltrating Lymphocytes After Radical Cystectomy for Bladder Cancer: A Systematic Review and Meta-Analysis. Clin Genitourin Cancer 2024; 22:535-543.e4. [PMID: 38336572 DOI: 10.1016/j.clgc.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND We aimed to assess the prognostic value of tumor infiltrating lymphocytes (TILs) in patients with bladder cancer (BC) after radical cystectomy (RC). MATERIALS AND METHODS We searched Pubmed, Web of Science and Scopus in April 2022 to identify studies assessing the prognostic value of TILs, including a subset of lymphocytes (eg, CD3, CD8, FOXP3), after RC. The endpoints were overall survival and recurrent free survival. Subgroup analyses were performed based on the evaluation method for TILs (ie, CD3, CD8, FOXP3, HE staining). RESULTS Overall, 9 studies comprising 1413 patients were included in this meta-analysis. The meta-analysis revealed that elevated expressions of TILs were significantly associated with favorable OS (pooled hazard ratio [HR]: 0.65, 95% confidence interval [CI]: 0.51-0.83) and RFS (pooled HR: 0.48, 95% CI: 0.35-0.64). In subgroup analyses, high CD8+ TILs were also associated with favorable OS (HR: 0.51, 95% CI: 0.33-0.80) and RFS (pooled HR: 0.53, 95% CI: 0.36-0.76). Among 3 studies comprising 146 patients, high intratumoral TILs were significantly associated with favorable OS (pooled HR: 0.34, 95% CI: 0.19-0.60). CONCLUSION TILs are useful prognostic markers in patients treated with RC for BC. Although the prognostic value of TILs is varied, depending on the subset and infiltration site, CD8+ TILs and intratumoral TILs are associated with oncologic outcomes. Further studies are warranted to explicate the predictive value of TILs on the response to perioperative systemic therapy to help clinical decision-making in patients with BC.
Collapse
Affiliation(s)
- Tatsushi Kawada
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Takafumi Yanagisawa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Pawel Rajwa
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Medical University of Silesia, Zabrze, Poland
| | - Reza Sari Motlagh
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd, Tehran, Iran
| | - Hadi Mostafaei
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fahad Quhal
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ekaterina Laukhtina
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Maximilian Pallauf
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, Paracelsus Medical University Salzburg, University Hospital Salzburg, Salzburg, Austria
| | - Frederik König
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Urology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Pradere
- Department of Urology, La Croix Du Sud Hospital, Quint-Fonsegrives, France
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan; Department of Urology, University of Texas Southwestern, Dallas, Texas, USA; Department of Urology, Second Faculty of Medicine, Charles University, Prag, Czech Republic; Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria; Research Center for Evidence Medicine, Urology Department Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Okuno K, Ikemura K, Okamoto R, Oki K, Watanabe A, Kuroda Y, Kidachi M, Fujino S, Nie Y, Higuchi T, Chuman M, Washio M, Sakuraya M, Niihara M, Kumagai K, Sangai T, Kumamoto Y, Naitoh T, Hiki N, Yamashita K. CAF-associated genes putatively representing distinct prognosis by in silico landscape of stromal components of colon cancer. PLoS One 2024; 19:e0299827. [PMID: 38557819 PMCID: PMC10984474 DOI: 10.1371/journal.pone.0299827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
Comprehensive understanding prognostic relevance of distinct tumor microenvironment (TME) remained elusive in colon cancer. In this study, we performed in silico analysis of the stromal components of primary colon cancer, with a focus on the markers of cancer-associated fibroblasts (CAF) and tumor-associated endothelia (TAE), as well as immunological infiltrates like tumor-associated myeloid cells (TAMC) and cytotoxic T lymphocytes (CTL). The relevant CAF-associated genes (CAFG)(representing R index = 0.9 or beyond with SPARC) were selected based on stroma specificity (cancer stroma/epithelia, cS/E = 10 or beyond) and expression amounts, which were largely exhibited negative prognostic impacts. CAFG were partially shared with TAE-associated genes (TAEG)(PLAT, ANXA1, and PTRF) and TAMC-associated genes (TAMCG)(NNMT), but not with CTL-associated genes (CTLG). Intriguingly, CAFG were prognostically subclassified in order of fibrosis (representing COL5A2, COL5A1, and COL12A1) followed by exclusive TAEG and TAMCG. Prognosis was independently stratified by CD8A, a CTL marker, in the context of low expression of the strongest negative prognostic CAFG, COL8A1. CTLG were comprehensively identified as IFNG, B2M, and TLR4, in the group of low S/E, representing good prognosis. Our current in silico analysis of the micro-dissected stromal gene signatures with prognostic relevance clarified comprehensive understanding of clinical features of the TME and provides deep insights of the landscape.
Collapse
Affiliation(s)
- Kota Okuno
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kyonosuke Ikemura
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Riku Okamoto
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keiko Oki
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Watanabe
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yu Kuroda
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mikiko Kidachi
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Shiori Fujino
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Nie
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tadashi Higuchi
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Motohiro Chuman
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Marie Washio
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Mikiko Sakuraya
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Masahiro Niihara
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Koshi Kumagai
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yusuke Kumamoto
- Department of General-Pediatric-Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical Frontiers, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
34
|
Chaudhuri SM, Weinberg SE, Wang D, Yalom LK, Montauti E, Iyer R, Tang AY, Torres Acosta MA, Shen J, Mani NL, Wang S, Liu K, Lu W, Bui TM, Manzanares LD, Dehghani Z, Wai CM, Gao B, Wei J, Yue F, Cui W, Singer BD, Sumagin R, Zhang Y, Fang D. Mediator complex subunit 1 architects a tumorigenic Treg cell program independent of inflammation. Cell Rep Med 2024; 5:101441. [PMID: 38428427 PMCID: PMC10983042 DOI: 10.1016/j.xcrm.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.
Collapse
Affiliation(s)
- Shuvam M Chaudhuri
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Samuel E Weinberg
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lenore K Yalom
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Radhika Iyer
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy Y Tang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manuel A Torres Acosta
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nikita L Mani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shengnan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kun Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiyuan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Triet M Bui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Laura D Manzanares
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeinab Dehghani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ching Man Wai
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Juncheng Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deyu Fang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Jiang J, Lin C, Chang T, Lo L, Lin C, Lu R, Yang C. Decreased interleukin-17RA expression is associated with good prognosis in patients with colorectal cancer and inhibits tumor growth and vascularity in mice. Cancer Med 2024; 13:e7059. [PMID: 38491831 PMCID: PMC10943367 DOI: 10.1002/cam4.7059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Interleukin-17 (IL-17) is a pro-inflammatory cytokine that plays a vital role in the promotion of tumorigenesis in various cancers, including colorectal cancer (CRC). Based on current evidence, IL-17 binds to interleukin-17 receptor A (IL-17RA); however, the role of IL-17RA has not been elucidated in previous studies on CRC. In this study, we explored the role of IL-17RA in human CRC tissues and the progression of CRC in humans and mice. METHODS The expressions of IL-17RA and epithelial-mesenchymal transition (EMT)-related genes were examined in CRC cells and tissue samples by quantitative real-time polymerase chain reaction. The role of IL-17RA in pathogenesis and prognosis was evaluated using a Chi-squared test, Kaplan-Meier analysis, univariate, and multivariate Cox regression analysis in 133 CRC patients. A tumor-bearing mice model was executed to evaluate the role of IL-17RA in tumor growth, vascularity and population of infiltrating immune cells. RESULTS IL-17RA expression was found to be significantly higher in CRC tissues than in adjacent normal tissues. The expression of IL-17RA in Stage IV patients was significantly higher than that in Stages I and II patients. Patients with high IL-17RA expression exhibited significantly worse overall and CRC-specific survival than those with low IL-17RA expression. Functional assessment suggested that the knockdown of IL-17RA expression distinctly suppressed cellular proliferation, migration, invasion, and EMT-related gene expression. In a tumor-bearing mouse model, decreased IL-17RA expression significantly repressed tumor growth and vascularity and reduced the population of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). CONCLUSION Reduced IL-17RA expression also suppressed cellular proliferation, migration, and invasion, and the expression of EMT genes. Knockdown of IL-17RA inhibited tumor growth and vascularity and decreased the population of Tregs and MDSCs in mouse tumors. Overall, IL-17RA expression was identified to be independently associated with the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Jeng‐Kai Jiang
- School of MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Division of Colon and Rectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Chi‐Hung Lin
- Institute of Microbiology and ImmunologyNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Department of Biological Science and TechnologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Cancer Progression Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ting‐An Chang
- Department of Pathology, Ren‐Ai BranchTaipei City HospitalTaipeiTaiwan
| | - Liang‐Chuan Lo
- National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chien‐Ping Lin
- Division of Colon and Rectal Surgery, Department of SurgeryTaipei Veterans General HospitalTaipeiTaiwan
| | - Ruey‐Hwa Lu
- Department of Surgery, Zhongxing BranchTaipei City HospitalTaipeiTaiwan
| | - Chih‐Yung Yang
- Commission for General EducationNational United UniversityMiaoliTaiwan
- General Education CenterUniversity of TaipeiTaipeiTaiwan
- Department of Education and ResearchTaipei City HospitalTaipeiTaiwan
| |
Collapse
|
36
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Zhu H, Roelands J, Ahmed EI, Stouten I, Hoorntje R, van Vlierberghe RLP, Ijsselsteijn ME, Lei X, de Miranda NFCC, Tollenaar RAEM, Vahrmeijer AL, Bedognetti D, Hendrickx WRL, Kuppen PJK. Location matters: spatial dynamics of tumor-infiltrating T cell subsets is prognostic in colon cancer. Front Immunol 2024; 15:1293618. [PMID: 38375478 PMCID: PMC10875018 DOI: 10.3389/fimmu.2024.1293618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Background Colon cancer is a heterogeneous disease and consists of various molecular subtypes. Despite advances in high-throughput expression profiling, limitations remain in predicting clinical outcome and assigning specific treatment to individual cases. Tumor-immune interactions play a critical role, with tumors that activate the immune system having better outcome for the patient. The localization of T cells within tumor epithelium, to enable direct contact, is essential for antitumor function, but bulk DNA/RNA sequencing data lacks spatial distribution information. In this study, we provide spatial T cell tumor distribution and connect these data with previously determined genomic data in the AC-ICAM colon cancer patient cohort. Methods Colon cancer patients (n=90) with transcriptome data available were selected. We used a custom multiplex immunofluorescence assay on colon tumor tissue sections for quantifying T cell subsets spatial distribution in the tumor microenvironment, in terms of cell number, location, mutual distance, and distance to tumor cells. Statistical analyses included the previously determined Immunologic Constant of Rejection (ICR) transcriptome correlation and patient survival, revealing potential prognostic value in T cell spatial distribution. Results T cell phenotypes were characterized and CD3+CD8-FoxP3- T cells were found to be the predominant tumor-infiltrating subtype while CD3+FoxP3+ T cells and CD3+CD8+ T cells showed similar densities. Spatial distribution analysis elucidated that proliferative T cells, characterized by Ki67 expression, and Granzyme B-expressing T cells were predominantly located within the tumor epithelium. We demonstrated an increase in immune cell density and a decrease in the distance of CD3+CD8+ T cells to the nearest tumor cell, in the immune active, ICR High, immune subtypes. Higher densities of stromal CD3+FoxP3+ T cells showed enhanced survival outcomes, and patients exhibited superior clinical benefits when greater spatial distances were observed between CD3+CD8-FoxP3- or CD3+CD8+ T cells and CD3+FoxP3+ T cells. Conclusion Our study's in-depth analysis of the spatial distribution and densities of major T cell subtypes within the tumor microenvironment has provided valuable information that paves the way for further research into the intricate relationships between immune cells and colon cancer development.
Collapse
Affiliation(s)
- Hehuan Zhu
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Jessica Roelands
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Eiman I. Ahmed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Imke Stouten
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Rachel Hoorntje
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Xin Lei
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Davide Bedognetti
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Kite, A Gilead Company, Santa Monica, CA, United States
| | - Wouter R. L. Hendrickx
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Tumor Biology and Immunology Lab, Research Branch, Sidra Medicine, Doha, Qatar
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
38
|
García-Díaz N, Wei Q, Taskén K. Small molecule inhibitors targeting regulatory T cells for cancer treatment. Eur J Immunol 2024; 54:e2350448. [PMID: 37937687 DOI: 10.1002/eji.202350448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
Regulatory T cells (Tregs) are important controllers of the immune system homeostasis by preventing disproportionate immune responses. In the context of cancer, Tregs contribute to tumor development by suppressing other immune cells in the tumor microenvironment (TME). Infiltration of Tregs in the TME has been associated with poor prognosis in cancer patients. Thus, understanding the mechanisms underlying Treg recruitment and suppressive functions is essential for developing cancer immunotherapies to boost antitumor immune responses. While antibody-based strategies targeting Tregs have shown promise, small molecule inhibitors offer distinct advantages, including oral bioavailability and the ability to penetrate the TME and target intracellular proteins. Here, we provide an overview of small molecule inhibitors that have demonstrated efficacy in modulating Tregs activity in cancer and highlight the need for phenotypic assays to characterize therapeutic compounds.
Collapse
Affiliation(s)
- Nuria García-Díaz
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Qian Wei
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Frei AL, McGuigan A, Sinha RRAK, Jabbar F, Gneo L, Tomasevic T, Harkin A, Iveson T, Saunders MP, Oien KA, Maka N, Pezzella F, Campo L, Browne M, Glaire M, Kildal W, Danielsen HE, Hay J, Edwards J, Sansom O, Kelly C, Tomlinson I, Kerr R, Kerr D, Domingo E, Church DN, Koelzer VH. Multiplex analysis of intratumoural immune infiltrate and prognosis in patients with stage II-III colorectal cancer from the SCOT and QUASAR 2 trials: a retrospective analysis. Lancet Oncol 2024; 25:198-211. [PMID: 38301689 DOI: 10.1016/s1470-2045(23)00560-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Tumour-infiltrating CD8+ cytotoxic T cells confer favourable prognosis in colorectal cancer. The added prognostic value of other infiltrating immune cells is unclear and so we sought to investigate their prognostic value in two large clinical trial cohorts. METHODS We used multiplex immunofluorescent staining of tissue microarrays to assess the densities of CD8+, CD20+, FoxP3+, and CD68+ cells in the intraepithelial and intrastromal compartments from tumour samples of patients with stage II-III colorectal cancer from the SCOT trial (ISRCTN59757862), which examined 3 months versus 6 months of adjuvant oxaliplatin-based chemotherapy, and from the QUASAR 2 trial (ISRCTN45133151), which compared adjuvant capecitabine with or without bevacizumab. Both trials included patients aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0-1. Immune marker predictors were analysed by multiple regression, and the prognostic and predictive values of markers for colorectal cancer recurrence-free interval by Cox regression were assessed using the SCOT cohort for discovery and QUASAR 2 cohort for validation. FINDINGS After exclusion of cases without tissue microarrays and with technical failures, and following quality control, we included 2340 cases from the SCOT trial and 1069 from the QUASAR 2 trial in our analysis. Univariable analysis of associations with recurrence-free interval in cases from the SCOT trial showed a strong prognostic value of intraepithelial CD8 (CD8IE) as a continuous variable (hazard ratio [HR] for 75th vs 25th percentile [75vs25] 0·73 [95% CI 0·68-0·79], p=2·5 × 10-16), and of intrastromal FoxP3 (FoxP3IS; 0·71 [0·64-0·78], p=1·5 × 10-13) but not as strongly in the epithelium (FoxP3IE; 0·89 [0·84-0·96], p=1·5 × 10-4). Associations of other markers with recurrence-free interval were moderate. CD8IE and FoxP3IS retained independent prognostic value in bivariable and multivariable analysis, and, compared with either marker alone, a composite marker including both markers (CD8IE-FoxP3IS) was superior when assessed as a continuous variable (adjusted [a]HR75 vs 25 0·70 [95% CI 0·63-0·78], p=5·1 × 10-11) and when categorised into low, intermediate, and high density groups using previously published cutpoints (aHR for intermediate vs high 1·68 [95% CI 1·29-2·20], p=1·3 × 10-4; low vs high 2·58 [1·91-3·49], p=7·9 × 10-10), with performance similar to the gold-standard Immunoscore. The prognostic value of CD8IE-FoxP3IS was confirmed in cases from the QUASAR 2 trial, both as a continuous variable (aHR75 vs 25 0·84 [95% CI 0·73-0·96], p=0·012) and as a categorical variable for low versus high density (aHR 1·80 [95% CI 1·17-2·75], p=0·0071) but not for intermediate versus high (1·30 [0·89-1·88], p=0·17). INTERPRETATION Combined evaluation of CD8IE and FoxP3IS could help to refine risk stratification in colorectal cancer. Investigation of FoxP3IS cells as an immunotherapy target in colorectal cancer might be merited. FUNDING Medical Research Council, National Institute for Health Research, Cancer Research UK, Swedish Cancer Society, Roche, and Promedica Foundation.
Collapse
Affiliation(s)
- Anja L Frei
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Life Science Zurich Graduate School, PhD Program in Biomedicine, University of Zurich, Zurich, Switzerland
| | - Anthony McGuigan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ritik R A K Sinha
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Faiz Jabbar
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luciana Gneo
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tijana Tomasevic
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Harkin
- Cancer Research UK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, UK
| | | | | | - Karin A Oien
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Noori Maka
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Francesco Pezzella
- Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford, UK
| | - Molly Browne
- Department of Oncology, University of Oxford, Oxford, UK
| | - Mark Glaire
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Havard E Danielsen
- Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK; Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Jennifer Hay
- Glasgow Tissue Research Facility, University of Glasgow, Queen Elizabeth University Hospital, Glasgow, UK
| | - Joanne Edwards
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Owen Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, UK; Cancer Research UK Beatson Institute of Cancer Research, Glasgow, UK; Cancer Research UK Scotland Centre, Glasgow and Edinburgh, UK
| | - Caroline Kelly
- Cancer Research UK Glasgow Clinical Trials Unit, University of Glasgow, Glasgow, UK
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Rachel Kerr
- Department of Oncology, University of Oxford, Oxford, UK
| | - David Kerr
- Nuffield Division of Clinical and Laboratory Sciences, University of Oxford, Oxford, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, UK; Cancer Research UK Scotland Centre, Glasgow and Edinburgh, UK
| | - David N Church
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Liu L, Long M, Su S, Wang L, Liu J. Clinical impact of heterogeneously distributed tumor-infiltrating lymphocytes on the prognosis of colorectal cancer. PeerJ 2024; 12:e16747. [PMID: 38223758 PMCID: PMC10785792 DOI: 10.7717/peerj.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024] Open
Abstract
Background Tumor-infiltrating lymphocytes (TILs) exist in various malignancies, and have been viewed as a promising biomarker to predict the efficacy and outcome of treatment. However, the marked inter- and intra-tumor heterogeneity of TILs has resulted in some confusion regarding their impact on the prognosis of colorectal cancer (CRC). Methods In this study, 78 CRC patients were enrolled and the CD3+ and CD8+ TILs densities at the tumor center (TC), the invasive margin (IM) and the tumor stroma (TS) were assessed by immunohistochemical staining. Their associations with clinicopathological features and progression free survival (PFS) were analyzed to evaluate the predictive and prognostic values of TILs. Results TILs were mainly distributed along the invasive margin. High density of TILs in tumor center and invasive margin was associated with smaller tumor size (CD3+TILsIM), reduced tumor invasion (CD3+TILsIM), absence of lymph node metastasis (CD3+TILsIM and CD8+TILsTC), earlier stage (CD3+TILsIM and CD8+TILsIM), and lower tumor grade (CD3+TILsIM and CD8+TILsTC). However, stromal TILs were not associated with any clinicopathological features. Kaplan-Meier survival analysis revealed that high densities of TILs always correlated with prolonged patient survival. The pathological N stage, CD3+ TILsIM and CD8+ TILsTC were found to be independent prognostic indicators. Additionally, early-stage CRC patients who developed recurrence after surgery, showed a higher CD3+/CD8+ TILs ratio in invasive margin. In the present study, it was clarified that CD3+ and CD8+ TILs were heterogeneously distributed in tumor tissues of CRC. The increase in intratumoral and peritumoral TILs had been shown to be strongly predictive of improved clinical outcome. More importantly, the immune signatures enabled to stratify early-stage CRC patients with high risk of recurrence, highlighting the prognostic power of TILs.
Collapse
Affiliation(s)
- Lu Liu
- Shenzhen People’s Hospital of Baoan District, Shenzhen, China
| | | | - Shengyuan Su
- Shenzhen People’s Hospital of Baoan District, Shenzhen, China
| | - Lijun Wang
- Shenzhen People’s Hospital of Baoan District, Shenzhen, China
| | - Jintao Liu
- Shenzhen Baoan Traditional Chinese Medicine Hospital Group, Shenzhen, China
| |
Collapse
|
41
|
Song D, Ding Y. A new target of radiotherapy combined with immunotherapy: regulatory T cells. Front Immunol 2024; 14:1330099. [PMID: 38259489 PMCID: PMC10800811 DOI: 10.3389/fimmu.2023.1330099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is one important treatment for malignant tumours. It is widely believed today that radiotherapy has not only been used as a local tumour treatment method, but also can induce systemic anti-tumour responses by influencing the tumour microenvironment, but its efficacy is limited by the tumour immunosuppression microenvironment. With the advancement of technology, immunotherapy has entered a golden age of rapid development, gradually occupying a place in clinical tumour treatment. Regulatory T cells (Tregs) widely distributing in the tumour microenvironment play an important role in mediating tumour development. This article analyzes immunotherapy, the interaction between Tregs, tumours and radiotherapy. It briefly introduces immunotherapies targeting Tregs, aiming to provide new strategies for radiotherapy combined with Immunotherapy.
Collapse
Affiliation(s)
| | - Yun Ding
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
42
|
Arroyo-Olarte R, Mejía-Muñoz A, León-Cabrera S. Expanded Alternatives of CRISPR-Cas9 Applications in Immunotherapy of Colorectal Cancer. Mol Diagn Ther 2024; 28:69-86. [PMID: 37907826 PMCID: PMC10786962 DOI: 10.1007/s40291-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Immunotherapy for colorectal cancer (CRC) is limited to patients with advanced disease who have already undergone first-line chemotherapy and whose tumors exhibit microsatellite instability. Novel technical strategies are required to enhance therapeutic options and achieve a more robust immunological response. Therefore, exploring gene analysis and manipulation at the molecular level can further accelerate the development of advanced technologies to address these challenges. The emergence of advanced genome editing technology, particularly of clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9, holds promise in expanding the boundaries of cancer immunotherapy. In this manuscript, we provide a comprehensive review of the applications and perspectives of CRISPR technology in improving the design, generation, and efficiency of current immunotherapies, focusing on solid tumors such as colorectal cancer, where these approaches have not been as successful as in hematological conditions.
Collapse
Affiliation(s)
- Rubén Arroyo-Olarte
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, México
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Edo. De México, México
| | - Aranza Mejía-Muñoz
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, México
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Edo. De México, México
| | - Sonia León-Cabrera
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, México.
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Tlalnepantla, Edo. De México, México.
| |
Collapse
|
43
|
Fang L, Yao Y, Guan X, Liao Y, Wang B, Cui L, Han S, Zou H, Su D, Ma Y, Liu B, Wang Y, Huang R, Ruan Y, Yu X, Yao Y, Liu C, Zhang Y. China special issue on gastrointestinal tumors-Regulatory-immunoscore-A novel indicator to guide precision adjuvant chemotherapy in colorectal cancer. Int J Cancer 2023; 153:1904-1915. [PMID: 37085990 DOI: 10.1002/ijc.34539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/23/2023]
Abstract
Novel biomarkers are essential to improve the treatment efficacy and overall survival of stage II and III colorectal cancer (CRC), allowing for personalized treatment decisions. Here, the densities of CD8+ and FOXP3+ T cells in the tumor and invasive margin were processed by immunohistochemistry and digital pathology to form a scoring system named regulatory-Immunoscore (RIS). Cox proportional hazards regression models were used to determine the risk factors associated with time to recurrence. Harrell's concordance index and the time-dependent area under the curve were used to assess model performance. A total of 1213 stage I-III DNA mismatch repair-proficient colorectal cancer (pMMR CRC) patients were randomly assigned to a training set (n = 642) and a validation set (n = 571). From the Cox multivariable analysis, the association of RIS with survival was independent of patient age, sex and anatomy-based tumor risk parameters (P < .0001). For stage II patients, chemotherapy was significantly associated with better recurrence time in patients with low (95% confidence interval [CI]: 0.11-0.54, P = .001) and intermediate (95% CI = 0.25-0.57, P < .001) RIS values. In stage III patients treated with adjuvant chemotherapy, a treatment duration of 6 or more months was significantly associated with better recurrence time in patients with intermediate RIS values (95% CI = 0.38-0.90, P = .016) when compared with duration under 6 months. Therefore, these findings suggest that RIS is reliable for predicting recurrence risk and treatment responsiveness for patients with stage I-III pMMR CRC.
Collapse
Affiliation(s)
- Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yang Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Biao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yao Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Rui Huang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xuefan Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| |
Collapse
|
44
|
Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W, Oślizło M, Kulbacka J, Novickij V, Karłowicz-Bodalska K. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother 2023; 72:3405-3425. [PMID: 37567938 PMCID: PMC10576709 DOI: 10.1007/s00262-023-03516-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expression has been a trending topic in recent years due to its differential expression in a wide range of neoplasms. TIM-3 is one of the key immune checkpoint receptors that interact with GAL-9, PtdSer, HMGB1 and CEACAM1. Initially identified on the surface of T helper 1 (Th1) lymphocytes and later on cytotoxic lymphocytes (CTLs), monocytes, macrophages, natural killer cells (NKs), and dendritic cells (DCs), TIM-3 plays a key role in immunoregulation. Recently, a growing body of evidence has shown that its differential expression in various tumor types indicates a specific prognosis for cancer patients. Here, we discuss which types of cancer TIM-3 can serve as a prognostic factor and the influence of coexpressed immune checkpoint inhibitors, such as LAG-3, PD-1, and CTLA-4 on patients' outcomes. Currently, experimental medicine involving TIM-3 has significantly enhanced the anti-tumor effect and improved patient survival. In this work, we summarized clinical trials incorporating TIM-3 targeting monoclonal and bispecific antibodies in monotherapy and combination therapy and highlighted the emerging role of cell-based therapies.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Wioletta Dwernicka
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | |
Collapse
|
45
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
46
|
Shen MH, Liu CY, Chang KW, Lai CL, Chang SC, Huang CJ. Propolis Has an Anticancer Effect on Early Stage Colorectal Cancer by Affecting Epithelial Differentiation and Gut Immunity in the Tumor Microenvironment. Nutrients 2023; 15:4494. [PMID: 37960147 PMCID: PMC10648826 DOI: 10.3390/nu15214494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and is the second leading cause of cancer-related death in the world. Due to the westernization of diets, young patients with CRC are often diagnosed at advanced stages with an associated poor prognosis. Improved lifestyle choices are one way to minimize CRC risk. Among diet choices is the inclusion of bee propolis, long recognized as a health supplement with anticancer activities. Understanding the effect of propolis on the gut environment is worth exploring, and especially its associated intratumoral immune changes and its anticancer effect on the occurrence and development of CRC. In this study, early stage CRC was induced with 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS) for one month in an animal model, without and with propolis administration. The phenotypes of early stage CRC were evaluated by X-ray microcomputed tomography and histologic examination. The gut immunity of the tumor microenvironment was assessed by immunohistochemical staining for tumor-infiltrating lymphocytes (TILs) and further comparative quantification. We found that the characteristics of the CRC mice, including the body weight, tumor loading, and tumor dimensions, were significantly changed due to propolis administration. With further propolis administration, the CRC tissues of DMH/DSS-treated mice showed decreased cytokeratin 20 levels, a marker for intestinal epithelium differentiation. Additionally, the signal intensity and density of CD3+ and CD4+ TILs were significantly increased and fewer forkhead box protein P3 (FOXP3) lymphocytes were observed in the lamina propria. In conclusion, we found that propolis, a natural supplement, potentially prevented CRC progression by increasing CD3+ and CD4+ TILs and reducing FOXP3 lymphocytes in the tumor microenvironment of early stage CRC. Our study could suggest a promising role for propolis in complementary medicine as a food supplement to decrease or prevent CRC progression.
Collapse
Affiliation(s)
- Ming-Hung Shen
- Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 243089, Taiwan;
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei City 221037, Taiwan
| | - Kang-Wei Chang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei City 110301, Taiwan;
- Laboratory Animal Center, Taipei Medical University, Taipei City 110301, Taiwan
| | - Ching-Long Lai
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan;
- Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 333324, Taiwan
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei City 106438, Taiwan;
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei City 106438, Taiwan
| |
Collapse
|
47
|
Wu J, Dong W, Pan Y, Wang J, Wu M, Yu Y. Crosstalk between gut microbiota and metastasis in colorectal cancer: implication of neutrophil extracellular traps. Front Immunol 2023; 14:1296783. [PMID: 37936694 PMCID: PMC10626548 DOI: 10.3389/fimmu.2023.1296783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Primary colorectal cancer (CRC) often leads to liver metastasis, possibly due to the formation of pre-metastatic niche (PMN) in liver. Thus, unravelling the key modulator in metastasis is important for the development of clinical therapies. Gut microbiota dysregulation is a key event during CRC progression and metastasis. Numerous studies have elucidated the correlation between specific gut bacteria strains (e.g., pks + E. coli and Bacteroides fragilis) and CRC initiation, and gut bacteria translocation is commonly witnessed during CRC progression. Gut microbiota shapes tumor microenvironment (TME) through direct contact with immune cells or through its functional metabolites. However, how gut microbiota facilitates CRC metastasis remains controversial. Meanwhile, recent studies identify the dissemination of bacteria from gut lumen to liver, suggesting the role of gut microbiota in shaping tumor PMN. A pro-tumoral PMN is characterized by the infiltration of immunosuppressive cells and increased pro-inflammatory immune responses. Notably, neutrophils form web-like structures known as neutrophil extracellular traps (NETs) both in primary TME and metastatic sites, NETs are involved in cancer progression and metastasis. In this review, we focus on the role of gut microbiota in CRC progression and metastasis, highlight the multiple functions of different immune cell types in TME, especially neutrophils and NETs, discuss the possible mechanisms of gut microbiota in shaping PMN formation, and provide therapeutical indications in clinic.
Collapse
Affiliation(s)
- Jiawei Wu
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Wenyan Dong
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yayun Pan
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jingjing Wang
- Department of Burn and Plastic Surgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Minliang Wu
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yue Yu
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
48
|
Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R, Weiss L. Unraveling Resistance to Immunotherapy in MSI-High Colorectal Cancer. Cancers (Basel) 2023; 15:5090. [PMID: 37894457 PMCID: PMC10605634 DOI: 10.3390/cancers15205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths. Incidences of early CRC cases are increasing annually in high-income countries, necessitating effective treatment strategies. Immune checkpoint inhibitors (ICIs) have shown significant clinical efficacy in various cancers, including CRC. However, their effectiveness in CRC is limited to patients with mismatch-repair-deficient (dMMR)/microsatellite instability high (MSI-H) disease, which accounts for about 15% of all localized CRC cases and only 3% to 5% of metastatic CRC cases. However, the varied response among patients, with some showing resistance or primary tumor progression, highlights the need for a deeper understanding of the underlying mechanisms. Elements involved in shaping the response to ICIs, such as tumor microenvironment, immune cells, genetic changes, and the influence of gut microbiota, are not fully understood thus far. This review aims to explore potential resistance or immune-evasion mechanisms to ICIs in dMMR/MSI-H CRC and the cell types involved, as well as possible pitfalls in the diagnosis of this particular subtype.
Collapse
Affiliation(s)
- Ronald Heregger
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Florian Huemer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Markus Steiner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alejandra Gonzalez-Martinez
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Lukas Weiss
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
49
|
Abe Y. Follicular lymphoma microenvironment: insights provided by single-cell analysis. J Clin Exp Hematop 2023; 63:143-151. [PMID: 37635086 PMCID: PMC10628831 DOI: 10.3960/jslrt.23012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 08/29/2023] Open
Abstract
Follicular lymphoma (FL) is the most frequent indolent lymphoma and is characterized by the abundant infiltration of tumor microenvironment (TME) cells. The activity of TME cells reportedly plays an important role in the biology of FL. TME cells that reside within neoplastic follicles, such as T-follicular helper cells and follicular dendritic cells, have been shown to aid in FL development and progression through interactions with malignant B cells, whereas regulatory T cells have unexpectedly shown an apparently favorable prognostic impact in FL. Unfortunately, the understanding of the FL TME, particularly regarding minor cell subsets, has been hampered by unknown cell heterogeneity. As with other solid and hematologic cancers, novel single-cell analysis technologies have recently been applied to FL research and have uncovered previously unrecognized heterogeneities, not only in malignant B cells but also in TME cells. These reports have greatly increased the resolution of our understanding of the FL TME and, at the same time, raised questions about newly identified TME cells. This review provides an overview of the unique aspects of FL TME cells with a clinical viewpoint and highlights recent discoveries from single-cell analysis, while also suggesting potential future directions.
Collapse
Affiliation(s)
- Yoshiaki Abe
- Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
50
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|