1
|
Oksuz S, Kinikoglu O, Ozkerim U, Altintas YE, Isik D, Surmeli H, Odabas H, Ay S, Basoglu T, Turan N. Impact of HER2 Status Assessed by Immunohistochemistry on Treatment Response in Patients with Metastatic Breast Cancer Receiving Trastuzumab Emtansine. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:819. [PMID: 40428777 PMCID: PMC12113034 DOI: 10.3390/medicina61050819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Background and Objectives: HER2-positive breast cancer accounts for approximately 20-30% of all breast cancer cases and is associated with aggressive tumor behavior. Trastuzumab emtansine (T-DM1), an antibody-drug conjugate targeting HER2, is a standard second-line therapy for patients with metastatic disease. However, the impact of HER2 immunohistochemistry (IHC) expression levels on T-DM1 efficacy remains unclear. Materials and Methods: This retrospective study examined 87 patients with HER2-positive metastatic breast cancer who received T-DM1 following trastuzumab-based therapy. Patients were divided into IHC 2+ and IHC 3+ groups. Progression-free survival (PFS) and overall survival (OS) were evaluated via Kaplan-Meier analysis, and group comparisons were conducted using the log-rank test. Results: The median progression-free survival (PFS) for the entire cohort was 7.3 months (95% CI: 5.277-9.323), with a numerically longer PFS in the IHC 3+ group (8.4 months, 95% CI: 5.915-10.952) compared to the IHC 2+ group (6.3 months, 95% CI: 4.178-8.422). However, this difference was insignificant (HR: 0.91, 95% CI: 0.61-1.35; p = 0.778). Similarly, the median overall survival (OS) was 23.3 months (95% CI: 18.039-28.495), with the IHC 3+ group exhibiting a slightly longer OS (24.5 months, 95% CI: 18.600-30.400) compared to the IHC 2+ group (23.2 months, 95% CI: 12.387-34.147). Again, this difference did not reach statistical significance (HR: 0.93, 95% CI: 0.63-1.42; p = 0.369). Conclusions: Although the association between HER2 IHC 3+ expression and longer PFS and OS is promising, the lack of statistical significance suggests that IHC-based HER2 stratification alone may not be sufficient to predict the response to T-DM1. The potential of conducting prospective studies with larger cohorts and comprehensive molecular profiling to refine predictive biomarkers for optimizing therapeutic outcomes in HER2-positive metastatic breast cancer is a beacon of hope and should be pursued with optimism.
Collapse
Affiliation(s)
- Sila Oksuz
- Department of Medical Oncology, Health Science University, Kartal Dr. Lütfi Kirdar City Hospital, Istanbul 34865, Turkey; (O.K.); (U.O.); (Y.E.A.); (D.I.); (H.S.); (H.O.); (S.A.); (T.B.); (N.T.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Fu YC, Liang SB, Luo M, Wang XP. Intratumoral heterogeneity and drug resistance in cancer. Cancer Cell Int 2025; 25:103. [PMID: 40102941 PMCID: PMC11917089 DOI: 10.1186/s12935-025-03734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Intratumoral heterogeneity is the main cause of tumor treatment failure, varying across disease sites (spatial heterogeneity) and polyclonal properties of tumors that evolve over time (temporal heterogeneity). As our understanding of intratumoral heterogeneity, the formation of which is mainly related to the genomic instability, epigenetic modifications, plastic gene expression, and different microenvironments, plays a substantial role in drug-resistant as far as tumor metastasis and recurrence. Understanding the role of intratumoral heterogeneity, it becomes clear that a single therapeutic agent or regimen may only be effective for subsets of cells with certain features, but not for others. This necessitates a shift from our current, unchanging treatment approach to one that is tailored against the killing patterns of cancer cells in different clones. In this review, we discuss recent evidence concerning global perturbations of intratumoral heterogeneity, associations of specific intratumoral heterogeneity in lung cancer, the underlying mechanisms of intratumoral heterogeneity potentially leading to formation, and how it drives drug resistance. Our findings highlight the most up-to-date progress in intratumoral heterogeneity and its role in mediating tumor drug resistance, which could support the development of future treatment strategies.
Collapse
Affiliation(s)
- Yue-Chun Fu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shao-Bo Liang
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Luo
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Xue-Ping Wang
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
3
|
Mekhamer AM, Saied MH, Abd Elmoaty Elneily D, El-Fayoumi TAH, Hashad DI. Targeted Sequencing of HER2-Positive Breast Cancer Mutations Revealed a Potential Association between PIK3CA and Trastuzumab Resistance. Asian Pac J Cancer Prev 2024; 25:4051-4059. [PMID: 39611930 PMCID: PMC11996105 DOI: 10.31557/apjcp.2024.25.11.4051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Different molecular subtypes, including HER2-positive, have been identified in breast cancer. The overexpression of HER2 triggers downstream signaling pathways such as the PI3K/AKT/mTOR pathway. Until recently, trastuzumab has been used as a single HER2-targeted therapy in Egypt. However, resistance to trastuzumab has been reported. Previous studies have demonstrated the genetic variants that affect the trastuzumab response. However in Egypt, few studies investigated molecular biomarkers such as p53 that might affect the trastuzumab response. Therefore, we aimed to extend the genetics workup of Her2 + BC to include important oncogenes and other vital cancer pathways. METHODS Formalin-fixed paraffin-embedded samples were collected from 24 HER2+ BC Egyptian patients, twelve patients in complete remission for 2 years or more from the start of trastuzumab and twelve resistant patients who relapsed or developed metastasis within 2 years from the start of trastuzumab. Somatic mutations in hotspot regions of 17 genes were further investigated using next-generation sequencing. RESULTS Among the total number of identified variants (106 variants), PIK3CA showed the most frequent variants, with more variants occurring in the resistant group than in the responsive group (P= 0.004). The frequency of PIK3CA mutations was greater in resistant patients than in responsive patients (P= 0.036). Additionally, there was a significant correlation between PIK3CA mutations and pathological complete response (pCR) (P=0.036). Most of PIK3CA variants in resistant patients were detected in exon 9 and 20. The PIK3CA variants His1047Tyr, Glu545Lys, His701Pro, Lys111Glu, Val344Gly and Tyr1021Cys were found only in the resistant patients, suggesting that they are associated with trastuzumab resistance. CONCLUSION PIK3CA variants were more frequent in resistant HER2+ BC patients than in responsive patients, with a significant correlation between PIK3CA mutation and a lower pCR rate. PIK3CA variants within exon 9 and 20 (such as Glu545Lys and His1047Tyr respectively) were associated with trastuzumab resistance.
Collapse
Affiliation(s)
- Asmaa Mohamed Mekhamer
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Marwa Hanafi Saied
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Dalia Abd Elmoaty Elneily
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | | | - Doaa Ibrahim Hashad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
4
|
Jank P, Karn T, van Mackelenbergh M, Lindner J, Treue D, Huober J, Engels K, Solbach C, Diebold K, Marmé F, Müller V, Schneeweiss A, Sinn HP, Fehm T, Schem C, Stickeler E, Fasching P, Budczies J, Felder B, Nekljudova V, Holtschmidt J, Untch M, Denkert C, Loibl S. An Analysis of PIK3CA Hotspot Mutations and Response to Neoadjuvant Therapy in Patients with Breast Cancer from Four Prospective Clinical Trials. Clin Cancer Res 2024; 30:3868-3880. [PMID: 38837894 DOI: 10.1158/1078-0432.ccr-24-0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE The PI3K signaling pathway is frequently dysregulated in breast cancer, and mutations in PIK3CA are relevant for therapy resistance in HER2-positive (HER2pos) breast cancer. Mutations in exons 9 or 20 may have different impacts on response to neoadjuvant chemotherapy-based treatment regimens. EXPERIMENTAL DESIGN We investigated PIK3CA mutations in 1,691 patients with early breast cancer who were randomized into four neoadjuvant multicenter trials: GeparQuattro (NCT00288002), GeparQuinto (NCT00567554), GeparSixto (NCT01426880), and GeparSepto (NCT01583426). The role of different PIK3CA exons and hotspots for pathologic complete response (pCR) following neoadjuvant chemotherapy (NACT) and patient survival were evaluated for distinct molecular subgroups and anti-HER2 treatment procedures. RESULTS A total of 302 patients (17.9%) of the full cohort of 1,691 patients had a tumor with a PIK3CA mutation, with a different prevalence in molecular subgroups: luminal/HER2-negative (HER2neg) 95 of 404 (23.5%), HER2pos 170 of 819 (20.8%), and triple-negative breast cancer 37 of 468 patients (7.9%). We identified the mutations in PIK3CA exon 20 to be linked with worse response to anti-HER2 treatment (OR = 0.507; 95% confidence interval, 0.320-0.802; P = 0.004), especially in hormone receptor-positive HER2-positive breast cancer (OR = 0.445; 95% confidence interval, 0.237-0.837; P = 0.012). In contrast, exon 9 hotspot mutations p.E452K and p.E545K revealed no noteworthy differences in response therapy. Luminal/HER2neg patients show a trend to have worse treatment response when PIK3CA was mutated. Interestingly, patients with residual disease following neoadjuvant treatment had better survival rates when PIK3CA was mutated. CONCLUSIONS The PIK3CA hotspot mutation p.H1047R is associated with worse pCR rates following NACT in HER2pos breast cancer, whereas hotspot mutations in exon 9 seem to have less impact.
Collapse
Affiliation(s)
- Paul Jank
- Institute of Pathology, Philipps University Marburg and Marburg University Hospital (UKGM), UCT Frankfurt-Marburg, Marburg, Germany
| | - Thomas Karn
- Department of Gynecology and Obstetrics, University of Frankfurt, UCT Frankfurt-Marburg, Frankfurt, Germany
| | | | - Judith Lindner
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denise Treue
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jens Huober
- Kantonsspital St. Gallen, Brustzentrum, Departement Interdisziplinäre Medizinische Dienste, St. Gallen, Switzerland
| | - Knut Engels
- Zentrum für Pathologie, Zytologie und Molekularpathologie, Neuss, Germany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, University of Frankfurt, UCT Frankfurt-Marburg, Frankfurt, Germany
| | - Kurt Diebold
- Institute of Pathology, St. Barbara-Klinik Hessen Hamm, Hamm, Germany
| | - Frederik Marmé
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Volkmar Müller
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Tanja Fehm
- Universitaetsklinikum Düsseldorf, Düsseldorf, Germany
| | | | - Elmar Stickeler
- Klinik für Gynäkologie und Geburtsmedizin, Uniklinik Aachen, Aachen, Germany
| | | | - Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg and Marburg University Hospital (UKGM), UCT Frankfurt-Marburg, Marburg, Germany
| | | |
Collapse
|
5
|
Momeny M, Tienhaara M, Sharma M, Chakroborty D, Varjus R, Takala I, Merisaari J, Padzik A, Vogt A, Paatero I, Elenius K, Laajala TD, Kurppa KJ, Westermarck J. DUSP6 inhibition overcomes neuregulin/HER3-driven therapy tolerance in HER2+ breast cancer. EMBO Mol Med 2024; 16:1603-1629. [PMID: 38886591 PMCID: PMC11251193 DOI: 10.1038/s44321-024-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth. DUSP6 expression also selectively associated with poor patient survival in HER2+ breast cancers. DUSP6 overexpression conferred apoptosis resistance, whereas its pharmacological blockade prevented therapy tolerance development under HER2i therapy. DUSP6 targeting also synergized with clinically used HER2i combination therapies. Mechanistically DUSP6 is a positive regulator of HER3 expression, and its impact on HER2i tolerance was mediated by neuregulin-HER3 axis. In vivo, genetic targeting of DUSP6 reduced tumor growth in brain metastasis model, whereas its pharmacological targeting induced synthetic lethal therapeutic effect in combination with HER2i. Collectively this work demonstrates that DUSP6 drives escape from HER2i-induced dormancy, and that DUSP6 is a druggable target to overcome HER3-driven TKI resistance.
Collapse
Affiliation(s)
- Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | - Mari Tienhaara
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Deepankar Chakroborty
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Roosa Varjus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Iina Takala
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Joni Merisaari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Artur Padzik
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Andreas Vogt
- University of Pittsburgh Drug Discovery Institute, Department of Computational and Systems Biology, Pittsburgh Technology Center, Pittsburgh, PA, USA
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Klaus Elenius
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Kari J Kurppa
- Medicity Research Laboratories, Faculty of Medicine, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
Connolly RM, Wang V, Hyman DM, Grivas P, Mitchell EP, Wright JJ, Sharon E, Gray RJ, McShane LM, Rubinstein LV, Patton DR, Williams PM, Hamilton SR, Wang J, Wisinski KB, Tricoli JV, Conley BA, Harris LN, Arteaga CL, O'Dwyer PJ, Chen AP, Flaherty KT. Trastuzumab and Pertuzumab in Patients with Non-Breast/Gastroesophageal HER2-Amplified Tumors: Results from the NCI-MATCH ECOG-ACRIN Trial (EAY131) Subprotocol J. Clin Cancer Res 2024; 30:1273-1280. [PMID: 38433347 PMCID: PMC10984755 DOI: 10.1158/1078-0432.ccr-23-0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/05/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE NCI-MATCH assigned patients with advanced cancer and progression on prior treatment, based on genomic alterations in pretreatment tumor tissue. Arm J (EAY131-J) evaluated the combination of trastuzumab/pertuzumab (HP) across HER2-amplified tumors. PATIENTS AND METHODS Eligible patients had high levels of HER2 amplification [copy number (CN) ≥7] detected by central next-generation sequencing (NGS) or through NCI-designated laboratories. Patients with breast/gastroesophageal adenocarcinoma and those who received prior HER2-directed therapy were excluded. Enrollment of patients with colorectal cancer was capped at 4 based on emerging data. Patients received HP IV Q3 weeks until progression or unacceptable toxicity. Primary endpoint was objective response rate (ORR); secondary endpoints included progression-free survival (PFS) and overall survival (OS). RESULTS Thirty-five patients were enrolled, with 25 included in the primary efficacy analysis (CN ≥7 confirmed by a central lab, median CN = 28). Median age was 66 (range, 31-80), and half of all patients had ≥3 prior therapies (range, 1-11). The confirmed ORR was 12% [3/25 partial responses (colorectal, cholangiocarcinoma, urothelial cancers), 90% confidence interval (CI) 3.4%-28.2%]. There was one additional partial response (urothelial cancer) in a patient with an unconfirmed ERBB2 copy number. Median PFS was 3.3 months (90% CI 2.0-4.1), and median OS 9.4 months (90% CI 5.0-18.9). Treatment-emergent adverse events were consistent with prior studies. There was no association between HER2 CN and response. CONCLUSIONS HP was active in a selection of HER2-amplified tumors (non-breast/gastroesophageal) but did not meet the predefined efficacy benchmark. Additional strategies targeting HER2 and potential resistance pathways are warranted, especially in rare tumors.
Collapse
Affiliation(s)
- Roisin M Connolly
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland
- Cancer Research @UCC, College of Medicine and Health, University College Cork, Ireland
| | - Victoria Wang
- Dana Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - David M Hyman
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Petros Grivas
- University of Washington, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Edith P Mitchell
- Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - John J Wright
- Investigational Drug Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Elad Sharon
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Robert J Gray
- Dana Farber Cancer Institute, ECOG-ACRIN Biostatistics Center, Boston, Massachusetts
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Larry V Rubinstein
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - David R Patton
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | - P Mickey Williams
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Jue Wang
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Kari B Wisinski
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Barbara A Conley
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Lyndsay N Harris
- Cancer Diagnosis Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Carlos L Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, Texas
| | | | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Keith T Flaherty
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|
7
|
Sweeney CJ, Hainsworth JD, Bose R, Burris HA, Kurzrock R, Swanton C, Friedman CF, Spigel DR, Szado T, Schulze K, Price R, Malato J, Lo AA, Levy J, Wang Y, Yu W, Meric-Bernstam F. MyPathway Human Epidermal Growth Factor Receptor 2 Basket Study: Pertuzumab + Trastuzumab Treatment of a Tissue-Agnostic Cohort of Patients With Human Epidermal Growth Factor Receptor 2-Altered Advanced Solid Tumors. J Clin Oncol 2024; 42:258-265. [PMID: 37793085 PMCID: PMC10824375 DOI: 10.1200/jco.22.02636] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 10/06/2023] Open
Abstract
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.The MyPathway multiple-basket study (ClinicalTrials.gov identifier: NCT02091141) is evaluating targeted therapies in nonindicated tumors with relevant molecular alterations. We assessed pertuzumab + trastuzumab in a tissue-agnostic cohort of adult patients with human epidermal growth factor receptor 2 (HER2)-amplified and/or -overexpressed and/or -mutated solid tumors. The primary end point was objective response rate (ORR); secondary end points included survival and safety. At data cutoff (March 2022), 346 patients with HER2 amplification and/or overexpression with/without HER2 mutations (n = 263), or HER2 mutations alone (n = 83) had been treated. Patients with HER2 amplification and/or overexpression had an ORR of 25.9% (68/263, 95% CI, 20.7 to 31.6), including five complete responses (urothelial [n = 2], salivary gland [n = 2], and colon [n = 1] cancers). Activity was higher in those with wild-type (ORR, 28.1%) versus mutated KRAS (ORR, 7.1%). Among patients with HER2 amplification, ORR was numerically higher in patients with immunohistochemistry (IHC) 3+ (41.0%; 32/78) or 2+ (21.9%; 7/32), versus 1+ (8.3%; 1/12) or no expression (0%; 0/20). In patients with HER2 mutations alone, ORR was 6.0% (5/83, 95% CI, 2.0 to 13.5). Pertuzumab + trastuzumab showed activity in various HER2-amplified and/or -overexpressed tumors with wild-type KRAS, with the range of activity dependent on tumor type, but had limited activity in the context of KRAS mutations, HER2 mutations alone, or 0-1+ HER2 expression.
Collapse
Affiliation(s)
- Christopher J. Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - John D. Hainsworth
- Sarah Cannon Research Institute, Nashville, TN
- Tennessee Oncology, PLLC, Nashville, TN
| | - Ron Bose
- Washington University School of Medicine, St Louis, MO
| | - Howard A. Burris
- Sarah Cannon Research Institute, Nashville, TN
- Tennessee Oncology, PLLC, Nashville, TN
| | | | - Charles Swanton
- Francis Crick Institute, London, United Kingdom
- UCL Hospitals, London, United Kingdom
| | - Claire F. Friedman
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Medical College at Cornell University, New York, NY
| | - David R. Spigel
- Sarah Cannon Research Institute, Nashville, TN
- Tennessee Oncology, PLLC, Nashville, TN
| | | | | | | | | | - Amy A. Lo
- Genentech, Inc, South San Francisco, CA
| | | | - Yong Wang
- Genentech, Inc, South San Francisco, CA
| | - Wei Yu
- Genentech, Inc, South San Francisco, CA
| | | |
Collapse
|
8
|
Zagami P, Fernandez-Martinez A, Rashid NU, Hoadley KA, Spears PA, Curigliano G, Perou CM, Carey LA. Association of PIK3CA Mutation With Pathologic Complete Response and Outcome by Hormone Receptor Status and Intrinsic Subtype in Early-Stage ERBB2/HER2-Positive Breast Cancer. JAMA Netw Open 2023; 6:e2348814. [PMID: 38117494 PMCID: PMC10733807 DOI: 10.1001/jamanetworkopen.2023.48814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023] Open
Abstract
Importance PIK3CA mutations may be associated with outcomes of patients with ERBB2/HER2-positive early breast cancer (EBC). Objectives To assess if PIK3CA mutations among patients with ERBB2/HER2-positive EBC are associated with treatment response and outcome, and if these associations vary by hormone receptor (HR) status or intrinsic molecular subtype (IMS). Design, Setting, and Participants This cohort study derived data on 184 patients from the phase 3 neoadjuvant Cancer and Leukemia Group B (CALGB) 40601 trial that enrolled patients with ERBB2/HER2-positive EBC in North America between January 1, 2008, and December 31, 2012. Participants received neoadjuvant paclitaxel with trastuzumab, lapatinib, or both. Statistical analysis was performed from March 23, 2022, to March 9, 2023. Exposures Gene expression profiling by RNA sequencing with Prediction Analysis of Microarray 50-determined IMS and PIK3CA mutations from whole-exome sequencing were obtained from pretreatment biopsies from 184 of 305 trial participants. Main Outcomes and Measures The primary end point was pathologic complete response (pCR) and the secondary end point of event-free survival (EFS). The association of PIK3CA mutations with pCR and EFS by HR status and IMS was estimated using logistic and Cox proportional hazards regression models. Results All 184 participants were women, with a median age of 49 years (range 24-75 years). A total of 121 participants (66%) had clinical stage II tumors; 32 (17%) had PIK3CA mutations, most frequently H1047R (38% [12 of 32]) and E545K (22% [7 of 32]). PIK3CA mutations were present in 20 of 102 cases of HR-positive EBC (20%) and 12 of 82 cases HR-negative EBC (15%) and varied by IMS (luminal B, 9 of 25 [36%]; luminal A, 2 of 21 [10%]; and ERBB2/HER2-enriched tumors, 19 of 102 [19%]). Pathologic complete response rates were lower in PIK3CA mutated than PIK3CA wild type in the overall population (34% [11 of 32] vs 49% [74 of 152]; P = .14) and were significantly different among those receiving trastuzumab (30% [7 of 23] vs 54% [63 of 117]; P = .045). At a median follow-up of 9 years, PIK3CA mutations were significantly associated with worse EFS in the overall cohort (hazard ratio, 2.58 [95% CI, 1.24-5.35]; P = .01), which persisted in a multivariable model including pCR, HR status, stage, and IMS (hazard ratio, 2.52 [95% CI, 1.16-5.47]; P = .02). The negative association of PIK3CA mutation was significant in HR-positive (hazard ratio, 3.60 [95% CI, 1.45-8.96]; P = .006) and luminal subtypes (hazard ratio, 4.84 [95% CI, 1.08-21.70]; P = .04), but not in nonluminal and HR-negative tumors. Conclusions and Relevance In ERBB2/HER2-positive EBC, PIK3CA mutations were associated with lower pCR rates and independently associated with worse long-term EFS. These findings appear to be associated with PIK3CA mutations in HR-positive and luminal EBC.
Collapse
Affiliation(s)
- Paola Zagami
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
- Division of Medical Oncology, University of Milan, Milan, Italy
| | - Aranzazu Fernandez-Martinez
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
- Department of Genetics, University of North Carolina, Chapel Hill
| | - Naim U. Rashid
- Department of Biostatistics, University of North Carolina, Chapel Hill
| | - Katherine A. Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
- Department of Genetics, University of North Carolina, Chapel Hill
| | - Patricia A. Spears
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
| | - Giuseppe Curigliano
- Division of Medical Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
- Department of Genetics, University of North Carolina, Chapel Hill
| | - Lisa A. Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill
| |
Collapse
|
9
|
Adam-Artigues A, Arenas EJ, Arribas J, Prat A, Cejalvo JM. AXL - a new player in resistance to HER2 blockade. Cancer Treat Rev 2023; 121:102639. [PMID: 37864955 DOI: 10.1016/j.ctrv.2023.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
HER2 is a driver in solid tumors, mainly breast, oesophageal and gastric cancer, through activation of oncogenic signaling pathways such as PI3K or MAPK. HER2 overexpression associates with aggressive disease and poor prognosis. Despite targeted anti-HER2 therapy has improved outcomes and is the current standard of care, resistance emerge in some patients, requiring additional therapeutic strategies. Several mechanisms, including the upregulation of receptors tyrosine kinases such as AXL, are involved in resistance. AXL signaling leads to cancer cell proliferation, survival, migration, invasion and angiogenesis and correlates with poor prognosis. In addition, AXL overexpression accompanied by a mesenchymal phenotype result in resistance to chemotherapy and targeted therapies. Preclinical studies show that AXL drives anti-HER2 resistance and metastasis through dimerization with HER2 and activation of downstream pathways in breast cancer. Moreover, AXL inhibition restores response to HER2 blockade in vitro and in vivo. Limited data in gastric and oesophageal cancer also support these evidences. Furthermore, AXL shows a strong value as a prognostic and predictive biomarker in HER2+ breast cancer patients, adding a remarkable translational relevance. Therefore, current studies enforce the potential of co-targeting AXL and HER2 to overcome resistance and supports the use of AXL inhibitors in the clinic.
Collapse
Affiliation(s)
| | - Enrique J Arenas
- Josep Carreras Leukaemia Research Institute, Spain; Center for Biomedical Network Research on Cancer (CIBERONC), Spain.
| | - Joaquín Arribas
- Center for Biomedical Network Research on Cancer (CIBERONC), Spain; Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Spain; Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Spain; Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain.
| | - Aleix Prat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Spain; Department of Medical Oncology, Hospital Clínic de Barcelona, Spain; SOLTI Breast Cancer Research Group, Spain.
| | - Juan Miguel Cejalvo
- INCLIVA Biomedical Research Institute, Spain; Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Spain; Department of Medical Oncology, Hospital Clínico Universitario de València, Spain.
| |
Collapse
|
10
|
Shi Q, Qi X, Tang P, Fan L, Chen L, Wang S, Liang Y, Hu Y, Wang M, Ren L, Zhang G, Tan X, Yuan L, Du J, Wu X, Wang M, Che H, Lv P, Chen D, Hu J, Li Q, Zhang Y, Yang K, Zhong Y, Chen C, Zhou Z, Qian L, Zhang J, Ma M, Sun Y, Zhang Y, Jiang J. A multicenter single-arm trial of neoadjuvant pyrotinib and trastuzumab plus chemotherapy for HER2-positive breast cancer. MedComm (Beijing) 2023; 4:e435. [PMID: 38077249 PMCID: PMC10701463 DOI: 10.1002/mco2.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
The objective of this multicenter, single-arm trial (ChiCTR1900022293) was to explore the efficacy and safety of neoadjuvant therapy with epirubicin, cyclophosphamide, and pyrotinib followed by docetaxel, trastuzumab, and pyrotinib (ECPy-THPy) in the treatment of patients with stage II-III HER2-positive breast cancer. The present study enrolled patients with stage II-III HER2-positive breast cancer. Epirubicin and cyclophosphamide were administrated for four 21-day cycles, followed by four cycles of docetaxel and trastuzumab. Pyrotinib was taken orally once per day throughout the treatment period. The primary endpoint was total pathological complete response (tpCR, ypT0/is ypN0) rate in the modified intention-to-treat (mITT) population. In total, 175 patients were included. The tpCR rate was 68.6% (95% CI, 60.7-75.8%), while the objective response rate was 89.1%. In the post-hoc subgroup analysis, no association between clinical characteristics and the tpCR rate was observed. The most common grade ≥3 adverse events were diarrhea (54.3%), followed by white blood cell count decreased (5.1%), and neutrophil count decreased (4.6%). In conclusion, the neoadjuvant regimen with ECPy-THPy showed promising pathological response and clinical benefits with an acceptable safety profile in patients with stage II-III HER2-positive breast cancer.
Collapse
Affiliation(s)
- Qiyun Shi
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
- The Eighth Medical Center of Chinese PLA General HospitalBeijingChina
| | - Xiaowei Qi
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Peng Tang
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Linjun Fan
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Li Chen
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Shushu Wang
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Yan Liang
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Ying Hu
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Minghao Wang
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Lin Ren
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Guozhi Zhang
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Xuanni Tan
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Long Yuan
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Junze Du
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Xiujuan Wu
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Mengyuan Wang
- Department of Breast SurgeryChongqing University Three Gorges HospitalChongqingChina
| | - Hongying Che
- Department of Thyroid and Breast SurgeryZigong First People's HospitalZigongSichuanChina
| | - Pengwei Lv
- Department of Breast surgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Dejie Chen
- Department of General SurgeryXiangyang Central HospitalXiangyangHubeiChina
| | - Jinhui Hu
- Department of Breast SurgeryThe First Hospital of Hunan University of Chinese MedicineChangshaHunanChina
| | - Qiuyun Li
- Department of Breast SurgeryGuangxi Medical University Cancer HospitalNanningGuangxiChina
| | - Yanwu Zhang
- Department of Breast SurgeryThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Kunxian Yang
- Department of Breast and Thyroid SurgeryThe First People's Hospital of Yunnan ProvinceKunmingYunnanChina
| | - Yuan Zhong
- Department of Breast and Thyroid SurgeryThe Central Hospital of WuhanWuhanHubeiChina
| | - Chuang Chen
- Department of Breast and Thyroid SurgeryHubei General HospitalWuhanHubeiChina
| | - Zemin Zhou
- Department of Breast and Thyroid SurgeryHuaihua First People's HospitalHuaihuaHunanChina
| | - Liyuan Qian
- Department of Breast and Thyroid SurgeryThe Third Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jingwei Zhang
- Department of Breast and Thyroid SurgeryZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Mingde Ma
- Department of Thyroid and Breast SurgeryHuaihe Hospital of Henan UniversityKaifengHenanChina
| | - Yi Sun
- Department of Breast and Thyroid SurgeryXuchang Central HospitalXuchangHenanChina
| | - Yi Zhang
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| | - Jun Jiang
- Department of Breast and Thyroid SurgerySouthwest Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
11
|
Zagami P, Boscolo Bielo L, Nicolò E, Curigliano G. HER2-positive breast cancer: cotargeting to overcome treatment resistance. Curr Opin Oncol 2023; 35:461-471. [PMID: 37621172 DOI: 10.1097/cco.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW The introduction in clinical practice of anti-HER2 agents changed the prognosis of patients with HER2-positive (HER2+) breast cancer in both metastatic and early setting. Although the incomparable results obtained in the last years with the approval of new drugs targeting HER2, not all patients derive benefit from these treatments, experiencing primary or secondary resistance. The aim of this article is to review the data about cotargeting HER2 with different pathways (or epitopes of receptors) involved in its oncogenic signaling, as a mechanism to overcome resistance to anti-HER2 agents. RECENT FINDINGS Concordantly to the knowledge of the HER2+ breast cancer heterogeneity as well as new drugs, novel predictive biomarkers of response to anti-HER2 treatments are always raised helping to define target to overcome resistance. Cotargeting HER2 and hormone receptors is the most well known mechanism to improve benefit in HER2+/HR+ breast cancer. Additional HER2-cotargeting, such as, with PI3K pathway, as well as different HERs receptors or immune-checkpoints revealed promising results. SUMMARY HER2+ breast cancer is an heterogenous disease. Cotargeting HER2 with other signaling pathways involved in its mechanism of resistance may improve patient outcomes. Research efforts will continue to investigate novel targets and combinations to create more effective treatment regimes.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Lineberger comprehensive cancer center, University of North Carolina, Chapel hill, North Carolina
| | - Luca Boscolo Bielo
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Jaeger BAS, Krawczyk N, Japp AS, Honisch E, Köhrer K, Scheuring S, Petzsch P, Neubauer H, Volkmer AK, Esposito I, Ruckhäberle E, Niederacher D, Fehm T. Whole Exome Analysis to Select Targeted Therapies for Patients with Metastatic Breast Cancer - A Feasibility Study. Geburtshilfe Frauenheilkd 2023; 83:1138-1147. [PMID: 37706056 PMCID: PMC10497348 DOI: 10.1055/a-2150-9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction The purpose of this feasibility study was to select targeted therapies according to "ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)". Data interpretation was further supported by a browser-based Treatment Decision Support platform (MH Guide, Molecular Health, Heidelberg, Germany). Patients We applied next generation sequencing based whole exome sequencing of tumor tissue and peripheral blood of patients with metastatic breast cancer (n = 44) to detect somatic as well as germline mutations. Results In 32 metastatic breast cancer patients, data interpretation was feasible. We identified 25 genomic alterations with ESCAT Level of Evidence I or II in 18/32 metastatic breast cancer patients, which were available for evaluation: three copy number gains in HER2 , two g BRCA1 , two g BRCA2 , six PIK3CA, one ESR1 , three PTEN , one AKT1 and two HER2 mutations. In addition, five samples displayed Microsatellite instability high-H. Conclusions Resulting treatment options were discussed in a tumor board and could be recommended in a small but relevant proportion of patients with metastatic breast cancer (7/18). Thus, this study is a valuable preliminary work for the establishment of a molecular tumor board within the German initiative "Center for Personalized Medicine" which aims to shorten time for analyses and optimize selection of targeted therapies.
Collapse
Affiliation(s)
- Bernadette Anna Sophia Jaeger
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Krawczyk
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Sophia Japp
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ellen Honisch
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sibylle Scheuring
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Anne Kathrin Volkmer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Cheng X, Sun Y, Highkin M, Vemalapally N, Jin X, Zhou B, Prior JL, Tipton AR, Li S, Iliuk A, Achilefu S, Hagemann IS, Edwards JR, Bose R. Breast Cancer Mutations HER2V777L and PIK3CAH1047R Activate the p21-CDK4/6-Cyclin D1 Axis to Drive Tumorigenesis and Drug Resistance. Cancer Res 2023; 83:2839-2857. [PMID: 37272756 PMCID: PMC10527017 DOI: 10.1158/0008-5472.can-22-3558] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
In metastatic breast cancer, HER2-activating mutations frequently co-occur with mutations in PIK3CA, TP53, or CDH1. Of these co-occurring mutations, HER2 and PIK3CA are the most commonly comutated gene pair, with approximately 40% of HER2-mutated breast cancers also having activating mutations in PIK3CA. To study the effects of co-occurring HER2 and PIK3CA mutations, we generated genetically engineered mice with the HER2V777L; PIK3CAH1047R transgenes (HP mice) and studied the resulting breast cancers both in vivo as well as ex vivo using cancer organoids. HP breast cancers showed accelerated tumor formation in vivo and increased invasion and migration in in vitro assays. HP breast cancer cells were resistant to the pan-HER tyrosine kinase inhibitor, neratinib, but were effectively treated with neratinib plus the HER2-targeted antibody-drug conjugate trastuzumab deruxtecan. Proteomic and RNA-seq analysis of HP breast cancers identified increased gene expression of cyclin D1 and p21WAF1/Cip1 and changes in cell-cycle markers. Combining neratinib with CDK4/6 inhibitors was another effective strategy for treating HP breast cancers, with neratinib plus palbociclib showing a statistically significant reduction in development of mouse HP tumors as compared to either drug alone. The efficacy of both the neratinib plus trastuzumab deruxtecan and neratinib plus palbociclib combinations was validated using a human breast cancer patient-derived xenograft with very similar HER2 and PIK3CA mutations to the HP mice. Further, these two drug combinations effectively treated spontaneous lung metastasis in syngeneic mice transplanted with HP breast cancer organoids. This study provides valuable preclinical data to support the ongoing phase 1 clinical trials of these drug combinations in breast cancer. SIGNIFICANCE In HER2-mutated breast cancer, PIK3CA mutation activates p21-CDK4/6-cyclin D1 signaling to drive resistance to HER2-targeted therapies, which can be overcome using CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yirui Sun
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Maureen Highkin
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Nagalaxmi Vemalapally
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xiaohua Jin
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Brandon Zhou
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Julie L. Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ashley R. Tipton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shunqiang Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Anton Iliuk
- Tymora Analytical Operations, 1201 Cumberland Ave. West Lafayette, IN 47906
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Ian S. Hagemann
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - John R. Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Ron Bose
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
14
|
Lin XY, Guo L, Lin X, Wang Y, Zhang G. Concomitant PIK3CA and TP53 Mutations in Breast Cancer: An Analysis of Clinicopathologic and Mutational Features, Neoadjuvant Therapeutic Response, and Prognosis. J Breast Cancer 2023; 26:363-377. [PMID: 37565929 PMCID: PMC10475711 DOI: 10.4048/jbc.2023.26.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/12/2023] Open
Abstract
PURPOSE PIK3CA and TP53 are the most prevalently mutated genes in breast cancer (BC). Previous studies have indicated an association between concomitant PIK3CA/TP53 mutations and shorter disease-free survival. As its clinical utility remains largely unknown, we aimed to analyze the prognostic and predictive roles of this co-mutation. METHODS We retrospectively analyzed patients who were diagnosed with BC at Guangdong Provincial People's Hospital (GDPH) who underwent next-generation sequencing. The correlation of concomitant PIK3CA/TP53 mutations with clinicopathological and mutational characteristics, and neoadjuvant systemic therapy (NST) responses was analyzed. The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset was used to verify associations between concurrent mutations and survival outcomes. RESULTS In the GDPH cohort, concomitant PIK3CA/TP53 mutations were associated with more aggressive phenotypes, including human epidermal growth factor receptor 2 positive status, hormone receptor negative status, high Ki-67 expression, high histological grade, advanced TNM stage, and additional genetic alterations. Co-mutations also portended a worse response to NST, especially taxane-containing regimens, when compared with the TP53 mutant alone (odds ratio, 3.767; 95% confidence interval, 1.205-13.087; p = 0.028). A significant association was observed between concomitant PIK3CA/TP53 mutations and poor survival outcomes in the METABRIC cohort. CONCLUSION Concomitant PIK3CA/TP53 mutations not only suggested unfavorable features and poor prognosis in BC but also conferred less benefit to NST than TP53 mutations alone.
Collapse
Affiliation(s)
- Xiao-Yi Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Lijuan Guo
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin Lin
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulei Wang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guochun Zhang
- Department of Breast Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
16
|
Lipsyc-Sharf M, Jain E, Collins LC, Rosenberg SM, Ruddy KJ, Tamimi RM, Schapira L, Come SE, Peppercorn JM, Borges VF, Warner E, Snow C, Krop IE, Kim D, Weiss J, Zanudo JGT, Partridge AH, Wagle N, Waks AG. Genomics of ERBB2-Positive Breast Cancer in Young Women Before and After Exposure to Chemotherapy Plus Trastuzumab. JCO Precis Oncol 2023; 7:e2300076. [PMID: 37364233 DOI: 10.1200/po.23.00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
PURPOSE Erb-B2 receptor tyrosine kinase 2 (ERBB2)-positive breast cancer (BC) is particularly common in young women. Genomic features of ERBB2-positive tumors before and after chemotherapy and trastuzumab (chemo + H) have not been described in young women and are important for guiding study of therapeutic resistance in this population. METHODS From a large prospective cohort of women age 40 years or younger with BC, we identified patients with ERBB2-positive BC and tumor tissue available before and after chemo + H. Whole-exome sequencing (WES) was performed on each tumor and on germline DNA from blood. Tumor-normal pairs were analyzed for mutations and copy number (CN) changes. RESULTS Twenty-two women had successful WES on samples from at least one time point; 12 of these had paired sequencing results from before and after chemo + H and 10 had successful sequencing from either time point. TP53 was the only significantly recurrently mutated gene in both pre- and post-treatment samples. MYC gene amplification was observed in four post-treatment tumors. Seven of 12 patients with paired samples showed acquired and/or clonally enriched alterations in cancer-related genes. One patient had an increased clonality putative activating mutation in ERBB2. Another patient acquired a clonal hotspot mutation in TP53. Other genomic changes acquired in post-treatment specimens included alterations in NOTCH2, STIL, PIK3CA, and GATA3. There was no significant change in median ERBB2 CN (20.3 v 22.6; Wilcoxon P = .79) between paired samples. CONCLUSION ERBB2-positive BCs in young women displayed substantial genomic evolution after treatment with chemo + H. Approximately half of patients with paired samples demonstrated acquired and/or clonally enriched genomic changes in cancer genes. ERBB2 CN changes were uncommon. We identified several genes warranting exploration as potential mechanisms of resistance to therapy in this population.
Collapse
Affiliation(s)
- Marla Lipsyc-Sharf
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Esha Jain
- Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Repare Therapeutics, Cambridge, MA
| | - Laura C Collins
- Harvard Medical School, Boston, MA
- Beth Israel Deaconess Medical Center, Boston, MA
| | | | | | - Rulla M Tamimi
- Weill Cornell Medicine, New York, NY
- Brigham and Women's Hospital, Boston, MA
| | | | - Steven E Come
- Harvard Medical School, Boston, MA
- Breast Medical Oncology Program, Beth Israel Deaconess Medical Center and Dana-Farber/Harvard Cancer Center, Boston, MA
| | | | | | - Ellen Warner
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Craig Snow
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Ian E Krop
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Yale Cancer Center, New Haven, CT
| | - Dewey Kim
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jakob Weiss
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Jorge Gomez Tejeda Zanudo
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ann H Partridge
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Nikhil Wagle
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Adrienne G Waks
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
17
|
Martínez-Sáez O, Waks AG. Individualizing Curative-Intent Therapy in HER2-Positive Early-Stage Breast Cancer. Curr Treat Options Oncol 2023; 24:479-495. [PMID: 36995527 DOI: 10.1007/s11864-023-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/31/2023]
Abstract
OPINION STATEMENT Human epidermal growth factor receptor 2-positive (HER2+) breast cancers have been historically considered an aggressive entity with high rates of recurrence and poor survival. However, during the last 20 years, there has been a dramatic change in prognosis due to the incorporation of different anti-HER2 therapies into the neo/adjuvant chemotherapy backbone. Neoadjuvant dual blockade with trastuzumab and pertuzumab has become the standard of care for women with stage II and III HER2+ breast cancer. Trastuzumab emtansine (T-DM1) has been shown to improve outcomes if pathological complete response (pCR) is not achieved, and adjuvant extended therapy with neratinib has increased disease-free survival (DFS) and may have an impact in central nervous system (CNS) recurrences. However, these agents are both toxic for individual patients and costly for the overall healthcare system, and there are still patients that experience recurrence despite therapy improvements. At the same time, it has been shown that some patients with early-stage HER2+ breast cancer can be effectively treated with less intensive systemic therapy, using only taxane and trastuzumab, or that the chemotherapy backbone can be omitted completely. The current challenge is to properly identify which patients can receive a de-intensified regimen and which need new intensification strategies. Tumor size, nodal status, and pCR achievement after neoadjuvant treatment are well-known risk factors that can aid in making clinical decisions, but they do not accurately predict all patient outcomes. Various biomarkers have been proposed to better characterize the clinical and biological heterogeneity of HER2+ breast cancer. Immune infiltration, intrinsic subtype, intratumoral heterogeneity, and dynamic changes during treatment have been described as important prognostic and/or predictive features. The integration of all these factors will be key in the proper identification of the true risk, and individualized treatment strategy, for each patient.
Collapse
Affiliation(s)
- Olga Martínez-Sáez
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Adrienne G Waks
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Yawkey 1250, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
PIK3CA mutations are associated with pathologic complete response rate to neoadjuvant pyrotinib and trastuzumab plus chemotherapy for HER2-positive breast cancer. Br J Cancer 2023; 128:121-129. [PMID: 36323880 PMCID: PMC9814131 DOI: 10.1038/s41416-022-02021-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Neoadjuvant treatment with a dual anti-human epidermal growth factor receptor 2 (HER2) blockade with pyrotinib and trastuzumab has been shown to be effective for HER2-positive breast cancer. METHODS The genomic characteristics of 425 cancer-related genes from the archived tumour blocks of 50 patients enrolled in a prospective neoadjuvant pyrotinib and trastuzumab plus chemotherapy clinical trial (ChiCTR1900022293) were assessed by next-generation sequencing (NGS). The relationship between tumour biomarkers and the postoperative pathological complete response (pCR) were explored. RESULTS Forty-five patients completed neoadjuvant chemotherapy and final surgery, of which 26 (58%) achieved a pCR. Among all driver gene mutations, PIK3CA mutation was screened out for having a significant relationship with the treatment response. The pCR rate of patients with wild-type PIK3CA was significantly higher than patients with mutated PIK3CA (80.8% vs. 26.3%; P = 0.00057), and remained significant after a multiple comparison adjustment (Padjusted = 0.024). We further evaluated the predictive value with logistic regression model of clinical features, genetic biomarkers or both, an AUC of 0.912 (95% CI: 0.827-0.997) was achieved in the integrated model. CONCLUSIONS Our data suggest that HER2-positive breast cancers with activating mutations in PIK3CA are less likely to benefit from pyrotinib combined with trastuzumab neoadjuvant therapy.
Collapse
|
19
|
Shi Q, Xuhong J, Tian H, Qu M, Zhang Y, Jiang J, Qi X. Predictive and prognostic value of PIK3CA mutations in HER2-positive breast cancer treated with tyrosine kinase inhibitors: A systematic review and meta-analysis. Biochim Biophys Acta Rev Cancer 2023; 1878:188847. [PMID: 36516931 DOI: 10.1016/j.bbcan.2022.188847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/15/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
This systematic review and meta-analysis study investigates the predictive and prognostic value of PIK3CA mutations for HER2-positive breast cancer treated with tyrosine kinase inhibitors (TKIs). A search of the Medline, Embase, and Cochrane Library databases yielded 17 eligible studies (1706 patients). In 10 neoadjuvant studies, the pathological complete response rate was significantly higher in wild-type PIK3CA (WT) patients than in mutated PIK3CA (MT) patients (OR = 0.45; 95% CI = 0.31-0.65; P < 0.001). In five metastasis studies, the pooled objective response rate was significantly higher in WT patients than in MT patients (OR = 0.40; 95% CI = 0.23-0.70; P = 0.001). Four metastasis studies indicated that PIK3CA mutations had a marginally significant relationship with poor progression-free survival and overall survival. Thus, PIK3CA mutations have predictive value for the treatment response of early/advanced-stage HER2-positive breast cancer treated with TKI-containing regimens.
Collapse
Affiliation(s)
- Qiyun Shi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Juncheng Xuhong
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Man Qu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jun Jiang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
20
|
Cao JY, Qi S, Wu H, Wang AL, Liu QW, Li XX, Wang BL, Ge J, Zou FM, Chen C, Wang JJ, Hu C, Liu J, Wang WC, Liu QS. CHMFL-26 is a highly potent irreversible HER2 inhibitor for use in the treatment of HER2-positive and HER2-mutant cancers. Acta Pharmacol Sin 2022; 43:2678-2686. [PMID: 35228653 PMCID: PMC9525608 DOI: 10.1038/s41401-022-00882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Oncogene HER2 is amplified in 20%-25% of human breast cancers and 6.1%-23.0% of gastric cancers, and HER2-directed therapy significantly improves the outcome for patients with HER2-positive cancers. However, drug resistance is still a clinical challenge due to primary or acquired mutations and drug-induced negative regulatory feedback. In this study, we discovered a potent irreversible HER2 kinase inhibitor, CHMFL-26, which covalently targeted cysteine 805 of HER2 and effectively overcame the drug resistance caused by HER2 V777L, HER2 L755S, HER2 exon 20 insertions, and p95-HER2 truncation mutations. CHMFL-26 displayed potent antiproliferation efficacy against HER2-amplified and mutant cells through constant HER2-mediated signaling pathway inhibition and apoptosis induction. In addition, CHMFL-26 suppressed tumor growth in a dose-dependent manner in xenograft mouse models. Together, these results suggest that CHMFL-26 may be a potential novel anti-HER2 agent for overcoming drug resistance in HER2-positive cancer therapy.
Collapse
Affiliation(s)
- Jiang-Yan Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Shuang Qi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Ao-Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qing-Wang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xi-Xiang Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Bei-Lei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Juan Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Feng-Ming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Cheng Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun-Jie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Wen-Chao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Qing-Song Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- University of Science and Technology of China, Hefei, 230026, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Precision Medicine Research Laboratory of Anhui Province, Hefei, 230088, China.
| |
Collapse
|
21
|
Wu X, Yang H, Yu X, Qin JJ. Drug-resistant HER2-positive breast cancer: Molecular mechanisms and overcoming strategies. Front Pharmacol 2022; 13:1012552. [PMID: 36210846 PMCID: PMC9540370 DOI: 10.3389/fphar.2022.1012552] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Breast cancer is one of the most common malignancies and the leading cause of cancer-related death in women. HER2 overexpression is a factor for poor prognosis in breast cancer, and anti-HER2 therapy improves survival in these patients. A dual-targeted combination of pertuzumab and trastuzumab, alongside cytotoxic chemotherapy, constitutes the primary treatment option for individuals with early-stage, HER2-positive breast cancer. Antibody-drug conjugate (ADC) and tyrosine kinase inhibitors (TKI) also increase the prognosis for patients with metastatic breast cancer. However, resistance to targeted therapy eventually occurs. Therefore, it is critical to investigate how HER2-positive breast cancer is resistant to targeted therapy and to develop novel drugs or strategies to overcome the resistance simultaneously. This review aims to provide a comprehensive discussion of the HER2-targeted agents currently in clinical practice, the molecular mechanisms of resistance to these drugs, and the potential strategies for overcoming resistance.
Collapse
Affiliation(s)
| | | | - Xingfei Yu
- *Correspondence: Xingfei Yu, ; Jiang-Jiang Qin,
| | | |
Collapse
|
22
|
Predictive biomarkers for molecularly targeted therapies and immunotherapies in breast cancer. Arch Pharm Res 2022; 45:597-617. [PMID: 35982262 DOI: 10.1007/s12272-022-01402-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Globally, breast cancer is the most common malignancy in women. Substantial efforts have been made to develop novel therapies, including targeted therapies and immunotherapies, for patients with breast cancer who do not respond to standard therapies. Consequently, new targeted therapies, such as cyclin-dependent kinase 4 and 6 inhibitors, poly (ADP-ribose) polymerase inhibitors, phosphoinositide 3-kinase inhibitor, and antibody-drug conjugates targeting human epidermal growth factor receptor 2 or trophoblast cell surface antigen-2, and immune checkpoint inhibitor targeting programmed cell death-1, have been developed and are now in clinical use. However, only some patients have benefited from these novel therapies; therefore, the identification and validation of reliable or more accurate biomarkers for predicting responses to these agents remain a major challenge. This review summarizes the currently available predictive biomarkers for breast cancer and describes recent efforts undertaken to identify potential predictive markers for molecularly targeted therapies and immune checkpoint inhibitors.
Collapse
|
23
|
Igari F, Tanaka H, Giuliano AE. The applications of plasma cell-free DNA in cancer detection: Implications in the management of breast cancer patients. Crit Rev Oncol Hematol 2022; 175:103725. [PMID: 35618229 DOI: 10.1016/j.critrevonc.2022.103725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Liquid biopsy probes DNA, RNA, and proteins in body fluids for cancer detection and is one of the most rapidly developing areas in oncology. Tumor-derived DNA (circulating tumor DNA, ctDNA) in the context of cell-free DNA (cfDNA) in blood has been the main target for its potential utilities in cancer detection. Liquid biopsy can report tumor burden in real-time without invasive interventions, and would be feasible for screening tumor types that lack standard-of-care screening approaches. Two major approaches to interrogating ctDNA are genetic mutation and DNA methylation profiling. Mutation profiling can identify tumor driver mutations and guide precision therapy. Targeted genomic profiling of DNA methylation has become the main approach for cancer screening in the general population. Here we review the recent technological development and ongoing efforts in clinical applications. For clinical applications, we focus on breast cancer, in which subtype-specific biology demarcates the applications of ctDNA.
Collapse
Affiliation(s)
- Fumie Igari
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Department of Breast Oncology, Juntendo University, Tokyo, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute and Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA.
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Samuel Oschin Comprehensive Cancer Institute and Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| |
Collapse
|
24
|
Irelli A, Parisi A, D’Orazio C, Sidoni T, Rotondaro S, Patruno L, Pavese F, Bafile A, Resta V, Pizzorno L, Ciuffetelli V, Dal Mas A, Calvisi G, Di Sibio A, Marzullo A, Zelli V, Compagnoni C, Tessitore A, Alesse E, Ficorella C, Cortellini A, Cannita K. Anthracycline-Free Neoadjuvant Treatment in Patients with HER2-Positive Breast Cancer: Real-Life Use of Pertuzumab, Trastuzumab and Taxanes Association with an Exploratory Analysis of PIK3CA Mutational Status. Cancers (Basel) 2022; 14:3003. [PMID: 35740668 PMCID: PMC9220864 DOI: 10.3390/cancers14123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
HER2 is considered one of the most traditional prognostic and predictive biomarkers in breast cancer. Literature data confirmed that the addition of pertuzumab to a standard neoadjuvant chemotherapy backbone (either with or without anthracyclines), in patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (EBC), leads to a higher pathological complete response (pCR) rate, which is known to correlate with a better prognosis. In this retrospective analysis, 47 consecutive patients with HER2-positive EBC received sequential anthracyclines and taxanes plus trastuzumab (ATH) or pertuzumab, trastuzumab and docetaxel (THP). Despite the limited sample size, this monocentric experience highlights the efficacy (in terms of pCR) and safety of THP in the neoadjuvant setting of HER2-positive EBC as an anthracycline-free approach. Given the role of PIK3CA as a prognostic and therapeutic target in breast cancer, tumors were also analyzed to assess the PIK3CA mutational status. Thirty-eight out of forty-seven patients were evaluated, and PIK3CA variants were identified in 21% of tumor samples: overall, one mutation was detected in exon 4 (2.6%), two in exon 9 (5.3%) and four in exon 20 (10.5%). Of note, one sample showed concurrent mutations in exons 9 (codon 545) and 20 (codon 1047). Among patients reaching pCR (n = 13), 38.5% were PIK3CA mutants; on the other hand, among those lacking pCR (n = 25), just 12% showed PIK3CA variants. Regarding THP-treated mutant patients (n = 5), 80% reached pCR (three hormone-receptor-negative, one hormone-receptor-positive). Interestingly, the only patient not achieving pCR had a tumor with two co-occurring PIK3CA mutations. In conclusion, this study provides new evidence about the efficacy and good safety profile of THP, compared to the ATH regimen, as an anthracycline-free neoadjuvant treatment of HER2-positive EBC. Further studies on larger/multicentric cohorts are planned for more in-depth analysis to confirm our molecular and clinical results.
Collapse
Affiliation(s)
- Azzurra Irelli
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy;
| | - Alessandro Parisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Department of Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, 60126 Ancona, Italy
| | - Carla D’Orazio
- Medical Oncology, St. Salvatore Hospital, 67100 L’Aquila, Italy; (C.D.); (T.S.); (S.R.); (L.P.); (F.P.); (C.F.)
| | - Tina Sidoni
- Medical Oncology, St. Salvatore Hospital, 67100 L’Aquila, Italy; (C.D.); (T.S.); (S.R.); (L.P.); (F.P.); (C.F.)
| | - Silvia Rotondaro
- Medical Oncology, St. Salvatore Hospital, 67100 L’Aquila, Italy; (C.D.); (T.S.); (S.R.); (L.P.); (F.P.); (C.F.)
| | - Leonardo Patruno
- Medical Oncology, St. Salvatore Hospital, 67100 L’Aquila, Italy; (C.D.); (T.S.); (S.R.); (L.P.); (F.P.); (C.F.)
| | - Francesco Pavese
- Medical Oncology, St. Salvatore Hospital, 67100 L’Aquila, Italy; (C.D.); (T.S.); (S.R.); (L.P.); (F.P.); (C.F.)
| | - Alberto Bafile
- Breast Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (A.B.); (V.R.); (L.P.)
| | - Valter Resta
- Breast Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (A.B.); (V.R.); (L.P.)
| | - Laura Pizzorno
- Breast Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (A.B.); (V.R.); (L.P.)
| | - Virginia Ciuffetelli
- Pathology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (V.C.); (A.D.M.); (G.C.)
| | - Antonella Dal Mas
- Pathology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (V.C.); (A.D.M.); (G.C.)
| | - Giuseppe Calvisi
- Pathology Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy; (V.C.); (A.D.M.); (G.C.)
| | | | - Anna Marzullo
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (A.T.); (E.A.)
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (A.T.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (A.T.); (E.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (A.T.); (E.A.)
| | - Corrado Ficorella
- Medical Oncology, St. Salvatore Hospital, 67100 L’Aquila, Italy; (C.D.); (T.S.); (S.R.); (L.P.); (F.P.); (C.F.)
| | - Alessio Cortellini
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0HS, UK;
| | - Katia Cannita
- Medical Oncology Unit, Department of Oncology, AUSL 04 Teramo, 64100 Teramo, Italy;
| |
Collapse
|
25
|
Yin W, Wang Y, Wu Z, Ye Y, Zhou L, Xu S, Lin Y, Du Y, Yan T, Yang F, Zhang J, Liu Q, Lu J. Neoadjuvant Trastuzumab and Pyrotinib for Locally Advanced HER2-Positive Breast Cancer (NeoATP): Primary Analysis of a Phase II Study. Clin Cancer Res 2022; 28:3677-3685. [PMID: 35713517 DOI: 10.1158/1078-0432.ccr-22-0446] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite accumulating evidence on dual blockade of human epidermal growth factor receptor 2 (HER2) for locally advanced HER2-positive breast cancer, no robust evidence supports the addition of pyrotinib to trastuzumab in the neoadjuvant setting. The NeoATP trial aimed to evaluate the efficacy and safety of pyrotinib with neoadjuvant trastuzumab and chemotherapy. METHODS The phase II NeoATP trial included female patients with histologically confirmed stage IIA-IIIC and HER2-positive primary invasive breast cancer. Eligible patients received pyrotinib and trastuzumab with weekly paclitaxel-cisplatin neoadjuvant chemotherapy for four cycles. The primary endpoint was pathological complete response (pCR; ypT0 ypN0) rate. Key secondary endpoints included locoregional pCR (ypT0/is ypN0) rate, biomarker analysis and safety. RESULTS Among 53 enrolled patients (median age, 47 years; 73.58% stage III), 52 completed the study treatment and surgery. Overall, 37 patients (69.81%) achieved pCR. For women with hormone receptor negative and positive tumors, the pCR rates were 85.71% and 59.38% (P = 0.041), while the corresponding rates were 69.23% and 70.00% respectively for those with and without PIK3CA mutation (P = 0.958). The most frequently reported grade 3 to 4 adverse events were diarrhea (45.28%), leukopenia (39.62%) and neutropenia (32.08%). No deaths occurred, and no left ventricular ejection fraction <50% or >10 points drop from baseline to before surgery was reported. CONCLUSIONS The addition of pyrotinib to trastuzumab plus chemotherapy is an efficacious and safe regimen for patients with HER2-positive locally advanced breast cancer in the neoadjuvant setting. The randomized controlled clinical trial is warranted to validate our results.
Collapse
Affiliation(s)
- Wenjin Yin
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yaohui Wang
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ziping Wu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yumei Ye
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liheng Zhou
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuguang Xu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yanping Lin
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, China
| | - Yueyao Du
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tingting Yan
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fan Yang
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Zhang
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Liu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China, Shanghai, China
| | - Jinsong Lu
- Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
26
|
Dong M, Shan B, Han X, Zhao X, Wang F, Zhu L, Ou Q, Ma X, Pan Y. Baseline Mutations and Up-Regulation of PI3K-AKT Pathway Serve as Potential Indicators of Lack of Response to Neoadjuvant Chemotherapy in Stage II/III Breast Cancer. Front Oncol 2022; 11:784985. [PMID: 35480699 PMCID: PMC9036956 DOI: 10.3389/fonc.2021.784985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background Neoadjuvant chemotherapy (NAC) has been expanded to hormone receptor (HR) positive breast cancer (BC) patients with operable disease, to increase the likelihood of breast-conserving surgery. Genomic profiling at baseline would reveal NAC response relevant genomic features and signaling pathways, guiding clinical NAC utilization based on patients’ genomic characteristics. Methods We prospectively studied stage II/III BC patients who were eligible for breast-conserving surgery. Patients received epirubicin and cyclophosphamide for 4 cycles, followed by another 4-cycle docetaxel, and human epidermal growth factor receptor (HER2) positive patients were additionally treated with herceptin when using docetaxel (EC-T(H)). NAC responses were evaluated as pathologic complete response (pCR) or non-pathologic complete response (non-pCR). Genomic features related to NAC responses were identified by profiling baseline tumor tissues sampled one day before NAC, using whole-exome sequencing. Differentially expressed genes and up-/down-regulated pathways were investigated by performing RNA-sequencing. Results A total of 25 stage II/III BC patients were enrolled, including 5 patients ultimately evaluated as pCR and 20 patients evaluated as non-pCR. PIK3CA (48%) and TP53 (40%) mutations were enriched in patients not achieving pCR. Mutated phosphatidylinositol-3-kinase-AKT (PI3K-AKT) pathway and homologous recombinational repair pathway were also more frequently observed in patients evaluated as non-pCR. Significant arm-level amplifications (8q24.23 and 17q12) and deletions (1p32.2, 4p14, 7q11.23, 10q21.3, 11q23.3, etc.) were identified among patients not achieving pCR, while patients achieving pCR displayed no significant copy number alterations. Significantly up-regulated expression of PI3K-AKT pathway genes was also detected among patients failed to achieve pCR, compared to patients achieving pCR. Conclusion Compared to BC patients achieving pCR to NAC, aberrant activation of PI3K-AKT pathway genes were more frequently observed in patients not achieving pCR, consistent with the significant up-regulation of PI3K-AKT pathway gene expression in the non-pCR subgroup. Together, these findings indicate that upregulated PI3K-AKT pathway serves as a potential indicator of lack of response to NAC in stage II/III BC patients, and other effective therapeutic options are urgently needed for those resistant patients.
Collapse
Affiliation(s)
- Menghao Dong
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaotian Zhao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Fufeng Wang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Liuqing Zhu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Xiaopeng Ma
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
27
|
Rasti AR, Guimaraes-Young A, Datko F, Borges VF, Aisner DL, Shagisultanova E. PIK3CA Mutations Drive Therapeutic Resistance in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. JCO Precis Oncol 2022; 6:e2100370. [PMID: 35357905 PMCID: PMC8984255 DOI: 10.1200/po.21.00370] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/17/2021] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is an intracellular pathway activated in response to progrowth signaling, such as human epidermal growth factor receptor 2 (HER2) and other kinases. Abnormal activation of PI3K has long been recognized as one of the main oncogenic drivers in breast cancer, including HER2-positive (HER2+) subtype. Somatic activating mutations in the gene encoding PI3K alpha catalytic subunit (PIK3CA) are present in approximately 30% of early-stage HER2+ tumors and drive therapeutic resistance to multiple HER2-targeted agents. Here, we review currently available agents targeting PI3K, discuss their potential role in HER2+ breast cancer, and provide an overview of ongoing trials of PI3K inhibitors in HER2+ disease. Additionally, we review the landscape of PIK3CA mutational testing and highlight the gaps in knowledge that could present potential barriers in the effective application of PI3K inhibitors for treatment of HER2+ breast cancer.
Collapse
Affiliation(s)
| | - Amy Guimaraes-Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Farrah Datko
- University of Colorado Health Cancer Center, Harmony Campus, Fort Collins, CO
| | - Virginia F. Borges
- Young Women Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO
| | - Dara L. Aisner
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Elena Shagisultanova
- Young Women Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, CO
| |
Collapse
|
28
|
Unveiling the Potential of Liquid Biopsy in HER2-Positive Breast Cancer Management. Cancers (Basel) 2022; 14:cancers14030587. [PMID: 35158855 PMCID: PMC8833720 DOI: 10.3390/cancers14030587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Breast cancer (BC) is the most prevailing cancer in women worldwide. Amongst the different BC subtypes, human epidermal growth factor receptor 2 (HER2)-positive tumours are characterised by an overexpression of the HER2 membrane receptor. Nowadays, HER2-status assessment relies on immunohistochemical methodologies in the tumour tissue, which could be complemented by novel methodologies to improve the clinical management of these patients. In this regard, liquid biopsy is an easy, rapid, and minimally invasive tool to obtain circulating tumour components from body fluids. Herein, by reviewing the published studies, we aim to decipher the clinical validity of liquid biopsy in both early and metastatic HER2-positive BC. Abstract Invasive breast cancer (BC) is the most common cancer in women with a slightly increasing yearly incidence. BC immunohistochemical characterisation is a crucial tool to define the intrinsic nature of each tumour and personalise BC patients’ clinical management. In this regard, the characterisation of human epidermal growth factor receptor 2 (HER2) status guides physicians to treat with therapies tailored to this membrane receptor. Standardly, a tumour solid biopsy is therefore required, which is an invasive procedure and has difficulties to provide the complete molecular picture of the tumour. To complement these standard-of-care approaches, liquid biopsy is a validated methodology to obtain circulating tumour components such as circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) from body fluids in an easy-to-perform minimal-invasive manner. However, its clinical validity in cancer is still to be demonstrated. This review focusses on the utilisation of both ctDNA and CTCs in early and metastatic HER2-positive BC tumours. We discuss recently published studies deciphering the capacity of liquid biopsy to determine the response to neoadjuvant and adjuvant therapies as well as to predict patients’ outcomes.
Collapse
|
29
|
Targeted Therapy Modulates the Secretome of Cancer-Associated Fibroblasts to Induce Resistance in HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413297. [PMID: 34948097 PMCID: PMC8706990 DOI: 10.3390/ijms222413297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
The combination of trastuzumab plus pertuzumab plus docetaxel as a first-line therapy in patients with HER2-positive metastatic breast cancer has provided significant clinical benefits compared to trastuzumab plus docetaxel alone. However, despite the therapeutic success of existing therapies targeting HER2, tumours invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. It is well known that the tumour microenvironment (TME) has a significant impact on cancer behaviour. Cancer-associated fibroblasts (CAFs) are essential components of the tumour stroma that have been linked to acquired therapeutic resistance and poor prognosis in breast cancer. For this reason, it would be of interest to identify novel biomarkers in the tumour stroma that could emerge as therapeutic targets for the modulation of resistant phenotypes. Conditioned medium experiments carried out in our laboratory with CAFs derived from HER2-positive patients showed a significant capacity to promote resistance to trastuzumab plus pertuzumab therapies in two HER2-positive breast cancer cell lines (BCCLs), even in the presence of docetaxel. In order to elucidate the components of the CAF-conditioned medium that may be relevant in the promotion of BCCL resistance, we implemented a multiomics strategy to identify cytokines, transcription factors, kinases and miRNAs in the secretome that have specific targets in cancer cells. The combination of cytokine arrays, label-free LC-MS/MS quantification and miRNA analysis to explore the secretome of CAFs under treatment conditions revealed several up- and downregulated candidates. We discuss the potential role of some of the most interesting candidates in generating resistance in HER2-positive breast cancer.
Collapse
|
30
|
Smith AE, Ferraro E, Safonov A, Morales CB, Lahuerta EJA, Li Q, Kulick A, Ross D, Solit DB, de Stanchina E, Reis-Filho J, Rosen N, Arribas J, Razavi P, Chandarlapaty S. HER2 + breast cancers evade anti-HER2 therapy via a switch in driver pathway. Nat Commun 2021; 12:6667. [PMID: 34795269 PMCID: PMC8602441 DOI: 10.1038/s41467-021-27093-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/04/2021] [Indexed: 11/24/2022] Open
Abstract
Inhibition of HER2 in HER2-amplified breast cancer has been remarkably successful clinically, as demonstrated by the efficacy of HER-kinase inhibitors and HER2-antibody treatments. Whilst resistance to HER2 inhibition is common in the metastatic setting, the specific programs downstream of HER2 driving resistance are not established. Through genomic profiling of 733 HER2-amplified breast cancers, we identify enrichment of somatic alterations that promote MEK/ERK signaling in metastatic tumors with shortened progression-free survival on anti-HER2 therapy. These mutations, including NF1 loss and ERBB2 activating mutations, are sufficient to mediate resistance to FDA-approved HER2 kinase inhibitors including tucatinib and neratinib. Moreover, resistant tumors lose AKT dependence while undergoing a dramatic sensitization to MEK/ERK inhibition. Mechanistically, this driver pathway switch is a result of MEK-dependent activation of CDK2 kinase. These results establish genetic activation of MAPK as a recurrent mechanism of anti-HER2 therapy resistance that may be effectively combated with MEK/ERK inhibitors.
Collapse
Affiliation(s)
- Alison E Smith
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
| | - Emanuela Ferraro
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anton Safonov
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | - Qing Li
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Amanda Kulick
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dara Ross
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jorge Reis-Filho
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pedram Razavi
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, New York, NY, 10065, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Weill Cornell Medicine, New York, NY, 10065, USA.
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Zhao F, Huo X, Wang M, Liu Z, Zhao Y, Ren D, Xie Q, Liu Z, Li Z, Du F, Shen G, Zhao J. Comparing Biomarkers for Predicting Pathological Responses to Neoadjuvant Therapy in HER2-Positive Breast Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:731148. [PMID: 34778044 PMCID: PMC8581664 DOI: 10.3389/fonc.2021.731148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The predictive strength and accuracy of some biomarkers for the pathological complete response (pCR) to neoadjuvant therapy for HER2-positive breast cancer remain unclear. This study aimed to compare the accuracy of the HER2-enriched subtype and the presence of PIK3CA mutations, namely, TILs, HRs, and Ki-67, in predicting the pCR to HER2-positive breast cancer therapy. METHODS We screened studies that included pCR predicted by one of the following biomarkers: the HER2-enriched subtype and the presence of PIK3CA mutations, TILs, HRs, or Ki-67. We then calculated the pooled sensitivity, specificity, positive and negative predictive values (PPVs and NPVs, respectively), and positive and negative likelihood ratios (LRs). Summary receiver operating characteristic (SROC) curves and areas under the curve (AUCs) were used to estimate the diagnostic accuracy. RESULTS The pooled estimates of sensitivity and specificity for the HER2-enriched subtype and the presence of PIK3CA mutations, namely, TILs, HRs, and Ki-67, were 0.66 and 0.62, 0.85 and 0.27, 0.49 and 0.61, 0.54 and 0.64, and 0.68 and 0.51, respectively. The AUC of the HER2-enriched subtype was significantly higher (0.71) than those for the presence of TILs (0.59, p = 0.003), HRs (0.65, p = 0.003), and Ki-67 (0.62, p = 0.005). The AUC of the HER2-enriched subtype had a tendency to be higher than that of the presence of PIK3CA mutations (0.58, p = 0.220). Moreover, it had relatively high PPV (0.58) and LR+ (1.77), similar NPV (0.73), and low LR- (0.54) compared with the other four biomarkers. CONCLUSIONS The HER2-enriched subtype has a moderate breast cancer diagnostic accuracy, which is better than those of the presence of PIK3CA mutations, TILs, HRs, and Ki-67.
Collapse
Affiliation(s)
- Fuxing Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Xingfa Huo
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Miaozhou Wang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Zhen Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Yi Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Dengfeng Ren
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Qiqi Xie
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Zhilin Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Zitao Li
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
32
|
Harbeck N, von Schumann R, Kates RE, Braun M, Kuemmel S, Schumacher C, Potenberg J, Malter W, Augustin D, Aktas B, Forstbauer H, Tio J, Grischke EM, Biehl C, Liedtke C, De Haas SL, Deurloo R, Wuerstlein R, Kreipe HH, Gluz O. Immune Markers and Tumor-Related Processes Predict Neoadjuvant Therapy Response in the WSG-ADAPT HER2-Positive/Hormone Receptor-Positive Trial in Early Breast Cancer. Cancers (Basel) 2021; 13:4884. [PMID: 34638369 PMCID: PMC8508505 DOI: 10.3390/cancers13194884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Prognostic or predictive biomarkers in HER2-positive early breast cancer (EBC) may inform treatment optimization. The ADAPT HER2-positive/hormone receptor-positive phase II trial (NCT01779206) demonstrated pathological complete response (pCR) rates of ~40% following de-escalated treatment with 12 weeks neoadjuvant ado-trastuzumab emtansine (T-DM1) ± endocrine therapy. In this exploratory analysis, we evaluated potential early predictors of response to neoadjuvant therapy. The effects of PIK3CA mutations and immune (CD8 and PD-L1) and apoptotic markers (BCL2 and MCL1) on pCR rates were assessed, along with intrinsic BC subtypes. Immune response and pCR were lower in PIK3CA-mutated tumors compared with wildtype. Increased BCL2 at baseline in all patients and at Cycle 2 in the T-DM1 arms was associated with lower pCR. In the T-DM1 arms only, the HER2-enriched subtype was associated with increased pCR rate (54% vs. 28%). These findings support further prospective pCR-driven de-escalation studies in patients with HER2-positive EBC.
Collapse
Affiliation(s)
- Nadia Harbeck
- Breast Center, Department of Obstetrics and Gynecology and CCCLMU, University of Munich (LMU), Marchioninistrasse 15, 81377 Munich, Germany;
- The West German Study Group, 41061 Mönchengladbach, Germany; (R.E.K.); (O.G.)
| | - Raquel von Schumann
- Evangelical Hospital Bethesda, 41061 Mönchengladbach, Germany; (R.v.S.); (S.K.)
| | - Ronald Ernest Kates
- The West German Study Group, 41061 Mönchengladbach, Germany; (R.E.K.); (O.G.)
| | | | - Sherko Kuemmel
- Evangelical Hospital Bethesda, 41061 Mönchengladbach, Germany; (R.v.S.); (S.K.)
- Breast Unit, Kliniken Essen-Mitte, 45136 Essen, Germany
- Klinik für Gynäkologie mit Brustzentrum Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | | | - Wolfram Malter
- Breast Center, Department of Obstetrics and Gynecology, University Hospital Cologne, 50937 Cologne, Germany;
| | - Doris Augustin
- Breast Center, Clinic Deggendorf, 94469 Deggendorf, Germany;
| | | | | | - Joke Tio
- University Hospital Münster, 48149 Münster, Germany;
| | | | - Claudia Biehl
- Westphalian Breast Center, City Hospital Dortmund, 44137 Dortmund, Germany;
| | | | | | - Regula Deurloo
- F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland; (S.L.D.H.); (R.D.)
| | - Rachel Wuerstlein
- Breast Center, Department of Obstetrics and Gynecology and CCCLMU, University of Munich (LMU), Marchioninistrasse 15, 81377 Munich, Germany;
| | | | - Oleg Gluz
- The West German Study Group, 41061 Mönchengladbach, Germany; (R.E.K.); (O.G.)
- Evangelical Hospital Bethesda, 41061 Mönchengladbach, Germany; (R.v.S.); (S.K.)
- Breast Center, Department of Obstetrics and Gynecology, University Hospital Cologne, 50937 Cologne, Germany;
| |
Collapse
|
33
|
Venet D, Rediti M, Maetens M, Fumagalli D, Brown DN, Majjaj S, Salgado R, Pusztai L, Harbeck N, El-Abed S, Wang Y, Saura C, Gomez H, Semiglazov VF, de Azambuja E, Huober J, Nuciforo P, Di Cosimo S, Piccart M, Loi S, Rothé F, Sotiriou C. Copy Number Aberration Analysis to Predict Response to Neoadjuvant Anti-HER2 Therapy: Results from the NeoALTTO Phase III Clinical Trial. Clin Cancer Res 2021; 27:5607-5618. [PMID: 34321278 DOI: 10.1158/1078-0432.ccr-21-1317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The heterogeneity of response to anti-HER2 agents represents a major challenge in patients with HER2-positive breast cancer. To better understand the sensitivity and resistance to trastuzumab and lapatinib, we investigated the role of copy number aberrations (CNA) in predicting pathologic complete response (pCR) and survival outcomes in the NeoALTTO trial. EXPERIMENTAL DESIGN The neoadjuvant phase III NeoALTTO trial enrolled 455 patients with HER2-positive early-stage breast cancer. DNA samples from 269 patients were assessed for genome-wide copy number profiling. Recurrent CNAs were found with GISTIC2.0. RESULTS CNA estimates were obtained for 184 patients included in NeoALTTO. Among those, matched transcriptome and whole-exome data were available for 154 and 181 patients, respectively. A significant association between gene copy number and pCR was demonstrated for ERBB2 amplification. Nevertheless, ERBB2 amplification ceased to be predictive once ERBB2 expression level was considered. GISTIC2.0 analysis revealed 159 recurrent CNA regions. Lower copy number levels of the 6q23-24 locus predicted absence of pCR in the whole cohort and in the estrogen receptor-positive subgroup. 6q23-24 deletion was significantly more frequent in TP53 wild-type (WT) compared with TP53-mutated, resulting in copy number levels significantly associated with lack of pCR only in the TP53 WT subgroup. Interestingly, a gene-ontology analysis highlighted several immune processes correlated to 6q23-24 copy number. CONCLUSIONS Our analysis identified ERBB2 copy number as well as 6q23-24 CNAs as predictors of response to anti-HER2-based treatment. ERBB2 expression outperformed ERBB2 amplification. The complexity of the 6q23-24 region warrants further investigation.
Collapse
Affiliation(s)
- David Venet
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Mattia Rediti
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Marion Maetens
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Department of Oncology, Laboratory for Translational Breast Cancer Research, KU Leuven, Leuven, Belgium
| | | | - David N Brown
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samira Majjaj
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Ziekenhuizen, Antwerp, Belgium.,Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Nadia Harbeck
- Breast Center, Dept OB&GYN and CCC Munich, LMU University Hospital, Munich, Germany
| | | | - Yingbo Wang
- Novartis Pharmaceuticals AG, Basel, Switzerland
| | | | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima, Peru
| | | | - Evandro de Azambuja
- Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Jens Huober
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany.,Breast Center, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Serena Di Cosimo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Martine Piccart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Françoise Rothé
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory J.-C. Heuson, Institut Jules Bordet, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium.
| |
Collapse
|
34
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
35
|
Dey N, Aske J, Lin X, Sun Y, Leyland-Jones B, Friedman L, De P. A tipping-point for apoptosis following dual inhibition of HER2 signaling network by T-DM1 plus GDC-0980 maximizes anti-tumor efficacy. Am J Cancer Res 2021; 11:2867-2892. [PMID: 34249433 PMCID: PMC8263639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/17/2021] [Indexed: 06/13/2023] Open
Abstract
HER2 signaling network and its complex relationship with the PI3K-AKT-mTOR pathway explain the acquired resistance to anti-HER2 therapy observed in clinics. Such complexity has been clinically evident from the limited efficacy of data in the BOLERO-1 and BOLERO-3 trials, which tested combinations of trastuzumab (T), everolimus, and chemotherapy in women with HER2+ advanced BC. In the following MARIANNE trial also, a combination of T-DM1 plus pertuzumab delivered a non-inferior but yet not superior PFS compared to trastuzumab plus a taxane. Algorithmic inhibition of PI3K/mTOR along with T or T-DM1 is, therefore, an attractive drug combination, and we tested the combination(s) in HER2+ BC, especially in T-resistant and PIK3CA mutated conditions. GDC-0980, a dual pan-PI3K/mTOR inhibitor alone or in combination with T or T-DM1, was examined in a panel of HER2+ T-sensitive (BT474, SKBR3), HER2+ T-resistant (BT474HerR), HER2+/PIK3CA mutant (HCC1954, MDA-MB453), and HER2+/PTEN mutant (HCC1569) BC cell lines. GDC-0980 re-sensitized trastuzumab-resistant, PIK3CA mutant, or PTEN mutant cells to T and acted additively with T. Importantly, this activity was more when GDC-0980 is combined with T-DM1. The combination (with T or with T-DM1) was then tested in the HER2+/T-sensitive, HER2+/T-resistant, and HER2+/PIK3CA mutated BC xenograft models for the anti-tumor effect. Along with its anti-tumor effect, GDC-0980 effectively decreased tumor angiogenesis (CD31 staining). Maximum anti-tumor (from tumor growth inhibition to tumor regression) efficiency was observed in all three xenograft models when T-DM1 was combined with GDC-0980. The anti-proliferative effects of GDC-0980 as evidenced by a decreased p-AKT (Ser473, The308), p-P70S6K, p-S6RP, and p-4EBP1, along with blockade of clonogenic 3D growth was accompanied by the initiation of apoptotic activity (annexin V, CASPASE3, cleaved PARP1 and mitochondrial depolarization); and was significantly superior when GDC-0980 combined with T-DM1. Interestingly, both trastuzumab and T-DM1 induce PD-L1 expression in HER2 amplified BC cells. Our data provide evidence that an oncogenic mutation of PIK3CA and HER2-amplification may represent biomarkers to identify patients who may benefit most from the use of GDC-0980 and an opportunity to include immunotherapy in the combination of anti-HER2 therapy.
Collapse
Affiliation(s)
- Nandini Dey
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
- Departmental of Internal Medicine, University of South DakotaSioux Falls, SD, USA
| | - Jennifer Aske
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
| | - Xiaoqian Lin
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
| | - Yuliang Sun
- Cancer Genomics, Avera Cancer InstituteSioux Falls, SD, USA
| | | | | | - Pradip De
- Translational Oncology Laboratory, Avera Cancer InstituteSioux Falls, SD, USA
- Departmental of Internal Medicine, University of South DakotaSioux Falls, SD, USA
| |
Collapse
|
36
|
Concurrent mutations associated with trastuzumab-resistance revealed by single cell sequencing. Breast Cancer Res Treat 2021; 187:613-624. [PMID: 33905021 DOI: 10.1007/s10549-021-06237-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE HER2-positive breast cancer patients benefit from HER2-targeted therapies, among which the most commonly used is trastuzumab. However, acquired resistance typically happens within one year. The cellular heterogeneity of it is less clear. METHODS Here we generated trastuzumab-resistant cells in two HER2-positive breast cancer cell lines, SK-BR-3 and BT-474. Cells at different time points during the resistance induction were examined by exome sequencing to study changes of genomic alterations over time. Single cell-targeted sequencing was also used to identify resistance-associated concurrent mutations. RESULTS We found a rapid increase of copy number variation (CNV) regions and gradual accumulation of single nucleotide variations (SNVs). On the pathway level, non-synonymous SNVs for SK-BR-3 cells were enriched in the MAPK signaling pathway, while for BT-474 cells they were enriched in mTOR and PI3K-Akt signaling pathways. However, all of the three signaling pathways were in the downstream of the HER2 kinase. Putative trastuzumab-resistance-associated SNVs included AIFM1 P548L and ERBB2 M833R in SK-BR-3 cells, and ADAMTS19 V451L, OR5M9 D230N, COL9A1 R627T, and ITGA7 H911Q in BT-474 cells. Single-cell-targeted sequencing identified several concurrent mutations. By validation, we found that concurrent mutations (AIFM1 P548L and IL1RAPL2 S546C in SK-BR-3 cells, MFSD11 L242I and ANAPC4 E16K in BT-474 cells) led to a decrease of trastuzumab sensitivity. CONCLUSION Taken together, our study revealed a common pathway level trastuzumab-resistance mechanism for HER2-positive breast cancer cells. In addition, our identification of concurrent SNVs associated with trastuzumab-resistance may be indicative of potential targets for the treatment of trastuzumab-resistant breast cancer patients.
Collapse
|
37
|
Kołodziej P, Nicoś M, Krawczyk PA, Bogucki J, Karczmarczyk A, Zalewski D, Kubrak T, Kołodziej E, Makuch-Kocka A, Madej-Czerwonka B, Płachno BJ, Kocki J, Bogucka-Kocka A. The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer-A Preliminary Study. Int J Mol Sci 2021; 22:2061. [PMID: 33669698 PMCID: PMC7922286 DOI: 10.3390/ijms22042061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
There is an urgent need to seek new molecular biomarkers helpful in diagnosing and treating breast cancer. In this elaboration, we performed a molecular analysis of mutations and expression of genes within the PI3K/Akt/mTOR pathway in patients with ductal breast cancer of various malignancy levels. We recognized significant correlations between the expression levels of the studied genes. We also performed a bioinformatics analysis of the data available on the international database TCGA and compared them with our own research. Studies on mutations and expression of genes were conducted using High-Resolution Melt PCR (HRM-PCR), Allele-Specific-quantitative PCR (ASP-qPCR), Real-Time PCR molecular methods in a group of women with ductal breast cancer. Bioinformatics analysis was carried out using web source Ualcan and bc-GenExMiner. In the studied group of women, it was observed that the prevalence of mutations in the studied PIK3CA and AKT1 genes was 29.63%. It was stated that the average expression level of the PIK3CA, PIK3R1, PTEN genes in the group of breast cancer patients is lower in comparison to the control group, while the average expression level of the AKT1 and mTOR genes in the studied group was higher in comparison to the control group. It was also indicated that in the group of patients with mutations in the area of the PIK3CA and AKT1 genes, the PIK3CA gene expression level is statistically significantly lower than in the group without mutations. According to our knowledge, we demonstrate, for the first time, that there is a very strong positive correlation between the levels of AKT1 and mTOR gene expression in the case of patients with mutations and without mutations.
Collapse
Affiliation(s)
- Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (M.N.); (P.A.K.)
| | - Paweł A. Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (M.N.); (P.A.K.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Karczmarczyk
- Department of Experimental Haematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszow, 35-310 Rzeszów, Poland;
| | - Elżbieta Kołodziej
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (E.K.); (J.K.)
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Barbara Madej-Czerwonka
- Department of Breast Surgery, District Specialist Hospital of Stefan Cardinal Wyszynski in Lublin, 20-718 Lublin, Poland;
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (E.K.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
38
|
Szymiczek A, Lone A, Akbari MR. Molecular intrinsic versus clinical subtyping in breast cancer: A comprehensive review. Clin Genet 2020; 99:613-637. [PMID: 33340095 DOI: 10.1111/cge.13900] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer is a heterogeneous disease manifesting diversity at the molecular, histological and clinical level. The development of breast cancer classification was centered on informing clinical decisions. The current approach to the classification of breast cancer, which categorizes this disease into clinical subtypes based on the detection of estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and proliferation marker Ki67, is not ideal. This is manifested as a heterogeneity of therapeutic responses and outcomes within the clinical subtypes. The newer classification model, based on gene expression profiling (intrinsic subtyping) informs about transcriptional responses downstream from IHC single markers, revealing deeper appreciation for the disease heterogeneity and capturing tumor biology in a more comprehensive way than an expression of a single protein or gene alone. While accumulating evidences suggest that intrinsic subtypes provide clinically relevant information beyond clinical surrogates, it is imperative to establish whether the current conventional immunohistochemistry-based clinical subtyping approach could be improved by gene expression profiling and if this approach has a potential to translate into clinical practice.
Collapse
Affiliation(s)
- Agata Szymiczek
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Amna Lone
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Fujimoto Y, Morita TY, Ohashi A, Haeno H, Hakozaki Y, Fujii M, Kashima Y, Kobayashi SS, Mukohara T. Combination treatment with a PI3K/Akt/mTOR pathway inhibitor overcomes resistance to anti-HER2 therapy in PIK3CA-mutant HER2-positive breast cancer cells. Sci Rep 2020; 10:21762. [PMID: 33303839 PMCID: PMC7729878 DOI: 10.1038/s41598-020-78646-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Amplification and/or overexpression of human epidermal growth factor receptor 2 (HER2) are observed in 15–20% of breast cancers (HER2+ breast cancers), and anti-HER2 therapies have significantly improved prognosis of patients with HER2+ breast cancer. One resistance mechanism to anti-HER2 therapies is constitutive activation of the phosphoinositide 3-kinase (PI3K) pathway. Combination therapy with small-molecule inhibitors of AKT and HER2 was conducted in HER2+ breast cancer cell lines with or without PIK3CA mutations, which lead to constitutive activation of the PI3K pathway. PIK3CA mutations played important roles in resistance to single-agent anti-HER2 therapy in breast cancer cell lines. Combination therapy of a HER2 inhibitor and an AKT inhibitor, as well as other PI3K pathway inhibitors, could overcome the therapeutic limitations associated with single-agent anti-HER2 treatment in PIK3CA-mutant HER2+ breast cancer cell lines. Furthermore, expression of phosphorylated 4E-binding protein 1 (p4EBP1) following the treatment correlated with the antiproliferative activities of the combination, suggesting that p4EBP1 may have potential as a prognostic and/or efficacy-linking biomarkers for these combination therapies in patients with HER2+ breast cancer. These findings highlight potential clinical strategies using combination therapy to overcome the limitations associated with single-agent anti-HER2 therapies in patients with HER2+ breast cancer.
Collapse
Affiliation(s)
- Yumi Fujimoto
- Department of Breast and Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tomoko Yamamori Morita
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Akihiro Ohashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hiroshi Haeno
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yumi Hakozaki
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Masanori Fujii
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan. .,Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA.
| | - Toru Mukohara
- Department of Breast and Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
40
|
Bao Y, Oguz G, Lee WC, Lee PL, Ghosh K, Li J, Wang P, Lobie PE, Ehmsen S, Ditzel HJ, Wong A, Tan EY, Lee SC, Yu Q. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun 2020; 11:5878. [PMID: 33208750 PMCID: PMC7674491 DOI: 10.1038/s41467-020-19704-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
HER2-targeted therapy has yielded a significant clinical benefit in patients with HER2+ breast cancer, yet disease relapse due to intrinsic or acquired resistance remains a significant challenge in the clinic. Here, we show that the protein phosphatase 2A (PP2A) regulatory subunit PPP2R2B is a crucial determinant of anti-HER2 response. PPP2R2B is downregulated in a substantial subset of HER2+ breast cancers, which correlates with poor clinical outcome and resistance to HER2-targeted therapies. EZH2-mediated histone modification accounts for the PPP2R2B downregulation, resulting in sustained phosphorylation of PP2A targets p70S6K and 4EBP1 which leads to resistance to inhibition by anti-HER2 treatments. Genetic depletion or inhibition of EZH2 by a clinically-available EZH2 inhibitor restores PPP2R2B expression, abolishes the residual phosphorylation of p70S6K and 4EBP1, and resensitizes HER2+ breast cancer cells to anti-HER2 treatments both in vitro and in vivo. Furthermore, the same epigenetic mechanism also contributes to the development of acquired resistance through clonal selection. These findings identify EZH2-dependent PPP2R2B suppression as an epigenetic control of anti-HER2 resistance, potentially providing an opportunity to mitigate anti-HER2 resistance with EZH2 inhibitors.
Collapse
Affiliation(s)
- Yi Bao
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Gokce Oguz
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Wee Chyan Lee
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Puay Leng Lee
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Kakaly Ghosh
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore
| | - Jiayao Li
- Cancer Research Institute, Jinan University, Guangzhou, China
| | - Panpan Wang
- Cancer Research Institute, Jinan University, Guangzhou, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Tsinghua-Berkeley Shenzhen Institute, Guangdong Province and Shenzhen Bay Laboratory, Tsinghua University, Shenzhen, Guangdong Province, China
| | - Sidse Ehmsen
- Department of Oncology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, 5230, Odense, Denmark
| | - Henrik J Ditzel
- Department of Oncology, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, 5230, Odense, Denmark.,Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Andrea Wong
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, 119047, Singapore
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, Singapore
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore, 119047, Singapore.
| | - Qiang Yu
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore, 169857, Singapore.
| |
Collapse
|
41
|
Ebert K, Zwingenberger G, Barbaria E, Keller S, Heck C, Arnold R, Hollerieth V, Mattes J, Geffers R, Raimúndez E, Hasenauer J, Luber B. Determining the effects of trastuzumab, cetuximab and afatinib by phosphoprotein, gene expression and phenotypic analysis in gastric cancer cell lines. BMC Cancer 2020; 20:1039. [PMID: 33115415 PMCID: PMC7594334 DOI: 10.1186/s12885-020-07540-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 10/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is the fifth most frequently diagnosed cancer and the third leading cause of cancer death worldwide. The molecular mechanisms of action for anti-HER-family drugs in gastric cancer cells are incompletely understood. We compared the molecular effects of trastuzumab and the other HER-family targeting drugs cetuximab and afatinib on phosphoprotein and gene expression level to gain insights into the regulated pathways. Moreover, we intended to identify genes involved in phenotypic effects of anti-HER therapies. METHODS A time-resolved analysis of downstream intracellular kinases following EGF, cetuximab, trastuzumab and afatinib treatment was performed by Luminex analysis in the gastric cancer cell lines Hs746T, MKN1, MKN7 and NCI-N87. The changes in gene expression after treatment of the gastric cancer cell lines with EGF, cetuximab, trastuzumab or afatinib for 4 or 24 h were analyzed by RNA sequencing. Significantly enriched pathways and gene ontology terms were identified by functional enrichment analysis. Furthermore, effects of trastuzumab and afatinib on cell motility and apoptosis were analyzed by time-lapse microscopy and western blot for cleaved caspase 3. RESULTS The Luminex analysis of kinase activity revealed no effects of trastuzumab, while alterations of AKT1, MAPK3, MEK1 and p70S6K1 activations were observed under cetuximab and afatinib treatment. On gene expression level, cetuximab mainly affected the signaling pathways, whereas afatinib had an effect on both signaling and cell cycle pathways. In contrast, trastuzumab had little effects on gene expression. Afatinib reduced average speed in MKN1 and MKN7 cells and induced apoptosis in NCI-N87 cells. Following treatment with afatinib, a list of 14 genes that might be involved in the decrease of cell motility and a list of 44 genes that might have a potential role in induction of apoptosis was suggested. The importance of one of these genes (HBEGF) as regulator of motility was confirmed by knockdown experiments. CONCLUSIONS Taken together, we described the different molecular effects of trastuzumab, cetuximab and afatinib on kinase activity and gene expression. The phenotypic changes following afatinib treatment were reflected by altered biological functions indicated by overrepresentation of gene ontology terms. The importance of identified genes for cell motility was validated in case of HBEGF.
Collapse
Affiliation(s)
- Karolin Ebert
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Gwen Zwingenberger
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Elena Barbaria
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Simone Keller
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Corinna Heck
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Rouven Arnold
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Vanessa Hollerieth
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany
| | - Julian Mattes
- MATTES Medical Imaging GmbH, A-4232, Hagenberg, Austria
| | - Robert Geffers
- Helmholtz Zentrum für Infektionsforschung, 38124, Braunschweig, Germany
| | - Elba Raimúndez
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany.,Center for Mathematics, Technische Universität München, 85748, Garching, Germany
| | - Jan Hasenauer
- Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, 85764, Neuherberg, Germany.,Center for Mathematics, Technische Universität München, 85748, Garching, Germany.,Faculty of Mathematics and Natural Sciences, University of Bonn, 53113, Bonn, Germany
| | - Birgit Luber
- Fakultät für Medizin, Technische Universität München, Klinikum rechts der Isar, Institut für Allgemeine Pathologie und Pathologische Anatomie, 81675, München, Germany.
| |
Collapse
|
42
|
Fernandez-Martinez A, Krop IE, Hillman DW, Polley MY, Parker JS, Huebner L, Hoadley KA, Shepherd J, Tolaney S, Henry NL, Dang C, Harris L, Berry D, Hahn O, Hudis C, Winer E, Partridge A, Perou CM, Carey LA. Survival, Pathologic Response, and Genomics in CALGB 40601 (Alliance), a Neoadjuvant Phase III Trial of Paclitaxel-Trastuzumab With or Without Lapatinib in HER2-Positive Breast Cancer. J Clin Oncol 2020; 38:4184-4193. [PMID: 33095682 DOI: 10.1200/jco.20.01276] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE CALGB 40601 assessed whether dual versus single human epidermal growth factor receptor 2 (HER2) -targeting drugs added to neoadjuvant chemotherapy increased pathologic complete response (pCR). Here, we report relapse-free survival (RFS), overall survival (OS), and gene expression signatures that predict pCR and survival. PATIENTS AND METHODS Three hundred five women with untreated stage II and III HER2-positive breast cancer were randomly assigned to receive weekly paclitaxel combined with trastuzumab plus lapatinib (THL), trastuzumab (TH), or lapatinib (TL). The primary end point was pCR, and secondary end points included RFS, OS, and gene expression analyses. mRNA sequencing was performed on 264 pretreatment samples. RESULTS One hundred eighteen patients were randomly allocated to THL, 120 to TH, and 67 to TL. At more than 7 years of follow-up, THL had significantly better RFS and OS than did TH (RFS hazard ratio, 0.32; 95% CI, 0.14 to 0.71; P = .005; OS hazard ratio, 0.34; 95% CI, 0.12 to 0.94; P = .037), with no difference between TH and TL. Of 688 previously described gene expression signatures, significant associations were found in 215 with pCR, 45 with RFS, and only 22 with both pCR and RFS (3.2%). Specifically, eight immune signatures were significantly correlated with a higher pCR rate and better RFS. Among patients with residual disease, the immunoglobulin G signature was an independent, good prognostic factor, whereas the HER2-enriched signature, which was associated with a higher pCR rate, showed a significantly shorter RFS. CONCLUSION In CALGB 40601, dual HER2-targeting resulted in significant RFS and OS benefits. Integration of intrinsic subtype and immune signatures allowed for the prediction of pCR and RFS, both overall and within the residual disease group. These approaches may provide means for rational escalation and de-escalation treatment strategies in HER2-positive breast cancer.
Collapse
Affiliation(s)
- Aranzazu Fernandez-Martinez
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, NC.,Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | - David W Hillman
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Mei-Yin Polley
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Joel S Parker
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, NC.,Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Lucas Huebner
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Katherine A Hoadley
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, NC.,Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Jonathan Shepherd
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, NC.,Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Sara Tolaney
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | - N Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Chau Dang
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lyndsay Harris
- National Cancer Institute, Cancer Diagnostics Program, Bethesda, MD
| | - Donald Berry
- Division of Biostatistics, MD Anderson Cancer Center, Houston, TX
| | - Olwen Hahn
- Alliance Protocol Operations Office, University of Chicago, Chicago, IL
| | | | - Eric Winer
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | - Ann Partridge
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA
| | - Charles M Perou
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, NC.,Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - Lisa A Carey
- Lineberger Comprehensive Center, University of North Carolina, Chapel Hill, NC.,Division of Hematology-Oncology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
43
|
Lian J, Xu EW, Xi YF, Wang HW, Bu P, Wang JF, Wang LX. Clinical-Pathologic Analysis of Breast Cancer With PIK3CA Mutations in Chinese Women. Technol Cancer Res Treat 2020; 19:1533033820950832. [PMID: 33047659 PMCID: PMC7557680 DOI: 10.1177/1533033820950832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Purpose: Mutations of PIK3CA have recently been shown to play an important role in the pathogenesis and progression of breast neoplasms. The prevalence of PIK3CA in Chinese breast cancer patients may be underestimated. Therefore, we investigated the distribution of somatic PIK3CA mutation in Chinese breast cancer patients and explored their role in tumor phenotypes. Methods: Mutational analysis of PIK3CA was done in 113 primary breast cancers of Chinese women used Amplification refractory mutation system (ARMS). The relationship of PIK3CA mutations with several clinicopathologic characteristics was analyzed. Results: PIK3CA gene mutation was identified in 43(38.05%) cases and has a more significant difference between exon 9 and 20. HER2 gene amplification was 32.6% in 43 cases of PIK3CA mutation, but 37.1% in 70 cases of non-mutation (χ2 = 0.245, P > 0.05). There was no significant correlation of the age distribution, lymph node status, histological tumor grading, ER and/or PR and P53 between 2 groups (P > 0.05). Conclusion: A high frequency of somatic PIK3CA mutation was detected in Chinese breast cancer patients, especially in exon 20. The relationship between PIK3CA gene mutation and clinical pathological features of breast cancer needs to be further studied in a large series of patients. PIK3CA mutations seem to have the potential to be used in target treatment and as an indicator of prognosis.
Collapse
Affiliation(s)
- Jing Lian
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
- Institute of Forensic Medicine, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - En-Wei Xu
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yan-Feng Xi
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Hui-Wen Wang
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Peng Bu
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Jin-fen Wang
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Li-Xia Wang
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
- Li-Xia Wang, Department of Pathology, Shanxi Provincial Cancer Hospital, Xinghualing District, Taiyuan, Shanxi, People’s Republic of China.
| |
Collapse
|
44
|
Reduction of Global H3K27me 3 Enhances HER2/ErbB2 Targeted Therapy. Cell Rep 2020; 29:249-257.e8. [PMID: 31597089 DOI: 10.1016/j.celrep.2019.08.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/12/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me3, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2). In ErbB2+ breast cancer models, PRC2 silences endogenous retroviruses (ERVs) to suppress anti-tumor type-I interferon (IFN) responses. In patients, elevated H3K27me3 in tumor cells following Trastuzumab treatment correlates with suppression of interferon-driven viral defense gene expression signatures and poor response. Using an immunocompetent model, we provide evidence that EZH2 inhibitors promote interferon-driven immune responses that enhance the efficacy of anti-ErbB2 mAbs, suggesting the potential clinical benefit of epigenomic reprogramming by H3K27me3 depletion in Trastuzumab-resistant disease.
Collapse
|
45
|
Vuong LD, Ta TV, Chu HH, Truong VL, Nguyen QN. PIK3CA mutation profiling in Vietnamese patients with breast cancer. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
46
|
Li K, Liao N, Chen B, Zhang G, Wang Y, Guo L, Wei G, Jia M, Wen L, Ren C, Cao L, Mok H, Li C, Lin J, Chen X, Zhang Z, Hou T, Li M, Liu J, Balch CM, Liao N. Genetic mutation profile of Chinese HER2-positive breast cancers and genetic predictors of responses to Neoadjuvant anti-HER2 therapy. Breast Cancer Res Treat 2020; 183:321-332. [PMID: 32638235 PMCID: PMC7383038 DOI: 10.1007/s10549-020-05778-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Despite the therapeutic success of existing HER2-targeted therapies, tumors respond quite differently to them. This study aimed at figuring out genetic mutation profile of Chinese HER2-positive patients and investigating predictive factors of neoadjuvant anti-HER2 responses. METHODS We employed two cohorts. The first cohort was comprised of 181 HER2-positive patients treated at Guangdong Provincial People's Hospital from 2012 to 2018. The second cohort included 40 patients from the first cohort who underwent HER2-targeted neoadjuvant chemotherapy. Genetic mutations were characterized using next-generation sequencing. We employed the most commonly used definition of pathological complete response (pCR)-eradication of tumor from both breast and lymph nodes (ypT0/is ypN0). RESULTS In Chinese HER2-positive breast cancer patients, TP53 (74.6%), CDK12 (64.6%) and PIK3CA (46.4%) have the highest mutation frequencies. In cohort 2, significant differences were found between pCR and non-pCR groups in terms of the initial Ki67 status, TP53 missense mutations, TP53 LOF mutations, PIK3CA mutations and ROS1 mutations (p = 0.028, 0.019, 0.005, 0.013, 0.049, respectively). Furthermore, TP53 LOF mutations and initial Ki67 status (OR 7.086, 95% CI 1.366-36.749, p = 0.020 and OR 6.007, 95% CI 1.120-32.210, p = 0.036, respectively) were found to be predictive of pCR status. CONCLUSION TP53 LOF mutations and initial Ki67 status in HER2-positive breast cancer are predictive of pCR status after HER2-targeted NACT.
Collapse
Affiliation(s)
- Kai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Guochun Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Yulei Wang
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Liping Guo
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guangnan Wei
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Minghan Jia
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Lingzhu Wen
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Li Cao
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Cheukfai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Jiali Lin
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoqing Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | | | - Ting Hou
- Burning Rock Biotech, Guangzhou, China
| | - Min Li
- Burning Rock Biotech, Guangzhou, China
| | - Jing Liu
- Burning Rock Biotech, Guangzhou, China
| | - Charles M Balch
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- School of Medicine, South China University of Technology, Guangzhou, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
47
|
Sai S, Kim EH, Vares G, Suzuki M, Yu D, Horimoto Y, Hayashi M. Combination of carbon-ion beam and dual tyrosine kinase inhibitor, lapatinib, effectively destroys HER2 positive breast cancer stem-like cells. Am J Cancer Res 2020; 10:2371-2386. [PMID: 32905515 PMCID: PMC7471364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023] Open
Abstract
To investigate whether carbon-ion beam alone, or in combination with lapatinib, has a beneficial effect in targeting HER2-positive breast cancer stem-like cells (CSCs) compared to that of X-rays, human breast CSCs derived from BT474 and SKBR3 cell lines were treated with a carbon-ion beam or X-rays irradiation alone or in combination with lapatinib, and then cell viability, spheroid formation assays, apoptotic analyses, gene expression analysis of related genes, and immunofluorescent γ-H2AX foci assays were performed. Spheroid formation assays confirmed that ESA+/CD24- cells have CSC properties compared to ESA-/CD24+ cells. CSCs were more highly enriched after X-ray irradiation combined with lapatinib, whereas carbon-ion beam combined with lapatinib significantly decreased the proportion of CSCs. Carbon-ion beam combined with lapatinib significantly suppressed spheroid formation compared to X-rays combined with lapatinib or carbon ion beam alone. Cell cycle analysis showed that carbon ion beam combined with lapatinib predominantly enhanced sub-G1 and G2/M arrested population compared to that of carbon-ion beam, X-ray treatments alone. Carbon-ion beam combined with lapatinib significantly enhanced apoptosis and carbon-ion beam alone dose-dependently increased autophagy-related expression of Beclin1 and in combination with lapatinib greatly enhanced ATG7 expression at protein levels. In addition, a large-sized γH2AX foci in CSCs were induced by carbon ion beam combined with lapatinib treatment in CSCs compared to cells receiving X-rays or carbon-ion beam alone. Altogether, combination of carbon-ion beam irradiation and lapatinib has a high potential to kill HER2-positive breast CSCs, causing severe irreparable DNA damage, enhanced autophagy, and apoptosis.
Collapse
Affiliation(s)
- Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Guillaume Vares
- Okinawa Institute of Science and Technology (OIST), Advanced Medical Instrumentation UnitTancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Dong Yu
- School of Radiological Medicine and Protection, Medical College of Soochow UniversitySuzhou 215006, China
| | - Yoshiya Horimoto
- Department of Breast Oncology, Juntendo University School of Medicine2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiro Hayashi
- Breast Center, Dokkyo Medical University Hospital880 Kita-Kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan
| |
Collapse
|
48
|
Kim KJ, Kim JW, Sung JH, Suh KJ, Lee JY, Kim SH, Lee JO, Kim JW, Kim YJ, Kim JH, Bang SM, Lee JS, Kim HK, Lee KW. PI3K-targeting strategy using alpelisib to enhance the antitumor effect of paclitaxel in human gastric cancer. Sci Rep 2020; 10:12308. [PMID: 32704014 PMCID: PMC7378194 DOI: 10.1038/s41598-020-68998-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
PIK3CA mutations are frequently observed in various human cancers including gastric cancer (GC). This study was conducted to investigate the anti-tumor effects of alpelisib, a PI3K p110α-specific inhibitor, using preclinical models of GC. In addition, the combined effects of alpelisib and paclitaxel on GC were evaluated. Among the SNU1, SNU16, SNU484, SNU601, SNU638, SNU668, AGS, and MKN1 GC cells, three PIK3CA-mutant cells were predominantly sensitive to alpelisib. Alpelisib monotherapy decreased AKT and S6K1 phosphorylation and induced G0/G1 phase arrest regardless of PIK3CA mutational status. The alpelisib and paclitaxel combination demonstrated synergistic anti-proliferative effects, preferentially on PIK3CA-mutant cells, resulting in increased DNA damage response and apoptosis. In addition, alpelisib and paclitaxel combination potentiated anti-migratory activity in PIK3CA-mutant cells. Alpelisib partially reversed epithelial–mesenchymal transition markers in PIK3CA-mutant cells. In a xenograft model of MKN1 cells, the alpelisib and paclitaxel combination significantly enhanced anti-tumor activity by decreasing Ki-67 expression and increasing apoptosis. Moreover, this combination tended to prolong the survival of tumor-bearing mice. Our data suggest promising anti-tumor efficacy of alpelisib alone or in combination with paclitaxel in PIK3CA-mutant GC cells.
Collapse
Affiliation(s)
- Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Ji Hea Sung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Ji Yun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Hark Kyun Kim
- National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
49
|
Simond AM, Muller WJ. In vivo modeling of the EGFR family in breast cancer progression and therapeutic approaches. Adv Cancer Res 2020; 147:189-228. [PMID: 32593401 DOI: 10.1016/bs.acr.2020.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modeling breast cancer through the generation of genetically engineered mouse models (GEMMs) has become the gold standard in the study of human breast cancer. Notably, the in vivo modeling of the epidermal growth factor receptor (EGFR) family has been key to the development of therapeutics and has helped better understand the signaling pathways involved in cancer initiation, progression and metastasis. The HER2/ErbB2 receptor is a member of the EGFR family and 20% of breast cancers are found to belong in the HER2-positive histological subtype. Historical and more recent advances in the field have shaped our understanding of HER2-positive breast cancer signaling and therapeutic approaches.
Collapse
Affiliation(s)
- Alexandra M Simond
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada; Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
50
|
DiScala M, Najor MS, Yung T, Morgan D, Abukhdeir AM, Cobleigh MA. Loss of STAT6 leads to anchorage-independent growth and trastuzumab resistance in HER2+ breast cancer cells. PLoS One 2020; 15:e0234146. [PMID: 32525891 PMCID: PMC7289443 DOI: 10.1371/journal.pone.0234146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
Approximately 20% of breast cancers are HER2-positive. Trastuzumab has improved patient outcomes significantly for these cancers. However, acquired resistance remains a major hurdle in the clinical management of these patients. Therefore, identifying molecular changes that cause trastuzumab resistance is worthwhile. STAT6 is a transcription factor that regulates a variety of genes involved in cell cycle regulation, growth inhibition, and apoptosis. STAT6 expression is lost in approximately 3% of breast cancers, but little work has been done in the context of trastuzumab resistance in breast cancer. In isogenic cell line pairs, we observed that trastuzumab-resistant cells expressed significantly lower levels of STAT6 compared to trastuzumab-sensitive cells. Therefore, in order to study the consequences of STAT6 loss in HER2+ breast cancer, we knocked out both alleles of the STAT6 gene using somatic cell gene targeting. Interestingly, loss of STAT6 resulted in anchorage-independent growth and changes in several genes involved in epithelial to mesenchymal transition. This study suggests that STAT6 may play a role in the pathophysiology of HER2+ human breast cancer.
Collapse
Affiliation(s)
- Molly DiScala
- Division of Hematology, Oncology, and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Matthew S. Najor
- Division of Hematology, Oncology, and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Timothy Yung
- Division of Hematology, Oncology, and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Missouri, United States of America
| | - Abde M. Abukhdeir
- Division of Hematology, Oncology, and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Melody A. Cobleigh
- Division of Hematology, Oncology, and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|