1
|
Shobako M, Kawano K, Taniguchi E, Ohinata K. Medium-chain triglycerides tricaprin TC10 and tricaprylin TC8 attenuated HFD-induced cognitive decline in a manner dependent on or independent of GLP-1. Sci Rep 2025; 15:10381. [PMID: 40140693 PMCID: PMC11947436 DOI: 10.1038/s41598-025-94129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Population aging is the most important social and medical demographic issue worldwide; therefore, healthy aging is important. The increasing prevalence of dementia and cognitive decline are major health concerns. Medium-chain triglycerides (MCTs) have been shown to improve cognitive decline. The present study investigated the effects and mechanisms of action of orally administered MCTs, including tricaprylin (TC8), tricaprin (TC10), and trilaurin (TC12), on cognitive function in mice fed a high-fat diet (HFD). The administration of TC8 and TC10 attenuated cognitive decline. A relationship has been reported between cognitive dysfunction and impaired glucose metabolism. The administration of TC8 and TC10 also reduced blood glucose levels in the glucose tolerance test. Cognitive improvements by MCTs are widely attributed to the ketogenic effect. In the present study, TC8 significantly increased blood ketone concentrations, whereas TC10 did not. On the other hand, TC10 increased the plasma concentration of glucagon-like peptide-1 (GLP-1), the hormone that promotes insulin secretion. The administration of the GLP-1 receptor antagonist, exendin(9-39), blocked the cognitive-enhancing effects of TC10. These results suggest that TC10 improved cognitive function via the GLP-1 receptor. The in vitro experiment indicated that 2-monocaprin (2-MC10), not TC10, stimulated the secretion of GLP-1 and decreased intracellular cAMP concentrations. In conclusion, we herein demonstrated that TC8 and TC10 attenuated cognitive decline through different mechanisms. This is the first study to suggest that TC10 attenuates cognitive decline via GLP-1.
Collapse
Affiliation(s)
- Maiko Shobako
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kohei Kawano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Eriko Taniguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
2
|
Lnu R, Khanduri S, Khan Z, Ansari D, Mulani M, Gupta A, Alam N, Aggarwal A, Lnu S, Agrawal A. A Study of Small and Large Bowel Wall Thickness Using Computed Tomography and Its Histopathological Correlation. Cureus 2024; 16:e72932. [PMID: 39628742 PMCID: PMC11614315 DOI: 10.7759/cureus.72932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Small bowel imaging presents significant challenges due to the bowel's length, narrow caliber, and complex looping. Accurate diagnosis of gastrointestinal disorders often requires detailed imaging to differentiate various pathologies, such as inflammatory bowel disease (IBD), infections, ischemic conditions, and neoplasms. INTRODUCTION The small bowel plays a crucial role in digestion and absorption and is susceptible to various pathologies. CT imaging is essential for diagnosing bowel wall thickening, which can indicate a range of conditions. Dual-energy CT (DECT) and CT enterography offer advanced imaging capabilities to address these diagnostic challenges. This study aims to evaluate the efficacy of CT in staging malignant lesions by correlating imaging findings with histopathology to enhance non-invasive diagnosis and treatment strategies. METHODOLOGY This cross-sectional study was conducted over two years at Era's Medical College and Hospital, Lucknow, India, with 60 subjects. Patients with abnormal bowel wall thickening (>5 mm) on ultrasound were included, while those with renal dysfunction or pregnancy were excluded. After informed consent, subjects consumed a mannitol solution before undergoing CT scans using a 384-slice Dual Energy CT scanner (Somatom Force, Siemens Healthcare, Erlangen, Germany). All images were post-processed on a workstation using Synovia software (Synovia Solution, Fort Worth, Texas), which allows for image analysis using three-material decomposition. Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 26 (Released 2019; IBM Corp., Armonk, New York). RESULTS The majority of patients were young adults aged 20-39 years (63.33%), with a slight male predominance (53.33%). Abdominal pain was the most common complaint (35.00%). Mild wall thickening (<10 mm) was associated with IBD (48.28%), while marked thickening (>10 mm) was linked to neoplastic lesions (48.39%). Symmetrical thickening was common in infective and inflammatory conditions, whereas asymmetrical thickening was typical of neoplastic lesions. CT scans demonstrated high diagnostic accuracy, with 83.33% sensitivity, 95.24% specificity, 88.24% positive predictive value, and 93.02% negative predictive value, resulting in an overall accuracy of 91.67%. CONCLUSION The study highlights that neoplastic lesions are associated with marked bowel wall thickening, while inflammatory conditions present with mild thickening. CT scans proved highly effective in diagnosing gastrointestinal disorders, with significant accuracy in distinguishing between benign and malignant lesions. This underscores the importance of advanced imaging techniques in clinical practice for improved patient outcomes.
Collapse
Affiliation(s)
- Rohit Lnu
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Sachin Khanduri
- Radiology, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Zaara Khan
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Danish Ansari
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Mohsin Mulani
- Radiology, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Ashok Gupta
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Nadeem Alam
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Akshay Aggarwal
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Sana Lnu
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Aastha Agrawal
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| |
Collapse
|
3
|
Ezaki O. Possible Extracellular Signals to Ameliorate Sarcopenia in Response to Medium-Chain Triglycerides (8:0 and 10:0) in Frail Older Adults. Nutrients 2024; 16:2606. [PMID: 39203743 PMCID: PMC11357358 DOI: 10.3390/nu16162606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
In frail older adults (mean age 85 years old), a 3-month supplementation with a low dose (6 g/day) of medium-chain triglycerides (MCTs; C8:0 and C10:0) given at a meal increased muscle mass and function, relative to supplementation with long-chain triglycerides (LCTs), but it decreased fat mass. The reduction in fat mass was partly due to increased postprandial energy expenditure by stimulation of the sympathetic nervous system (SNS). However, the extracellular signals to ameliorate sarcopenia are unclear. The following three potential extracellular signals to increase muscle mass and function after MCT supplementation are discussed: (1) Activating SNS-the hypothesis for this is based on evidence that a beta2-adrenergic receptor agonist acutely (1-24 h) markedly upregulates isoforms of peroxisomal proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) mRNAs, promotes mitochondrial biogenesis, and chronically (~1 month) induces muscle hypertrophy. (2) An increased concentration of plasma acyl-ghrelin stimulates growth hormone secretion. (3) A nitrogen-sparing effect of ketone bodies, which fuel skeletal muscle, may promote muscle protein synthesis and prevent muscle protein breakdown. This review will help guide clinical trials of using MCTs to treat primary (age-related) sarcopenia.
Collapse
Affiliation(s)
- Osamu Ezaki
- Institute of Women's Health Science, Showa Women's University, Tokyo 154-8533, Japan
| |
Collapse
|
4
|
Maruyama T, Matsui S, Kobayashi R, Horii T, Oguri Y, Tsuzuki S, Horie T, Ono K, Hatada I, Sasaki T. Medium-chain triglyceride-specific appetite is regulated by the β-oxidation of medium-chain fatty acids in the liver. Am J Physiol Endocrinol Metab 2024; 326:E735-E746. [PMID: 38597830 DOI: 10.1152/ajpendo.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Most studies on fat appetite have focused on long-chain triglycerides (LCTs) due to their obesogenic properties. Medium-chain triglycerides (MCTs), conversely, exhibit antiobesogenic effects; however, the regulation of MCT intake remains elusive. Here, we demonstrate that mice can distinguish between MCTs and LCTs, and the specific appetite for MCTs is governed by hepatic β-oxidation. We generated liver-specific medium-chain acyl-CoA dehydrogenase (MCAD)-deficient (MCADL-/-) mice and analyzed their preference for MCT and LCT solutions using glyceryl trioctanoate (C8-TG), glyceryl tridecanoate (C10-TG), corn oil, and lard oil in two-bottle choice tests conducted over 8 days. In addition, we used lick microstructure analyses to evaluate the palatability and appetite for MCT and LCT solutions. Finally, we measured the expression levels of genes associated with fat ingestion (Galanin, Qrfp, and Nmu) in the hypothalamus 2 h after oral gavage of fat. Compared with control mice, MCADL-/- mice exhibited a significantly reduced preference for MCT solutions, with no alteration in the preference for LCTs. Lick analysis revealed that MCADL-/- mice displayed a significantly decreased appetite for MCT solutions only while the palatability of both MCT and LCT solutions remained unaffected. Hypothalamic Galanin expression in control mice was elevated by oral gavage of C8-TG but not by LCTs, and this response was abrogated in MCADL-/- mice. In summary, our data suggest that hepatic β-oxidation is required for MCT-specific appetite but not for LCT-specific appetite. The induction of hypothalamic galanin upon MCT ingestion, dependent on hepatic β-oxidation, could be involved in the regulation of MCT-specific appetite.NEW & NOTEWORTHY Whether and how medium-chain triglyceride (MCT) intake is regulated remains unknown. Here, we showed that mice can discriminate between MCTs and LCTs. Hepatic β-oxidation participates in MCT-specific appetite, and hypothalamic galanin may be one of the factors that regulate MCT intake. Because of the antiobesity effects of MCTs, studying MCT-specific appetite may help combat obesity by promoting the intake of MCTs instead of LCTs.
Collapse
Affiliation(s)
- Tsugunori Maruyama
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sho Matsui
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryosuke Kobayashi
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuo Oguri
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Al-Kabariti AY, Arafat BT, Oriquat GA, Možná P, Jaidy H, Rehmani A, Patel K, Al-Qinna N, Alhnan MA. In Vitro and In Vivo Evaluation of Dark Chocolate as Age-appropriate Oral Matrix. Eur J Pharm Sci 2024; 192:106646. [PMID: 37989467 DOI: 10.1016/j.ejps.2023.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Swallowing difficulties encountered by geriatric patients who undergo polypharmacy represent a significant challenge that hampers patient compliance and therapeutic management. As an appealing and sensory-pleasing, chocolate-based formulations have emerged as a potential alternative oral dosage form suitable for both the elderly and paediatric populations. However, the extent to which the incorporation of drugs into a chocolate matrix affects their oral availability remains unclear. Therefore, the objective of this investigation was to explore the in vitro and in vivo performance of an ibuprofen-based chocolate dosage form. A matrix based on dark chocolate and the model drug was prepared at two distinct temperatures: 50 and 80 °C. In vitro release studies revealed that ibuprofen formulated through co-melting at 80 °C exhibited a statistically significant slower drug release (p < 0.05) compared to formulations prepared at 50 °C in both FaSSGF (fasted-state simulated gastric fluid) and lipolysis media. The enzymatic degradation of chocolate in the presence of lipase accelerated in vitro ibuprofen release from chocolate matrices. To delve deeper into the bioavailability of ibuprofen within the chocolate formulations, we conducted an in vivo assessment, comparing the pharmacokinetic profiles of ibuprofen in its conventional suspension form with our chocolate-based dosage forms. A notable drop (p < 0.05) in the maximum serum concentration of ibuprofen when incorporated into co-melted or solid-suspension chocolate matrices. However, no significant differences in plasma exposure were observed between the two formulations. These findings shed a light on the potential of chocolate to extend of ibuprofen when integrated into various chocolate matrices, showcasing the potential held by these innovative formulations.
Collapse
Affiliation(s)
- Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Basel T Arafat
- Faculty of Medical Sciences and Public Health, Anglia Ruskin University, Chelmsford, UK
| | - Ghaleb Ali Oriquat
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan; Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Petra Možná
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Hadeal Jaidy
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Asma Rehmani
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Kausar Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Nidal Al-Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
6
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
7
|
Heidt C, Pons-Kühnemann J, Kämmerer U, Marquardt T, Reuss-Borst M. MCT-Induced Ketosis and Fiber in Rheumatoid Arthritis (MIKARA)-Study Protocol and Primary Endpoint Results of the Double-Blind Randomized Controlled Intervention Study Indicating Effects on Disease Activity in RA Patients. Nutrients 2023; 15:3719. [PMID: 37686750 PMCID: PMC10490289 DOI: 10.3390/nu15173719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Fatty acids, such as medium-chain fatty acids (MCFAs) and short-chain fatty acids (SCFAs), both important components of a normal diet, have been reported to play a role in bone-related diseases such as rheumatoid arthritis (RA). However, the role of medium-chain triglycerides (MCTs) has not been investigated in RA to date. The aim of this study was to investigate the effect of supplementation of regular diet with MCT with and without fiber on disease activity as measured with the SDAI (Simplified Disease Activity Index) in RA patients. A total of 61 RA patients on stable drug treatment were randomly assigned to a twice-daily control regimen or to a twice-daily regimen of a formulation containing medium-chain triglycerides (MCTs) 30 g/day for 8 weeks followed by a second twice-daily regimen of combining MCT (30 g/day) plus fiber (30 g/day) for an additional 8 weeks. The control group received a formulation containing long-chain triglycerides (LCTs) instead of MCTs. The preliminary results showed a significant reduction in SDAI from baseline to week 16 in the test group and a significant increase in β-hydroxybutyrate (BHB) levels, while no improvement in SDAI was observed in the control group.
Collapse
Affiliation(s)
- Christina Heidt
- Faculty of Medicine, University of Muenster, 48149 Muenster, Germany
- Department of General Pediatrics, Metabolic Diseases, University of Muenster, Albert-Schweitzer-Campus, 48149 Muenster, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute of Medical Informatics, Justus Liebig University, 35392 Giessen, Germany
| | - Ulrike Kämmerer
- Department of Obstetrics and Gynaecology, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University of Muenster, Albert-Schweitzer-Campus, 48149 Muenster, Germany
| | - Monika Reuss-Borst
- Hescuro Clinics Bad Bocklet, 97708 Bad Bocklet, Germany
- Department of Nephrology and Rheumatology, Georg-August University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
8
|
Liu X, Zhao L, Wu B, Chen F. Improving solubility of poorly water-soluble drugs by protein-based strategy: A review. Int J Pharm 2023; 634:122704. [PMID: 36758883 DOI: 10.1016/j.ijpharm.2023.122704] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Xiaowen Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| | - Limin Zhao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China; Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai 200433, China.
| |
Collapse
|
9
|
Murshed M, Salim M, Boyd BJ. Existing and emerging mitigation strategies for the prevention of accidental overdose from oral pharmaceutical products. Eur J Pharm Biopharm 2022; 180:201-211. [DOI: 10.1016/j.ejpb.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/15/2022]
|
10
|
Wang L, Bergstrom J, Hahn J, Young M, Zijlstra R. Acid-binding capacity of feed in swine nutrition. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Murshed M, Pham A, Vithani K, Salim M, Boyd BJ. Controlling drug release by introducing lipase inhibitor within a lipid formulation. Int J Pharm 2022; 623:121958. [PMID: 35760262 DOI: 10.1016/j.ijpharm.2022.121958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022]
Abstract
Drug overdose connected to marketed pharmaceutical products, particularly opioids, occurs at an alarming rate. Novel strategies through innovative formulation approaches that reduce the likelihood of overdose while allowing safe therapeutic outcomes are urgently required. The current study provides a proof-of-concept for a new formulation approach by co-formulating drug with a lipase inhibitor within a solid lipid formulation in order to prevent or reduce the harmful effects of taking multiple doses of an oral solid dose form. Lipase inhibitor controlled-release (LICR) formulations were created using a simple hot melt method to co-formulate the inhibitor (orlistat) and ibuprofen, as the model drug, within the lipid matrix. The digestion and drug release kinetics were determined using an in vitro lipolysis model. Above a threshold level of orlistat there was decreased digestibility of multiple doses of the LICR formulations, leading to reduced drug release. Upon administration of the formulations in capsules to rats, the LICR formulation displayed the lowest exposure of ibuprofen during the pharmacokinetic studies. This novel formulation approach shows promise in preventing accidental drug overdose after oral administration of multiple doses of formulation.
Collapse
Affiliation(s)
- Mubtasim Murshed
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Anna Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kapilkumar Vithani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
12
|
Watanabe S, Tsujino S. Applications of Medium-Chain Triglycerides in Foods. Front Nutr 2022; 9:802805. [PMID: 35719157 PMCID: PMC9203050 DOI: 10.3389/fnut.2022.802805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
In the 1950s, the production of processed fats and oils from coconut oil was popular in the United States. It became necessary to find uses for the medium-chain fatty acids (MCFAs) that were byproducts of the process, and a production method for medium-chain triglycerides (MCTs) was established. At the time of this development, its use as a non-fattening fat was being studied. In the early days MCFAs included fatty acids ranging from hexanoic acid (C6:0) to dodecanoic acid (C12:0), but today their compositions vary among manufacturers and there seems to be no clear definition. MCFAs are more polar than long-chain fatty acids (LCFAs) because of their shorter chain length, and their hydrolysis and absorption properties differ greatly. These differences in physical properties have led, since the 1960s, to the use of MCTs to improve various lipid absorption disorders and malnutrition. More than half a century has passed since MCTs were first used in the medical field. It has been reported that they not only have properties as an energy source, but also have various physiological effects, such as effects on fat and protein metabolism. The enhancement of fat oxidation through ingestion of MCTs has led to interest in the study of body fat reduction and improvement of endurance during exercise. Recently, MCTs have also been shown to promote protein anabolism and inhibit catabolism, and applied research has been conducted into the prevention of frailty in the elderly. In addition, a relatively large ingestion of MCTs can be partially converted into ketone bodies, which can be used as a component of "ketone diets" in the dietary treatment of patients with intractable epilepsy, or in the nutritional support of terminally ill cancer patients. The possibility of improving cognitive function in dementia patients and mild cognitive impairment is also being studied. Obesity due to over-nutrition and lack of exercise, and frailty due to under-nutrition and aging, are major health issues in today's society. MCTs have been studied in relation to these concerns. In this paper we will introduce the results of applied research into the use of MCTs by healthy subjects.
Collapse
|
13
|
Alshaikh BN, Reyes Loredo A, Knauff M, Momin S, Moossavi S. The Role of Dietary Fats in the Development and Prevention of Necrotizing Enterocolitis. Nutrients 2021; 14:145. [PMID: 35011027 PMCID: PMC8746672 DOI: 10.3390/nu14010145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/18/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a significant cause of mortality and morbidity in preterm infants. The pathogenesis of NEC is not completely understood; however, intestinal immaturity and excessive immunoreactivity of intestinal mucosa to intraluminal microbes and nutrients appear to have critical roles. Dietary fats are not only the main source of energy for preterm infants, but also exert potent effects on intestinal development, intestinal microbial colonization, immune function, and inflammatory response. Preterm infants have a relatively low capacity to digest and absorb triglyceride fat. Fat may thereby accumulate in the ileum and contribute to the development of NEC by inducing oxidative stress and inflammation. Some fat components, such as long-chain polyunsaturated fatty acids (LC-PUFAs), also exert immunomodulatory roles during the early postnatal period when the immune system is rapidly developing. LC-PUFAs may have the ability to modulate the inflammatory process of NEC, particularly when the balance between n3 and n6 LC-PUFAs derivatives is maintained. Supplementation with n3 LC-PUFAs alone may have limited effect on NEC prevention. In this review, we describe how various fatty acids play different roles in the pathogenesis of NEC in preterm infants.
Collapse
Affiliation(s)
- Belal N Alshaikh
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Adriana Reyes Loredo
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Megan Knauff
- Nutrition Services, Alberta Health Services, Calgary, AB T2N 2T9, Canada
| | - Sarfaraz Momin
- Neonatal Nutrition and Gastroenterology Program, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
- International Microbiome Centre, Cumming School of Medicine, Health Sciences Centre, University of Calgary, Calgary, AB T2N 2T9, Canada
| |
Collapse
|
14
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
15
|
Supplementation of Bile Acids and Lipase in Broiler Diets for Better Nutrient Utilization and Performance: Potential Effects and Future Implications – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Bile acids are used for better emulsification, digestion and absorption of dietary fat in chicken, especially in early life. Similarly, exogenous lipases have also been used for the improvement of physiological limitation of the chicken digestive system. Owing to potential of both bile acids and lipases, their use has been increased in recent years, for better emulsification of dietary fat and improvement of growth performance in broilers. In the past, pancreatic lipases were used for supplementation, but recently, microbial lipase is getting attention in poultry industry as a hydrolysis catalyst. Bile acids strengthen the defence mechanism of body against bacterial endotoxins and also play a key role in lipid regulation and sugar metabolism as signaling molecules. It has been demonstrated that bile acids and lipases may improve feed efficiency by enhancing digestive enzyme activity and ultimately leading to better fat digestion and absorption. Wide supplemental range of bile acids (0.004% to 0.25%) and lipases (0.01% to 0.1%) has been used in broiler diets for improvement of fat digestibility and their performance. Combinations of different bile acids have shown more potential to improve feed efficiency (by 7.14%) even at low (0.008%) levels as compared to any individual bile acid. Lipases at a lower level of 0.03% have exhibited more promising potential to improve fat digestibility and feed efficiency. However, contradicting results have been published in literature, which needs further investigations to elucidate various nutritional aspects of bile acids and lipase supplementation in broiler diet. This review focuses on providing insight on the mechanism of action and potential application of bile acids and lipases in broiler diets. Moreover, future implications of these additives in poultry nutrition for enhancing nutrient utilization and absorption are also discussed.
Collapse
|
16
|
Zhu Y, Ye J, Zhang Q. Self-emulsifying Drug Delivery System Improve Oral Bioavailability: Role of Excipients and Physico-chemical Characterization. Pharm Nanotechnol 2021; 8:290-301. [PMID: 32781978 DOI: 10.2174/2211738508666200811104240] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Self-emulsifying drug delivery system (SEDDS) is a kind of solid or liquid formulation composed of drugs, oil, surfactant and cosurfactant. It could form a fine emulsion (micro/nano) in the gastrointestinal tract after oral administration. Later on, the formed emulsion is absorbed through the lymphatic pathway. The oral bioavailability of drugs in SEDDS would be improved for bypassing the first-pass effect of the liver. Therefore, SEDDS has become a vital strategy to increase the oral bioavailability of poor watersoluble drugs. In addition, there is no aqueous phase in SEDDS, thus SEDDS is a homogeneous system, consequently being suitable for large-scale production and more stable than conventional emulsion. However, the role of formulation aspects in the biological property of SEDDS is not fully clear. In order to prepare the satisfying SEDDS to improve oral drug bioavailability, we need to fully understand the various factors that affect the in vivo behavior of SEDDS. In this review, we would explore the role of ingredient (drugs, oils, surfactant and cosurfactant) of SEDDS in increasing oral drug bioavailability. We would also discuss the effect of physicochemical property (particle size and zeta potential) of SEDDS on the oral drug bioavailability enhancement. This review would provide an approach to develop a rational SEDDS to improving oral drug bioavailability. Lay Summary: Self-emulsifying drug-delivery system (SEDDS) has been proven to be promising in ameliorating the oral bioavailability of poor water-soluble drugs. This review highlighted the influence of excipients and physicochemical property of SEDDS on the formation of emulsion and the oral absorption of drugs in the body.
Collapse
Affiliation(s)
- Yujin Zhu
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jing Ye
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Quan Zhang
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
17
|
Pham AC, Clulow AJ, Boyd BJ. Formation of Self-Assembled Mesophases During Lipid Digestion. Front Cell Dev Biol 2021; 9:657886. [PMID: 34178984 PMCID: PMC8231029 DOI: 10.3389/fcell.2021.657886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/05/2021] [Indexed: 11/27/2022] Open
Abstract
Lipids play an important role in regulating bodily functions and providing a source of energy. Lipids enter the body primarily in the form of triglycerides in our diet. The gastrointestinal digestion of certain types of lipids has been shown to promote the self-assembly of lipid digestion products into highly ordered colloidal structures. The formation of these ordered colloidal structures, which often possess well-recognized liquid crystalline morphologies (or “mesophases”), is currently understood to impact the way nutrients are transported in the gut and absorbed. The formation of these liquid crystalline structures has also been of interest within the field of drug delivery, as it enables the encapsulation or solubilization of poorly water-soluble drugs in the aqueous environment of the gut enabling a means of absorption. This review summarizes the evidence for structure formation during the digestion of different lipid systems associated with foods, the techniques used to characterize them and provides areas of focus for advancing our understanding of this emerging field.
Collapse
Affiliation(s)
- Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| |
Collapse
|
18
|
May KL, Tangso KJ, Hawley A, Boyd BJ, Clulow AJ. Interaction of chitosan-based dietary supplements with fats during lipid digestion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Fushimi T, Izumi Y, Takahashi M, Hata K, Murano Y, Bamba T. Dynamic Metabolome Analysis Reveals the Metabolic Fate of Medium-Chain Fatty Acids in AML12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11997-12010. [PMID: 33073987 DOI: 10.1021/acs.jafc.0c04723] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several studies in hepatocyte cell lines reported that medium-chain fatty acids (MCFAs) with 6-12 carbons showed different metabolic properties from long-chain fatty acids (LCFAs). However, these studies reported unclear effects of different fatty acid molecules on hepatocyte metabolism. This study is aimed to capture the metabolic kinetics of MCFA assimilation in AML12 cells treated with octanoic acid (FA 8:0), decanoic acid (FA 10:0), or lauric acid (FA12:0) [LCFA; oleic acid (FA 18:1)] via metabolic profiling and dynamic metabolome analysis with 13C-labeling. The concentrations of total ketone bodies in the media of cells treated with FA 8:0 or FA 10:0 were 3.22- or 3.69-fold higher than those obtained with FA 18:1 treatment, respectively. FA 12:0 treatment did not significantly increase ketone body levels compared to DMSO treatment (control), whereas FA 12:0 treatment increased intracellular triacylglycerol (TG) levels 15.4 times compared to the control. Metabolic profiles of FA 12:0-treated samples differed from those of the FA 8:0-treated and FA 10:0-treated samples, suggesting that metabolic assimilation of MCFAs differed significantly depending on the MCFA type. Furthermore, the dynamic metabolome analysis clearly revealed that FA 8:0 was rapidly and quantitatively oxidized to acetyl-CoA and assimilated into ketone bodies, citrate cycle intermediates, and glucogenic amino acids but not readily into TGs.
Collapse
Affiliation(s)
- Tatsuya Fushimi
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., 1 Shinmori-cho, Isogo-ku, Yokohama 235-8558, Japan
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kosuke Hata
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshihiro Murano
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., 1 Shinmori-cho, Isogo-ku, Yokohama 235-8558, Japan
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
He X, McClorry S, Hernell O, Lönnerdal B, Slupsky CM. Digestion of human milk fat in healthy infants. Nutr Res 2020; 83:15-29. [PMID: 32987285 DOI: 10.1016/j.nutres.2020.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Lipid digestion is critical for infant development, and yet, the interconnection between lipid digestion and the microbiota is largely understudied. This review focuses on digestion of the human milk fat globule and summarizes the current understanding of the mechanisms underlying this process in infants. We first discuss the partial hydrolysis of milk fat in the stomach, which leads to rearrangement of lipid droplets, creating a lipid-water interface necessary for duodenal lipolysis. In the first few months of life, secretion of pancreatic triglyceride lipase, phospholipase A2, and bile salts is immature. The dominant lipases aiding fat digestion in the newborn small intestine are therefore pancreatic lipase-related protein 2 and bile salt-stimulated lipase from both the exocrine pancreas and milk. We summarize the interaction between ionic fatty acids and cations to form insoluble fatty acid soaps and how it is influenced by various factors, including cation availability, pH, and bile salt concentration, as well as saturation and chain length of fatty acids. We further argue that the formation of the soap complex does not contribute to lipid bioavailability. Next, the possible roles that the gut microbiota plays in lipid digestion and absorption are discussed. Finally, we provide a perspective on how the manufacturing process of infant formula and dairy products may alter the physical properties and structure of lipid droplets, thereby altering the rate of lipolysis.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Shannon McClorry
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, SE 901 85 Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Carolyn M Slupsky
- Department of Nutrition, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
21
|
Yoshida T, Sako K, Kondo H. Design of novel tacrolimus formulations with chemically synthesized oils for oral lymphatic delivery. Drug Dev Ind Pharm 2020; 46:219-226. [PMID: 31976759 DOI: 10.1080/03639045.2020.1721525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
High consumption of oil formulations has been reported to reduce the blood exposure of drugs like tacrolimus. Consumption of oil formulations has also been shown to inhibit T-cell production of interleukin-2 (IL-2) compared to solid dispersion formulations (SDFs). However, a large amount of oil causes gastrointestinal side effects such as diarrhea and low compliance. Here, we investigated the feasibility of reducing the amount of oil and substitution of chemically synthetized oils for natural oils in these formulations. Reducing the amount of sunflower oil increased blood tacrolimus exposure despite sufficient suppression of IL-2 production. While medium-chain triglyceride (MCT) increased tacrolimus blood exposure, addition of 10% glyceryl monostearate (GMS) to MCT significantly decreased drug blood exposure without requiring a large amount of oil (p < .05). Effects of the contents of GMS in the MCT/GMS formulations, and fatty acid composition in GMS on drug blood exposure were also investigated. The results indicated that both the amount and type of oil were important for maintaining a good balance between a reduction in blood exposure and sufficient IL-2 suppression. The ratio of drug concentration in lymphocytes to that in whole blood after dosing with an oil formulation was significantly higher than that after administration of the SDF (p < .01). These results indicate the feasibility of developing oral oil tacrolimus formulations to reduce systemic side effects and maintain high efficacy for practical use in patients.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Drug Delivery, Pharmaceutical Research and Technology Labs, Astellas Pharma Inc, Yaizu, Japan
| | | | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
22
|
Fat structure and composition in human milk and infant formulas: Implications in infant health. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2019. [DOI: 10.1016/j.cegh.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Lema-Perez L, Garcia-Tirado J, Builes-Montaño C, Alvarez H. Phenomenological-Based model of human stomach and its role in glucose metabolism. J Theor Biol 2019; 460:88-100. [DOI: 10.1016/j.jtbi.2018.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
|
24
|
In vitro lipolysis of dairy and soy based infant formula. Food Res Int 2018; 106:696-705. [DOI: 10.1016/j.foodres.2018.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/03/2017] [Accepted: 01/05/2018] [Indexed: 11/18/2022]
|
25
|
Abstract
The digestion, absorption and utilisation of dietary triglycerides are controlled by gut hormones, released from enteroendocrine cells along the length of the gastrointestinal tract. Major players in the detection of ingested lipids are the free fatty acid receptors FFA1 and FFA4, which are highly expressed on enteroendocrine cells. These receptors are activated when free fatty acids (FFA) are absorbed across the intestinal epithelium, and provide a dynamic hormonal signal indicating that lipids are arriving in the bloodstream from the gut. This review addresses our current knowledge of how ingested triglycerides modulate gut hormone release via FFA1 and FFA4.
Collapse
|
26
|
Nicolson GL, Ash ME. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1704-1724. [PMID: 28432031 DOI: 10.1016/j.bbamem.2017.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022]
Abstract
Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon, TQ12 4SG, UK
| |
Collapse
|
27
|
Panith N, Wichaphon J, Lertsiri S, Niamsiri N. Effect of physical and physicochemical characteristics of chitosan on fat-binding capacities under in vitro gastrointestinal conditions. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Yoshida T, Nakanishi K, Yoshioka T, Tsutsui Y, Maeda A, Kondo H, Sako K. Oral tacrolimus oil formulations for enhanced lymphatic delivery and efficient inhibition of T-cell’s interleukin-2 production. Eur J Pharm Biopharm 2016; 100:58-65. [DOI: 10.1016/j.ejpb.2015.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
|
29
|
Nicolson GL, Rosenblatt S, de Mattos GF, Settineri R, Breeding PC, Ellithorpe RR, Ash ME. Clinical Uses of Membrane Lipid Replacement Supplements in Restoring Membrane Function and Reducing Fatigue in Chronic Diseases and Cancer. Discoveries (Craiova) 2016; 4:e54. [PMID: 32309576 PMCID: PMC6941554 DOI: 10.15190/d.2016.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Membrane Lipid Replacement is the use of functional oral supplements containing cell membrane glycerolphospholipids and antioxidants to safely replace damaged membrane lipids that accumulate during aging and in various chronic and acute diseases. Most if not all clinical conditions and aging are characterized by membrane phospholipid oxidative damage, resulting in loss of membrane and cellular function. Clinical trials have shown the benefits of Membrane Lipid Replacement supplements in replenishing damaged membrane lipids and restoring mitochondrial function, resulting in reductions in fatigue in aged subjects and patients with a variety of clinical diagnoses. Recent observations have indicated that Membrane Lipid Replacement can be a useful natural supplement strategy in a variety of conditions: chronic fatigue, such as found in many diseases and disorders; fatiguing illnesses (fibromyalgia and chronic fatigue syndrome); chronic infections (Lyme disease and mycoplasmal infections); cardiovascular diseases; obesity, metabolic syndrome and diabetes; neurodegenerative diseases (Alzheimer’s disease); neurobehavioral diseases (autism spectrum disorders); fertility diseases; chemical contamination (Gulf War illnesses); and cancers (breast, colorectal and other cancers). Membrane Lipid Replacement provides general membrane nutritional support during aging and illness to improve membrane function and overall health without risk of adverse effects.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, California, 92647 USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Vázquez L, González N, Reglero G, Torres C. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients. Front Bioeng Biotechnol 2016; 4:6. [PMID: 26904539 PMCID: PMC4748054 DOI: 10.3389/fbioe.2016.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.
Collapse
Affiliation(s)
- Luis Vázquez
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Universidad Autónoma de Madrid , Madrid , Spain
| | - Noemí González
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Universidad Autónoma de Madrid , Madrid , Spain
| | - Guillermo Reglero
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain; IMDEA-Food Institute, CEI (UAM-CSIC), Madrid, Spain
| | - Carlos Torres
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Universidad Autónoma de Madrid , Madrid , Spain
| |
Collapse
|
31
|
Khan J, Rades T, Boyd B. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations. Pharm Res 2015; 33:548-62. [DOI: 10.1007/s11095-015-1829-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/09/2015] [Indexed: 12/29/2022]
|
32
|
Abstract
The intestinal production of lipoproteins is one of the key processes by which the body prepares dietary lipid for dissemination to locations throughout the body where they are required. Paramount to this is the relationship between dietary lipid and the enterocytes that line the gut, along with the processes which prepare this lipid for efficient uptake by these cells. These include those which occur in the mouth and stomach along with those which occur within the intestinal lumen itself. Additionally, the interplay between digested lipid, dual avenues for lipid uptake by enterocytes (passive and lipid transporter proteins), a system of intercellular lipid resynthesis and transport, and a complex system of lipoprotein synthesis yield a system open to significant modulation. In this review, we will attempt to outline the processes of lipid digestion, lipoprotein synthesis and the exogenous and endogenous factors which exert their influence.
Collapse
Affiliation(s)
- Alan A Hennessy
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland,
| | | | | | | | | |
Collapse
|
33
|
Chater PI, Wilcox MD, Houghton D, Pearson JP. The role of seaweed bioactives in the control of digestion: implications for obesity treatments. Food Funct 2015; 6:3420-7. [DOI: 10.1039/c5fo00293a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seaweeds are an underutilised nutritional resource that could not only compliment the current western diet but potentially bring additional health benefits over and above their nutritional value.
Collapse
Affiliation(s)
- Peter I. Chater
- Institute for Cell and Molecular Biosciences
- Medical School
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Matthew D. Wilcox
- Institute for Cell and Molecular Biosciences
- Medical School
- Newcastle University
- Newcastle upon Tyne
- UK
| | - David Houghton
- Institute for Cell and Molecular Biosciences
- Medical School
- Newcastle University
- Newcastle upon Tyne
- UK
| | - Jeffrey P. Pearson
- Institute for Cell and Molecular Biosciences
- Medical School
- Newcastle University
- Newcastle upon Tyne
- UK
| |
Collapse
|
34
|
Anby MU, Nguyen TH, Yeap YY, Feeney OM, Williams HD, Benameur H, Pouton CW, Porter CJH. An in vitro digestion test that reflects rat intestinal conditions to probe the importance of formulation digestion vs first pass metabolism in Danazol bioavailability from lipid based formulations. Mol Pharm 2014; 11:4069-83. [PMID: 25265395 DOI: 10.1021/mp500197b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The impact of gastrointestinal (GI) processing and first pass metabolism on danazol oral bioavailability (BA) was evaluated after administration of self-emulsifying drug delivery systems (SEDDS) in the rat. Danazol absolute BA was determined following oral and intraduodenal (ID) administration of LFCS class IIIA medium chain (MC) formulations at high (SEDDSH-III) and low (SEDDSL-III) drug loading and a lipid free LFCS class IV formulation (SEDDS-IV). Experiments were conducted in the presence and absence of ABT (1-aminobenzotriazole) to evaluate the effect of first pass metabolism. A series of modified in vitro lipolysis tests were developed to better understand the in vivo processing of SEDDS in the rat. Danazol BA was low (<13%) following oral and ID administration of either SEDDS. Increasing drug loading, ID rather than oral administration, and administration of SEDDS-IV rather than SEDDS-III led to higher oral BA. After pretreatment with ABT, however, danazol oral BA significantly increased (e.g., 60% compared to 2% after administration of SEDDSL-III), no effect was observed on increasing drug loading, and differences between SEDDS-III and -IV were minimal. In vitro digestion models based on the lower enzyme activity and lower dilution conditions expected in the rat resulted in significantly reduced danazol precipitation from SEDDS-III or SEDDS-IV on initiation of digestion. At the doses administered here (4-8 mg/kg), the primary limitation to danazol oral BA in the rat was first pass metabolism, and the fraction absorbed was >45% after oral administration of SEDDS-III or SEDDS-IV. In contrast, previous studies in dogs suggest that danazol BA is less dependent on first pass metabolism and more sensitive to changes in formulation processing. In vitro digestion models based on likely rat GI conditions suggest less drug precipitation on formulation digestion when compared to equivalent dog models, consistent with the increases in in vivo exposure (fraction absorbed) seen here in ABT-pretreated rats.
Collapse
Affiliation(s)
- Mette U Anby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nicolson GL, Ash ME. Lipid Replacement Therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1657-79. [PMID: 24269541 DOI: 10.1016/j.bbamem.2013.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 12/14/2022]
Abstract
Lipid Replacement Therapy, the use of functional oral supplements containing cell membrane phospholipids and antioxidants, has been used to replace damaged, usually oxidized, membrane glycerophospholipids that accumulate during aging and in various clinical conditions in order to restore cellular function. This approach differs from other dietary and intravenous phospholipid interventions in the composition of phospholipids and their defense against oxidation during storage, ingestion, digestion and uptake as well as the use of protective molecules that noncovalently complex with phospholipid micelles and prevent their enzymatic and bile disruption. Once the phospholipids have been taken in by transport processes, they are protected by several natural mechanisms involving lipid receptors, transport and carrier molecules and circulating cells and lipoproteins until their delivery to tissues and cells where they can again be transferred to intracellular membranes by specific and nonspecific transport systems. Once delivered to membrane sites, they naturally replace and stimulate removal of damaged membrane lipids. Various chronic clinical conditions are characterized by membrane damage, mainly oxidative but also enzymatic, resulting in loss of cellular function. This is readily apparent in mitochondrial inner membranes where oxidative damage to phospholipids like cardiolipin and other molecules results in loss of trans-membrane potential, electron transport function and generation of high-energy molecules. Recent clinical trials have shown the benefits of Lipid Replacement Therapy in restoring mitochondrial function and reducing fatigue in aged subjects and patients with a variety of clinical diagnoses that are characterized by loss of mitochondrial function and include fatigue as a major symptom. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92649, USA.
| | - Michael E Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK
| |
Collapse
|
36
|
Behar DM, Basel-Vanagaite L, Glaser F, Kaplan M, Tzur S, Magal N, Eidlitz-Markus T, Haimi-Cohen Y, Sarig G, Bormans C, Shohat M, Zeharia A. Identification of a novel mutation in the PNLIP gene in two brothers with congenital pancreatic lipase deficiency. J Lipid Res 2013; 55:307-12. [PMID: 24262094 PMCID: PMC3886669 DOI: 10.1194/jlr.p041103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Congenital pancreatic lipase (PNLIP) deficiency is a rare monoenzymatic form of exocrine pancreatic failure characterized by decreased absorption of dietary fat and greasy voluminous stools, but apparent normal development and an overall good state of health. While considered to be an autosomal recessive state affecting a few dozens of individuals world-wide and involving the PNLIP gene, no causative mutations for this phenotype were so far reported. Here, we report the identification of the homozygote missense mutation, Thr221Met [c.662C>T], in two brothers from a consanguineous family of Arab ancestry. The observed genotypes among the family members were concordant with an autosomal recessive mode of inheritance but moreover a clear segregation between the genotype state and the serum PNLIP activity was evident. Based on biophysical computational tools, we suggest the mutation disrupts the protein's stability and impairs its normal function. Although the role of PNLIP is well established, our observations provide genetic evidence that PNLIP mutations are causative for this phenotype.
Collapse
Affiliation(s)
- Doron M Behar
- Raphael Recanati Genetics Institute, Schneider Children's Medical Center of Israel, Rabin Medical Center, Petah Tikva, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lee KWY, Porter CJH, Boyd BJ. Gastric pre-processing is an important determinant of the ability of medium-chain lipid solution formulations to enhance oral bioavailability in rats. J Pharm Sci 2013; 102:3957-65. [PMID: 23983139 DOI: 10.1002/jps.23690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022]
Abstract
The contribution of dispersion and digestion in the stomach to the bioavailability of poorly water-soluble drugs administered in lipid-based formulations was assessed by comparison of intraduodenal (ID) and peroral (p.o.) administration using cinnarizine (CZ) as a model drug. Differences in the dispersion and digestion in the gastric and intestinal compartments for medium-chain triacylglycerides (MCT) and long-chain triacylglycerides (LCT) were observed, leading to differences in the oral bioavailability of CZ. Bypassing gastric processing using ID administration of lipid solution formulations decreased drug bioavailability regardless of lipid type. Overall, bioavailability from LCT formulations was higher than MCT regardless of route of administration, consistent with past data after p.o. administration and previously reported descriptions of increases in drug precipitation after administration of medium-chain lipid formulations. The larger differences between bioavailability after both p.o. and ID administration for MCT compared with LCT formulations suggest that passage through the stomach is more critical for MCT formulations, and that gastric digestion may be more critical for MCT than LCT formulations. For MCT-based formulations, efficient dispersion and partial digestion in the stomach may be required to allow rapid transfer to intestinal-mixed micelles and absorption in the upper small intestine prior to drug precipitation.
Collapse
Affiliation(s)
- Kathy Wai Yu Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Parkville, Victoria, 3052, Australia
| | | | | |
Collapse
|
38
|
González-Arias C, Marín S, Sanchis V, Ramos A. Mycotoxin bioaccessibility/absorption assessment using in vitro digestion models: a review. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1521] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the evaluation of the oral bioavailability of a mycotoxin, the first step is the determination of its bioaccessibility, i.e. the percentage of mycotoxin released from the food matrix during digestion in the gastrointestinal (GI) tract that could be absorbed through the intestinal epithelium. Different in vitro digestion models have been recently used for determination of bioaccessibility, thereby avoiding the use of more complex cell culture techniques or the use of animals in expensive in vivo experiments. In vitro methods offer an appealing alternative to human and animal studies. They usually are rapid, simple and reasonably low in cost, and can be used to perform simplified experiments under uniform and well-controlled conditions, providing insights not achievable in whole animal studies. The available in vitro methods for GI simulation differ in the design of the system, the composition of the physiological juices assayed, as well as in the use or not of intestinal microbiota. There are models that only simulate the upper part of the GI tract (mouth-stomach-small intestine), whereas other methods include the large intestine, so that the model chosen could have some influence on the bioaccessibility data obtained. Bioaccessibility depends on the food matrix, as well as on the contamination level and the way the food/feed is contaminated (spiked or naturally). This review focuses on the currently available data regarding in vitro digestion models for the study of the bioaccessibility or absorption of mycotoxins, detailing the characteristics of each digestion step and the importance of the physiological juices employed during digestion. The effect that different factors play on mycotoxin release from the food matrix in the GI tract is also considered, and existing data on bioaccessibility of the main mycotoxins are given.
Collapse
Affiliation(s)
- C.A. González-Arias
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - S. Marín
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - V. Sanchis
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - A.J. Ramos
- Food Technology Department, Lleida University, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
39
|
Development of the Digestive System-Experimental Challenges and Approaches of Infant Lipid Digestion. ACTA ACUST UNITED AC 2012; 3:63-77. [PMID: 23293684 PMCID: PMC3528963 DOI: 10.1007/s13228-012-0025-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/17/2012] [Indexed: 12/26/2022]
Abstract
At least during the first 6 months after birth, the nutrition of infants should ideally consist of human milk which provides 40–60 % of energy from lipids. Beyond energy, human milk also delivers lipids with a specific functionality, such as essential fatty acids (FA), phospholipids, and cholesterol. Healthy development, especially of the nervous and digestive systems, depends fundamentally on these. Epidemiological data suggest that human milk provides unique health benefits during early infancy that extend to long-lasting benefits. Preclinical findings show that qualitative changes in dietary lipids, i.e., lipid structure and FA composition, during early life may contribute to the reported long-term effects. Little is known in this respect about the development of digestive function and the digestion and absorption of lipids by the newborn. This review gives a detailed overview of the distinct functionalities that dietary lipids from human milk and infant formula provide and the profound differences in the physiology and biochemistry of lipid digestion between infants and adults. Fundamental mechanisms of infant lipid digestion can, however, almost exclusively be elucidated in vitro. Experimental approaches and their challenges are reviewed in depth.
Collapse
|
40
|
Kohan AB, Howles PN, Tso P. Methods for studying rodent intestinal lipoprotein production and metabolism. ACTA ACUST UNITED AC 2012; 2:219-230. [PMID: 23024926 DOI: 10.1002/9780470942390.mo120049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lipid absorption begins with the digestion of dietary triacylglycerol and ultimately results in the secretion of triacylglycerol in chylomicrons into the lymphatics. Additionally, the intestine also secretes numerous proteins and peptides involved in lipid and lipoprotein metabolism in response to food. Ultimately, chylomicrons and these proteins, peptides, and hormones are found in lymph. The lymph fistula rat model has traditionally been used to study this intestinal absorption of nutrients, especially lipids, but recently, this model has also been used for studying the secretion of hormones by the small intestine. The protocols described in this article include the lymph fistula rat and mouse model, as well as in vivo chylomicron metabolism studies. These experimental models are helpful for the study of metabolic phenotypes, the characterization of intestinal lipid absorption and transport, and determining peripheral metabolism of intestinally derived lipoproteins.
Collapse
Affiliation(s)
- Alison B Kohan
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, 45237
| | | | | |
Collapse
|
41
|
|
42
|
Reis P, Holmberg K, Watzke H, Leser ME, Miller R. Lipases at interfaces: a review. Adv Colloid Interface Sci 2009; 147-148:237-50. [PMID: 18691682 DOI: 10.1016/j.cis.2008.06.001] [Citation(s) in RCA: 505] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 11/20/2022]
Abstract
Lipases are acyl hydrolases that play a key role in fat digestion by cleaving long-chain triglycerides into polar lipids. Due to an opposite polarity between the enzyme (hydrophilic) and their substrates (lipophilic), lipase reaction occurs at the interface between the aqueous and the oil phases. Hence, interfaces are the key spots for lipase biocatalysis and an appropriate site for modulating lipolysis. Surprisingly enough, knowledge about the effects of the interfacial composition on lipase catalysis is still limited and only described by the term "interfacial quality". Recent systematic studies based on a biophysical approach allowed for the first time to show the effects of the interfacial microenvironment on lipase catalysis. These studies demonstrate that lipase activity as a function of interfacial composition is more attributed to substrate inaccessibility rather than to enzyme denaturation or inactivation, as it is often hypothesized. A detailed analysis of the interfacial properties of all compounds involved in triglyceride digestion revealed that lipolysis is a self-regulated reaction. This feedback mechanism can be explored as a new avenue to control lipase catalysis. To substantiate this hypothesis, oil hydrolysis in a model gastro-intestinal system was performed, which can be seen as an interfacial engineering approach to enzyme reactivity control. The presented characterization of the interfacial composition and its consequences provide a new approach for the understanding of lipase reactions at interfaces with direct impact on biotechnological and health care applications.
Collapse
Affiliation(s)
- P Reis
- Nestlé Research Center, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv Drug Deliv Rev 2008; 60:673-91. [PMID: 18155801 DOI: 10.1016/j.addr.2007.10.014] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Accepted: 10/01/2007] [Indexed: 12/20/2022]
Abstract
Lipid-based delivery systems are finding increasing application in the oral delivery of poorly water-soluble, lipophilic drugs. Whilst lipidic dose forms may improve oral bioavailability via several mechanisms, enhancement of gastrointestinal solubilisation remains argueably the most important method of absorption enhancement. This review firstly describes the mechanistic rationale which underpins the use of lipid-based delivery systems to enhance drug solubilisation and briefly reviews the available literature describing increases in oral bioavailability after the administration of lipid solution, suspension and self-emulsifying formulations. The use of in vitro methods including dispersion tests and more complex models of in vitro lipolysis as indicators of potential in vivo performance are subsequently described, with particular focus on recent data which suggests that the digestion of surfactants present in lipid-based formulations may impact on formulation performance. Finally, a series of seven guiding principles for formulation design of lipid-based delivery systems are suggested based on an analysis of recent data generated in our laboratories and elsewhere.
Collapse
|
44
|
|
45
|
Straarup EM, Danielsen V, Høy CE, Jakobsen K. Dietary structured lipids for post-weaning piglets: fat digestibility, nitrogen retention and fatty acid profiles of tissues. J Anim Physiol Anim Nutr (Berl) 2006; 90:124-35. [PMID: 16519757 DOI: 10.1111/j.1439-0396.2005.00573.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In four groups of post-weaning piglets the effects of triacylglycerol structure and fatty acid profiles of four dietary fats on apparent faecal nutrient digestibility, nitrogen retention and fatty acid profiles of platelet and erythrocyte membranes, liver, adipose tissue and skeletal muscle were examined. Dietary fats included as 10% (w/w) of the diets were two structured fats of rapeseed oil interesterified with tridecanoin (R1) or coconut oil (R2), respectively, one mixture of rapeseed oil and coconut oil (R3) and rapeseed oil as control (R4). Faeces and urine from piglets weaned at 28 days of age were collected quantitatively during three periods each of 5 days, in which the piglets were kept in metabolism cages for measurement of apparent faecal nutrient and energy digestibility and nitrogen retention. Apparent faecal fat digestibilities were significantly improved in groups fed interesterified fats or the physical mixtures (R1, R2 and R3) compared with rapeseed oil (R4). Apparent faecal nitrogen digestibility and retention were similar in all four groups in the three periods, but increased with time. Apparent faecal fat digestibilities were significantly improved from the first to the third week in the groups R1 and R2. Fatty acid profiles in platelet and erythrocyte membranes and in tissues reflected the fatty acid profile of the dietary fat, except for medium-chain fatty acids, which were only found in low proportions, indicating that 10:0 was mainly used as an energy source.
Collapse
Affiliation(s)
- E M Straarup
- BioCentrum-DTU, Biochemistry and Nutrition Group, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | |
Collapse
|
46
|
Peretti N, Marcil V, Drouin E, Levy E. Mechanisms of lipid malabsorption in Cystic Fibrosis: the impact of essential fatty acids deficiency. Nutr Metab (Lond) 2005; 2:11. [PMID: 15869703 PMCID: PMC1134666 DOI: 10.1186/1743-7075-2-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 05/03/2005] [Indexed: 12/26/2022] Open
Abstract
Transport mechanisms, whereby alimentary lipids are digested and packaged into small emulsion particles that enter intestinal cells to be translocated to the plasma in the form of chylomicrons, are impaired in cystic fibrosis. The purpose of this paper is to focus on defects that are related to intraluminal and intracellular events in this life-limiting genetic disorder. Specific evidence is presented to highlight the relationship between fat malabsorption and essential fatty acid deficiency commonly found in patients with cystic fibrosis that are often related to the genotype. Given the interdependency of pulmonary disease, pancreatic insufficiency and nutritional status, greater attention should be paid to the optimal correction of fat malabsorption and essential fatty acid deficiency in order to improve the quality of life and extend the life span of patients with cystic fibrosis.
Collapse
Affiliation(s)
- N Peretti
- Department of Nutrition, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - V Marcil
- Department of Nutrition, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - E Drouin
- Department of Pediatrics, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - E Levy
- Department of Nutrition, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
47
|
Abstract
Apolipoprotein A-IV (apo A-IV) is secreted by the intestine associated with chylomicron. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. The stimulation of apo A-IV synthesis in the jejunum and ileum is attenuated by intravenous leptin infusion. Intestinal apo A-IV synthesis is also stimulated by a factor from the ileum, probably peptide tyrosine-tyrosine (PYY), which has been demonstrated to affect satiety. Apo A-IV has been proposed to physiologically control food intake, and this inhibitory effect is centrally mediated. Recently, apo A-IV was demonstrated in the hypothalamus. The hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is normally limited by endogenous apo A-IV. Central administration of neuropeptide Y (NPY) significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner. The stimulation of intestinal synthesis and secretion of apo A-IV by lipid absorption are rapid; thus, apo A-IV is capable of short-term regulation of food intake. Evidence also suggests apo A-IV's involvement in long-term regulation of food intake and bodyweight. The chronic ingestion of high fat blunts the intestinal apo A-IV response to lipid feeding and may therefore explain why chronic intake of high fat predisposes animals and humans to obesity.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology, University of Cincinnati Medical Center, 231 Albert Sabin Way (ML 0529), Cincinnati, OH 45267-0529, USA.
| | | |
Collapse
|
48
|
Tso P, Liu M, Kalogeris TJ, Thomson AB. The role of apolipoprotein A-IV in the regulation of food intake. Annu Rev Nutr 2001; 21:231-54. [PMID: 11375436 DOI: 10.1146/annurev.nutr.21.1.231] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apolipoprotein A-IV (apo A-IV) is a glycoprotein synthesized by the human intestine. In rodents, both the small intestine and liver secrete apo A-IV, but the small intestine is the major organ responsible for the circulating apo A-IV. Intestinal apo A-IV synthesis is markedly stimulated by fat absorption and appears not to be mediated by the uptake or reesterification of fatty acids to form triglycerides. Rather, the formation of chylomicrons acts as a signal for the induction of intestinal apo A-IV synthesis. Intestinal apo A-IV synthesis is also enhanced by a factor from the ileum, probably peptide tyrosine-tyrosine. The inhibition of food intake by apo A-IV is mediated centrally. The stimulation of intestinal synthesis and the secretion of apo A-IV by lipid absorption are rapid; thus, apo A-IV likely plays a role in the short-term regulation of food intake. Other evidence suggests that apo A-IV may also be involved in the long-term regulation of food intake and body weight. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV response to lipid feeding and may explain why the chronic ingestion of a high-fat diet predisposes both animals and humans to obesity.
Collapse
Affiliation(s)
- P Tso
- Department of Pathology, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | |
Collapse
|
49
|
Shen H, Howles P, Tso P. From interaction of lipidic vehicles with intestinal epithelial cell membranes to the formation and secretion of chylomicrons. Adv Drug Deliv Rev 2001; 50 Suppl 1:S103-25. [PMID: 11576698 DOI: 10.1016/s0169-409x(01)00181-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipophilic drugs are carried by chylomicrons that are secreted by the small intestine and transported in lymph. This review discusses the digestion, uptake, and transport of dietary lipids and the impact that these processes have on the absorption of lipophilic drugs by the gastrointestinal tract. This chapter complements Dr. Chris Potter's chapter on the "pre-absorptive" events of drug processing and solubilization. This chapter reviews the digestion of lipids in the gastric and intestinal lumen and the role of bile salts in the solubilization of lipid digestion products for uptake by the gut. Both the passive and active uptake of lipid digestion products is discussed. How intestinal lipid transporters located at the brush border membrane may play a role in the uptake of lipids by the enterocytes is examined, as is the regulation of the absorption of cholesterol by the human ATP-binding cassette transporter-1 (ABC1). The intracellular trafficking and the resynthesis of complex lipids from lipid digestion products are explored, and the formation and secretion of chylomicrons are described.
Collapse
Affiliation(s)
- H Shen
- Department of Pathology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | |
Collapse
|
50
|
Voshol PJ, Minich DM, Havinga R, Elferink RP, Verkade HJ, Groen AK, Kuipers F. Postprandial chylomicron formation and fat absorption in multidrug resistance gene 2 P-glycoprotein-deficient mice. Gastroenterology 2000; 118:173-82. [PMID: 10611166 DOI: 10.1016/s0016-5085(00)70426-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS It has been proposed that biliary phospholipids fulfill specific functions in the absorption of dietary fat from the intestine, but the physiological significance has not been established. The aim of this study was to evaluate the role of biliary phospholipids in dietary fat absorption in vivo by using mice homozygous or heterozygous for disruption of the Mdr2 gene (Mdr2((-/-)), Mdr2((+/-))) and control (Mdr2((+/+))) mice. Mdr2((-/-)) mice do not secrete phospholipids and cholesterol into bile, and bile salt secretion is not impaired. Mdr2((+/-)) mice show only impaired (-40%) phospholipid secretion. METHODS Methods included an analysis of time dependency of intestinal uptake and plasma appearance of intragastrically administered (radiolabeled) triglycerides and measurement of 3-day fecal fat balance with low- and high-fat diets. RESULTS Intragastric administration of olive oil resulted in a rapid increase in plasma triglycerides in Mdr2((+/+)) and Mdr2((+/-)) but not in Mdr2((-/-)) mice. The "postprandial response" of plasma triglycerides could be partially restored in Mdr2((-/-)) mice by intraduodenal infusion of whole rat bile. After intragastric [(3)H]triolein administration in Triton WR1339-pretreated animals, the appearance of (3)H-triglycerides in plasma was reduced by 70% in Mdr2((-/-)) compared with Mdr2((+/+)) mice, excluding accelerated lipolysis as the cause of defective triglyceride response in Mdr2((-/-)) mice. (3)H-triglycerides accumulated in enterocytes in Mdr2((-/-)) mice. Surprisingly, the efficacy of fat absorption as derived from balance studies was not affected and was only minimally affected in Mdr2((-/-)) mice fed low (14 energy percent)- and high (35 energy percent)-fat diets, respectively (all >95%). CONCLUSIONS The results show that biliary lipid secretion is necessary for postprandial appearance in plasma of chylomicrons in vivo but not for quantitative absorption of dietary lipids.
Collapse
Affiliation(s)
- P J Voshol
- Groningen Institute for Drug Studies, Center for Liver, Digestive, and Metabolic Diseases, University Hospital Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|