1
|
DiFalco CR, Gijavanekar C, Wang Y, Grace AN, Machol K, Emrick L, Liu N, Mizerik E, Mackay L, Dai H, Vossaert L, Xia F, Elsea SH, Scaglia F. Untargeted metabolomics analysis as a potential screening tool for 3-methylglutaconic aciduria syndromes. Mol Genet Metab 2025; 144:109009. [PMID: 39787888 DOI: 10.1016/j.ymgme.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
The 3-methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of inborn errors of metabolism defined biochemically by detectable elevation of 3-methylglutaconic acid (3-MGA) in the urine. In type 1 (or primary) 3-MGA-uria, distal defects in the leucine catabolism pathway directly cause this elevation. Secondary 3-MGA-uria syndromes, however, are unrelated to leucine metabolism-specific defects but share a common biochemical phenotype of elevated 3-MGA. It is currently thought that this accumulation is due to an underlying buildup of acetyl-CoA in the mitochondria from impaired function of the TCA cycle with ensuing formation of trans-3-methylglutaconyl CoA and its subsequent byproducts, including 3-MGA. In these disorders, urine 3-MGA levels are known to be fluctuant and at times undetectable by standard urine organic acid analysis (UOA), thereby reducing the utility of this biochemical screening method. Here, we retrospectively evaluated a cohort of nine patients with confirmed 3-MGA-uria syndromes. It was observed that UOA analysis obtained from three separate patients did not identify detectable 3-MGA levels. This inherent limitation highlights the need for a more sensitive clinical modality. Untargeted metabolomics profiling is a rapidly emerging technology that is being used to detect and characterize biochemical abnormalities in many inborn errors of metabolism. Untargeted metabolomics profiling performed on plasma samples in this cohort identified significant elevations of 3-MGA in all nine individuals. This high degree of clinical sensitivity demonstrates the promising potential for untargeted metabolomics analysis as both an effective biochemical screening tool for 3-MGA-uria syndromes and a functional method to assist with validation of genomic variants of uncertain significance in these disorders.
Collapse
Affiliation(s)
- Charles R DiFalco
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Yue Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Alexandra N Grace
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Lisa Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | | | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong, China
| |
Collapse
|
2
|
Kononets V, Zharmakhanova G, Balmagambetova S, Syrlybayeva L, Berdesheva G, Zhussupova Z, Tautanova A, Kurmambayev Y. Tandem mass spectrometry in screening for inborn errors of metabolism: comprehensive bibliometric analysis. Front Pediatr 2025; 13:1463294. [PMID: 40051910 PMCID: PMC11882580 DOI: 10.3389/fped.2025.1463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Tandem mass spectrometry (MS/MS) for detection of inborn errors of metabolism (IEM) is recognized as an ethical, safe, simple, and reliable screening test. Presented bibliometric analysis aims to describe the network structure of the scientific community in the study area at the level of countries, institutions, authors, papers, keywords, and sources; scientific productivity, directions, and collaboration efforts in a considered period (1991-2024, May). Using the PRISMA method, we conducted a systematic search for articles reporting using MS/MS to screen for inherited metabolic disorders and inborn errors of metabolism collected from the Web of Science Core Collection (WoSCC). A total of 677 articles out of 826, by 3,714 authors, published in 245 journals, with 21,193 citations in 11,295 citing articles, with an average citation of 31.3 per article, and an H-index of 69 were retrieved from the WoSCC. The research status of MS/MS in IEM screening was identified. The most relevant current research directions and future areas of interest were revealed: "selective screening for IEM," "new treatments for IEM," "new disorders considered for MS/MS testing," "ethical issues associated with newborn screening," "new technologies that may be used for newborn screening," and "use of a combination of MS/MS and gene sequencing".
Collapse
Affiliation(s)
- Victoria Kononets
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulmira Zharmakhanova
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Saule Balmagambetova
- Department of Oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Lyazzat Syrlybayeva
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Gulshara Berdesheva
- Department of General Hygiene, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neonatal Pathology, Aktobe Regional Tertiary Care Center, Aktobe, Kazakhstan
| | - Aidana Tautanova
- Department of Microbiology and Virology, Named After Sh.I. Sarbasova, Astana Medical University, Astana, Kazakhstan
| | - Yergen Kurmambayev
- Consultative and Diagnostic Department, Medical Center of West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
3
|
Alshehri AS, Peer-Zada AA, Algadhi AA, Aldehaimi A, Saleh MA, Mushiba AM, Faqeih EA, AlAsmari AM. Incidence of Inborn Errors of Metabolism and Endocrine Disorders Among 40965 Newborn Infants at Riyadh Second Health Cluster of the Ministry of Health Saudi Arabia. Int J Neonatal Screen 2024; 10:72. [PMID: 39449360 PMCID: PMC11503310 DOI: 10.3390/ijns10040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Inborn errors of metabolism (IEM) and endocrine disorders are common genetic conditions in the Saudi population with the incidence rate often underestimated. Newborn screening (NBS) using various disease panels provides the first line in the early detection and intervention among infants with a high risk of IEM. Here we aim to assess the incidence of screening disorders and provide an overview of the NBS program at the Ministry of Health Tertiary Care King Fahad Medical City. Dried blood spots (DBS) from 40,965 newborn infants collected on the second day after birth were analyzed for 20 disorders. The total number of positive screen ("repeat") samples over 10 years was about 1% (n = 382/40,965). The true positive result rate was 15.3% (n = 46/301) with the recall rates of individual disorders ranging from 0.26% (95% CI, 0.17-0.69) to 2.6% (95% CI, 2.19-3.05). The false positive result rate was 84.7% (n = 255/301) with biotinidase activity found to be the most common cause of the second sample repeat. The overall incidence of the screened diseases was 1:891 (95% CI, 11.61-12.47). CH and CAH are the most prevalent among endocrine disorders with an incidence of 1:4097 (95% CI, 2.19-3.05), and PA and ASA among the IEM with an incidence of 1:10,241 (95% CI, 0.09-0.95). In summary, we provide updated data and our experience on the incidence of various IEM and endocrine disorders among the Saudi population, highlight the role of false positive results of biotinidase activity that can increase the recall rate and lead to overestimation of the incidence data, and recommend multicenter studies to achieve a successful national NBS program.
Collapse
Affiliation(s)
- Abdullah S. Alshehri
- Section of Biochemical Genetics and Toxicology, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (A.A.P.-Z.); (A.A.A.); (A.A.)
| | - Abdul A. Peer-Zada
- Section of Biochemical Genetics and Toxicology, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (A.A.P.-Z.); (A.A.A.); (A.A.)
| | - Abeer A. Algadhi
- Section of Biochemical Genetics and Toxicology, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (A.A.P.-Z.); (A.A.A.); (A.A.)
| | - Abdulwahed Aldehaimi
- Section of Biochemical Genetics and Toxicology, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (A.A.P.-Z.); (A.A.A.); (A.A.)
| | - Mohammed A. Saleh
- Section of Medical Genetics, Department of Pediatrics, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (M.A.S.); (A.M.M.); (E.A.F.)
| | - Aziza M. Mushiba
- Section of Medical Genetics, Department of Pediatrics, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (M.A.S.); (A.M.M.); (E.A.F.)
| | - Eissa A. Faqeih
- Section of Medical Genetics, Department of Pediatrics, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (M.A.S.); (A.M.M.); (E.A.F.)
| | - Ali M. AlAsmari
- Section of Medical Genetics, Department of Pediatrics, King Fahad Medical City, Riyadh 11525, Saudi Arabia; (M.A.S.); (A.M.M.); (E.A.F.)
| |
Collapse
|
4
|
Chang CH, Wang SC, Lee CY, Su CH, Lai YJ, Lin WD, Hsu YM. Influence of administration timing of San-Huang-Xie-Xin-Tang treatment on attenuating Salmonella enterica serovar Typhimurium infection. ENVIRONMENTAL TOXICOLOGY 2024; 39:4298-4307. [PMID: 38717028 DOI: 10.1002/tox.24322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/27/2024] [Indexed: 08/09/2024]
Abstract
Salmonella infections are a serious global health concern, particularly in developing countries, and are further exacerbated by the emergence of antibiotic resistance. San-Huang-Xie-Xin-Tang (SHXXT), a traditional herbal medicine with potent anti-inflammatory properties, has recently gained attention as an alternative treatment. Our study emphasizes on the importance of precise timing in accordance with traditional Chinese medicine principles. A mouse infection model was established while different administration times of SHXXT were recorded for the body weight, clinical scores, bacterial counts in blood, and organs. Additionally, cytokine levels, fatty acids, and amino acids in the serum were also monitored. We found that administering SHXXT 1 day after Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) infection (T1 group) leads to positive outcomes. This includes restoration of body weight, improved clinical scores, and reduced bacterial counts in blood and vital organs. Interferon-gamma levels remained consistently high across all treatment groups 6 days post-infection. However, the T1 group showed exclusive suppression of serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). The timing of administration significantly influenced serum fatty acid concentrations, countering Salmonella-induced disruptions, aligning with TNF-α and IL-1β levels. SHXXT had also restored amino acid profiles disrupted by the infection, with notable effects when administered at the correct timing. Our research highlights SHXXT's potential in treating S. Typhimurium infection, emphasizing the importance of precise timing in line with traditional Chinese medicine principles for effective treatment at different disease stages.
Collapse
Affiliation(s)
- Chiung-Hung Chang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
- Department of Traditional Chinese Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shu-Chiu Wang
- Department of Traditional Chinese Medicine, Tainan Municipal Hospital (Managed by Show Chwan Medical Care Corporation), Tainan, Taiwan
| | - Chia-Ying Lee
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chiu-Hsian Su
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Yen-Ju Lai
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Wei-De Lin
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
He F, Xie T, Huang X, Zhang J, Tang T. Retrospective analysis of reference intervals for dried blood spot based ms/ms newborn screening programs in Chinese preterm neonates: a nationwide study. BMC Pediatr 2024; 24:424. [PMID: 38956494 PMCID: PMC11220950 DOI: 10.1186/s12887-024-04865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES Although recent discoveries regarding the biomarkers of newborn screening (NBS) programs by tandem mass spectrometry (MS/MS) highlight the critical need to establish reference intervals (RIs) specifically for preterm infants, no such RIs has been formally published yet. This study addressed the gap by offering a comprehensive set of reference intervals (RIs) for preterm neonates, and illustrating the dynamic changes of each biomarker with age. DESIGN AND METHODS The NBS data of 199,693 preterm newborns (< 37 weeks of gestation) who met the inclusion and exclusion criteria from the NNSCP database were included in study analysis. The birth weight stratified dynamic trend of each biomarker were captured by their concentrations over age. Reference partitions were determined by the method of Harris and Boyd. RIs, corresponding to the 2.5th and 97.5th percentiles, as well as the 0.5th, 25th, 50th, 75th and 99.5th percentiles were calculated using a non-parametric rank approach. RESULTS Increasing birth weight is associated with an elevation in the levels of arginine, citrulline, glycine, leucine and isobarics, methionine, ornithine, phenylalanine, and valine, whereas the levels of alanine, proline and tyrosine decrease. Additionally, two short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and isovalerylcarnitine + methylbutyrylcarnitine) and a median-chain acylcarnitine (octenoylcarnitine) decrease, while four long-chain acylcarnitines (tetradecanoylcarnitine, palmitoylcarnitine, palmitoleylcarnitine and oleoylcarnitine) increase with increasing birth weight. Age impacts the levels of all MS/MS NBS biomarkers, while sex only affects the level of malonylcarnitine + 3-hydroxybutyrylcarnitine (C3-DC + C4-OH) in very low birth weight preterm neonates. CONCLUSION The current study developed reference intervals (RIs) specific to birth weight, age, and/or sex for 35 MS/MS biomarkers, which can help in the timely evaluation of the health and disease of preterm neonates.
Collapse
Affiliation(s)
- Falin He
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing, P. R. China
| | - Tiancheng Xie
- Department of Laboratory Sciences, West China School of Public Health and West China No.4 Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P. R. China
| | - Jinming Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology, Beijing, P. R. China
| | - Tian Tang
- Department of Laboratory Sciences, West China School of Public Health and West China No.4 Hospital, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
6
|
Cao J, Pasquali M, Jones PM. Newborn Screening: Current Practice and Our Journey over the Last 60 Years. J Appl Lab Med 2024; 9:820-832. [PMID: 38507619 DOI: 10.1093/jalm/jfae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Inborn errors of metabolism comprise a set of more than 2000 known disorders which can result in significant morbidity and may be rapidly fatal. Diagnosing these disorders at birth and treating immediately, however, may often result in a normal to near-normal life for the affected infant. Thus, newborn screening (NBS) has saved or improved the lives of countless individuals since its inception in the 1960s. CONTENT This review covers NBS, from its early beginnings up to the current day practice. We follow the evolution of NBS, as well as describe the need and how disorders are added to NBS programs, the testing and how its performance is monitored, and the follow-up to the testing. We also briefly touch on NBS outside the United States. SUMMARY Newborn screening in the United States is a major public health success story and it continues to grow and evolve to cover more disorders and utilize new technological advances.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marzia Pasquali
- Department of Pathology, University of Utah, ARUP Laboratories, Salt Lake City, UT, United States
| | - Patricia M Jones
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Millington DS. How mass spectrometry revolutionized newborn screening. J Mass Spectrom Adv Clin Lab 2024; 32:1-10. [PMID: 38333514 PMCID: PMC10847993 DOI: 10.1016/j.jmsacl.2024.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
This article offers a personal account of a remarkable journey spanning over 30 years of applied mass spectrometry in a clinical setting. It begins with the author's inspiration from a clinician's story of rescuing a child from near death with a revolutionary therapeutic intervention. Motivated by this experience, the author delved into the field of chemistry and mass spectrometry to solve an analytical challenge. The breakthrough came with the development of the first front-line diagnostic test performed by MS/MS, which focused on analyzing acylcarnitines to detect and diagnose inherited disorders related to fatty acid and branched-chain amino acid catabolism. Building upon this success, the author expanded the application of the method to dried blood spots, incorporating additional analytical components such as essential amino acids. The result was a groundbreaking multiplex assay capable of screening newborns for more than 30 inherited metabolic conditions with just one test. This novel approach laid the foundation for a targeted metabolomics platform that facilitated the identification of new animal models of metabolic disease through screening the offspring of genetically modified adults. The development and utilization of MS/MS with UPLC has led to the creation of new assays for biomarkers of metabolic disease, benefiting both the diagnosis and therapeutic monitoring of these conditions. The article provides compelling examples from the author's laboratory, highlighting the value and vast applications of these methods in the field of metabolic disease research.
Collapse
Affiliation(s)
- David S Millington
- Duke University Medical Center, Department of Pediatrics, Durham, NC, USA
| |
Collapse
|
8
|
Vockley J, Aartsma-Rus A, Cohen JL, Cowsert LM, Howell RR, Yu TW, Wasserstein MP, Defay T. Whole-genome sequencing holds the key to the success of gene-targeted therapies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2023; 193:19-29. [PMID: 36453229 DOI: 10.1002/ajmg.c.32017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022]
Abstract
Rare genetic disorders affect as many as 3%-5% of all babies born. Approximately 10,000 such disorders have been identified or hypothesized to exist. Treatment is supportive except in a limited number of instances where specific therapies exist. Development of new therapies has been hampered by at least two major factors: difficulty in diagnosing diseases early enough to enable treatment before irreversible damage occurs, and the high cost of developing new drugs and getting them approved by regulatory agencies. Whole-genome sequencing (WGS) techniques have become exponentially less expensive and more rapid since the beginning of the human genome project, such that return of clinical data can now be achieved in days rather than years and at a cost that is comparable to other less expansive genetic testing. Thus, it is likely that WGS will ultimately become a mainstream, first-tier NBS technique at least for those disorders without appropriate high-throughput functional tests. However, there are likely to be several steps in the evolution to this end. The clinical implications of these advances are profound but highlight the bottlenecks in drug development that still limit transition to treatments. This article summarizes discussions arising from a recent National Institute of Health conference on nucleic acid therapy, with a focus on the impact of WGS in the identification of diagnosis and treatment of rare genetic disorders.
Collapse
Affiliation(s)
- Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | | | - Jennifer L Cohen
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Lex M Cowsert
- National Phenylketonuria Alliance, Eau Claire, Wisconsin, USA
| | - R Rodney Howell
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Timothy W Yu
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa P Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York, USA
| | - Thomas Defay
- Alexion AstraZeneca Rare Diseases, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Khan SA, Nidhi FNU, Amendum PC, Tomatsu S. Detection of Glycosaminoglycans in Biological Specimens. Methods Mol Biol 2023; 2619:3-24. [PMID: 36662458 PMCID: PMC10199356 DOI: 10.1007/978-1-0716-2946-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Proteoglycans (PGs) are macromolecules formed by a protein backbone to which one or more glycosaminoglycan (GAG) side chains are covalently attached. Most PGs are present in connective tissues, cell surfaces, and intracellular compartments. The major biological function of PGs derives from the GAG component of the molecule, which is involved in cell growth and proliferation, embryogenesis, maintenance of tissue hydration, and interactions of the cells via receptors. PGs are categorized into four groups based on their cellular and subcellular localization, including cell surfaces and extracellular, intracellular, and pericellular locations. GAGs are a crucial component of PGs involved in various physiological and pathological processes. GAGs also serve as biomarkers of metabolic diseases such as mucopolysaccharidoses and mucolipidoses. Detection of specific GAGs in various biological fluids helps manage various genetic metabolic disorders before it causes irreversible damage to the patient (Amendum et al., Diagnostics (Basel) 11(9):1563, 2021). There are several methods for detecting GAGs; this chapter focuses on measuring GAGs using enzyme-linked immunosorbent assay, liquid chromatographic tandem mass spectrometry, and automated high-throughput mass spectrometry.
Collapse
Affiliation(s)
- Shaukat A Khan
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - F N U Nidhi
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Paige C Amendum
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Shunji Tomatsu
- Department of Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE, USA.
- Department of Pediatrics, Shimane University, Izumo, Japan.
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Chromatomass-Spectrometric Method for the Quantitative Determination of Amino- and Carboxylic Acids in Biological Samples. Metabolites 2022; 13:metabo13010016. [PMID: 36676941 PMCID: PMC9863782 DOI: 10.3390/metabo13010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
A highly sensitive method for the qualitative and quantitative determination of amino- and carboxylic acids, as well as a number of urea and methionine cycle metabolites in the studied solutions, is presented. Derivatives (esterification) were obtained for amino acids by their reaction in a solution of 3 N of hydrochloric acid in n-butanol for 15 min at 65 °C and for carboxylic acids by their reaction with phenol in ethyl acetate with 3 N of hydrochloric acid for 20 min at 65 °C. Experimental work on the determination of individual metabolites was carried out using the HPLC-MS/MS method and included the creation of a library of spectra of the analyzed compounds and their quantitative determination. Multiplex methods have been developed for the quantitative analysis of the desired metabolites in a wide range of concentrations of 3-4 orders of magnitude. The approach to the analysis of metabolites was developed based on the method of the dynamic monitoring of multiple reactions of the formation of fragments for a mass analyzer with a triple quadrupole (QQQ). The effective chromatographic separation of endogenous metabolites was carried out within 13 min. The calibration curves of the analyzed compounds were stable throughout the concentration range and had the potential to fit below empirical levels. The developed methods and obtained experimental data are of interest for a wide range of biomedical studies, as well as for monitoring the content of endogenous metabolites in biological samples under various pathological conditions. The sensitivity limit of the methods for amino acids was about 4.8 nM and about 0.5 μM for carboxylic acids. Up to 19 amino- and up to 12 carboxy acids and about 10 related metabolites can be tested in a single sample.
Collapse
|
11
|
Stevanović-Silva J, Beleza J, Coxito P, Rocha H, Gaspar TB, Gärtner F, Correia R, Fernandes R, Oliveira PJ, Ascensão A, Magalhães J. Exercise performed during pregnancy positively modulates liver metabolism and promotes mitochondrial biogenesis of female offspring in a rat model of diet-induced gestational diabetes. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166526. [PMID: 35995315 DOI: 10.1016/j.bbadis.2022.166526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is associated with a high-risk for metabolic complications in offspring. However, exercise is recognized as a non-pharmacological strategy against metabolic disorders and is recommended in GDM treatment. This study aimed to investigate whether gestational exercise (GE) could modulate maternal high-fat high-sucrose (HFHS) diet-related hepatic metabolic and mitochondrial outcomes in female offspring of mothers with HFHS-induced GDM. Female Sprague-Dawley rats were fed with control or HFHS diet and kept sedentary or submitted to GE. Their female offspring were fed with control diet and kept sedentary. Hepatic lipid accumulation, lipid metabolism regulators, mitochondrial biogenesis and dynamics markers, and microRNAs associated to the regulation of these markers were evaluated. Female offspring of GDM mothers showed increased body weight at early age, whereas GE prevented this effect of maternal HFHS-feeding and reduced hepatic lipid accumulation. GE stimulated hepatic mRNA transcription and protein expression of mitochondrial biogenesis markers (peroxisome proliferator-activated receptor-gamma co-activator-1alpha and mitochondrial transcription factor A) and mRNA transcription of mitochondrial dynamics markers (mitofusin-1, mitofusin-2, and dynamin-related protein-1) that were altered by maternal GDM, while mitochondrial dynamics markers protein expression was not affected by maternal diet/GE except for optic atrophy-1. MicroRNAs associated with these processes (miR-122, miR-34a, miR-130b, miR-494), and the expression of auto/mitophagy- and apoptosis-related proteins were not substantially influenced by altered intrauterine environment. Our findings suggest that GE is an important regulator of the intrauterine environment positively affecting liver metabolism and promoting liver mitochondrial biogenesis in female offspring despite eventual effects of maternal HFHS-feeding and related GDM.
Collapse
Affiliation(s)
- Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
| | - Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
| | - Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal; Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal; Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal; Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology of University of Porto (Ipatimup), University of Porto, 4200-135, Porto, Portugal
| | - Rossana Correia
- HEMS - Histology and Electron Microscopy Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Rui Fernandes
- HEMS - Histology and Electron Microscopy Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; IBMC - Institute for molecular and Cell biology of Porto, 4200-135 Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
12
|
Efficient mass spectrometric characterization and classification of methylmalonic aciduria subtypes through urinary and blood metabolic profiles fusion. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zhang F, Ji B, Yan XH, Lv S, Fang F, Zhao S, Guo XL, Wu ZY. Paper-based sample processing for the fast and direct MS analysis of multiple analytes from serum samples. Analyst 2022; 147:4895-4902. [DOI: 10.1039/d2an01261h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct MS detection of amino acids obtained from serum was successfully demonstrated via a paper-based fast electrokinetic sample clean-up method.
Collapse
Affiliation(s)
- Fu Zhang
- Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Bin Ji
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiang-Hong Yan
- Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuang Lv
- Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fang Fang
- Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuang Zhao
- Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Lin Guo
- The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhi-Yong Wu
- Chemistry Department, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
14
|
Diagnosis of atypical myopathy based on organic acid and acylcarnitine profiles and evolution of biomarkers in surviving horses. Mol Genet Metab Rep 2021; 29:100827. [PMID: 34900597 PMCID: PMC8639802 DOI: 10.1016/j.ymgmr.2021.100827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background Atypical myopathy (AM), an acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in horses, induce changes in mitochondrial metabolism. Only few veterinary laboratories offer diagnostic testing for this disease. Inborn and acquired MADD exist in humans, therefore determination of organic acids (OA) in urine and acylcarnitines (AC) in blood by assays available in medical laboratories can serve as AM diagnostics. The evolution of OA and AC profiles in surviving horses is unreported. Methods AC profiles using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and OA in urine using gas chromatography mass spectrometry (GC–MS) were determined in dried blot spots (DBS, n = 7) and urine samples (n = 5) of horses with AM (n = 7) at disease presentation and in longitudinal samples from 3/4 survivors and compared to DBS (n = 16) and urine samples (n = 7) from control horses using the Wilcoxon test. Results All short- (C2-C5) and medium-chain (C6-C12) AC in blood differed significantly (p < 0.008) between horses with AM and controls, except for C5:1 (p = 0.45) and C5OH + C4DC (p = 0.06). In AM survivors the AC concentrations decreased over time but were still partially elevated after 7 days. 14/62 (23%) of OA differed significantly between horses with AM and control horses. Concentrations of ethylmalonic acid, 2-hydroxyglutaric acid and the acylglycines (butyryl-, valeryl-, and hexanoylglycine) were highly elevated in the urine of all horses with AM at the day of disease presentation. In AM survivors, concentrations of those metabolites were initially lower and decreased during remission to approach normalization after 7 days. Conclusion OA and AC profiling by specialized human medical laboratories was used to diagnose AM in horses. Elevation of specific metabolites were still evident several days after disease presentation, allowing diagnosis via analysis of samples from convalescent animals. Human medical laboratories can be used to diagnose atypical myopathy in horses. Diagnosis can be achieved by organic acid and acylcarnitine profiling. Diagnosis can also be achieved in convalescent horses. Specific metabolites are still evident several days after clinical signs start. Some metabolites differentiated between survivors and non-survivors.
Collapse
|
15
|
Chandran J, Bellad A, Ramarajan MG, Rangiah K. Applications of quantitative metabolomics to revolutionize early diagnosis of inborn errors of metabolism in India. ANALYTICAL SCIENCE ADVANCES 2021; 2:546-563. [PMID: 38715861 PMCID: PMC10989570 DOI: 10.1002/ansa.202100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of disorders caused by disruption of metabolic pathways, which leads to accumulation, decreased circulating levels, or increased excretion of metabolites as a consequence of the underlying genetic defects. These heterogeneous groups of disorders cause significant neonatal and infant mortality across the whole world and it is of utmost concern for developing countries like India owing to lack of awareness and standard preventive strategies like newborn screening (NBS). Though the predictive cumulative incidence of IEMs is said to be ∼1:800 newborns, data pertaining to the true prevalence of individual IEMs is not available in the context of Indian population. There is a need for a large population-based study to get a clear picture of the prevalence of different IEMs. One of the best ways to screen for IEMs is by applying advanced liquid chromatography-mass spectrometry (LC-MS) technology using a quantitative metabolomics approaches such as selected or multiple reaction monitoring (SRM or MRM). Recent developments in LC-MS/MRM based quantification of marker metabolites in newborns have opened a novel opportunity to screen multiple disorders simultaneously from a minuscule volume of biological fluids. In this review article, we have highlighted how LC-MS/MRM based metabolomics approach with its high sensitivity and diagnostic capability can make an impact on the nation's public health through NBS programs.
Collapse
Affiliation(s)
| | - Anikha Bellad
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Madan Gopal Ramarajan
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kannan Rangiah
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
16
|
Dubland JA, Rakić B, Vallance H, Sinclair G. Analysis of 2-methylcitric acid, methylmalonic acid, and total homocysteine in dried blood spots by LC-MS/MS for application in the newborn screening laboratory: A dual derivatization approach. J Mass Spectrom Adv Clin Lab 2021; 20:1-10. [PMID: 34820666 PMCID: PMC8601015 DOI: 10.1016/j.jmsacl.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Inborn errors of propionate, cobalamin and methionine metabolism are targets for Newborn Screening (NBS) in most programs world-wide, and are primarily screened by analyzing for propionyl carnitine (C3) and methionine in dried blood spot (DBS) cards using tandem mass spectrometry (MS/MS). Single-tier NBS approaches using C3 and methionine alone lack specificity, which can lead to an increased false-positive rate if conservative cut-offs are applied to minimize the risk of missing cases. Implementation of liquid chromatography tandem mass spectrometry (LC-MS/MS) second-tier testing for 2-methylcitric acid (MCA), methylmalonic acid (MMA), and homocysteine (HCY) from the same DBS card can improve disease screening performance by reducing the false-positive rate and eliminating the need for repeat specimen collection. However, DBS analysis of MCA, MMA, and HCY by LC-MS/MS is challenging due to limited specimen size and analyte characteristics leading to a combination of low MS/MS sensitivity and poor reverse-phase chromatographic retention. Sufficient MS response and analytical performance can be achieved for MCA by amidation using DAABD-AE and by butylation for MMA and HCY. Herein we describe the validation of a second-tier dual derivatization LC-MS/MS approach to detect elevated MCA, MMA, and HCY in DBS cards for NBS. Clinical utility was demonstrated by retrospective analysis of specimens, an interlaboratory method comparison, and assessment of external proficiency samples. Imprecision was <10.8% CV, with analyte recoveries between 90.2 and 109.4%. Workflows and analytical performance characteristics of this second-tier LC-MS/MS approach are amenable to implementation in the NBS laboratory.
Collapse
Key Words
- 2-Methylcitric acid
- C2, acetylcarnitine
- C3, propionylcarnitine
- CBS, cystathionine β-synthase
- Cbl, cobalamin
- DAABD-AE, 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole
- DBS, dried blood spot
- DMAP, 4-(dimethylamino)pyridine
- DTT, dithiothreitol
- EDC, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
- ESI, electrospray ionization
- FA, formic acid
- GC, gas chromatography
- GPCho’s, glycerophosphocholines
- HCY, homocysteine
- HCl, hydrochloric acid
- Homocysteine
- LC, liquid chromatography
- LLOD, lower limit of detection
- LLOQ, lower limit of quantitation
- MCA, 2-methylcitric acid
- MMA, methylmalonic acid
- MPs, mobile phases
- MRM, multiple reaction monitoring
- MS, mass spectrometry
- MS/MS, tandem mass spectrometry
- Mass spectrometry
- Met, methionine
- Methylmalonic acid
- NBS, newborn screening
- Newborn screening
- PPV, positive predictive value
- Phe, phenylalanine
- QC, quality control
- S/N, signal-to-noise
- Second-tier
- rpm, revolutions per minute
Collapse
Affiliation(s)
- Joshua A. Dubland
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Corresponding author at: British Columbia Children’s Hospital, Department of Pathology and Laboratory Medicine, Room 2F17, 4500 Oak St, Vancouver, BC V6H 3N1, Canada.
| | - Bojana Rakić
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hilary Vallance
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Graham Sinclair
- Department of Pathology and Laboratory Medicine, British Columbia Children’s Hospital, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Fully Automated Quantitative Measurement of Serum Organic Acids via LC-MS/MS for the Diagnosis of Organic Acidemias: Establishment of an Automation System and a Proof-of-Concept Validation. Diagnostics (Basel) 2021; 11:diagnostics11122195. [PMID: 34943431 PMCID: PMC8700112 DOI: 10.3390/diagnostics11122195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Gas chromatography-mass spectrometry has been widely used to analyze hundreds of organic acids in urine to provide a diagnostic basis for organic acidemia. However, it is difficult to operate in clinical laboratories on a daily basis due to sample pretreatment processing. Therefore, we aimed to develop a fully automated system for quantifying serum organic acids using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The pretreatment CLAM-2030 device was connected to an LC-MS/MS system for processing serum under optimized conditions, which included derivatizing serum organic acids using 3-Nitrophenylhydrazine. The derivatized organic acids were separated on a reverse-phase Sceptor HD-C column and detected using negative-ion electrospray ionization multiple reaction monitoring MS. The automated pretreatment-LC-MS/MS system processed serum in less than 1 h and analyzed 19 serum organic acids, which are used to detect organic acidemias. The system exhibited high quantitative sensitivity ranging from approximately 2 to 100 µM with a measurement reproducibility of 10.4% CV. Moreover, a proof-of-concept validation of the system was performed using sera from patients with propionic acidemia (n = 5), methylmalonic acidemia (n = 2), and 3-methylcrotonylglycinuria (n = 1). The levels of marker organic acids specific to each disease were significantly elevated in the sera of the patients compared to those in control samples. The automated pretreatment-LC-MS/MS system can be used as a rapid in-hospital system to measure organic acid levels in serum for the diagnosis of organic acidemias.
Collapse
|
18
|
|
19
|
Alsharhan H, Ahmed AA, Ali NM, Alahmad A, Albash B, Elshafie RM, Alkanderi S, Elkazzaz UM, Cyril PX, Abdelrahman RM, Elmonairy AA, Ibrahim SM, Elfeky YME, Sadik DI, Al-Enezi SD, Salloum AM, Girish Y, Al-Ali M, Ramadan DG, Alsafi R, Al-Rushood M, Bastaki L. Early Diagnosis of Classic Homocystinuria in Kuwait through Newborn Screening: A 6-Year Experience. Int J Neonatal Screen 2021; 7:ijns7030056. [PMID: 34449519 PMCID: PMC8395821 DOI: 10.3390/ijns7030056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Kuwait is a small Arabian Gulf country with a high rate of consanguinity and where a national newborn screening program was expanded in October 2014 to include a wide range of endocrine and metabolic disorders. A retrospective study conducted between January 2015 and December 2020 revealed a total of 304,086 newborns have been screened in Kuwait. Six newborns were diagnosed with classic homocystinuria with an incidence of 1:50,000, which is not as high as in Qatar but higher than the global incidence. Molecular testing for five of them has revealed three previously reported pathogenic variants in the CBS gene, c.969G>A, p.(Trp323Ter); c.982G>A, p.(Asp328Asn); and the Qatari founder variant c.1006C>T, p.(Arg336Cys). This is the first study to review the screening of newborns in Kuwait for classic homocystinuria, starting with the detection of elevated blood methionine and providing a follow-up strategy for positive results, including plasma total homocysteine and amino acid analyses. Further, we have demonstrated an increase in the specificity of the current newborn screening test for classic homocystinuria by including the methionine to phenylalanine ratio along with the elevated methionine blood levels in first-tier testing. Here, we provide evidence that the newborn screening in Kuwait has led to the early detection of classic homocystinuria cases and enabled the affected individuals to lead active and productive lives.
Collapse
Affiliation(s)
- Hind Alsharhan
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
- Correspondence: ; Tel.: +965-60600106 or +965-25319486
| | - Amir A. Ahmed
- Newborn Screening Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.A.); (R.M.A.); (M.A.-R.)
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Naser M. Ali
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Ahmad Alahmad
- Molecular Genetics Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.); (S.D.A.-E.)
| | - Buthaina Albash
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| | - Reem M. Elshafie
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Sumaya Alkanderi
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Usama M. Elkazzaz
- Newborn Screening Office, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait;
| | | | - Rehab M. Abdelrahman
- Newborn Screening Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.A.); (R.M.A.); (M.A.-R.)
| | - Alaa A. Elmonairy
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| | - Samia M. Ibrahim
- Newborn Screening Office, Al-Sabah Maternity Hospital, Ministry of Health, Sulaibikhat 80901, Kuwait;
| | - Yasser M. E. Elfeky
- Newborn Screening Office, Jahra Hospital, Ministry of Health, Jahra 00020, Kuwait;
| | - Doaa I. Sadik
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| | - Sara D. Al-Enezi
- Molecular Genetics Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.); (S.D.A.-E.)
| | - Ayman M. Salloum
- Biochemistry Laboratory, Al-Sabah Hospital, Ministry of Health, Shuwaikh 70051, Kuwait;
| | - Yadav Girish
- Clinical Biochemistry Laboratory, Ibn Sina Hospital, Ministry of Health, Shuwaikh, P.O. Box 25427, Safat 13115, Kuwait;
| | - Mohammad Al-Ali
- Next Generation Sequencing Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (N.M.A.); (M.A.-A.)
| | - Dina G. Ramadan
- Department of Pediatrics, Al-Sabah Hospital, Ministry of Health, Shuweikh 70051, Kuwait;
| | - Rasha Alsafi
- Department of Pediatrics, Adan Hospital, Ministry of Health, Hadiya 52700, Kuwait;
| | - May Al-Rushood
- Newborn Screening Laboratory, Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (A.A.A.); (R.M.A.); (M.A.-R.)
| | - Laila Bastaki
- Kuwait Medical Genetics Center, Ministry of Health, Sulaibikhat 80901, Kuwait; (B.A.); (R.M.E.); (S.A.); (A.A.E.); (D.I.S.); (L.B.)
| |
Collapse
|
20
|
Morch MT, Khorooshi R, Marczynska J, Dubik M, Nielsen S, Nieland JD, Asgari N, Owens T. Mitochondria-A target for attenuation of astrocyte pathology. J Neuroimmunol 2021; 358:577657. [PMID: 34315069 DOI: 10.1016/j.jneuroim.2021.577657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Astrocyte pathology is a feature of neuromyelitis optica spectrum disorder (NMOSD) pathology. Recently mitochondrial dysfunction and metabolic changes were suggested to play a role in NMOSD. To elucidate the role of mitochondrial dysfunction, astrocyte pathology was induced in C57BL/6 J female mice by intracerebral injection of aquaporin-4-immunoglobulin G from an NMOSD patient, together with complement. Etomoxir has been shown to cause mitochondrial dysfunction. Etomoxir was delivered to the central nervous system and resulted in decreased astrocyte pathology. The ameliorating effect was associated with increases in different acylcarnitines and amino acids. This suggests that mitochondria may be a therapeutic target in NMOSD.
Collapse
Affiliation(s)
- Marlene Thorsen Morch
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, 5000 Odense C, Denmark.
| | - Reza Khorooshi
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, 5000 Odense C, Denmark.
| | - Joanna Marczynska
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, 5000 Odense C, Denmark.
| | - Magdalena Dubik
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark.
| | - Soeren Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg East, Denmark.
| | - John Dirk Nieland
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg East, Denmark.
| | - Nasrin Asgari
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, 5000 Odense C, Denmark; Department of Neurology, Slagelse Hospital, Institute of Regional Health Research, 4200 Slagelse, Denmark.
| | - Trevor Owens
- Neurobiology Research, Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark; BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, 5000 Odense C, Denmark.
| |
Collapse
|
21
|
Different Lipid Signature in Fibroblasts of Long-Chain Fatty Acid Oxidation Disorders. Cells 2021; 10:cells10051239. [PMID: 34069977 PMCID: PMC8157847 DOI: 10.3390/cells10051239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Long-chain fatty acid oxidation disorders (lc-FAOD) are a group of diseases affecting the degradation of long-chain fatty acids. In order to investigate the disease specific alterations of the cellular lipidome, we performed undirected lipidomics in fibroblasts from patients with carnitine palmitoyltransferase II, very long-chain acyl-CoA dehydrogenase, and long-chain 3-hydroxyacyl-CoA dehydrogenase. We demonstrate a deep remodeling of mitochondrial cardiolipins. The aberrant phosphatidylcholine/phosphatidylethanolamine ratio and the increased content of plasmalogens and of lysophospholipids support the theory of an inflammatory phenotype in lc-FAOD. Moreover, we describe increased ratios of sphingomyelin/ceramide and sphingomyelin/hexosylceramide in LCHAD deficiency which may contribute to the neuropathic phenotype of LCHADD/mitochondrial trifunctional protein deficiency.
Collapse
|
22
|
Stevanović-Silva J, Beleza J, Coxito P, Pereira S, Rocha H, Gaspar TB, Gärtner F, Correia R, Martins MJ, Guimarães T, Martins S, Oliveira PJ, Ascensão A, Magalhães J. Maternal high-fat high-sucrose diet and gestational exercise modulate hepatic fat accumulation and liver mitochondrial respiratory capacity in mothers and male offspring. Metabolism 2021; 116:154704. [PMID: 33421507 DOI: 10.1016/j.metabol.2021.154704] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Maternal high-caloric nutrition and related gestational diabetes mellitus (GDM) are associated with a high-risk for developing metabolic complications later in life and in their offspring. In contrast, exercise is recognized as a non-pharmacological strategy against metabolic dysfunctions associated to lifestyle disorders. Therefore, we investigated whether gestational exercise delays the development of metabolic alterations in GDM mothers later in life, but also protects 6-week-old male offspring from adverse effects of maternal diet. METHODS Female Sprague-Dawley rats were fed with either control (C) or high-fat high-sucrose (HFHS) diet to induce GDM and submitted to gestational exercise during the 3 weeks of pregnancy. Male offspring were sedentary and fed with C-diet. RESULTS Sedentary HFHS-fed dams exhibited increased gestational body weight gain (p < 0.01) and glucose intolerance (p < 0.01), characteristic of GDM. Their offspring had normal glucose metabolism, but increased early-age body weight, which was reverted by gestational exercise. Gestational exercise also reduced offspring hepatic triglycerides accumulation (p < 0.05) and improved liver mitochondrial respiration capacity (p < 0.05), contributing to the recovery of liver bioenergetics compromised by maternal HFHS diet. Interestingly, liver mitochondrial respiration remained increased by gestational exercise in HFHS-fed dams despite prolonged HFHS consumption and exercise cessation. CONCLUSIONS Gestational exercise can result in liver mitochondrial adaptations in GDM animals, which can be preserved even after the exercise program cessation. Exposure to maternal GDM programs liver metabolic setting of male offspring, whereas gestational exercise appears as an important preventive tool against maternal diet-induced metabolic alterations.
Collapse
Affiliation(s)
- Jelena Stevanović-Silva
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal.
| | - Jorge Beleza
- Department of Cell Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Pedro Coxito
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - Susana Pereira
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal; CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
| | - Tiago Bordeira Gaspar
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal; Medical Faculty of University of Porto (FMUP), 4200-139 Porto, Portugal; Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Fátima Gärtner
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal; Glycobiology in Cancer Group, Institute of Molecular Pathology and Immunology of University of Porto (Ipatimup), University of Porto, 4200-135 Porto, Portugal
| | - Rossana Correia
- HEMS - Histology and Electron Microscopy Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135, Porto, Portugal,; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria João Martins
- Institute for Research and Innovation in Health Sciences (i3S), University of Porto, 4200-135 Porto, Portugal; Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Tiago Guimarães
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Clinical Pathology, São João Hospital Centre, EPE, 4200-319 Porto, Portugal
| | - Sandra Martins
- Department of Clinical Pathology, São João Hospital Centre, EPE, 4200-319 Porto, Portugal; EPIUnit, Institute of Public Health, University of Porto, 4050-091 Porto, Portugal
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - António Ascensão
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450, Porto, Portugal
| |
Collapse
|
23
|
Abstract
Dried blood spot (DBS) technology has become a promising utility for the transportation and storage of biological fluids aimed for the subsequent clinical analysis. The basis of the DBS method is the adsorption of the components of a biological sample onto the surface of a membrane carrier, followed by drying. After drying, the molecular components of the biosample (nucleic acids, proteins, and metabolites) can be analyzed using modern omics, immunological, or genomic methods. In this work, we investigated the safety of proteins on a membrane carrier by tryptic components over time and at different temperatures (+4, 0, 25 °C) and storage (0, 7, 14, and 35 days). It was shown that the choice of a protocol for preliminary sample preparation for subsequent analytical molecular measurements affects the quality of the experimental results. The protocol for preliminary preparation of a biosample directly in a membrane carrier is preferable compared to the protocol with an additional stage of elution of molecular components before the sample preparation procedures. It was revealed that the composition of biosamples remains stable at a temperature of −20 and +4 °C for 35 days of storage, and at +25 °C for 14 days.
Collapse
|
24
|
Fraga-Corral M, Carpena M, Garcia-Oliveira P, Pereira AG, Prieto MA, Simal-Gandara J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit Rev Anal Chem 2020; 52:712-734. [DOI: 10.1080/10408347.2020.1823811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - J. Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| |
Collapse
|
25
|
Effects of Multi-Strain Probiotics on Immune Responses and Metabolic Balance in Helicobacter pylori-Infected Mice. Nutrients 2020; 12:nu12082476. [PMID: 32824501 PMCID: PMC7468736 DOI: 10.3390/nu12082476] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation caused by Helicobacter pylori infection increases the risk of developing gastric cancer. Even though the prevalence of H. pylori infection has been decreased in many regions, the development of antibiotic resistance strains has increased the difficulty of eradicating H. pylori. Therefore, exploring alternative approaches to combat H. pylori infection is required. It is well-known that probiotic therapy can improve H. pylori clearance. In this study, H. pylori-infected mice were treated with Lactobacillus fermentum P2 (P2), L. casei L21 (L21), L. rhamnosus JB3 (JB3), or a mixture including the aforementioned three (multi-LAB) for three days. All the lactic acid producing bacteria (LAB) treatments decreased H. pylori loads in the stomach and vacA gene expression, H. pylori specific immunoglobulin (Ig) A, and IgM levels in stomach homogenates, as well as serum levels of interferon-gamma and interleukin-1 beta. The multi-LAB and JB3 treatments further restored the superoxide dismutase and catalase activities suppressed by H. pylori infection. Furthermore, H. pylori infection decreased serum concentrations of 15 kinds of amino acids as well as palmitic acid. The multi-LAB treatment was able to recover the serum levels of alanine, arginine, aspartate, glycine, and tryptophan, which are all important in modulating immune functions. In addition, butyric acid, valeric acid, palmitic acid, palmitoleic acid, stearic acid, and oleic acid levels were increased. In this study, multi-LAB revealed its ability to adjust the composition of metabolites to improve health. To date, the mechanisms underlying how LAB strains crosstalk with the host are not fully understood. Identifying the mechanisms which are regulated by LABs will facilitate the development of effective therapies for infection in the future.
Collapse
|
26
|
Zhu Z, Gu J, Genchev GZ, Cai X, Wang Y, Guo J, Tian G, Lu H. Improving the Diagnosis of Phenylketonuria by Using a Machine Learning-Based Screening Model of Neonatal MRM Data. Front Mol Biosci 2020; 7:115. [PMID: 32733913 PMCID: PMC7358370 DOI: 10.3389/fmolb.2020.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/18/2020] [Indexed: 12/03/2022] Open
Abstract
Phenylketonuria (PKU) is a common genetic metabolic disorder that affects the infant's nerve development and manifests as abnormal behavior and developmental delay as the child grows. Currently, a triple–quadrupole mass spectrometer (TQ-MS) is a common high-accuracy clinical PKU screening method. However, there is high false-positive rate associated with this modality, and its reduction can provide a diagnostic and economic benefit to both pediatric patients and health providers. Machine learning methods have the advantage of utilizing high-dimensional and complex features, which can be obtained from the patient's metabolic patterns and interrogated for clinically relevant knowledge. In this study, using TQ-MS screening data of more than 600,000 patients collected at the Newborn Screening Center of Shanghai Children's Hospital, we derived a dataset containing 256 PKU-suspected cases. We then developed a machine learning logistic regression analysis model with the aim to minimize false-positive rates in the results of the initial PKU test. The model attained a 95–100% sensitivity, the specificity was improved 53.14%, and positive predictive value increased from 19.14 to 32.16%. Our study shows that machine learning models may be used as a pediatric diagnosis aid tool to reduce the number of suspected cases and to help eliminate patient recall. Our study can serve as a future reference for the selection and evaluation of computational screening methods.
Collapse
Affiliation(s)
- Zhixing Zhu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai, China
| | - Jianlei Gu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai, China.,Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China.,Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
| | - Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai, China
| | - Yangmin Wang
- Newborn Screening Center, Shanghai Children's Hospital, Shanghai, China
| | - Jing Guo
- Newborn Screening Center, Shanghai Children's Hospital, Shanghai, China
| | - Guoli Tian
- Newborn Screening Center, Shanghai Children's Hospital, Shanghai, China
| | - Hui Lu
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai, China.,Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Khan SA, Mason RW, Kobayashi H, Yamaguchi S, Tomatsu S. Advances in glycosaminoglycan detection. Mol Genet Metab 2020; 130:101-109. [PMID: 32247585 PMCID: PMC7198342 DOI: 10.1016/j.ymgme.2020.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Glycosaminoglycans (GAGs) are negatively charged long linear (highly sulfated) polysaccharides consisting of repeating disaccharide units that are expressed on the surfaces of all nucleated cells. The expression of GAGs is required for embryogenesis, regulation of cell growth and proliferation, maintenance of tissue hydration, and interactions of the cells via receptors. Mucopolysaccharidoses (MPS) are caused by deficiency of specific lysosomal enzymes that result in the accumulation of GAGs in multiple tissues leading to organ dysfunction. Therefore, GAGs are important biomarkers for MPS. Without any treatment, patients with severe forms of MPS die within the first two decades of life. SCOPE OF REVIEW Accurate measurement of GAGs is important to understand the diagnosis and pathogenesis of MPS and to monitor therapeutic efficacy before, during, and after treatment of the disease. This review covers various qualitative and quantitative methods for measurement of GAGs, including dye specific, thin layer chromatography (TLC), capillary electrophoresis, high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography, ELISA, and automated high-throughput mass spectrometry. Major conclusion: There are several methods for GAG detection however, specific GAG detection in the various biological systems requires rapid, sensitive, specific, and cost-effective methods such as LC-MS/MS. GENERAL SIGNIFICANCE This review will describe different methods for GAG detection and analysis, including their advantages and limitation.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Shimane, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Pediatrics, Shimane University, Shimane, Japan; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Brennenstuhl H, Kohlmüller D, Gramer G, Garbade SF, Syrbe S, Feyh P, Kölker S, Okun JG, Hoffmann GF, Opladen T. High throughput newborn screening for aromatic ʟ-amino-acid decarboxylase deficiency by analysis of concentrations of 3-O-methyldopa from dried blood spots. J Inherit Metab Dis 2020; 43:602-610. [PMID: 31849064 DOI: 10.1002/jimd.12208] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/06/2022]
Abstract
Aromatic l-amino-acid decarboxylase (AADC) deficiency is an inherited disorder of biogenic amine metabolism with a broad neurological phenotype. The clinical symptoms overlap with other diseases resulting in an often delayed diagnosis. Innovative disease-changing treatment options, particularly gene therapy, have emphasised the need for an early diagnosis. We describe the first method for 3-O-methyldopa (3-OMD) analysis in dried blood spots (DBS) suitable for high throughput newborn screening (NBS). We established a novel tandem mass spectrometry method to quantify 3-OMD in DBS and successfully tested it in 38 888 unaffected newborns, 14 heterozygous DDC variant carriers, seven known AADC deficient patients, and 1079 healthy control subjects. 3-OMD concentrations in 38 888 healthy newborns revealed a mean of 1.16 μmol/L (SD = 0.31, range 0.31-4.6 μmol/L). 1079 non-AADC control subjects (0-18 years) showed a mean 3-OMD concentration of 0.78 μmol/L (SD = 1.75, range 0.24-2.36 μmol/L) with a negative correlation with age. Inter- and intra-assay variability was low, and 3-OMD was stable over 32 days under different storage conditions. We identified seven confirmed AADC deficient patients (mean 3-OMD 9.88 μmol/L [SD = 13.42, range 1.82-36.93 μmol/L]). The highest concentration of 3-OMD was found in a NBS filter card of a confirmed AADC deficient patient with a mean 3-OMD of 35.95 μmol/L. 14 DDC variant carriers showed normal 3-OMD concentrations. We demonstrate a novel high-throughput method to measure 3-OMD in DBS, which allows integration in existing NBS programs enabling early diagnosis of AADC deficiency.
Collapse
Affiliation(s)
- Heiko Brennenstuhl
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Dirk Kohlmüller
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Gwendolyn Gramer
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Sven F Garbade
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Steffen Syrbe
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Patrik Feyh
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Stefan Kölker
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Jürgen G Okun
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| | - Thomas Opladen
- Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Children's Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Yan X, Markey SP, Marupaka R, Dong Q, Cooper BT, Mirokhin YA, Wallace WE, Stein SE. Mass Spectral Library of Acylcarnitines Derived from Human Urine. Anal Chem 2020; 92:6521-6528. [PMID: 32271007 DOI: 10.1021/acs.analchem.0c00129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the creation of a mass spectral library of acylcarnitines and conjugated acylcarnitines from the LC-MS/MS analysis of six NIST urine reference materials. To recognize acylcarnitines, we conducted in-depth analyses of fragmentation patterns of acylcarnitines and developed a set of rules, derived from spectra in the NIST17 Tandem MS Library and those identified in urine, using the newly developed hybrid search method. Acylcarnitine tandem spectra were annotated with fragments from carnitine and acyl moieties as well as neutral loss peaks from precursors. Consensus spectra were derived from spectra having similar retention time, fragmentation pattern, and the same precursor m/z and collision energy. The library contains 157 different precursor masses, 586 unique acylcarnitines, and 4 332 acylcarnitine consensus spectra. Furthermore, from spectra that partially satisfied the fragmentation rules of acylcarnitines, we identified 125 conjugated acylcarnitines represented by 987 consensus spectra, which appear to originate from Phase II biotransformation reactions. To our knowledge, this is the first report of conjugated acylcarnitines. The mass spectra provided by this work may be useful for clinical screening of acylcarnitines as well as for studying relationships among fragmentation patterns, collision energies, structures, and retention times of acylcarnitines. Further, these methods are extensible to other classes of metabolites.
Collapse
Affiliation(s)
- Xinjian Yan
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Sanford P Markey
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Ramesh Marupaka
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Qian Dong
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Brian T Cooper
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Yuri A Mirokhin
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - William E Wallace
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Stephen E Stein
- Mass Spectrometry Data Center, Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| |
Collapse
|
30
|
Wentland L, Polaski R, Fu E. Characterization methods in porous materials for the rational design of multi-step processing in the context of a paper microfluidic phenylalanine test. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:768-780. [PMID: 34887944 PMCID: PMC8654261 DOI: 10.1039/c9ay02500f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A promising application of paper microfluidics is the translation of gold-standard multi-step laboratory tests to a disposable paper-based format for decentralized diagnostic or therapeutic testing. This often entails conversion of bench-top processing of macro-volume samples to the processing of micro-volume samples within a porous matrix, and requires detailed characterization of fluid and reagent interactions within the porous material(s) of the device. The current study focuses on rational device design through the characterization of fluid and reagent interactions in polysulfone and glass fiber substrates for multi-step sample processing. Specifically, we demonstrate how the characterization of fluidic compatibility between substrates, chemical compatibility between reagents and substrates, sample pH, and sample transport can be used to inform device design in the context of a two-reaction detection scheme for phenylalanine in porous materials. Finally, we demonstrate detection of phenylalanine from human whole blood, and discuss the multiple strengths of the current design over a previous version.
Collapse
Affiliation(s)
- Lael Wentland
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331
| | - Rachel Polaski
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331
| | - Elain Fu
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
31
|
Biomarker profiling of vitamin responsive seizures: a potential tool to detect pediatric seizures of unknown aetiology. Bioanalysis 2019; 12:111-124. [PMID: 31854203 DOI: 10.4155/bio-2019-0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim: Certain rare inborn errors of metabolism clinically present with intractable seizures that readily respond to vitamin therapy. If identified early, brain damage due to seizures can be prevented. Methodology: A LC-MS method was developed and validated for the simultaneous quantification of the biomarkers in selected vitamin responsive pediatric seizures from dried blood spots. Results: Application of the validated method to a seizure cohort of 46 patients indicated strong agreement of the method for clinical validity. Reference intervals for these biomarkers in dried blood spots were also determined for the population, after screening 956 neonates. Conclusion: The developed method was seen to be sensitive, linear, accurate and precise for testing vitamin responsive pediatric seizures.
Collapse
|
32
|
Peng MZ, Cai YN, Shao YX, Zhao L, Jiang MY, Lin YT, Yin X, Sheng HY, Liu L. Simultaneous quantification of 48 plasma amino acids by liquid chromatography-tandem mass spectrometry to investigate urea cycle disorders. Clin Chim Acta 2019; 495:406-416. [DOI: 10.1016/j.cca.2019.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 05/11/2019] [Accepted: 05/11/2019] [Indexed: 12/30/2022]
|
33
|
Delgado CA, Balbueno Guerreiro GB, Diaz Jacques CE, de Moura Coelho D, Sitta A, Manfredini V, Wajner M, Vargas CR. Prevention by L-carnitine of DNA damage induced by 3-hydroxy-3-methylglutaric and 3-methylglutaric acids and experimental evidence of lipid and DNA damage in patients with 3-hydroxy-3-methylglutaric aciduria. Arch Biochem Biophys 2019; 668:16-22. [PMID: 31047871 DOI: 10.1016/j.abb.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022]
Abstract
3-hydroxy-3-methylglutaric aciduria (HMGA) is an inherited disorder of the leucine catabolic pathway in which occurs a deficiency of the 3-hydroxy-3-methylglutaryl-CoA lyase enzyme. Therefore, the organic acids 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA), mainly, accumulate in tissues of affected patients. Lately, much attention has been focused on free radicals as mediators of tissue damage in human diseases, causing lipid peroxidation, protein oxidation and DNA damage. The treatment of this disease is based in a restricted protein ingest and supplementation with l-carnitine (LC), an antioxidant and detoxifying agent. In the present work, we investigated the in vitro oxidative damage to DNA induced by the accumulation of organic acids and oxidative stress parameters in vivo of patients with 3-HMG, as well as the effect of the recommended therapy. The in vitro DNA damage was analyzed by the alkaline comet assay in leukocytes incubated with HMG and MGA (1 mM, 2.5 mM and 5 mM) and co-incubated with LC (90 μM and 150 μM). The in vivo urinary 15-F2t-isoprostane levels and urinary oxidized guanine species were measured by ELISA kits in patient's urine before and after the treatment with LC. HMG and MGA induced a DNA damage index (DI) significantly higher than that of the control group. The DI was significantly reduced in the presence of LC. It was also verified a significant increase of oxidized guanine species and urinary isoprostane levels, biomarker of oxidative DNA damage and lipid peroxidation respectively, in patients before treatment. After the treatment and supplementation with LC, patients presented significantly lower levels of those biomarkers. Analyzing the data together, we can conclude that HMGA patients present oxidative lipid and DNA damage, which is induced by HMG and MGA, and the antioxidant therapy with LC can prevent that kind of injuries.
Collapse
Affiliation(s)
- Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 27522, CEP, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R.Ramiro Barcelos, 2350, CEP, 90035-003, Porto Alegre, RS, Brazil.
| | - Gilian Batista Balbueno Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 27522, CEP, 90610-000, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R.Ramiro Barcelos, 2350, CEP, 90035-003, Porto Alegre, RS, Brazil
| | - Carlos Eduardo Diaz Jacques
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R.Ramiro Barcelos, 2600, CEP, 90035-03, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R.Ramiro Barcelos, 2350, CEP, 90035-003, Porto Alegre, RS, Brazil
| | - Daniella de Moura Coelho
- Serviço de Genética Médica, HCPA, R.Ramiro Barcelos, 2350, CEP, 90035-003, Porto Alegre, RS, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, R.Ramiro Barcelos, 2350, CEP, 90035-003, Porto Alegre, RS, Brazil
| | - Vanusa Manfredini
- Programa de Pós-Graduação em Bioquímica, BR 427 Km 585, 118, Universidade Federal do Pampa, CEP, 97500-970, Uruguaiana, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R.Ramiro Barcelos, 2600, CEP, 90035-03, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R.Ramiro Barcelos, 2350, CEP, 90035-003, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 27522, CEP, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R.Ramiro Barcelos, 2600, CEP, 90035-03, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, R.Ramiro Barcelos, 2350, CEP, 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
34
|
Gibson EJ, Bucknall MP, Golebiowski B, Stapleton F. Comparative limitations and benefits of liquid chromatography – mass spectrometry techniques for analysis of sex steroids in tears. Exp Eye Res 2019; 179:168-178. [DOI: 10.1016/j.exer.2018.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
|
35
|
Al-Hamed MH, Imtiaz F, Al-Hassnan Z, Al-Owain M, Al-Zaidan H, Alamoudi MS, Faqeih E, Alfadhel M, Al-Asmari A, Saleh MM, Almutairi F, Moghrabi N, AlSayed M. Spectrum of mutations underlying Propionic acidemia and further insight into a genotype-phenotype correlation for the common mutation in Saudi Arabia. Mol Genet Metab Rep 2019; 18:22-29. [PMID: 30705822 PMCID: PMC6349011 DOI: 10.1016/j.ymgmr.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
Propionic acidemia (PA) is an autosomal recessive metabolic disorder. PA is characterized by deficiency of the mitochondrial enzyme propionyl CoA carboxylase (PCC) that results in the accumulation of propionic acid. Alpha and beta subunits of the PCC enzyme are encoded by the PCCA and PCCB genes, respectively. Pathogenic variants in PCCA or PCCB disrupt the function of the PCC enzyme preventing the proper breakdown of certain amino acids and metabolites. To determine the frequency of pathogenic variants in PA in our population, 84 Saudi Arabian patients affected with PA were sequenced for both the PCCA and PCCB genes. We found that variants in PCCA accounted for 81% of our cohort (68 patients), while variants in PCCB only accounted for 19% (16 patients). In total, sixteen different sequence variants were detected in the study, where 7 were found in PCCA and 9 in PCCB. The pathogenic variant (c.425G > A; p.Gly142Asp) in PCCA is the most common cause of PA in our cohort and was found in 59 families (70.2%), followed by the frameshift variant (c.990dupT; p.E331Xfs*1) in PCCB that was found in 7 families (8.3%). The p.Gly142Asp missense variant is likely to be a founder pathogenic variant in patients of Saudi Arabian tribal origin and is associated with a severe phenotype. All variants were inherited in a homozygous state except for one family who was compound heterozygous. A total of 11 novel pathogenic variants were detected in this study thereby increasing the known spectrum of pathogenic variants in the PCCA and PCCB genes.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Mohamed S Alamoudi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Eissa Faqeih
- Department of Genetics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Ali Al-Asmari
- Department of Genetics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M M Saleh
- Department of Genetics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fuad Almutairi
- Division of Genetics, Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Nabil Moghrabi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Moeenaldeen AlSayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
36
|
Chong YK, Ho CC, Leung SY, Lau SK, Woo PC. Clinical Mass Spectrometry in the Bioinformatics Era: A Hitchhiker's Guide. Comput Struct Biotechnol J 2018; 16:316-334. [PMID: 30237866 PMCID: PMC6138949 DOI: 10.1016/j.csbj.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Mass spectrometry (MS) is a sensitive, specific and versatile analytical technique in the clinical laboratory that has recently undergone rapid development. From initial use in metabolic profiling, it has matured into applications including clinical toxicology assays, target hormone and metabolite quantitation, and more recently, rapid microbial identification and antimicrobial resistance detection by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In this mini-review, we first succinctly outline the basics of clinical mass spectrometry. Examples of hard ionization (electron ionization) and soft ionization (electrospray ionization, MALDI) are presented to demonstrate their clinical applications. Next, a conceptual discourse on mass selection and determination is presented: quadrupole mass filter, time-of-flight mass spectrometer and the Orbitrap; and MS/MS (tandem-in-space, tandem-in-time and data acquisition), illustrated with clinical examples. Current applications in (1) bacterial and fungal identification, antimicrobial susceptibility testing and phylogenetic classification, (2) general unknown urine toxicology screening and expanded new-born metabolic screening and (3) clinical metabolic profiling by gas chromatography are outlined. Finally, major limitations of MS-based techniques, including the technical challenges of matrix effect and isobaric interference; and novel challenges in the post-genomic era, such as protein molecular variants, are critically discussed from the perspective of service laboratories. Computer technology and structural biology have played important roles in the maturation of this field. MS-based techniques have the potential to replace current analytical techniques, and existing expertise and instrument will undergo rapid evolution. Significant automation and adaptation to regulatory requirements are underway. Mass spectrometry is unleashing its potentials in clinical laboratories.
Collapse
Affiliation(s)
- Yeow-Kuan Chong
- Hospital Authority Toxicology Reference Laboratory, Department of Pathology, Princess Margaret Hospital (PMH), Kowloon, Hong Kong
- Chemical Pathology and Medical Genetics, Department of Pathology, Princess Margaret Hospital (PMH), Kowloon, Hong Kong
| | - Chi-Chun Ho
- Division of Chemical Pathology, Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital (PYNEH), Hong Kong
- Division of Clinical Biochemistry, Department of Pathology, Queen Mary Hospital (QMH), Hong Kong
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Shui-Yee Leung
- Department of Ocean Science, School of Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Susanna K.P. Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| | - Patrick C.Y. Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Hong Kong
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong
| |
Collapse
|
37
|
MacDonald A, Webster R, Whitlock M, Gerrard A, Daly A, Preece MA, Evans S, Ashmore C, Chakrapani A, Vijay S, Santra S. The safety of Lipistart, a medium-chain triglyceride based formula, in the dietary treatment of long-chain fatty acid disorders: a phase I study. J Pediatr Endocrinol Metab 2018; 31:297-304. [PMID: 29425111 DOI: 10.1515/jpem-2017-0426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Children with long-chain fatty acid β-oxidation disorders (LCFAOD) presenting with clinical symptoms are treated with a specialist infant formula, with medium chain triglyceride (MCT) mainly replacing long chain triglyceride (LCT). It is essential that the safety and efficacy of any new specialist formula designed for LCFAOD be tested in infants and children. METHODS In an open-label, 21-day, phase I trial, we studied the safety of a new MCT-based formula (feed 1) in six well-controlled children (three male), aged 7-13 years (median 9 years) with LCFAOD (very long chain acyl CoA dehydrogenase deficiency [VLCADD], n=2; long chain 3-hydroxyacyl CoA dehydrogenase deficiency [LCHADD], n=2; carnitine acyl carnitine translocase deficiency [CACTD], n=2). Feed 1 (Lipistart; Vitaflo) contained 30% energy from MCT, 7.5% LCT and 3% linoleic acid and it was compared with a conventional MCT feed (Monogen; Nutricia) (feed 2) containing 17% energy from MCT, 3% LCT and 1.1% linoleic acid. Subjects consumed feed 2 for 7 days then feed 1 for 7 days and finally resumed feed 2 for 7 days. Vital signs, blood biochemistry, ECG, weight, height, food/feed intake and symptoms were monitored. RESULTS Five subjects completed the study. Their median daily volume of both feeds was 720 mL (range 500-1900 mL/day). Feed 1 was associated with minimal changes in tolerance, free fatty acids (FFA), acylcarnitines, 3-hydroxybutyrate (3-HB), creatine kinase (CK), blood glucose, liver enzymes and no change in an electrocardiogram (ECG). No child complained of muscle pain or symptoms associated with LCFAOD on either feed. CONCLUSIONS This is the first safety trial reported of an MCT formula specifically designed for infants and children with LCFAOD. In this short-term study, it appeared safe and well tolerated in this challenging group.
Collapse
Affiliation(s)
- Anita MacDonald
- Consultant Dietitian in Inherited Metabolic Disorders, Dietetic Department, Birmingham Women's and Children's Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, UK
| | - Rachel Webster
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Matthew Whitlock
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Adam Gerrard
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Anne Daly
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Mary Anne Preece
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Sharon Evans
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Catherine Ashmore
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Anupam Chakrapani
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Suresh Vijay
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Saikat Santra
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
38
|
Yang CJ, Wei N, Li M, Xie K, Li JQ, Huang CG, Xiao YS, Liu WH, Chen XG. Diagnosis and therapeutic monitoring of inborn errors of metabolism in 100,077 newborns from Jining city in China. BMC Pediatr 2018. [PMID: 29534692 PMCID: PMC5850921 DOI: 10.1186/s12887-018-1090-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mandatory newborn screening for metabolic disorders has not been implemented in most parts of China. Newborn mortality and morbidity could be markedly reduced by early diagnosis and treatment of inborn errors of metabolism (IEM). Methods of screening for IEM by tandem mass spectrometry (MS/MS) have been developed, and their advantages include rapid testing, high sensitivity, high specificity, high throughput, and low sample volume (a single dried blood spot). METHODS Dried blood spots of 100,077 newborns obtained from Jining city in 2014-2015 were screened by MS/MS. The screening results were further confirmed by clinical symptoms and biochemical analysis in combination with the detection of neonatal deficiency in organic acid, amino acid, or fatty acid metabolism and DNA analysis. RESULTS The percentages of males and females among the 100,077 infants were 54.1% and 45.9%, respectively. Cut-off values were established by utilizing the percentile method. The screening results showed that 98,764 newborns were healthy, and 56 out of the 1313 newborns with suspected IEM were ultimately diagnosed with IEM. Among these 56 newborns, 19 (1:5267) had amino acid metabolism disorders, 26 (1:3849) had organic acid metabolism disorders, and 11 (1:9098) had fatty acid oxidation disorders. In addition, 54 patients with IEM were found to carry mutations, and the other 2 patients had argininemia. CONCLUSIONS Fifty-six cases of metabolic disorders in Jining were confirmed via newborn screening (NBS) by MS/MS. Early diagnosis and treatment are crucial for the survival and well-being of affected children. A nationwide NBS program using MS/MS is recommended, especially in poor areas of China.
Collapse
Affiliation(s)
- Chi-Ju Yang
- Center of Neonatal Disease Screening, Maternal and Child Health Care Hospital, Number 12, Gongxiao Road, Jining, Shandong Province, People's Republic of China
| | - Na Wei
- Clinical Laboratory of Linyi People's Hospital, Linyi, Shandong Province, People's Republic of China
| | - Ming Li
- Center of Neonatal Disease Screening, Maternal and Child Health Care Hospital, Number 12, Gongxiao Road, Jining, Shandong Province, People's Republic of China
| | - Kun Xie
- Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, Zhejiang Province, People's Republic of China
| | - Jian-Qiu Li
- Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, Zhejiang Province, People's Republic of China
| | - Cheng-Gang Huang
- Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, Zhejiang Province, People's Republic of China
| | - Yong-Sheng Xiao
- Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, Zhejiang Province, People's Republic of China
| | - Wen-Hua Liu
- Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, Zhejiang Province, People's Republic of China
| | - Xi-Gui Chen
- Center of Neonatal Disease Screening, Maternal and Child Health Care Hospital, Number 12, Gongxiao Road, Jining, Shandong Province, People's Republic of China.
| |
Collapse
|
39
|
Knottnerus SJG, Bleeker JC, Wüst RCI, Ferdinandusse S, IJlst L, Wijburg FA, Wanders RJA, Visser G, Houtkooper RH. Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle. Rev Endocr Metab Disord 2018; 19:93-106. [PMID: 29926323 PMCID: PMC6208583 DOI: 10.1007/s11154-018-9448-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondrial fatty acid oxidation is an essential pathway for energy production, especially during prolonged fasting and sub-maximal exercise. Long-chain fatty acids are the most abundant fatty acids in the human diet and in body stores, and more than 15 enzymes are involved in long-chain fatty acid oxidation. Pathogenic mutations in genes encoding these enzymes result in a long-chain fatty acid oxidation disorder in which the energy homeostasis is compromised and long-chain acylcarnitines accumulate. Symptoms arise or exacerbate during catabolic situations, such as fasting, illness and (endurance) exercise. The clinical spectrum is very heterogeneous, ranging from hypoketotic hypoglycemia, liver dysfunction, rhabdomyolysis, cardiomyopathy and early demise. With the introduction of several of the long-chain fatty acid oxidation disorders (lcFAOD) in newborn screening panels, also asymptomatic individuals with a lcFAOD are identified. However, despite early diagnosis and dietary therapy, a significant number of patients still develop symptoms emphasizing the need for individualized treatment strategies. This review aims to function as a comprehensive reference for clinical and laboratory findings for clinicians who are confronted with pediatric and adult patients with a possible diagnosis of a lcFAOD.
Collapse
Affiliation(s)
- Suzan J G Knottnerus
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Jeannette C Bleeker
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Sacha Ferdinandusse
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Lodewijk IJlst
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Frits A Wijburg
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Ronald J A Wanders
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Gepke Visser
- Dutch Fatty Acid Oxidation Expertise Center, Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6, 3584, EA, Utrecht, The Netherlands.
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Riekelt H Houtkooper
- Dutch Fatty Acid Oxidation Expertise Center, Laboratory Genetic Metabolic Diseases, Departments of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Academic Medical Center, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Boot E, Hollak CEM, Huijbregts SCJ, Jahja R, van Vliet D, Nederveen AJ, Nieman DH, Bosch AM, Bour LJ, Bakermans AJ, Abeling NGGM, Bassett AS, van Amelsvoort TAMJ, van Spronsen FJ, Booij J. Cerebral dopamine deficiency, plasma monoamine alterations and neurocognitive deficits in adults with phenylketonuria. Psychol Med 2017; 47:2854-2865. [PMID: 28552082 DOI: 10.1017/s0033291717001398] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Phenylketonuria (PKU), a genetic metabolic disorder that is characterized by the inability to convert phenylalanine to tyrosine, leads to severe intellectual disability and other cerebral complications if left untreated. Dietary treatment, initiated soon after birth, prevents most brain-related complications. A leading hypothesis postulates that a shortage of brain monoamines may be associated with neurocognitive deficits that are observable even in early-treated PKU. However, there is a paucity of evidence as yet for this hypothesis. METHODS We therefore assessed in vivo striatal dopamine D2/3 receptor (D2/3R) availability and plasma monoamine metabolite levels together with measures of impulsivity and executive functioning in 18 adults with PKU and average intellect (31.2 ± 7.4 years, nine females), most of whom were early and continuously treated. Comparison data from 12 healthy controls that did not differ in gender and age were available. RESULTS Mean D2/3R availability was significantly higher (13%; p = 0.032) in the PKU group (n = 15) than in the controls, which may reflect reduced synaptic brain dopamine levels in PKU. The PKU group had lower plasma levels of homovanillic acid (p < 0.001) and 3-methoxy-4-hydroxy-phenylglycol (p < 0.0001), the predominant metabolites of dopamine and norepinephrine, respectively. Self-reported impulsivity levels were significantly higher in the PKU group compared with healthy controls (p = 0.033). Within the PKU group, D2/3R availability showed a positive correlation with both impulsivity (r = 0.72, p = 0.003) and the error rate during a cognitive flexibility task (r = 0.59, p = 0.020). CONCLUSIONS These findings provide further support for the hypothesis that executive functioning deficits in treated adult PKU may be associated with cerebral dopamine deficiency.
Collapse
Affiliation(s)
- E Boot
- Department of Nuclear Medicine,Academic Medical Center,Amsterdam,The Netherlands
| | - C E M Hollak
- Division of Endocrinology and Metabolism, Department of Internal Medicine,Academic Medical Center,Amsterdam,The Netherlands
| | - S C J Huijbregts
- Department of Clinical Child and Adolescent Studies & Leiden,Institute for Brain and Cognition, Leiden University,Leiden,The Netherlands
| | - R Jahja
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - D van Vliet
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - A J Nederveen
- Department of Radiology,Academic Medical Center,Amsterdam,The Netherlands
| | - D H Nieman
- Department of Psychiatry,Academic Medical Center,Amsterdam,The Netherlands
| | - A M Bosch
- Department of Pediatrics,Emma Children's Hospital, Academic Medical Center,Amsterdam,The Netherlands
| | - L J Bour
- Department of Neurology and Clinical Neurophysiology,Academic Medical Center,Amsterdam,The Netherlands
| | - A J Bakermans
- Department of Radiology,Academic Medical Center,Amsterdam,The Netherlands
| | - N G G M Abeling
- Laboratory for Genetic Metabolic Diseases,Academic Medical Center,Amsterdam,The Netherlands
| | - A S Bassett
- The Dalglish Family 22q Clinic for Adults with 22q11.2 Deletion Syndrome, andCenter for Mental Health, University Health Network,Toronto, Ontario,Canada
| | - T A M J van Amelsvoort
- Department of Psychiatry and Psychology,Maastricht University,Maastricht,The Netherlands
| | - F J van Spronsen
- Division of Metabolic Diseases,University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital,Groningen,The Netherlands
| | - J Booij
- Department of Nuclear Medicine,Academic Medical Center,Amsterdam,The Netherlands
| |
Collapse
|
41
|
Minkler PE, Stoll MSK, Ingalls ST, Hoppel CL. Selective, Accurate, and Precise Quantitation of Glutarylcarnitine in Human Urine from a Patient with Glutaric Acidemia Type I. J Appl Lab Med 2017; 2:335-344. [DOI: 10.1373/jalm.2017.024281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/09/2017] [Indexed: 11/06/2022]
Abstract
Abstract
Background
Although correctly used in expanded newborn screening programs to identify patients with possible diseases, flow-injection tandem mass spectrometry (MS/MS) acylcarnitine “profiles” are inadequate for standard clinical uses owing to their limited quantitative accuracy and lack of selectivity. We report the application of our selective, accurate, and precise method for quantification of acylcarnitines, applied to urine glutarylcarnitine from a patient with glutaric acidemia type I (GAI).
Methods
A previously validated acylcarnitine ultra-HPLC-MS/MS method was used, with a focus on analysis of glutarylcarnitine. Calibrants and samples were isolated by solid-phase extraction and derivatized with pentafluorophenacyl trifluoromethanesulfonate. Acylcarnitine pentafluorophenacyl esters were eluted in 14-min chromatograms. Standardized calibrants and a 13-point, 200-fold concentration range calibration curve were used for accurate quantification of glutarylcarnitine. Quality control samples validated method accuracy and long-term analytic stability.
Results
Quantification of glutarylcarnitine in urine from a patient with GAI is reported. Long-term analytical stability of the method over a 5-year period is shown.
Conclusions
Our method for acylcarnitine quantification is shown to be selective, accurate, and precise; thus, we recommend it for confirmatory testing and monitoring of plasma and urine samples from patients with GAI.
Collapse
Affiliation(s)
- Paul E Minkler
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Stephen T Ingalls
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Charles L Hoppel
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH
| |
Collapse
|
42
|
Postmortem genetic analysis of sudden unexpected death in infancy: neonatal genetic screening may enable the prevention of sudden infant death. J Hum Genet 2017; 62:989-995. [DOI: 10.1038/jhg.2017.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 11/08/2022]
|
43
|
Minkler PE, Stoll MSK, Ingalls ST, Hoppel CL. Selective and accurate C5 acylcarnitine quantitation by UHPLC-MS/MS: Distinguishing true isovaleric acidemia from pivalate derived interference. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:128-133. [PMID: 28734160 DOI: 10.1016/j.jchromb.2017.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/22/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Tandem MS acylcarnitine "profiles" are extremely valuable. Although used appropriately in newborn screening programs to identify patients with possible diseases, their inadequate quantitative accuracy and lack of selectivity is problematic for confirmatory testing. In this report, we show the application of our validated, selective, accurate, precise, and robust UHPLC-MS/MS method for quantitation of acylcarnitines, specifically to C5 acylcarnitines: pivaloyl-, 2-methylbutyryl-, isovaleryl-, and valerylcarnitine. Standardized calibrants were used to generate 13-point, 200-fold concentration range calibration curves. Samples were isolated by solid-phase extraction and derivatized with pentafluorophenacyl trifluoromethanesulfonate. Acylcarnitine pentafluorophenacyl esters were eluted in 14min chromatograms. Data demonstrating quantitative stability and method robustness over a five year time period are shown and these results validate the method's accuracy and robustness. Urine from patients with isovaleric acidemia (with the disease marker isovalerylcarnitine) and with pivaloylcarnitine present are shown. These results demonstrate the method's ability to distinguish true isovaleric acidemia from pivalate derived interference. Our method for acylcarnitine quantitation is shown to be accurate, precise, and robust for selective quantitation of isovalerylcarnitine, and thus is recommended for confirmatory testing of suspected isovaleric acidemia patients.
Collapse
Affiliation(s)
- Paul E Minkler
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T Ingalls
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Charles L Hoppel
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
44
|
Alfadhel M, Al Othaim A, Al Saif S, Al Mutairi F, Alsayed M, Rahbeeni Z, Alzaidan H, Alowain M, Al-Hassnan Z, Saeedi M, Aljohery S, Alasmari A, Faqeih E, Alwakeel M, AlMashary M, Almohameed S, Alzahrani M, Migdad A, Al-Dirbashi OY, Rashed M, Alamoudi M, Jacob M, Alahaidib L, El-Badaoui F, Saadallah A, Alsulaiman A, Eyaid W, Al-Odaib A. Expanded Newborn Screening Program in Saudi Arabia: Incidence of screened disorders. J Paediatr Child Health 2017; 53:585-591. [PMID: 28337809 DOI: 10.1111/jpc.13469] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/01/2016] [Accepted: 11/13/2016] [Indexed: 11/29/2022]
Abstract
AIM To address the implementation of the National Newborn Screening Program (NBS) in Saudi Arabia and stratify the incidence of the screened disorders. METHODS A retrospective study conducted between 1 August 2005 and 31 December 2012, total of 775 000 newborns were screened from 139 hospitals distributed among all regions of Saudi Arabia. The NBS Program screens for 16 disorders from a selective list of inborn errors of metabolism (IEM) and endocrine disorders. Heel prick dry blood spot samples were obtained from all newborns for biochemical and immunoassay testing. Recall screening testing was performed for Initial positive results and confirmed by specific biochemical assays. RESULTS A total of 743 cases were identified giving an overall incidence of 1:1043. Frequently detected disorders nationwide were congenital hypothyroidism and congenital adrenal hyperplasia with an incidence of 1:7175 and 1:7908 correspondingly. The highest incidence among the IEM was propionic acidaemia with an incidence rate of 1:14 000. CONCLUSION The article highlights the experience of the NBS Program in Saudi Arabia and providing data on specific regional incidences of all the screened disorders included in the programme; and showed that the incidence of these disorders is one of the highest reported so far world-wide.
Collapse
Affiliation(s)
- Majid Alfadhel
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ali Al Othaim
- King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Pathology, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saif Al Saif
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Fuad Al Mutairi
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Moeenaldeen Alsayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,The National Newborn Screening Program, Ministry of Health, Riyadh, Saudi Arabia
| | - Mohamad Saeedi
- Noncommunicable Disease, Ministry of Health, Riyadh, Saudi Arabia
| | - Saeed Aljohery
- Noncommunicable Disease, Ministry of Health, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Medical Genetic Section, King Fahad Medical City, Children's Hospital, Riyadh, Saudi Arabia
| | | | - Maher AlMashary
- Armed Forces Medical Services Directorate, Riyadh, Saudi Arabia
| | | | - Mohammed Alzahrani
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Abeer Migdad
- Department of Pediatrics, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Osama Y Al-Dirbashi
- Faculty of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Children Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | | | - Minnie Jacob
- Research Center, Ministry of Health, Riyadh, Saudi Arabia
| | | | | | - Amal Saadallah
- Research Center, Ministry of Health, Riyadh, Saudi Arabia
| | | | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia.,Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Ali Al-Odaib
- Research Center, Ministry of Health, Riyadh, Saudi Arabia.,King Salman Center for Disability Research, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Developing Brain. Neurochem Res 2017; 42:1661-1675. [PMID: 28508995 DOI: 10.1007/s11064-017-2288-7] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/30/2022]
Abstract
L-Carnitine functions to transport long chain fatty acyl-CoAs into the mitochondria for degradation by β-oxidation. Treatment with L-carnitine can ameliorate metabolic imbalances in many inborn errors of metabolism. In recent years there has been considerable interest in the therapeutic potential of L-carnitine and its acetylated derivative acetyl-L-carnitine (ALCAR) for neuroprotection in a number of disorders including hypoxia-ischemia, traumatic brain injury, Alzheimer's disease and in conditions leading to central or peripheral nervous system injury. There is compelling evidence from preclinical studies that L-carnitine and ALCAR can improve energy status, decrease oxidative stress and prevent subsequent cell death in models of adult, neonatal and pediatric brain injury. ALCAR can provide an acetyl moiety that can be oxidized for energy, used as a precursor for acetylcholine, or incorporated into glutamate, glutamine and GABA, or into lipids for myelination and cell growth. Administration of ALCAR after brain injury in rat pups improved long-term functional outcomes, including memory. Additional studies are needed to better explore the potential of L-carnitine and ALCAR for protection of developing brain as there is an urgent need for therapies that can improve outcome after neonatal and pediatric brain injury.
Collapse
|
46
|
Minkler PE, Stoll MSK, Ingalls ST, Hoppel CL. Correcting false positive medium-chain acyl-CoA dehydrogenase deficiency results from newborn screening; synthesis, purification, and standardization of branched-chain C8 acylcarnitines for use in their selective and accurate absolute quantitation by UHPLC-MS/MS. Mol Genet Metab 2017; 120:363-369. [PMID: 28190699 DOI: 10.1016/j.ymgme.2017.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022]
Abstract
While selectively quantifying acylcarnitines in thousands of patient samples using UHPLC-MS/MS, we have occasionally observed unidentified branched-chain C8 acylcarnitines. Such observations are not possible using tandem MS methods, which generate pseudo-quantitative acylcarnitine "profiles". Since these "profiles" select for mass alone, they cannot distinguish authentic signal from isobaric and isomeric interferences. For example, some of the samples containing branched-chain C8 acylcarnitines were, in fact, expanded newborn screening false positive "profiles" for medium-chain acyl-CoA dehydrogenase deficiency (MCADD). Using our fast, highly selective, and quantitatively accurate UHPLC-MS/MS acylcarnitine determination method, we corrected the false positive tandem MS results and reported the sample results as normal for octanoylcarnitine (the marker for MCADD). From instances such as these, we decided to further investigate the presence of branched-chain C8 acylcarnitines in patient samples. To accomplish this, we synthesized and chromatographically characterized several branched-chain C8 acylcarnitines (in addition to valproylcarnitine): 2-methylheptanoylcarnitine, 6-methylheptanoylcarnitine, 2,2-dimethylhexanoylcarnitine, 3,3-dimethylhexanoylcarnitine, 3,5-dimethylhexanoylcarnitine, 2-ethylhexanoylcarnitine, and 2,4,4-trimethylpentanoylcarnitine. We then compared their behavior with branched-chain C8 acylcarnitines observed in patient samples and demonstrated our ability to chromographically resolve, and thus distinguish, octanoylcarnitine from branched-chain C8 acylcarnitines, correcting false positive MCADD results from expanded newborn screening.
Collapse
Affiliation(s)
- Paul E Minkler
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Maria S K Stoll
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T Ingalls
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Charles L Hoppel
- Center for Mitochondrial Diseases, Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
47
|
Gotoh K, Nakajima Y, Tajima G, Watanabe Y, Hotta Y, Kataoka T, Kawade Y, Sugiyama N, Ito T, Kimura K, Maeda Y. Determination of methylmalonyl coenzyme A by ultra high-performance liquid chromatography tandem mass spectrometry for measuring propionyl coenzyme A carboxylase activity in patients with propionic acidemia. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046:195-199. [PMID: 28189105 DOI: 10.1016/j.jchromb.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/10/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
Propionic acidemia (PA) is an inherited metabolic disease caused by low activity of propionyl coenzyme A (CoA) carboxylase (PCC), which metabolizes propionyl-CoA into methylmalonyl-CoA. Although many patients with PA have been identified by tandem mass spectrometry since the test was first included in neonatal mass screening in the 1990s, the disease severity varies. Thus, determining the specific level of PCC activity is considered to be helpful to grasp the severity of PA. We developed a new PCC assay method by the determination of methylmalonyl-CoA, which is formed by an enzyme reaction using peripheral lymphocytes, based on ultra high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). With methylmalonyl-CoA concentrations of 0.05, 0.5, and 5μmol/L, the intra-assay coefficients of variation (CVs) were 8.2%, 8.7%, and 5.1%, respectively, and the inter-assay CVs were 13.6%, 10.5%, and 5.9%, respectively. The PCC activities of 20 healthy individuals and 6 PA patients were investigated with this assay. Methylmalonyl-CoA was not detected in one PA patient with a severe form of the disease, but the remaining PA patients with mild disease showed residual activities (3.3-7.8%). These results demonstrate that determination of PCC activity with this assay would be useful to distinguish between mild and severe cases of PA to help choose an appropriate treatment plan.
Collapse
Affiliation(s)
- Kana Gotoh
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University, Toyoake, Japan
| | - Go Tajima
- Division of Neonatal Screening, National Center for Child health and Development, Tokyo, Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan; Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Tomoya Kataoka
- Department of Clinical Pharmaceutics, Graduate of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshihiro Kawade
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Naruji Sugiyama
- Aichi Medical College for Physical and Occupational Therapy, Kiyosu, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University, Toyoake, Japan
| | - Kazunori Kimura
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan; Department of Clinical Pharmaceutics, Graduate of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yasuhiro Maeda
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| |
Collapse
|
48
|
Messina MA, Meli C, Conoci S, Petralia S. A facile method for urinary phenylalanine measurement on paper-based lab-on-chip for PKU therapy monitoring. Analyst 2017; 142:4629-4632. [DOI: 10.1039/c7an01115f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A miniaturized paper-based lab-on-chip (LoC) was developed for the facile measurement of urinary Phe (phenylalanine) level on PKU (Phenylketonuria) treated patient.
Collapse
Affiliation(s)
- M. A. Messina
- Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele
- Catania
- Italy
| | - C. Meli
- Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele
- Catania
- Italy
| | - S. Conoci
- STMicroelectronics
- Stradale Primosole
- 50-95121 Catania
- Italy
| | - S. Petralia
- STMicroelectronics
- Stradale Primosole
- 50-95121 Catania
- Italy
| |
Collapse
|
49
|
Borrajo GJC. Newborn Screening for Phenylketonuria. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816682764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gustavo J. C. Borrajo
- Detección de Errores Congénitos, Fundación Bioquímica Argentina, La Plata, Argentina
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Recent clinical studies and management guidelines for the treatment of the organic acidopathies methylmalonic acidemia (MMA) and propionic acidemia address the scope of interventions to maximize health and quality of life. Unfortunately, these disorders continue to cause significant morbidity and mortality due to acute and chronic systemic and end-organ injury. RECENT FINDINGS Dietary management with medical foods has been a mainstay of therapy for decades, yet well controlled patients can manifest growth, development, cardiac, ophthalmological, renal, and neurological complications. Patients with organic acidopathies suffer metabolic brain injury that targets specific regions of the basal ganglia in a distinctive pattern, and these injuries may occur even with optimal management during metabolic stress. Liver transplantation has improved quality of life and metabolic stability, yet transplantation in this population does not entirely prevent brain injury or the development of optic neuropathy and cardiac disease. SUMMARY Management guidelines should identify necessary screening for patients with methylmalonic acidemia and propionic acidemia, and improve anticipatory management of progressive end-organ disease. Liver transplantation improves overall metabolic control, but injury to nonregenerative tissues may not be mitigated. Continued use of medical foods in these patients requires prospective studies to demonstrate evidence of benefit in a controlled manner.
Collapse
|