1
|
Abstract
From birth, animals should possess functional machinery to appropriately regulate its respiration. This machinery has to detect the available oxygen quantity in order to efficiently modulate breathing movements in accordance with body requirements. The chemosensitivity process responsible for this detection is known to be mainly performed by carotid bodies. However, pulmonary neuroendocrine cells, which are mainly gathered in neuroepithelial bodies, also present the capability to exert chemosensitivity. The goal of this article is to put in perspective the potential complementarity in the activity of these two peripheral chemosensors in the context of neonatal oxygen chemosensitivity.
Collapse
Affiliation(s)
- Céline Caravagna
- Institut de Neurosciences de la Timone-Equipe IMAPATH, CERIMED, UMR 7289 CNRS & Aix-Marseille Université, 27 Boulevard Jean Moulin,13385, Marseille Cedex 05, France.
| | - Tommy Seaborn
- Faculté de Médecine, Université Laval, Pavillon Ferdinand-Vandry, Room 4645-A,1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
2
|
Abstract
Pulmonary neuroendocrine cells (PNEC) are widely distributed throughout the airway mucosa of mammalian lung as solitary cells and as distinctive innervated clusters, neuroepithelial bodies (NEB). These cells differentiate early during lung development and are more prominent in fetal/neonatal lungs compared to adults. PNEC/NEB cells produce biogenic amine (serotonin) and a variety of peptides (i.e., bombesin) involved in regulation of lung function. During the perinatal period, NEB are thought to function as airway O(2)/CO(2) sensors. Increased numbers of PNEC/NEBs have been observed in a variety of perinatal and postnatal lung disorders. Recent advances in cellular and molecular biology of these cells, as they relate to perinatal and postnatal lung disorders associated with PNEC/NEB cell hyperplasia are reviewed and their possible role in pulmonary pathobiology discussed (WC 125).
Collapse
Affiliation(s)
- Ernest Cutz
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada M5G1x8; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader-Willi syndromes. Compr Physiol 2013; 2:2255-79. [PMID: 23723037 DOI: 10.1002/cphy.c100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present review summarizes current knowledge on three rare genetic disorders of respiratory control, congenital central hypoventilation syndrome (CCHS), Rett syndrome (RTT), and Prader-Willi syndrome (PWS). CCHS is characterized by lack of ventilatory chemosensitivity caused by PHOX2B gene abnormalities consisting mainly of alanine expansions. RTT is associated with episodes of tachypneic and irregular breathing intermixed with breathholds and apneas and is caused by mutations in the X-linked MECP2 gene encoding methyl-CpG-binding protein. PWS manifests as sleep-disordered breathing with apneas and episodes of hypoventilation and is caused by the loss of a group of paternally inherited genes on chromosome 15. CCHS is the most specific disorder of respiratory control, whereas the breathing disorders in RTT and PWS are components of a more general developmental disorder. The main clinical features of these three disorders are reviewed with special emphasis on the associated brain abnormalities. In all three syndromes, disease-causing genetic defects have been identified, allowing the development of genetically engineered mouse models. New directions for future therapies based on these models or, in some cases, on clinical experience are delineated. Studies of CCHS, RTT, and PWS extend our knowledge of the molecular and cellular aspects of respiratory rhythm generation and suggest possible pharmacological approaches to respiratory control disorders. This knowledge is relevant for the clinical management of many respiratory disorders that are far more prevalent than the rare diseases discussed here.
Collapse
Affiliation(s)
- Jorge Gallego
- Inserm U676 and University of Paris Diderot, Paris, France.
| |
Collapse
|
4
|
Kosari F, Ida CM, Aubry MC, Yang L, Kovtun IV, Klein JLS, Li Y, Erdogan S, Tomaszek SC, Murphy SJ, Bolette LC, Kolbert CP, Yang P, Wigle DA, Vasmatzis G. ASCL1 and RET expression defines a clinically relevant subgroup of lung adenocarcinoma characterized by neuroendocrine differentiation. Oncogene 2013; 33:3776-83. [PMID: 24037524 DOI: 10.1038/onc.2013.359] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/09/2022]
Abstract
ASCL1 is an important regulatory transcription factor in pulmonary neuroendocrine (NE) cell development, but its value as a biomarker of NE differentiation in lung adenocarcinoma (AD) and as a potential prognostic biomarker remains unclear. We examined ASCL1 expression in lung cancer samples of varied histologic subtype, clinical outcome and smoking status and compared with expression of traditional NE markers. ASCL1 mRNA expression was found almost exclusively in smokers with AD, in contrast to non-smokers and other lung cancer subtypes. ASCL1 protein expression by immunohistochemical (IHC) analysis correlated best with synaptophysin compared with chromogranin and CD56/NCAM. Analysis of a compendium of 367 microarray-based gene expression profiles in stage I lung adenocarcinomas identified significantly higher expression levels of the RET oncogene in ASCL1-positive tumors (ASCL1(+)) compared with ASCL1(-) tumors (q-value <10(-9)). High levels of RET expression in ASCL1(+) but not in ASCL1(-) tumors was associated with significantly shorter overall survival (OS) in stage 1 (P=0.007) and in all AD (P=0.037). RET protein expression by IHC had an association with OS in the context of ASCL1 expression. In silico gene set analysis and in vitro experiments by ASCL1 shRNA in AD cells with high endogenous expression of ASCL1 and RET implicated ASCL1 as a potential upstream regulator of the RET oncogene. Also, silencing ASCL1 in AD cells markedly reduced cell growth and motility. These results suggest that ASCL1 and RET expression defines a clinically relevant subgroup of ∼10% of AD characterized by NE differentiation.
Collapse
Affiliation(s)
- F Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - C M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - M-C Aubry
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - L Yang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - I V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - J L S Klein
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Y Li
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - S Erdogan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - S C Tomaszek
- Department of Surgery and Advanced Genomic Technology Center, Mayo Clinic, Rochester, MN, USA
| | - S J Murphy
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - L C Bolette
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - C P Kolbert
- Advanced Genomic Technology Center, Mayo Clinic, Rochester, MN, USA
| | - P Yang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - D A Wigle
- Department of Surgery and Advanced Genomic Technology Center, Mayo Clinic, Rochester, MN, USA
| | - G Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Deng H, Yang H, Le W, Deng X, Xu H, Xiong W, Zhu S, Xie W, Song Z, Jankovic J. Examination of the MASH1 gene in patients with Parkinson’s disease. Biochem Biophys Res Commun 2010; 392:548-50. [DOI: 10.1016/j.bbrc.2010.01.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
|
6
|
Gallego J, Dauger S. PHOX2B mutations and ventilatory control. Respir Physiol Neurobiol 2009; 164:49-54. [PMID: 18675942 DOI: 10.1016/j.resp.2008.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 01/08/2023]
Abstract
The transcription factor PHOX2B is essential for the development of the autonomic nervous system. In humans, polyalanine expansion mutations in PHOX2B cause Congenital Central Hypoventilation Syndrome (CCHS), a rare life-threatening disorder characterized by hypoventilation during sleep and impaired chemosensitivity. CCHS is combined with comparatively less severe impairments of autonomic functions including thermoregulation, cardiac rhythm, and digestive motility. Respiratory phenotype analyses of mice carrying an invalidated Phox2b allele (Phox2b+/- mutant mice) or the Phox2b mutation (+7 alanine expansion) found in patients with CCHS (Phox2b(27Ala/+) mice) have shed light on the role for PHOX2B in breathing control and on the pathophysiological mechanisms underlying CCHS. Newborn mice that lacked one Phox2b allele (Phox2b+/-) had sleep apneas and depressed sensitivity to hypercapnia. However, these impairments resolved rapidly, whereas the CCHS phenotype is irreversible. Heterozygous Phox2b(27Ala/+) pups exhibited a lack of responsiveness to hypercapnia and unstable breathing; they died within the first few postnatal hours. The generation of mouse models of CCHS provides tools for evaluating treatments aimed at alleviating both the respiratory symptoms and all other autonomic symptoms of CCHS.
Collapse
Affiliation(s)
- Jorge Gallego
- INSERM, U676, Hôpital Robert Debré, 48 Bd Sérurier, 75019 Paris, France.
| | | |
Collapse
|
7
|
Gaultier C, Gallego J. Neural control of breathing: insights from genetic mouse models. J Appl Physiol (1985) 2008; 104:1522-30. [DOI: 10.1152/japplphysiol.01266.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent studies described the in vivo ventilatory phenotype of mutant newborn mice with targeted deletions of genes involved in the organization and development of the respiratory-neuron network. Whole body flow barometric plethysmography is the noninvasive method of choice for studying unrestrained newborn mice. Breathing-pattern abnormalities with apneas occur in mutant newborn mice that lack genes involved in the development and modulation of rhythmogenesis. Studies of deficits in ventilatory responses to hypercapnia and/or hypoxia helped to identify genes involved in chemosensitivity to oxygen and carbon dioxide. Combined studies in mutant newborn mice and in humans have shed light on the pathogenesis of genetically determined respiratory-control abnormalities such as congenital central hypoventilation syndrome, Rett syndrome, and Prader-Willi syndrome. The development of mouse models has opened up the field of research into new treatments for respiratory-control disorders in humans.
Collapse
|
8
|
Cutz E, Yeger H, Pan J. Pulmonary neuroendocrine cell system in pediatric lung disease-recent advances. Pediatr Dev Pathol 2007; 10:419-35. [PMID: 18001162 DOI: 10.2350/07-04-0267.1] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 09/04/2007] [Indexed: 11/20/2022]
Abstract
The airway epithelium of human and animal lungs contains highly specialized pulmonary neuroendocrine cells (PNEC), distributed as solitary cells and as innervated clusters, neuroepithelial bodies (NEB). The designation "PNEC system" stems from the expression of both neural and endocrine cell phenotypes, including the synthesis and release of amine (serotonin, 5-HT) and a variety of neuropeptides (that is, bombesin). The role and function of PNEC in the lung have remained a subject of speculation for many years. During the last decade, studies using modern techniques of cellular and molecular biology revealed a complex functional role for PNEC, beginning during the early stages of lung development as modulators of fetal lung growth and differentiation and at the time of birth as airway O2 sensors involved in neonatal adaptation. Postnatally and beyond, PNEC/NEB are providers of a lung stem cell niche that is important in airway epithelial regeneration and lung carcinogenesis. The focus of this review is to present and discuss recent findings pertaining to the responses of PNEC to intrauterine environmental stimuli, ontogeny and molecular regulation of PNEC differentiation, innervation of NEB, and their role as airway chemoreceptors, including mechanisms of O2 sensing and chemotransmission of hypoxia stimulus. Abnormalities of PNEC/NEB have been reported in a variety of pediatric pulmonary disorders but the clinical significance or the mechanisms involved are unknown. The discussion on the possible role of PNEC/NEB in the pathogenesis and pathobiology of pediatric lung diseases includes congenital lung disorders, bronchopulmonary dysplasia, disorders of respiratory control, neuroendocrine hyperplasia of infancy, cystic fibrosis, bronchial asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Ernest Cutz
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto,ON, Canada.
| | | | | |
Collapse
|
9
|
Mage DT, Donner M. Female Resistance to Hypoxia: Does It Explain the Sex Difference in Mortality Rates? J Womens Health (Larchmt) 2006; 15:786-94. [PMID: 16910910 DOI: 10.1089/jwh.2006.15.786] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is currently no accepted explanation in the medical literature for the lower female total mortality rate in infancy, childhood and adulthood. We review the pediatric mortality data provided by Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) and show that for causes of respiratory infant death that are apparently independent of gender (e.g., suffocation from inhalation of food or other object), there is a consistently one-third lower rate of mortality in the female than in the male. This one-third lower mortality for causes of death with a respiratory terminal event is hypothesized to be due to an X-linked dominant allele that occurs with frequency 1/3. It appears as if a second X chromosome provides the one-third extra probability of protection afforded for an XX female compared with an XY male. It is suggested that the allele's function is unmasked during transient periods of cerebral anoxia, requiring a mechanism for anaerobic oxidation to prevent the death of respiratory control neurons in the brain stem. Examples of the female one-third extra chance of resistance to hypoxia are given for causes of death in infancy, such as infant respiratory distress syndrome (IRDS) and sudden infant death syndrome (SIDS), and for causes of suffocation in childhood and asphyxiation in adulthood. DNA testing of the X chromosome of probands from causes of respiratory death, such as SIDS and IRDS, where there is a one-third lower female than male death rate, is a future direction that can verify the existence of the proposed allele.
Collapse
Affiliation(s)
- David T Mage
- Department of Public Health, Temple University, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
10
|
Fujii M, Umezawa K, Arata A. Adrenaline contributes to prenatal respiratory maturation in rat medulla–spinal cord preparation. Brain Res 2006; 1090:45-50. [PMID: 16643861 DOI: 10.1016/j.brainres.2006.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/06/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Adrenaline is a potent respiratory regulator. However, adrenergic contribution to the developing respiratory center has not been studied extensively. Adrenaline application on embryonic day 17 medulla-spinal cord block preparations abolished non-respiratory activity and enhanced respiratory frequency. Phentolamine application on neonatal blocks that produced stable neonatal respiration resulted in respiratory destabilization. These results suggest that central adrenergic modulation is involved in fetal respiratory development and maintenance of stable respiration.
Collapse
Affiliation(s)
- Morimitsu Fujii
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
11
|
Gaultier C, Matrot B, Gallego J. Transgenic Models to Study Disorders of Respiratory Control in Newborn Mice. ILAR J 2006; 47:15-21. [PMID: 16391427 DOI: 10.1093/ilar.47.1.15] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies described the in vivo respiratory phenotype of mutant newborn mice with targeted deletions of genes involved in respiratory control development. Whole-body flow barometric plethysmography is the noninvasive method of choice for studying unrestrained newborn mice. The main characteristics of the early postnatal development of respiratory control in mice are reviewed, including available data on breathing patterns and on hypoxic and hypercapnic ventilatory responses. Mice are very immature at birth, and their instable breathing is similar to that of preterm infants. Breathing pattern abnormalities with prolonged apneas occur in newborn mice that lack genes involved in the development of rhythmogenesis. Some mutant newborn mice have blunted hypoxic and hypercapnic ventilatory responses whereas others exhibit impairments in responses to hypoxia or hypercapnia. Furthermore, combined studies in mutant newborn mice and in humans have helped to provide pathogenic information on genetically determined developmental disorders of respiratory control in humans.
Collapse
Affiliation(s)
- Claude Gaultier
- Service de Physiologie and INSERM U676, Hôpital Robert Debré, Paris, France
| | | | | |
Collapse
|
12
|
Katz DM. Regulation of respiratory neuron development by neurotrophic and transcriptional signaling mechanisms. Respir Physiol Neurobiol 2005; 149:99-109. [PMID: 16203214 DOI: 10.1016/j.resp.2005.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/07/2005] [Accepted: 02/08/2005] [Indexed: 01/06/2023]
Abstract
Functionally diverse populations of respiratory neurons appear to be targets of common neurotrophic and transcriptional signaling pathways. For example, peripheral chemoafferent neurons and noradrenergic neurons in the pontine A5 cell group both require co-signaling by brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF) for survival, growth and/or phenotypic differentiation. Moreover, these same cell groups are dependent on the Phox2 family of transcription factors for early cell type specification. In addition, BDNF and its receptor, TrkB, are expressed in the pre-Botzinger complex (pBC), a critical site for respiratory rhythm generation, and exogenous BDNF can modulate the activity of pBC neurons. This convergence of BDNF, GDNF and Phox2 dependencies may help to explain how mutations in each of these pathways can result in human developmental disorders of breathing.
Collapse
Affiliation(s)
- David M Katz
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Gaultier C, Gallego J. Development of respiratory control: Evolving concepts and perspectives. Respir Physiol Neurobiol 2005; 149:3-15. [PMID: 15941676 DOI: 10.1016/j.resp.2005.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms underlying respiratory system immaturity in newborns have been investigated, both in vivo and in vitro, in humans and in animals. Immaturity affects breathing rhythmicity and its modulation by suprapontine influences and by afferents from central and peripheral chemoreceptors. Recent research has moved from bedside tools to sophisticated technologies, bringing new insights into the plasticity and genetics of respiratory control development. Genetic research has benefited from investigations of newborn mice having targeted deletions of genes involved in respiratory control. Genetic variability may govern the normal programming of development and the processes underlying adaptation to homeostasis disturbances induced by prenatal and postnatal insults. Studies of plasticity have emphasized the role of neurotrophic factors. Improvements in our understanding of the mechanistic effects of these factors should lead to new neuroprotective strategies for infants at risk for early respiratory control disturbances, such as apnoeas of prematurity, sudden infant death syndrome and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Claude Gaultier
- Service de Physiologie, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France.
| | | |
Collapse
|
14
|
Wiemann M, Frede S, Bingmann D, Kiwull P, Kiwull-Schöne H. Sodium/Proton Exchanger 3 in the Medulla Oblongata and Set Point of Breathing Control. Am J Respir Crit Care Med 2005; 172:244-9. [PMID: 15947281 DOI: 10.1164/rccm.200411-1567oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE In vivo inhibition of the sodium/proton exchanger 3 (NHE3) in chemosensitive neurons of the ventrolateral brainstem augments central respiratory drive in anesthetized rabbits. OBJECTIVES To further explore the possible role of this exchanger for the control of breathing, we examined the individual relationship between brainstem NHE3 abundance and ventilation in rabbits during wakefulness. METHODS In 32 adult male rabbits on standard nutritional alkali load, alveolar ventilation, metabolic CO2 production, and blood gases were determined, together with arterial and urinary acid-base status and renal base control functions. Expression of NHE3 in brainstem tissue from the obex region was determined by quantitative real-time reverse-transcription polymerase chain reaction analysis. MEASUREMENTS AND MAIN RESULTS Regarding the distribution above and below the median, we classified high and low brainstem NHE3 animals, expressing a mean (+/- SEM) NHE3 mRNA of 2.08 +/- 0.28 and 0.72 +/- 0.06 fg cDNA/mg RNA, respectively. Alveolar ventilation of high brainstem NHE3 animals was lower than that of low brainstem NHE3 animals (715 +/- 36 vs. 919 +/- 41 ml . minute(-1); p < 0.01), a finding also reflected by a marked difference in Pa(CO2) (5.24 +/- 0.16 vs. 4.44 +/- 0.15 kPa; p < 0.01). Among possible secondary factors, CO2 production, systemic base excess, and fractional renal base reabsorption were not found to be different. CONCLUSIONS We conclude that the level of brainstem NHE3 expression-most likely via intracellular pH modulation-contributes to the individual control of breathing and Pa(CO2) in conscious rabbits by adjusting the set point and the loop gain of the system.
Collapse
Affiliation(s)
- Martin Wiemann
- Department of Physiology, University of Duisburg-Essen, 45122 Essen, Germany.
| | | | | | | | | |
Collapse
|
15
|
Huang L, Guo H, Hellard DT, Katz DM. Glial cell line-derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output. Neuroscience 2005; 130:95-105. [PMID: 15561428 DOI: 10.1016/j.neuroscience.2004.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2004] [Indexed: 02/07/2023]
Abstract
Genetic mutations affecting signaling by glial cell line-derived neurotrophic factor (GDNF) perturb development of breathing in mice and are associated with congenital central hypoventilation syndrome in humans. However, the role of GDNF in development of brainstem neurons that control breathing is largely unknown. The present study demonstrates that genetic loss of GDNF decreases the number of tyrosine hydroxylase (TH) neurons in the pontine A5 noradrenergic cell group, a major source of inhibitory input to the medullary respiratory pattern generator. This phenotype is associated with a significant increase in the frequency of central respiratory output recorded from the fetal medulla-spinal cord in vitro. In dissociate cultures of the A5 region from rat embryos, GDNF increases TH cell number and neurite growth without affecting total neuronal survival or proliferation of TH neurons. These effects of GDNF are inhibited by function blocking antibodies against endogenous brain-derived neurotrophic factor (BDNF), indicating that GDNF requires BDNF as a cofactor to stimulate differentiation of A5 neurons. Our findings demonstrate that GDNF is required for development of pontine noradrenergic neurons in vivo and indicate that defects in the A5 cell group may contribute to the effects of genetic disruption of GDNF signaling on respiratory control.
Collapse
Affiliation(s)
- L Huang
- Department of Pediatrics, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
16
|
Dauger S, Durand E, Cohen G, Lagercrantz H, Changeux JP, Gaultier C, Gallego J. Control of breathing in newborn mice lacking the beta-2 nAChR subunit. ACTA ACUST UNITED AC 2005; 182:205-12. [PMID: 15450117 DOI: 10.1111/j.1365-201x.2004.01345.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To study the ventilatory and arousal/defence responses to hypoxia in newborn mutant mice lacking the beta2 subunit of the nicotinic acetylcholine receptors. METHODS Breathing variables were measured non-invasively in mutant (n = 31) and wild-type age-matched mice (n = 57) at 2 and 8 days of age using flow barometric whole-body plethysmography. The arousal/defence response to hypoxia was determined using behavioural criteria. RESULTS On day 2, mutant pups had significantly greater baseline ventilation (16%) than wild-type pups (P < 0.02). Mutant pups had a decreased hypoxic ventilatory declines. Arousal latency was significantly shorter in mutant than in wild-type pups (133 +/- 40 vs. 146 +/- 20 s, respectively, P < 0.026). However, the duration of movement elicited by hypoxia was shorter in mutant than in wild-type pups (14.7 +/- 5.9 vs. 23.0 +/- 10.7 s, respectively, P < 0.0005). Most differences disappeared on P8, suggesting a high degree of functional plasticity. CONCLUSION The blunted hypoxic ventilatory decline and the shorter arousal latency on day 2 suggested that disruption of the beta2 nicotinic acetylcholine receptors impaired inhibitory processes affecting both the ventilatory and the arousal response to hypoxia during postnatal development.
Collapse
Affiliation(s)
- S Dauger
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert-Debré, Boulevard Sérurier, Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Curran ME, Silvestri JM, Marazita ML. Sudden infant death syndrome: case-control frequency differences at genes pertinent to early autonomic nervous system embryologic development. Pediatr Res 2004; 56:391-5. [PMID: 15240857 DOI: 10.1203/01.pdr.0000136285.91048.4a] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously identified polymorphisms in the serotonin transporter gene promoter region and in intron 2 that were more common among sudden infant death syndrome (SIDS) cases compared with control subjects. To elucidate further the genetic profile that might increase an infant's vulnerability to SIDS, we focused on the recognized relationship between autonomic nervous system (ANS) dysregulation and SIDS. We therefore studied genes pertinent to early embryologic development of the ANS, including MASH1, BMP2, PHOX2a, PHOX2b, RET, ECE1, EDN1, TLX3, and EN1 in 92 probands with SIDS and 92 gender- and ethnicity-matched control subjects. Eleven protein-changing rare mutations were identified in 14 of 92 SIDS cases among the PHOX2a, RET, ECE1, TLX3, and EN1 genes. Only 1 of these mutations (TLX3) was identified in 2 of 92 control subjects. Black infants accounted for 10 of these mutations in SIDS cases and 2 control subjects. Four protein-changing common polymorphisms were identified in BMP2, RET, ECE1, and EDN1, but the allele frequency did not differ between SIDS cases and control subjects. However, among SIDS cases, the allele frequency for the BMP2 common polymorphism demonstrated ethnic differences; among control subjects, the allele frequency for the BMP2 and the ECE1 common polymorphisms also demonstrated ethnic differences. These data represent further refinement of the genetic profile that might place an infant at risk for SIDS.
Collapse
Affiliation(s)
- Debra E Weese-Mayer
- Department of Pediatrics, Rush Children's Hospital at Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The genetic approach to respiratory control is opening up new paths for research into developmental respiratory control disorders. Despite the identification of numerous genes involved in respiratory control, none of the genetically engineered mice developed to date fully replicate the human respiratory phenotype of human developmental respiratory disorders. However, combining studies in humans and studies in mouse models has proved useful in identifying candidate genes for human developmental respiratory control disorders and providing pathogenic information. In clinical practice, the development of databases that incorporate clinical phenotypes and genetic samples from patients would facilitate further genetic studies. International multicentre studies would advance the area of respiratory control research.
Collapse
Affiliation(s)
- Claude Gaultier
- Department of Physiology, INSERM 9935, Hôpital Robert, Faculté de Médecine Lariboisière, Université Paris VII, France.
| |
Collapse
|
19
|
Gaultier C, Amiel J, Dauger S, Trang H, Lyonnet S, Gallego J, Simonneau M. Genetics and early disturbances of breathing control. Pediatr Res 2004; 55:729-33. [PMID: 14739359 DOI: 10.1203/01.pdr.0000115677.78759.c5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early disturbances in breathing control, including apneas of prematurity and apparently life-threatening events, account for some cases of sudden infant death syndrome and for a rare disorder called congenital central hypoventilation syndrome (CCHS). Data suggesting a genetic basis for CCHS have been obtained. Recently, we found heterozygous de novo mutations of the PHOX2B gene in 18 of 29 individuals with CCHS. Most mutations consisted of five to nine alanine expansions within a 20-residue polyalanine tract, probably resulting from nonhomologous recombination. Other mutations, generally inherited from one of the parents, in the coding regions of genes involved in the endothelin and RET signaling pathways and in the brain-derived-neurotrophic factor (BDNF) gene have been found in a few CCHS patients. Interestingly, all these genes are involved in the development of neural crest cells. Targeted disruption of these genes in mice has provided information on the pathophysiological mechanisms underlying CCHS. Despite the identification of these genes involved in breathing control, none of the genetically engineered mice developed to date replicate the full human CCHS respiratory phenotype. Recent insights into the genetic basis for CCHS may shed light on the genetics of other early disturbances in breathing control, such as apnea of prematurity and sudden infant death syndrome.
Collapse
Affiliation(s)
- Claude Gaultier
- INSERM E9935, Réanimation Médicale Pédiatrique, Hôpital Robert Debré, 75019 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF. Phox2bcontrols the development of peripheral chemoreceptors and afferent visceral pathways. Development 2003; 130:6635-42. [PMID: 14627719 DOI: 10.1242/dev.00866] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report that the afferent relays of visceral (cardiovascular, digestive and respiratory) reflexes, differentiate under the control of the paired-like homeobox gene Phox2b: the neural crest-derived carotid body, a chemosensor organ, degenerates in homozygous mutants, as do the three epibranchial placode-derived visceral sensory ganglia (geniculate, petrosal and nodose), while their central target, the nucleus of the solitary tract,which integrates all visceral information, never forms. These data establish Phox2b as an unusual `circuit-specific' transcription factor devoted to the formation of autonomic reflex pathways. We also show that Phox2b heterozygous mutants have an altered response to hypoxia and hypercapnia at birth and a decreased tyrosine hydroxylase expression in the petrosal chemosensory neurons, thus providing mechanistic insight into congenital central hypoventilation syndrome, which is associated with heterozygous mutations in PHOX2B.
Collapse
Affiliation(s)
- Stéphane Dauger
- Laboratoire de Neurologie et Physiologie du Développement, INSERM EPI9935, Hôpital Robert Debré, 48 Bd Serurier, 75019 Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Weese-Mayer DE, Berry-Kravis EM, Zhou L, Maher BS, Silvestri JM, Curran ME, Marazita ML. Idiopathic congenital central hypoventilation syndrome: Analysis of genes pertinent to early autonomic nervous system embryologic development and identification of mutations in PHOX2b. ACTA ACUST UNITED AC 2003; 123A:267-78. [PMID: 14608649 DOI: 10.1002/ajmg.a.20527] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Idiopathic congenital central hypoventilation syndrome (CCHS) has been linked to autonomic nervous system dysregulation and/or dysfunction (ANSD) since it was first described in 1970. A genetic basis of CCHS has been proposed because of the reports of four families with two affected children, because of mother-child transmission, and because of a recent report of a polyalanine expansion mutation in PHOX2b in a subset of CCHS subjects. We, therefore, studied genes pertinent to early embryologic development of the ANS including mammalian achaete-scute homolog-1 (MASH1), bone morphogenic protein-2 (BMP2), engrailed-1 (EN1), TLX3, endothelin converting enzyme-1 (ECE1), endothelin-1 (EDN1), PHOX2a, and PHOX2b in 67 probands with CCHS, and gender- and ethnicity-matched controls. No disease-defining mutations were identified in MASH1, BMP2, EN1, TLX3, ECE1, EDN1, or PHOX2a. The 65/67 CCHS probands (97%) were found to be heterozygous for the exon 3 polyalanine expansion mutation identified previously in PHOX2b. Further, there was an association between repeat mutation length and severity of the CCHS/ANSD phenotype. Of the two probands who did not carry the expansion mutation, one had a nonsense mutation in exon 3 which truncated the protein and the other had no mutation in PHOX2b but had a previously reported EDN3 frameshift point mutation. The polyalanine expansion mutation was not found in any of 67 matched controls. Of 54 available families (including 97 unaffected parents), whose child carried the PHOX2b mutation, 4 parents demonstrated mosaicism for an expansion mutation identical to that seen in the CCHS cases, suggesting that not all mutations in affected probands with unaffected parents are de novo. We also studied four women with CCHS who were heterozygous for the PHOX2b mutation, each with one child. Three of the four children were also affected and had the same mutation, demonstrating autosomal dominant inheritance of the mutation. Assay of the PHOX2b polyalanine repeat mutation represents a highly sensitive and specific technique for confirming the diagnosis of CCHS. Identification of the CCHS mutation will lead to clarification of the phenotype, allow for prenatal diagnosis for parents of CCHS probands and adults with CCHS in future pregnancies, and potentially direct intervention strategies for the treatment of CCHS.
Collapse
Affiliation(s)
- Debra E Weese-Mayer
- Department of Pediatrics, Rush Children's Hospital at Rush-Presbyterian-St. Luke's Medical Center, Rush University, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gaultier C, Dauger S, Simonneau M, Gallego J. Genes modulating chemical breathing control: lessons from mutant animals. Respir Physiol Neurobiol 2003; 136:105-14. [PMID: 12853003 DOI: 10.1016/s1569-9048(03)00075-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Genetic factors influence breathing control. Respiratory phenotypes of mutant mice may help to better understand these factors. Congenital central hypoventilation syndrome (CCHS) is a rare disorder defined as failure of chemical control of breathing causing central alveolar hypoventilation, especially during sleep. A genetic basis for CCHS is supported by several arguments, mainly the identification, in a few CCHS patients, of heterozygous mutations of genes contributing to neural crest cell development, namely, genes involved in the endothelin and c-ret pathways. Furthermore, plethysmography studies of the respiratory phenotypes of newborn heterozygous mutant mice have shown that genes in both pathways are involved in breathing control at birth. Nevertheless, no single gene mutation in newborn mice reproduces the human CCHS phenotype. Avenues for future research into the genetics of CCHS include (i) testing of mutant newborn mice for genes in other pathways and (ii) use of microarrays to identify gene clusters that should be associated with abnormal chemical breathing control.
Collapse
Affiliation(s)
- Claude Gaultier
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert-Debré, 48 Boulevard Sérurier, 75019 Paris, France.
| | | | | | | |
Collapse
|
23
|
Tankersley CG. Genetic aspects of breathing: on interactions between hypercapnia and hypoxia. Respir Physiol Neurobiol 2003; 135:167-78. [PMID: 12809617 DOI: 10.1016/s1569-9048(03)00035-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Indeed, specific genes in humans and mice regulate breathing pattern at baseline and breathing control during chemical stimulation. The current review addresses the question of coupling plausible candidate genes to physiological variation in control of breathing. That is, can genes discovered in mice be candidates assigned to similar physiological mechanisms as genetic control of breathing in humans? As an illustration, this review examines the interaction of hypoxia in affecting the hypercapnic ventilatory sensitivity (HCVS) curve in humans and mice. Strain distribution patterns (SDPs) incorporating ten inbred mouse strains demonstrate that hypoxic stimulation likely influences HVCS via an additive mechanism rather than synergy between hypercapnia and hypoxia (i.e. CO(2) potentiation). As a mechanism associated with the chemical control of breathing in humans, the absence of CO(2) potentiation in mice suggests that specific genes interact to establish variation in complex breathing traits among mouse strains and between species. If future studies support the current evidence, the absence of CO(2) potentiation in mice compared with humans suggest a clearly defined species difference, which may depend on alternative hypoxic interactions such as hypometabolic and central neuronal depressive mechanisms in mice. Because the complexity of breathing mechanisms varies with modest adjustments in the environment, gene-targeting strategies that achieve 'one-gene, one-phenotype' results must be complimented with alternative strategies that consider integrating complex respiratory mechanisms with gene-to-gene interactions.
Collapse
Affiliation(s)
- Clarke G Tankersley
- Division of Physiology, Department of Environment Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Abstract
The episodic waxing and waning of ventilation is a fundamental event in sleep apnea syndromes. Post-hypoxic frequency decline (PHFD) and periodic breathing (PB) are evoked by brief hypoxic exposures in unanaesthetized and unrestrained inbred C57BL/6J mice, but not in A/J mice; and expression of PHFD differs not only among these mice strains but in among rat strains as well. These observations along with the current literature on genetic factors that operate on ventilatory behavior at rest and with chemosensory drive lead to the hypothesis that genetic factors infer some proportion of risk for the ventilatory instability observed in human sleep apnea syndromes.
Collapse
Affiliation(s)
- Kingman P Strohl
- Center for Sleep Disorders Research, Louis Stokes VA Medical Center, 111j(w) VAMC, Case Western Reserve University, 10701 East Blvd., Cleveland, OH 44106, USA.
| |
Collapse
|
25
|
Abstract
Development of the mammalian respiratory control system begins early in gestation and does not achieve mature form until weeks or months after birth. A relatively long gestation and period of postnatal maturation allows for prolonged pre- and postnatal interactions with the environment, including experiences such as episodic or chronic hypoxia, hyperoxia, and drug or toxin exposures. Developmental plasticity occurs when such experiences, during critical periods of maturation, result in long-term alterations in the structure or function of the respiratory control neural network. A critical period is a time window during development devoted to structural and/or functional shaping of the neural systems subserving respiratory control. Experience during the critical period can disrupt and alter developmental trajectory, whereas the same experience before or after has little or no effect. One of the clearest examples to date is blunting of the adult ventilatory response to acute hypoxia challenge by early postnatal hyperoxia exposure in the newborn. Developmental plasticity in neural respiratory control development can occur at multiple sites during formation of brain stem neuronal networks and chemoafferent pathways, at multiple times during development, by multiple mechanisms. Past concepts of respiratory control system maturation as rigidly predetermined by a genetic blueprint have now yielded to a different view in which extremely complex interactions between genes, transcriptional factors, growth factors, and other gene products shape the respiratory control system, and experience plays a key role in guiding normal respiratory control development. Early-life experiences may also lead to maladaptive changes in respiratory control. Pathological conditions as well as normal phenotypic diversity in mature respiratory control may have their roots, at least in part, in developmental plasticity.
Collapse
Affiliation(s)
- John L Carroll
- Pediatric Pulmonary Medicine, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock 72202, USA.
| |
Collapse
|
26
|
Abstract
Breathing is a vital behavior that is particularly amenable to experimental investigation. We review recent progress on three problems of broad interest. (i) Where and how is respiratory rhythm generated? The preBötzinger Complex is a critical site, whereas pacemaker neurons may not be essential. The possibility that coupled oscillators are involved is considered. (ii) What are the mechanisms that underlie the plasticity necessary for adaptive changes in breathing? Serotonin-dependent long-term facilitation following intermittent hypoxia is an important example of such plasticity, and a model that can account for this adaptive behavior is discussed. (iii) Where and how are the regulated variables CO2 and pH sensed? These sensors are essential if breathing is to be appropriate for metabolism. Neurons with appropriate chemosensitivity are spread throughout the brainstem; their individual properties and collective role are just beginning to be understood.
Collapse
Affiliation(s)
- Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1763
| | - Gordon S. Mitchell
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Eugene E. Nattie
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756-0001
| |
Collapse
|
27
|
Autret F, Dauger S, Renolleau S, Eng GV, Kosofsky BE, Gressens P, Gaultier C, Gallego J. Ventilatory control in newborn mice prenatally exposed to cocaine. Pediatr Pulmonol 2002; 34:434-41. [PMID: 12422341 DOI: 10.1002/ppul.10202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Infants born to mothers who used cocaine during pregnancy are at increased risk for neonatal death and respiratory impairments. Confounding factors such as multiple substance abuse make it difficult to isolate the effects of cocaine. We used a murine model to test the hypothesis that prenatal cocaine exposure may impair ventilatory responses to chemical stimuli in newborns. Seventy-two pregnant mice were randomly assigned to three groups: cocaine (COC), saline (SAL), and untreated (UNT). COC and SAL mice received subcutaneous injections of either 20 mg/kg of cocaine or a saline solution twice a day from gestational days 8-17. Ventilation (V'(E)) and tidal volume (V(T)), both divided by body weight, and breath duration (T(TOT)) were measured using whole-body plethysmography in freely moving COC (n = 47), SAL (n = 123), and UNT (n = 93) pups on postnatal day 2.The comparison between SAL and UNT pups showed significant differences in baseline breathing and in V'(E) responses to hypoxia, suggesting that maternal stress caused by injections affected the development of ventilatory control in pups. Baseline T(TOT) was significantly longer in COC than in SAL pups. V'(E) responses to hypoxia were significantly smaller in COC than in SAL pups (+27 +/- 35% vs. +38 +/- 25%), but V'(E) responses to hypercapnia were similar (29 +/- 15% vs. 25 +/- 23%).Thus, breathing control was impaired by prenatal cocaine exposure, possibly because of abnormal development of neurotransmitter systems, such as the dopamine and serotonin systems.
Collapse
Affiliation(s)
- Fanny Autret
- Laboratoire de Neurologie et Physiologie du Développement, INSERM E9935, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Aizenfisz S, Dauger S, Durand E, Vardon G, Levacher B, Simonneau M, Pachnis V, Gaultier C, Gallego J. Ventilatory responses to hypercapnia and hypoxia in heterozygous c-ret newborn mice. Respir Physiol Neurobiol 2002; 131:213-22. [PMID: 12126922 DOI: 10.1016/s1569-9048(02)00031-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The c-ret proto-oncogene encodes a tyrosine-kinase receptor involved in survival and differentiation of neural crest cell lineages. Previous studies have shown that homozygous c-ret-/- mice die soon after birth and have impaired ventilatory responses to hypercapnia. Heterozygous c-ret +/- mice develop normally, but their respiratory phenotype has not been described in detail. We used whole-body flow plethysmography to compare baseline breathing and ventilatory and arousal responses to chemical stimuli in unrestrained heterozygous c-ret +/- newborn mice and their wild-type c-ret +/+ littermates at 10-12 h of postnatal age. The hyperpnoeic and arousal responses to hypoxia and hypercapnia were not significantly different in these two groups. However, the number and total duration of apnoeas and periodic breathing episodes were significantly higher in c-ret +/- than in c-ret +/+ pups during hypoxia and post-hypoxic normoxia. These results are further evidence that respiratory control at birth is heavily dependent on genes involved in the neural determination of neural crest cells.
Collapse
Affiliation(s)
- Sophie Aizenfisz
- Laboratoire de Neurologie et Physiologie du Développement, Hôpital Robert-Debré, 48 Boulevard Sérurier, 75019, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dauger S, Guimiot F, Renolleau S, Levacher B, Boda B, Mas C, Nepote V, Simonneau M, Gaultier C, Gallego J. MASH-1/RET pathway involvement in development of brain stem control of respiratory frequency in newborn mice. Physiol Genomics 2001; 7:149-57. [PMID: 11773601 DOI: 10.1152/physiolgenomics.00056.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory abnormalities have been described in MASH-1 (mammalian achaete-scute homologous gene) and c-RET ("rearranged during transfection") mutant newborn mice. However, the neural mechanisms underlying these abnormalities have not been studied. We tested the hypothesis that the MASH-1 mutation may impair c-RET expression in brain stem neurons involved in the control of breathing. To do this, we analyzed brain stem c-RET expression and respiratory phenotype in MASH-1 +/+ wild-type, MASH-1 +/- heterozygous, and MASH-1 -/- knock-out newborn mice during the first 2 h of life. In MASH-1 -/- newborns, c-RET gene expression was absent in the noradrenergic nuclei (A2, A5, A6, A7) that contribute to modulate respiratory frequency and in scattered cells of the rostral ventrolateral medulla. The c-RET transcript levels measured by quantitative RT-PCR were lower in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ brain stems (P = 0.001 and P = 0.003, respectively). Breath durations were shorter in MASH-1 -/- and MASH-1 +/- than in MASH-1 +/+ mice (P = 0.022) and were weakly correlated with c-RET transcript levels (P = 0.032). Taken together, these results provide evidence that MASH-1 is upstream of c-RET in noradrenergic brain stem neurons important for respiratory rhythm modulation.
Collapse
Affiliation(s)
- S Dauger
- Laboratoire de Neurologie et Physiologie du Développement, Institut National de la Santé et de la Recherche Médicale E9935, Service de Pédiatrie Réanimation, Hôpital Robert Debré, Service de Physiologie, Hôpital Robert Debré, 75019 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Spengler CM, Gozal D, Shea SA. Chemoreceptive mechanisms elucidated by studies of congenital central hypoventilation syndrome. RESPIRATION PHYSIOLOGY 2001; 129:247-55. [PMID: 11738658 DOI: 10.1016/s0034-5687(01)00294-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Humans born with the condition of central hypoventilation during non-rapid eye movement sleep, termed congenital central hypoventilation syndrome (CCHS), invariably have absent or greatly diminished central hypercapnic ventilatory chemosensitivity. Genetic and pathological studies of CCHS may enable identification of the genes or areas of the central nervous system involved in the syndrome and thus implicated in central hypercapnic ventilatory chemosensitivity. Functional studies of CCHS permit a more quantitative assessment of the importance of ventilatory chemosensitivity in the regulation of breathing during wakefulness and sleep. The experimental evidence suggests that central hypercapnic ventilatory chemosensitivity is crucial in regulating alveolar ventilation during non-rapid eye movement sleep but not during rapid eye movement sleep or during many of the behaviors occurring during wakefulness. Presumably, other neural drives to breathe supervene to enable adequate ventilation. However, although physiological studies in CCHS subjects have been greatly instructive, their accurate interpretation will have to await future determination of the potential genetic and/or neuroanatomic basis of the syndrome.
Collapse
Affiliation(s)
- C M Spengler
- Exercise Physiology, Institute for Human Movement Sciences, Swiss Federal Institute of Technology and Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
31
|
Renolleau S, Dauger S, Autret F, Vardon G, Gaultier C, Gallego J. Maturation of baseline breathing and of hypercapnic and hypoxic ventilatory responses in newborn mice. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1746-53. [PMID: 11641148 DOI: 10.1152/ajpregu.2001.281.5.r1746] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breathing during the first postnatal hours has not been examined in mice, the preferred mammalian species for genetic studies. We used whole body plethysmography to measure ventilation (VE), breath duration (T(TOT)), and tidal volume (VT) in mice delivered vaginally (VD) or by cesarean section (CS). In experiment 1, 101 VD and 100 CS pups aged 1, 6, 12, 24, or 48 h were exposed to 8% CO2 or 10% O2 for 90 s. In experiment 2, 31 VD pups aged 1, 12, or 24 h were exposed to 10% O2 for 5 min. Baseline breathing maturation was delayed in CS pups, but VE responses to hypercapnia and hypoxia were not significantly different between VD and CS pups [at postnatal age of 1 h (H1): 48 +/- 44 and 18 +/- 32%, respectively, in VD and CS pups combined]. The VE increase induced by hypoxia was greater at H12 (46 +/- 27%) because of T(TOT) response maturation. At all ages, hypoxic decline was ascribable mainly to a VT decrease, and posthypoxic decline was ascribable to a T(TOT) increase with apneas, suggesting different underlying neuronal mechanisms.
Collapse
Affiliation(s)
- S Renolleau
- Laboratoire de Neurologie et Physiologie du Développement, Institut National de la Santé et de la Recherche Médicale E9935, and Service de Physiologie, Hôpital Robert Debré, 75019 Paris, France
| | | | | | | | | | | |
Collapse
|
32
|
Soutiere SE, Tankersley CG. Challenges implicit to gene discovery research in the control of ventilation during hypoxia. High Alt Med Biol 2001; 2:191-200. [PMID: 11443000 DOI: 10.1089/152702901750265297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appointing physiological function to specific genetic determinants requires a systems physiologist to consider ways of assessing precise phenotypic mechanisms. The integration of ventilation, metabolism and thermoregulation, for example, is very complex and may differ among small and large mammalian species. This challenge is particularly applicable to the study of short- and long-term adaptation of these systems to hypoxic exposure associated with high altitude. Our laboratory has initiated a research effort to dissect the complexity of hypoxic adaptation using traditional quantitative genetic analysis and contemporary DNA genotyping techniques. Although the current evidence in murine models demonstrates that specific genes influence control of hypoxic ventilatory responses (HVR), the relevance of these determinants to human adaptation to altitude remains open to exploration. Our review discusses the progress and uncertainties associated with assigning a genetic basis to variation in acute and chronic HVR.
Collapse
Affiliation(s)
- S E Soutiere
- The Johns Hopkins University, School of Hygiene and Public Health, Department of Environmental Health Sciences, Division of Physiology, Baltimore, MD 21205, USA
| | | |
Collapse
|
33
|
Hunt CE. Sudden infant death syndrome and other causes of infant mortality: diagnosis, mechanisms, and risk for recurrence in siblings. Am J Respir Crit Care Med 2001; 164:346-57. [PMID: 11500332 DOI: 10.1164/ajrccm.164.3.9910045] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- C E Hunt
- Department of Pediatrics, Medical College of Ohio, Toledo, Ohio, USA.
| |
Collapse
|
34
|
Gozal D, Gaultier C. Evolving concepts of the maturation of central pathways underlying the hypoxic ventilatory response. Am J Respir Crit Care Med 2001; 164:325-9. [PMID: 11463609 DOI: 10.1164/ajrccm.164.2.2011133] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- D Gozal
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, 570 S. Preston Street, Louisville, KY 40202, USA.
| | | |
Collapse
|
35
|
Hunt CE. Familial small upper airways and sleep-disordered breathing: relationship to idiopathic apparent-life-threatening events. Pediatr Res 2001; 50:3-5. [PMID: 11420410 DOI: 10.1203/00006450-200107000-00003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- C E Hunt
- National Center on Sleep Disorders Research, National Heart, Lung, and Blood Institute, Two Rockledge Centre, Room 10038, 6701 Rockledge Drive, MSC 7920, Bethesda, MD 20892-7920, USA
| |
Collapse
|
36
|
Renolleau S, Dauger S, Vardon G, Levacher B, Simonneau M, Yanagisawa M, Gaultier C, Gallego J. Impaired ventilatory responses to hypoxia in mice deficient in endothelin-converting-enzyme-1. Pediatr Res 2001; 49:705-12. [PMID: 11328956 DOI: 10.1203/00006450-200105000-00016] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Endothelin-converting-enzyme (ECE-1) catalyzes the proteolytic activation of big endothelin-1 to mature endothelin-1. Most homozygous ECE-1-/- embryos die in utero and show severe craniofacial, enteric, and cardiac malformations precluding ventilatory function assessment. In contrast, heterozygous ECE-1+/- embryos develop normally. Their respiratory function at birth has not been studied. Taking into account previous respiratory investigations in mice with endothelin-1 gene disruption, we hypothesized that ECE-1-deficient mice may have impaired ventilatory control. We analyzed ventilatory responses to hypercapnia (8% CO(2)) and hypoxia (10% O(2)) in newborn and adult mice heterozygous for ECE-1 deficiency (ECE-1+/-) and in their wild-type littermates (ECE-1+/+). Ventilation, breath duration, and tidal volume were measured using whole-body plethysmography. Ventilatory responses to hypoxia were significantly weaker in ECE-1+/- than in ECE-1+/+ newborn mice (percentage ventilation increase: 1 +/- 25% versus 33 +/- 29%, p = 0.010). Baseline breathing variables and ventilatory responses to hypercapnia were normal in the ECE-1+/- newborn mice. No differences were observed between adult ECE-1+/- and ECE-1+/+ mice. We conclude that ECE-1 is required for normal ventilatory response to hypoxia at birth.
Collapse
Affiliation(s)
- S Renolleau
- Laboratoire de Neurologie et Physiologie du Développement and Service de Physiologie, Hôpital Robert Debré, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
A diverse group of processes are involved in central control of ventilation. Both fast acting neurotransmitters and slower acting neuromodulators are involved in the central respiratory drive. This review deals with fast acting neurotransmitters that are essential centrally in the ventilatory response to H(+)/CO(2) and to acute hypoxia. Data are reviewed to show that the central response to H(+)/CO(2) is primarily at sites in the medulla, the most prominent being the ventral medullary surface (VMS), and that acetylcholine is the key neurotransmitter in this process. Genetic abnormalities in the cholinergic system lead to states of hypoventilation in man and that knock out mice for genes responsible for neural crest development have none or diminished CO(2) ventilatory response. In the acute ventilatory response to hypoxia the afferent impulses from the carotid body reach the nucleus tractus solitarius (NTS) releasing glutamate which stimulates ventilation. Glutamate release also occurs in the VMS. Hypoxia is also associated with release of GABA in the mid-brain and a biphasic change in concentration of another inhibitory amino acid, taurine. Collectively changes in these amino acids can account for the ventilatory output in response to acute hypoxia. Future studies should provide more data on molecular and genetic basis of central respiratory drive and the role of neurotransmitter in this essential function.
Collapse
Affiliation(s)
- M D Burton
- Medical Services (Pulmonary and Critical Care Unit), Bulfinch 148, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|