1
|
Wong F, Rath C, Gowda BB, Patole S. Role of pentoxifylline in neonatal hypoxic ischaemic encephalopathy: a systematic review of animal studies. Lab Anim Res 2024; 40:41. [PMID: 39605099 PMCID: PMC11603731 DOI: 10.1186/s42826-024-00228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
We systematically reviewed the evidence from animal studies assessing the effects of pentoxifylline on neonatal hypoxic-ischemic encephalopathy (HIE). The PubMed, EMBASE, EMCARE, MEDLINE, Cochrane Library, and Google Scholar databases were searched for randomized and quasi randomized controlled trials (RCTs) in December 2023 to determine the effects of pentoxifylline in animal models of HIE. The quality of the included studies was assessed via the SYRCLE risk of bias (ROB) tool. The certainty of evidence was assessed via the GRADE methodology. All seven included studies (n = 248) involved a rat HIE model in which pentoxifylline (25-150 mg/kg) was administered intraperitoneally. The majority had unclear ROB. All the studies reported a protective effect of pentoxifylline on HIE-induced organ injury. Mortality was comparable at pentoxifylline doses between 25 and 75 mg/kg but higher at 150 mg/kg than in the control group. Three studies reported macroscopic changes in HIE-affected organs. There was a significant reduction in cerebral infarction (40 and 75 mg/kg), hippocampal atrophy, and visible gut injury (60 mg/kg). A significantly lower number of Caspase 3 immunoreactive cells and necrotic cells were observed at the 60 mg/kg dose, whereas the 100 mg/kg dose had a deleterious effect. Three other studies reported significantly reduced levels of proinflammatory markers including IL-6 and TNF-alpha. Current evidence (with low uncertainty) from a rat model suggests that pentoxifylline has the potential to improve mortality and attenuate organ injury following HIE. Adequately powered, well-designed human RCTs are needed to confirm our findings.
Collapse
Affiliation(s)
- Florence Wong
- Division of General Paediatrics, Armadale Kelmscott Memorial Hospital, Mount Nasura, WA, 6112, Australia
| | - Chandra Rath
- Perth Children's Hospital, Nedlands, WA, 6009, Australia
- King Edward Memorial Hospital, Subiaco, WA, 6008, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Bhanu B Gowda
- Perth Children's Hospital, Nedlands, WA, 6009, Australia
- School of Medicine, University of Western Australia, Nedlands, WA, 6009, Australia
| | - Sanjay Patole
- King Edward Memorial Hospital, Subiaco, WA, 6008, Australia.
- School of Medicine, University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
2
|
Borghi SM, Zaninelli TH, Saraiva-Santos T, Bertozzi MM, Cardoso RDR, Carvalho TT, Ferraz CR, Camilios-Neto D, Cunha FQ, Cunha TM, Pinho-Ribeiro FA, Casagrande R, Verri WA. Brief research report: Repurposing pentoxifylline to treat intense acute swimming-Induced delayed-onset muscle soreness in mice: Targeting peripheral and spinal cord nociceptive mechanisms. Front Pharmacol 2023; 13:950314. [PMID: 36703752 PMCID: PMC9871252 DOI: 10.3389/fphar.2022.950314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, we pursue determining the effect of pentoxifylline (Ptx) in delayed-onset muscle soreness (DOMS) triggered by exposing untrained mice to intense acute swimming exercise (120 min), which, to our knowledge, has not been investigated. Ptx treatment (1.5, 4.5, and 13.5 mg/kg; i.p., 30 min before and 12 h after the session) reduced intense acute swimming-induced mechanical hyperalgesia in a dose-dependent manner. The selected dose of Ptx (4.5 mg/kg) inhibited recruitment of neutrophils to the muscle tissue, oxidative stress, and both pro- and anti-inflammatory cytokine production in the soleus muscle and spinal cord. Furthermore, Ptx treatment also reduced spinal cord glial cell activation. In conclusion, Ptx reduces pain by targeting peripheral and spinal cord mechanisms of DOMS.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,Center for Research in Health Science, University of Northern Paraná, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana M. Bertozzi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renato D. R. Cardoso
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Thacyana T. Carvalho
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Camila R. Ferraz
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, State University of Londrina, Londrina, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe A. Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| |
Collapse
|
3
|
Chen X, Malaeb SN, Pan J, Wang L, Scafidi J. Editorial: Perinatal hypoxic-ischemic brain injury: Mechanisms, pathogenesis, and potential therapeutic strategies. Front Cell Neurosci 2022; 16:1086692. [PMID: 36582212 PMCID: PMC9793000 DOI: 10.3389/fncel.2022.1086692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xiaodi Chen
- Women and Infants Hospital of RI, Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Jonathan Pan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Laishuan Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Bhat JA, Kumar M. Neuroprotective Effects of Theobromine in permanent bilateral common carotid artery occlusion rat model of cerebral hypoperfusion. Metab Brain Dis 2022; 37:1787-1801. [PMID: 35587851 DOI: 10.1007/s11011-022-00995-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Cerebral hypoperfusion (CH) is a common underlying mechanism of dementia disorders linked to aberrations in the neurovascular unit. Hemodynamic disturbances adversely affect cellular energy homeostasis that triggers a sequence of events leading to irrevocable damage to the brain and neurobehavioral discrepancies. Theobromine is a common ingredient of many natural foods consumed by a large population worldwide. Theobromine has shown health benefits in several studies, attributed to regulation of calcium homeostasis, phosphodiesterase, neurotransmission, and neurotrophins. The current study evaluated the neuroprotective potential of theobromine against CH in the permanent bilateral common carotid artery occlusion (BCCAO) prototype. Wistar rats were distributed in Sham-operated (S), S + T100, CH, CH + T50, and CH + T100 groups. Animals received permanent BCCAO or Sham treatment on day 1. Theobromine (50, 100 mg/kg) was given orally in animals subjected to BCCAO for 14 days daily. CH caused neurological deficits (12-point scale), motor dysfunction, and memory impairment in rats. Treatment with theobromine significantly attenuated neurological deficits and improved sensorimotor functions and memory in rats with CH. In biochemistry investigation of the entire brain, findings disclosed reduction in brain oxidative stress, inflammatory intermediaries (tumor necrosis factor-α, interleukin-1β and - 6, nuclear factor-κB), markers of cell demise (lactate dehydrogenase, caspase-3), acetylcholinesterase activity, and improvement in γ-aminobutyric acid quantity in rats that were given theobromine for 14 days daily after CH. Histopathological analysis substantiated attenuation of neurodegenerative changes by theobromine. The findings of this study indicated that theobromine could improve neurological scores, sensorimotor abilities, and memory in CH prototype.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India
| | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Ghaggar Sarai, Rajpura, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
5
|
Effects of Pentoxifylline in a Rat Model of Manganism: Evaluation of the Possible Toxicity. J CHEM-NY 2021. [DOI: 10.1155/2021/9926100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective. Manganese (Mn) has been reported, through dietary and occupational overexposure, to induce neurotoxicity named manganism. Pentoxifylline (PTX) administration attracts much attention considering the beneficial properties of PTX, as an anti-inflammatory and smooth muscle relaxation agent. This in vivo study aims to evaluate the effect of PTX on manganism in rat model. Materials and Methods. Thirty adult male Sprague Dawley rats received MnCl2 (100 mg/kg, i.p. on days 1, 3, and 7) during a week alone or in combination with PTX (300 mg/kg, i.p. every day for 8 consecutive days on manganism rat model). Several locomotor activity indices, as well as biomarkers of oxidative stress, were monitored in the brain tissue of Mn-exposed animals. Results. It was found that PTX supplementation (300 mg/kg, i.p.) deteriorated the Mn-induced locomotor deficit. This drug also increased the Mn brain accumulation as well as reactive oxygen species (ROS) and lipid peroxidation products in the manganism rat model. Moreover, the levels of total antioxidant capacity (TAC) and glutathione (GSH) were shown to be reduced significantly compared to the control group. Conclusion. The results of this study revealed that PTX at a high dose (300 mg/kg) might increase manganism complications. PTX lowers the blood viscosity, improves the tissue perfusion, and increases the Mn levels in the brain.
Collapse
|
6
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
7
|
Lai JCY, Svedin P, Ek CJ, Mottahedin A, Wang X, Levy O, Currie A, Strunk T, Mallard C. Vancomycin Is Protective in a Neonatal Mouse Model of Staphylococcus epidermidis-Potentiated Hypoxic-Ischemic Brain Injury. Antimicrob Agents Chemother 2020; 64:e02003-19. [PMID: 31818825 PMCID: PMC7038267 DOI: 10.1128/aac.02003-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Infection is correlated with increased risk of neurodevelopmental sequelae in preterm infants. In modeling neonatal brain injury, Toll-like receptor agonists have often been used to mimic infections and induce inflammation. Using the most common cause of bacteremia in preterm infants, Staphylococcus epidermidis, we present a more clinically relevant neonatal mouse model that addresses the combined effects of bacterial infection together with subsequent hypoxic-ischemic brain insult. Currently, there is no neuroprotective treatment for the preterm population. Hence, we tested the neuroprotective effects of vancomycin with and without adjunct therapy using the anti-inflammatory agent pentoxifylline. We characterized the effects of S. epidermidis infection on the inflammatory response in the periphery and the brain, as well as the physiological changes in the central nervous system that might affect neurodevelopmental outcomes. Intraperitoneal injection of postnatal day 4 mice with a live clinical isolate of S. epidermidis led to bacteremia and induction of proinflammatory cytokines in the blood, as well as transient elevations of neutrophil and monocyte chemotactic cytokines and caspase 3 activity in the brain. When hypoxia-ischemia was induced postinfection, more severe brain damage was observed in infected animals than in saline-injected controls. This infection-induced inflammation and potentiated brain injury was inoculum dose dependent and was alleviated by the antibiotic vancomycin. Pentoxifylline did not provide any additional neuroprotective effect. Thus, we show for the first time that live S. epidermidis potentiates hypoxic-ischemic preterm brain injury and that peripheral inhibition of inflammation with antibiotics, such as vancomycin, reduces the extent of brain injury.
Collapse
Affiliation(s)
- Jacqueline C Y Lai
- Center for Perinatal Medicine and Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Pernilla Svedin
- Center for Perinatal Medicine and Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - C Joakim Ek
- Center for Perinatal Medicine and Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amin Mottahedin
- Center for Perinatal Medicine and Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xiaoyang Wang
- Center for Perinatal Medicine and Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Andrew Currie
- Centre for Neonatal Research and Education, University of Western Australia, Perth, Western Australia, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Tobias Strunk
- Centre for Neonatal Research and Education, University of Western Australia, Perth, Western Australia, Australia
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, Western Australia, Australia
| | - Carina Mallard
- Center for Perinatal Medicine and Health, Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Halis H, Bitiktaş S, Baştuğ O, Tan B, Kavraal Ş, Güneş T, Süer C. Differential Effects of Pentoxifylline on Learning and Memory Impairment Induced by Hypoxic-ischemic Brain Injury in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:388-399. [PMID: 31352705 PMCID: PMC6705102 DOI: 10.9758/cpn.2019.17.3.388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/10/2023]
Abstract
Objective Hypoxic-ischemic (HI) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal HI injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, the present study investigated the long-term effects of HI and potential behavioral protective effect of pentoxifylline. Methods Seven-day-old rats underwent right carotid ligation, followed by hypoxia (FiO2 = 0.08). Rats received pentoxifylline immediately after and again 2 hours after hypoxia (two doses, 60‒100 mg/kg/dose), or serum physiologic. Another set of seven-day-old rats was included to sham group exposed to surgical stress but not ligated. These rats were tested for spatial learning and memory on the simple place task in the Morris water maze from postnatal days 77 to 85. Results HI rats displayed significant tissue loss in the right hippocampus, as well as severe spatial memory deficits. Low-dose treatment with pentoxifylline resulted in significant protection against both HI-induced hippocampus tissue losses and spatial memory impairments. Beneficial effects are, however, negated if pentoxifylline is administered at high dose. Conclusion These findings indicate that unilateral HI brain injury in a neonatal rodent model is associated with cognitive deficits, and that low dose pentoxifylline treatment is protective against spatial memory impairment.
Collapse
Affiliation(s)
- Hülya Halis
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Soner Bitiktaş
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Osman Baştuğ
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Şehrazat Kavraal
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tamer Güneş
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Wang Y, Dong L, Li J, Luo M, Shang B. Pentoxifylline induces apoptosis of HepG2 cells by reducing reactive oxygen species production and activating the MAPK signaling. Life Sci 2017; 183:60-68. [DOI: 10.1016/j.lfs.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023]
|
10
|
Goksu E, Dogan O, Ulker P, Tanrıover G, Konuk E, Dilmac S, Kirac E, Demır N, Aslan M. Pentoxifylline Alleviates Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage. Acta Neurochir (Wien) 2016; 158:1721-30. [PMID: 27311763 DOI: 10.1007/s00701-016-2866-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/02/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe cerebrovascular disease frequently caused by ruptured aneurysms. Early brain injury (EBI) is the primary cause of morbidity and mortality in patients diagnosed with SAH and is associated with increased intracranial pressure, decreased cerebral blood flow and cerebral ischemia. Pentoxifylline (PTX) is a methylxanthine derivative clinically proven to improve perfusion in the peripheral microcirculation and has been shown to have neuroprotective effects in brain trauma and global cerebral ischemia in experimental animal models. This study aimed to determine the effect of PTX in experimental SAH, which has not been investigated yet. METHODS An experimental SAH model was induced in male Wistar rats by autologous blood injection into the prechiasmatic cistern, and PTX was injected intraperitoneally immediately after SAH. The effects of PTX were evaluated 24 h after SAH via assessing the cerebral ultrastructure via transmission electron microscopy (TEM). Brain edema, blood-brain barrier (BBB) permeability, red blood cell deformability, tumor necrosis factor-alpha (TNF-alpha), nitrite-nitrate levels and apoptotic neuron death were also determined 24 h after SAH. The BBB permeability was measured by Evans blue (EB) extravasation, erythrocyte deformability was determined by filtration technique, and TNF-alpha and reactive nitrogen metobolites were analyzed in brain tissue by ELISA and spectral analysis, respectively. Apoptotic neurons were determined in brain sections by cleaved caspase-3 immunohistochemical analysis, and expression intensity was quantified using image J software. RESULTS Cerebral ultrastructure in SAH group animals revealed intense perivascular edema and distortion in the astrocyte foot processes. PTX treatment attenuated structural deterioration due to SAH. Brain water content, BBB permeability, TNF-alpha, nitrite-nitrate levels and apoptotic neuronal death were significantly increased 24 h after SAH and were significantly alleviated by PTX treatment. There was no significant change in red cell deformability after SAH. CONCLUSIONS Our results show that PTX reduces brain edema, BBB permeability, TNF-alpha expression, reactive nitrogen metobolites and apopotosis in experimental SAH. Based on our findings we suggest that PTX exerts neuroprotection against SAH-induced EBI, which might be associated with the inhibition of inflammation and apoptotic neuronal cell death.
Collapse
Affiliation(s)
- Ethem Goksu
- Department of Neurosurgery, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey
| | - Ozgur Dogan
- Division of Neurosurgery, Denizli State Hospital, Denizli, 20125, Turkey
| | - Pınar Ulker
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey
| | - Gamze Tanrıover
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey
| | - Esma Konuk
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey
| | - Sayra Dilmac
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey
| | - Ebru Kirac
- Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey
| | - Necdet Demır
- Department of Histology, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey
| | - Mutay Aslan
- Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070, Turkey.
| |
Collapse
|
11
|
Pentoxifylline Alleviates Perinatal Hypoxic-Ischemia-Induced Short-term Memory Impairment by Suppressing Apoptosis in the Hippocampus of Rat Pups. Int Neurourol J 2016; 20:107-13. [PMID: 27377942 PMCID: PMC4932643 DOI: 10.5213/inj.1632532.266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/17/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose: Perinatal hypoxic-ischemic brain damage is a major cause of acute mortality and chronic neurologic morbidity in infants and children. We investigated the effects of pentoxifylline, a methylxanthine derivative and type-4 phosphodiesterase inhibitor, on short-term memory and apoptotic neuronal cell death in the hippocampus following perinatal hypoxic-ischemia in newborn rats. Methods: We used a step-down avoidance task to evaluate short-term memory and 3ʹ-5ʹ-cyclic adenosine monophosphate (cAMP) assay to detect cAMP levels. We evaluated apoptosis using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for evidence of DNA fragmentation, immunohistochemistry for caspase-3 levels, and western blot for Bcl-2 and Bax. Results: Perinatal hypoxic-ischemic injury increased apoptotic cell death in the hippocampus, resulting in impaired short-term memory with decreased cAMP levels. Pentoxifylline treatment improved short-term memory by suppressing apoptotic cell death in the hippocampus with elevated cAMP levels. Conclusions: Pentoxifylline ameliorated perinatal hypoxic-ischemia in rat pups. This alleviating effect could be ascribed to the inhibition apoptosis due to increased cAMP production by pentoxifylline.
Collapse
|
12
|
Prieto-Moure B, Lloris-Carsí JM, Barrios-Pitarque C, Toledo-Pereyra LH, Lajara-Romance JM, Berda-Antolí M, Lloris-Cejalvo JM, Cejalvo-Lapeña D. Pharmacology of Ischemia-Reperfusion. Translational Research Considerations. J INVEST SURG 2016; 29:234-49. [PMID: 27216877 DOI: 10.3109/08941939.2015.1119219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischemia-reperfusion (IRI) is a complex physiopathological mechanism involving a large number of metabolic processes that can eventually lead to cell apoptosis and ultimately tissue necrosis. Treatment approaches intended to reduce or palliate the effects of IRI are varied, and are aimed basically at: inhibiting cell apoptosis and the complement system in the inflammatory process deriving from IRI, modulating calcium levels, maintaining mitochondrial membrane integrity, reducing the oxidative effects of IRI and levels of inflammatory cytokines, or minimizing the action of macrophages, neutrophils, and other cell types. This study involved an extensive, up-to-date review of the bibliography on the currently most widely used active products in the treatment and prevention of IRI, and their mechanisms of action, in an aim to obtain an overview of current and potential future treatments for this pathological process. The importance of IRI is clearly reflected by the large number of studies published year after year, and by the variety of pathophysiological processes involved in this major vascular problem. A quick study of the evolution of IRI-related publications in PubMed shows that in a single month in 2014, 263 articles were published, compared to 806 articles in the entire 1990.
Collapse
Affiliation(s)
| | | | | | - Luis-H Toledo-Pereyra
- c Western Michigan University, Homer Stryker M.D. School of Medicine and Michigan State University , College of Human Medicine , Kalamazoo , MI
| | | | - M Berda-Antolí
- b Experimental Surgery , Catholic University of Valencia , Valencia , Spain
| | - J M Lloris-Cejalvo
- b Experimental Surgery , Catholic University of Valencia , Valencia , Spain
| | | |
Collapse
|
13
|
Ahmadi M, Khalili H. Potential benefits of pentoxifylline on wound healing. Expert Rev Clin Pharmacol 2015; 9:129-42. [DOI: 10.1586/17512433.2016.1109443] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Kalay S, Oztekin O, Tezel G, Aldemir H, Sahin E, Koksoy S, Akcakus M, Oygur N. The effects of intraperitoneal pentoxifylline treatment in rat pups with hypoxic-ischemic encephalopathy. Pediatr Neurol 2013; 49:319-23. [PMID: 23993832 DOI: 10.1016/j.pediatrneurol.2013.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the effects of postischemic treatment with pentoxifylline on the cytokine gene expressions and neuronal apoptosis in neonatal rat model of hypoxic-ischemic encephalopathy. METHODS Seven-day-old Wistar rat pups (n = 40) of either sex, delivered spontaneously, were used in this experimental study. Control group (n = 8): after median neck incision was made, neither ligation nor hypoxia was performed, ischemia group (n = 16): 0.5 mL of saline was injected intraperitoneally immediately after hypoxia. Pentoxifylline and ischemia groups (n = 16): the rat pups were administered intraperitoneally 60 mg/kg of pentoxifylline immediately after hypoxia. Eight rats from ischemia and pentoxifylline + ischemia groups were sacrificed 4 and 24 hours after drug administration. Control group mice were decapitated 4 hours after hypoxia. Caspase-3 activity, interleukin-1β, and tumor necrosis factor-α messenger RNA expression levels were studied in the left half of the brain. RESULTS Induction of cerebral ischemia increased tumor necrosis factor-α and interleukin-1β messenger RNA expression levels significantly at 4 hours and 24 hours following ischemia in the left ischemic hemispheres in the ischemia group as compared with the control group. Systemic administration of pentoxifylline immediately after hypoxic-ischemic encephalopathy significantly reduced the tumor necrosis factor-α and interleukin-1β messenger RNA expression levels in ischemic tissue as compared with the ischemia group. Caspase-3 activities in the left half of the brains of ischemia group were found to be increased significantly as compared with control group. Caspase-3 activities in the brains of pentoxifylline + ischemia groups were significantly lower than in that of ischemia group. CONCLUSIONS Based on the significantly lower interleukin-1β and tumor necrosis factor-α gene expression measured after 4 and 24 hours and significantly reduced caspase-3 activity measured colorimetrically in the animals treated with pentoxifylline, our findings suggest that pentoxifylline may reduce brain damage due to hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Salih Kalay
- Division of Neonatology, Department of Pediatrics, School of Medicine, Akdeniz University, Antalya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dilek M, Kumral A, Okyay E, Ozbal S, Tugyan K, Tuzun F, Sever AH, Yilmaz O, Duman N, Ozkan H. Protective effects of pentoxifylline on lipopolysaccharide-induced white matter injury in a rat model of periventricular leukomalasia. J Matern Fetal Neonatal Med 2013; 26:1865-71. [PMID: 23614640 DOI: 10.3109/14767058.2013.798290] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the potential neuroprotective effect of maternal pentoxifylline (PNTX) treatment in endotoxin-induced periventricular leukomalasia (PVL) in the developing rat brain. METHOD Intraperitoneal injection of lipopolysaccharide was administered on two of three Wistar pregnant rats to establish PVL. To obtain PNTX-treated group, one of the two dams were injected with PNTX. The control group was treated with saline. Rat pups were grouped as control, maternal LPS-treated group and PNTX + LPS-treated group. At 7th postnatal days, apoptosis and hypomyelination were evaluated. Apoptosis was evaluated by caspase-3 and terminal deoxynucleotidyl transferase [TdT] dUTP nick endlabelling reaction (TUNEL) immunostaining. To assess hypomyelination, myelin basic protein (MBP) staining, as a marker of myelination, was evaluated. RESULTS MBP staining was significantly less and weaker in the brains of the LPS-treated group as compared with the PNTX-treated group. PNTX treatment significantly reduced the number of apoptotic cells in the periventricular WM shown on Tunel and caspase-3. CONCLUSIONS Presented study is first indicated that PNTX may provide protection against an LPS-induced inflammatory response and WMI in the developing rat brain. Our results also suggest that PNTX treatment in pregnant women with maternal or placental infection may minimize the risk of PVL and cerebral palsy.
Collapse
|
16
|
Abstract
Hypoxia-ischemia is a leading cause of morbidity and mortality in the perinatal period with an incidence of 1/4000 live births. Biochemical events such as energy failure, membrane depolarization, brain edema, an increase of neurotransmitter release and inhibition of uptake, an increase of intracellular Ca(2+), production of oxygen-free radicals, lipid peroxidation, and a decrease of blood flow are triggered by hypoxia-ischemia and may lead to brain dysfunction and neuronal death. These abnormalities can result in mental impairments, seizures, and permanent motor deficits, such as cerebral palsy. The physical and emotional strain that is placed on the children affected and their families is enormous. The care that these individuals need is not only confined to childhood, but rather extends throughout their entire life span, so it is very important to understand the pathophysiology that follows a hypoxic-ischemic insult. This review will highlight many of the mechanisms that lead to neuronal death and include the emerging area of white matter injury as well as the role of inflammation and will provide a summary of therapeutic strategies. Hypothermia and oxygen will also be discussed as treatments that currently lack a specific target in the hypoxic/ischemic cascade.
Collapse
Affiliation(s)
- John W Calvert
- Departments of Neurosurgery and Molecular and Cellular Physiology, Loma Linda University Medical Center, 11234 Anderson Street, Loma Linda, CA 92354, USA
| | | |
Collapse
|
17
|
Ji Q, Jia H, Dai H, Li W, Zhang L. Protective effects of pentoxifylline on the brain following remote burn injury. Burns 2010; 36:1300-8. [DOI: 10.1016/j.burns.2010.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 05/03/2010] [Accepted: 05/12/2010] [Indexed: 12/31/2022]
|
18
|
Bruno RDB, Marques TF, Batista TMT, Lima JCSS, de Arruda KG, Lima PFSF, Santos NDS, Cunha GM, Vitor HVN, Viana GSDB. Pentoxifylline treatment improves neurological and neurochemical deficits in rats subjected to transient brain ischemia. Brain Res 2009; 1260:55-64. [DOI: 10.1016/j.brainres.2008.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 11/29/2022]
|
19
|
Pentoxifylline ameliorates lithium-pilocarpine induced status epilepticus in young rats. Epilepsy Behav 2008; 12:354-65. [PMID: 18203664 DOI: 10.1016/j.yebeh.2007.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/04/2007] [Accepted: 12/08/2007] [Indexed: 11/23/2022]
Abstract
The neuroprotective effects of pentoxifylline (PTX) against lithium-pilocarpine (Li-Pc)-induced status epilepticus (SE) in young rats are described. Animals treated with PTX (0, 20, 40, and 60 mg/kg) before induction of SE were examined for latency to and frequency of SE, behavioral changes, oxidative stress, neurochemical alterations in the hippocampus and striatum, and histological abnormalities in the hippocampus. Treatment with PTX significantly ameliorated the frequency and severity of epileptic seizures in a dose-dependent manner. Our behavioral studies using the elevated plus-maze, rotarod, and water maze tests suggested a significant reduction in anxiety, enhanced motor performance, and improved learning and memory in PTX-treated rats. Li-Pc-induced neuronal cell loss and sprouting of mossy fibers in the hippocampus were also attenuated by PTX. The neuroprotective activity of PTX was accompanied by reduction in oxidative stress and reversal of SE-induced depletion of dopamine and 5-hydroxytryptamine in hippocampus and striatum. The results of this study provide a good rationale to explore the prophylactic/therapeutic potential of PTX in SE.
Collapse
|
20
|
Mitkov J, Danchev N, Nikolova I, Zlatkov A. Synthesis and brain antihypoxic activity of some aliphatic and arylaliphatic amides of caffeine-8-thioglycolic acid. ACTA PHARMACEUTICA 2007; 57:361-70. [PMID: 17878115 DOI: 10.2478/v10007-007-0029-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The synthesis of some aliphatic and arylaliphatic amides of caffeine-8-thioglycolic acid was studied. The structures of synthesized compounds were proved by micro-analyses, IR- and 1H NMR data. Values of acute p.o. and i.p. toxicity in mice show lower toxicity compared to caffeine. Declines in spontaneous locomotor activity support the idea of depressive CNS activity of the compounds. Two compounds exhibited brain antihypoxic activity (5a and 5b against haemic and circulatory hypoxia, respectively).
Collapse
Affiliation(s)
- Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 1000 Sofia, Bulgaria
| | | | | | | |
Collapse
|
21
|
Vakili A, Zahedi khorasani M. Post-ischemic treatment of pentoxifyline reduces cortical not striatal infarct volume in transient model of focal cerebral ischemia in rat. Brain Res 2007; 1144:186-91. [PMID: 17320054 DOI: 10.1016/j.brainres.2007.01.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 01/20/2007] [Accepted: 01/23/2007] [Indexed: 11/24/2022]
Abstract
Previous studies reported that pentoxifylline (PTX) have a neuroprotective effect in the brain trauma and the global cerebral ischemia in the experimental models. However, the effect of PTX in transient model of focal cerebral ischemia has not been investigated yet. Therefore, this study was designed to investigate the effect of post-ischemic treatment of PTX on ischemic injuries in focal cerebral ischemic. Male Wistar rats (n=32) were assigned to control or PTX- (60 mg/kg i.p.) treated groups. PTX at dose 60 mg/kg i.p. administered at the beginning, or 1, or 3 h after ischemia. Focal cerebral ischemia was induced by middle cerebral artery occlusion, followed by 24-h reperfusion. At the end of 24 h ischemia, neurological dysfunction score was tested and infarct volumes were determined using triphenyltetrazolium chloride staining. Administration of PTX (60 mg/kg) at the beginning of ischemia, or 1, or 3 h after ischemia significantly reduces cortical infarct volumes by 43%, 40% and 41%, respectively. However, PTX did not significantly affect striatal infarct volumes and neurological dysfunction. The findings of the present study indicate that administration of PTX at least 3 h post-transient focal stroke reduces cortical brain ischemic damage in the rat model of transient focal cerebral ischemia.
Collapse
Affiliation(s)
- Abedin Vakili
- Laboratory of Cerebrovascular Research, Physiological Research Center, University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The association between perinatal infection and brain injury is widely accepted but a cause-and-effect relationship has not yet been proven. This article summarizes available evidence and current primary publications for debate. RECENT FINDINGS Work completed during the review period has reinforced current understanding of perinatal infection, prematurity and brain injury. In animal experiments: lipopolysaccharides have been further implicated in brain injury, not only as a cause of brain injury but also as mediators of preconditioning and protection. Recent studies suggest that cerebral injury following low-dose lipopolysaccharide administration may become compensated in adulthood. Other studies have emphasized the complexity of the response by showing that plasma cytokine levels may not reflect those in the central nervous system or inflammatory events in the brain. SUMMARY Perinatal infection and maternofetal inflammation is strongly associated with preterm birth. Inflammation probably represents an important mechanism for cerebral damage, and both overt lesions and maldevelopment can result. Epidemiological data and multiple animal models to link infection, inflammation and brain damage exist, but proof of causation is elusive.
Collapse
Affiliation(s)
- Anthony D Edwards
- Division of Paediatrics Obstetrics and Gynaecology, Imperial College London, Paediatrics, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
23
|
Shin DH, Bae YC, Kim-Han JS, Lee JH, Choi IY, Son KH, Kang SS, Kim WK, Han BH. Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic-ischemic brain damage via multiple mechanisms. J Neurochem 2006; 96:561-72. [PMID: 16336627 DOI: 10.1111/j.1471-4159.2005.03582.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flavonoids are naturally occurring polyphenolic compounds that have many biological properties, including antioxidative, anti-inflammatory and neuroprotective effects. Here, we report that amentoflavone significantly reduced cell death induced by staurosporine, etoposide and sodium nitroprusside in neuroblastoma SH-SY5Y cells. In post-natal day 7 rats, hypoxic-ischemic (H-I) brain damage induced by unilateral carotid ligation and hypoxia resulted in distinct features of neuronal cell death including apoptosis and necrosis. In this model, a systemic administration of amentoflavone (30 mg/kg) markedly reduced the H-I-induced brain tissue loss with a wide therapeutic time window up to 6 h after the onset of hypoxia. Amentoflavone blocked the activation of caspase 3, characteristic of apoptosis, and the proteolytic cleavage of its substrates following H-I injury. Amentoflavone also reduced the excitotoxic/necrotic cell death after H-I injury in vivo and after oxygen/glucose deprivation in mouse mixed cultures in vitro. Treatment of mouse microglial cells with amentoflavone resulted in a significant decrease in the lipopolysaccharide-induced production of nitric oxide and induction of inducible nitric oxide synthase and cyclo-oxygenase-2. Furthermore, amentoflavone decreased the inflammatory activation of microglia after H-I injury when assessed by the microglial-specific marker OX-42. These data demonstrate for the first time that amentoflavone strongly protects the neonatal brain from H-I injury by blocking multiple cellular events leading to brain damage.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Manufacturing Pharmacy and Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Banfi C, Sironi L, De Simoni G, Gelosa P, Barcella S, Perego C, Gianazza E, Guerrini U, Tremoli E, Mussoni L. Pentoxifylline prevents spontaneous brain ischemia in stroke-prone rats. J Pharmacol Exp Ther 2004; 310:890-5. [PMID: 15201342 DOI: 10.1124/jpet.104.067090] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anti-inflammatory properties of pentoxifylline (PTX) have recently been described. Spontaneously hypertensive stroke-prone rats (SHRSP) constitute an animal model that develops an inflammatory condition that precedes the appearance of brain abnormalities. The aim of the present investigation was to assess: 1) the efficacy of PTX treatment in protecting the neural system in SHRSP, and 2) how its anti-inflammatory properties might be involved in this effect. Male SHRSP fed with a permissive diet received no drug or PTX (100 or 200 mg/kg/day). Brain abnormalities detected by magnetic resonance imaging developed spontaneously in control rats after 42 +/- 3 days, whereas in rats treated with 100 mg/kg/day PTX, abnormalities developed in only 80% of the animals and only after 70 to 80 days. Treatment with a higher dose of PTX (200 mg/kg/day) completely protected the brain from abnormal development. The drug treatment prevented the accumulation of macrophages or CD4+ positive cells, the activation of glia in brain tissues, and the appearance of inflammatory proteins and thiobarbituric acid-reactive substances in body fluids. PTX treatment did induce a greater increase of serum tumor necrosis factor-alpha (TNF-alpha), but not of interleukin (IL)-1beta and IL-6 induced by in vivo administration of lipopolysaccharide (LPS), which suggests a protective role for TNF-alpha. PTX also exerted protective effects when it was administered after the first occurrence of proteinuria (>40 mg/day). These data indicate that PTX treatment dose-dependently prevents the occurrence of spontaneous brain damage by reducing inflammatory events. We also hypothesize that the increase of TNF-alpha by PTX treatment represents a protective mechanism in SHRSP.
Collapse
Affiliation(s)
- Cristina Banfi
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Palmer C, Roberts RL, Young PI. Timing of neutrophil depletion influences long-term neuroprotection in neonatal rat hypoxic-ischemic brain injury. Pediatr Res 2004; 55:549-56. [PMID: 14739365 DOI: 10.1203/01.pdr.0000113546.03897.fc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In neonatal rats, neutrophils do not accumulate in ischemic brain parenchyma to the extent that they do in adult rodents. They are also confined to the intravascular compartment during the first few hours of recovery. However, neonatal rats rendered neutropenic have less brain swelling after a hypoxic-ischemic (HI) insult. In this study, we used the Rice-Vannucci model of HI brain injury in 7-d-old rats, and we depleted neutrophils before injury in one group and 4-8 h after injury in another group to determine 1) whether neutrophils contribute to cerebral atrophy, 2) whether neutropenia induced within 8 h after recovery from HI is neuroprotective, and 3) whether neutropenia preserved energy metabolites during the HI insult. Brain energy metabolites were measured at 0 h and 6 h of recovery. Brain atrophy was measured morphometrically on brain slices at 2 wk of recovery. In 67 rats, we found that neutropenia induced before the HI insult, but not after HI, reduced brain swelling at 42 h of recovery by about 75% (p < 0.001). In another 60 rats, we found that cerebral atrophy was reduced by 61% provided that neutropenia was induced before HI (p < 0.05). Total adenine nucleotides were better preserved in the neutropenic rats at the end of the HI insult (0 h recovery); p < 0.05. We conclude that neutrophils do contribute to vascular dysfunction either during the HI insult or early hours (<4-8 h) of recovery. Antineutrophil strategies initiated after this time are unlikely to be protective in the neonatal rat.
Collapse
Affiliation(s)
- Charles Palmer
- Department of Pediatrics, P.O. Box 850, MC H085, The Milton S. Hershey Medical Center, Penn State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
26
|
Al Moutaery K, Al Deeb S, Ahmad Khan H, Tariq M. Caffeine impairs short-term neurological outcome after concussive head injury in rats. Neurosurgery 2003; 53:704-712. [PMID: 12943586 DOI: 10.1227/01.neu.0000079487.66013.6f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 05/14/2003] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Adenosine is an endogenous neuroprotective agent that is released during ischemia, hypoxia, epilepsy, and ischemic brain injury. Caffeine is a receptor antagonist for adenosine that might interfere with the neuroprotective effect of adenosine in ischemic-hypoxic conditions. An investigation was undertaken to study the effect of caffeine on neurological function, edema formation, and blood-brain barrier permeability after experimental head injury in rats. METHODS Adult female Wistar rats classified into different groups received caffeine intraperitoneally at doses of 0, 50, 100, and 150 mg/kg body weight. Thirty minutes after the caffeine treatment, the animals were subjected to concussive head injury (CHI) administered by a controlled cortical impact device. Neurological severity score was recorded in each rat at 2 hours after CHI. Specific gravity, water content (as an indicator of edema), and blood-brain barrier impairment were analyzed in the cortical tissue surrounding the injury site. The levels of myeloperoxidase and malondialdehyde in the cortical region were measured as indicators of neutrophil infiltration and lipid peroxidation, respectively. RESULTS A significant increase in righting latency and neurological deficiency after CHI was observed in caffeine-treated rats as compared with untreated animals. Although no deaths occurred in the rats exposed to CHI after pretreatment with saline, pretreatment with caffeine caused significant mortality of animals after trauma in a dose-dependent manner. Caffeine also exacerbated neutrophil infiltration, edema, and disruption of blood-brain barrier in the traumatic cortex. Light microscopy of brain revealed more severe hemorrhage and neuronal degeneration in the injured hemisphere of caffeine-treated rats as compared with rats in the injury-alone group. A significant increase in malondialdehyde in the brain of injured rats treated with caffeine before CHI clearly indicated the role of oxidative stress. CONCLUSION Caffeine adversely affects outcome after CHI, possibly as a result of blockade of adenosine receptors. The findings also point toward the involvement of free radical-mediated neuronal damage in caffeine-induced exacerbation of neurotrauma.
Collapse
Affiliation(s)
- Khalaf Al Moutaery
- Neuroscience Research Group, Armed Forces Hospital, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
27
|
Jean Harry G, Bruccoleri A, Lefebvre d'Hellencourt C. Differential modulation of hippocampal chemical-induced injury response by ebselen, pentoxifylline, and TNFalpha-, IL-1alpha-, and IL-6-neutralizing antibodies. J Neurosci Res 2003; 73:526-36. [PMID: 12898537 DOI: 10.1002/jnr.10653] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The proinflammatory cytokines tumor necrosis factor (TNFalpha), interleukin-1 (IL-1alpha), and interleukin-6 (IL-6) have been associated with various models of hippocampal damage. To examine their role in initiation of an acute hippocampal injury response, 21-day-old male CD-1 mice received an acute intraperitoneal (i.p.) injection of trimethyltin hydroxide (TMT; 2.0 mg/kg) to produce necrosis of dentate granule neurons, astrocyte, and microglia reactivity. Tremors and intermittent seizures were evident at 24 hr. Intercellular adhesion molecule-1 (ICAM-1), glial fibrillary acidic protein (GFAP), anti-apoptotic TNFalpha-inducible early response gene (A-20), macrophage inflammatory protein (MIP)-1alpha, TNFalpha, IL-1alpha, IL-6, and caspase 3 mRNA levels were significantly elevated. Pretreatment with the antioxidant, ebselen, decreased ICAM-1, A-20, and TNFbeta elevations. Pentoxifylline blocked elevations in A-20 and decreased elevations in GFAP mRNA levels. Neither prevented histopathology or behavioral effects. Intracisternal injection of TNFalpha-neutralizing antibody significantly inhibited both behavioral effects and histopathology. RNase protection assays showed that TMT-induced elevations in mRNA levels for ICAM-1, A-20, GFAP, MIP-1alpha, IL-1alpha, TNFalpha, TNFbeta, and caspase 3 were blocked by anti-TNFalpha. These data demonstrate a significant role for TNFalpha in an acute neuro-injury in the absence of contribution from infiltrating cells. The cerebellum shows limited if any damage after TMT; however, in combination with the i.c.v. injection, elevations were seen in GFAP and in EB-22, a murine acute-phase response gene homologous to the alpha (1)-antichymotrypsin gene. Elevations were similar for artificial cerebral spinal fluid and anti-IL-1alpha, and significantly increased with anti-TNFalpha, anti-IL-6, or the combination of antibodies. Responses seen in the cerebellum suggest synergistic interactions between the baseline state of the cell and manipulations in the cytokine environment. Data suggests a role for TNFalpha in the pathogenesis of hippocampal injury induced by TMT.
Collapse
Affiliation(s)
- G Jean Harry
- Neurotoxicology Group, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
28
|
Grow J, Barks JDE. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts. Clin Perinatol 2002; 29:585-602, v. [PMID: 12516737 DOI: 10.1016/s0095-5108(02)00059-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Multiple, biochemical cascades contribute to the pathogenesis of neonatal hypoxic-ischemic brain injury. This article summarizes experimental evidence that supports the role of excitatory amino acids, calcium, free radicals, nitric oxide, proinflammatory cytokines, and bioactive lipids. Specific vulnerabilities that distinguish the response of the immature brain from that of the mature brain are highlighted. These include increased susceptibility to excitotoxicity and free radical injury, greater tendency to apoptotic death, and heightened vulnerability of developing oligodendrocytes. Available supportive evidence from human studies is also included. Implications for clinical neuroprotective strategies are discussed.
Collapse
Affiliation(s)
- Jennifer Grow
- The University of Michigan Medical Center, 1150 W Medical Center Drive, 8301 MSRB III, Box 0646, Ann Arbor, MI 48109-0646, USA
| | | |
Collapse
|
29
|
Oakden E, Chiswick M, Rothwell N, Loddick S. The influence of litter size on brain damage caused by hypoxic-ischemic injury in the neonatal rat. Pediatr Res 2002; 52:692-6. [PMID: 12409515 DOI: 10.1203/00006450-200211000-00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypoxic ischemia is a common cause of brain injury in the human neonate. This can be mimicked in the neonatal rat, but produces variable injury. The present study investigated the influence of litter size on the severity and variability of damage caused by hypoxic-ischemic injury in neonatal rats. Groups of 7-d-old pups from birth-sized litters (13-15 pups), or from litters culled to 10 on postnatal d 2, and 8- and 9-d-old pups from birth-sized litters, were exposed to common carotid artery occlusion and then, 3 h later, hypoxia (2 h 15 min, 8% oxygen). Damage was assessed histologically 72 h after injury, and graded (I-IV) according to severity. In nonculled litters, similar numbers of animals had each grade of injury. Most pups (70%) from culled litters had grade III or IV damage, and severity was significantly greater than in nonculled litters (p < 0.001). Pups from culled litters were heavier (17.6 +/- 0.4 g) than pups from nonculled litters (14.7 +/- 0.3 g, p < 0.0001). To determine whether this indicated that culled litters were more similar to older pups in their response to hypoxic-ischemic injury, we examined injury in 8- and 9-d-old pups of similar body weight to 7-d-old pups from culled litters. The severity and distribution of damage in the older pups was different from damage in the 7-d-old pups from culled litters. These data suggest that in 7-d-old rats, litter size influences damage caused by hypoxic-ischemic injury, and that the relationship between body weight, brain development, and susceptibility to hypoxic-ischemic injury is complex.
Collapse
Affiliation(s)
- Elizabeth Oakden
- School of Biological Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
30
|
Foster-Barber A, Ferriero DM. Neonatal encephalopathy in the term infant: neuroimaging and inflammatory cytokines. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 8:20-4. [PMID: 11921382 DOI: 10.1002/mrdd.10009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The interrelationship between inflammation and ischemia is complex and poorly understood in the developing nervous system. In the preterm newborn, maternal infection may predispose to white matter injury and may be associated with cytokine elevation. In the term infant, few studies exist linking elevation of cytokines with encephalopathy and poor neurodevelopmental outcome. This review discusses the interplay among inflammatory cytokines, neonatal encephalopathy, and neuroimaging parameters.
Collapse
Affiliation(s)
- Audrey Foster-Barber
- Neonatal Brain Disorders Laboratory, Department of Neurology, University of California at San Francisco, San Francisco, California 94143-0114, USA.
| | | |
Collapse
|
31
|
Abstract
Neonatal stroke occurs in approximately 1 in 4,000 to 1 in 10,000 newborns, and more than 80% involve the vascular territory supplied by the middle cerebral artery. Neonatal stroke is associated with many acquired and genetic prothrombotic factors, and follow-up studies indicate that as many as two thirds of neonates develop neurologic deficits. In the past two decades unilateral carotid occlusion with 8% hypoxia has been used to study focal and global ischemia in the newborn, and recently a filament model of middle cerebral artery occlusion has been developed. This review describes the results of studies in these two newborn models covering aspects of the injury cascade that occurs after focal ischemia. A likely requirement is that therapeutic efforts be directed less at using thrombolytic therapy and more toward treatment of events associated with reperfusion injury, the inflammatory cascade, and apoptosis. Additional areas of research that have received attention in the past year include inhibition of nitric oxide and free-radical formation, use of iron chelating agents, the potential role of hypoxia-inducible factors and mediators of caspase activity, use of growth factors, hypothermia, and administration of magnesium sulfate.
Collapse
Affiliation(s)
- S Ashwal
- Department of Pediatrics, Division of Child Neurology, Loma Linda University School of Medicine, Loma Linda, California 12350, USA.
| | | |
Collapse
|
32
|
Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2001; 7:56-64. [PMID: 11241883 DOI: 10.1002/1098-2779(200102)7:1<56::aid-mrdd1008>3.0.co;2-a] [Citation(s) in RCA: 327] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Brain injury secondary to hypoxic-ischemic disease is the predominant form of all brain injury encountered in the perinatal period. The focus of this article is the most recent research developments in this field and especially those developments that should lead to the most profound effects on interventions in the first years of the new millennium. Neuronal injury is the predominant form of cellular injury in the term infant. The principal mechanisms leading to neuronal death after hypoxia-ischemia/reperfusion are initiated by energy depletion, accumulation of extracellular glutamate, and activation of glutamate receptors. The cascade of events that follows involves accumulation of cytosolic calcium and activation of a variety of calcium-mediated deleterious events. Notably this deleterious cascade, which evolves over many hours, may be interrupted even if interventions are instituted after termination of the insult, an important clinical point. Of the potential interventions, the leading candidates for application to the human infant in the relative short-term are mild hypothermia, inhibitors of free radical production, and free radical scavengers. Promising clinical data are available for the use of mild hypothermia.
Collapse
Affiliation(s)
- J J Volpe
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Abstract
Complacency about long-term outcomes in newborns is being eroded rapidly with new information. We have examined developments in the area from an explicitly clinical approach, focusing on etiology, diagnostic modalities, and therapies. We attempt to discuss relevance from the preterm and the term perspective. Emerging evidence implicating chorioamnionitis as a significant contributor to neonatal brain injury is discussed. Therapeutic modalities such as magnetic resonance imaging and electrophysiological monitoring offer some potentially new tools for the clinician. An exploding series of basic advances suggest several potentially new strands of therapy. We discuss two that deserve further clinical exploration, namely anti-inflammatory strategies and thread hormone supplementation. In the arena of therapy, however, the paucity of large trials from which to guide therapies is a predominant theme, leaving a large reservoir of uncertainty for the clinician.
Collapse
Affiliation(s)
- H Kirpalani
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
34
|
Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J. Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics 2001; 107:642-7. [PMID: 11335737 DOI: 10.1542/peds.107.4.642] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Traditionally, asphyxiated newborn infants have been ventilated using 100% oxygen. However, a recent multinational trial has shown that the use of room air was just as efficient as pure oxygen in securing the survival of severely asphyxiated newborn infants. Oxidative stress markers in moderately asphyxiated term newborn infants resuscitated with either 100% oxygen or room air have been studied for the first time in this work. METHODS Eligible term neonates with perinatal asphyxia were randomly resuscitated with either room air or 100% oxygen. The clinical parameters recorded were those of the Apgar score at 1, 5, and 10 minutes, the time of onset of the first cry, and the time of onset of the sustained pattern of respiration. In addition, reduced and oxidized glutathione concentrations and antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase) were determined in blood from the umbilical artery during delivery and in peripheral blood at 72 hours and at 4 weeks' postnatal age. RESULTS Our results show that the room-air resuscitated (RAR) group needed significantly less time to first cry than the group resuscitated with 100% oxygen (1.2 +/- 0.6 minutes vs 1.7 +/- 0.5). Moreover, the RAR group needed less time undergoing ventilation to achieve a sustained respiratory pattern than the group resuscitated with pure oxygen (4.6 +/- 0.7 vs 7.5 +/- 1.8 minutes). The reduced-to-oxidized-glutathione ratio, which is an accurate index of oxidative stress, of the RAR group (53 +/- 9) at 28 days of postnatal life showed no differences with the control nonasphyxiated group (50 +/- 12). However, the reduced-to-oxidized-glutathione ratio of the 100% oxygen-resuscitated group (OxR) (15 +/- 5) was significantly lower and revealed protracted oxidative stress. Furthermore, the activities of superoxide dismutase and catalase in erythrocytes were 69% and 78% higher, respectively, in the OxR group than in the control group at 28 days of postnatal life. Thus, this shows that these antioxidant enzymes, although higher than in controls, could not cope with the ongoing generation of free radicals in the OxR group. However, there were no differences in antioxidant enzyme activities between the RAR group and the control group at this stage. CONCLUSIONS There are no apparent clinical disadvantages in using room air for ventilation of asphyxiated neonates rather than 100% oxygen. Furthermore, RAR infants recover more quickly as assessed by Apgar scores, time to the first cry, and the sustained pattern of respiration. In addition, neonates resuscitated with 100% oxygen exhibit biochemical findings reflecting prolonged oxidative stress present even after 4 weeks of postnatal life, which do not appear in the RAR group. Thus, the current accepted recommendations for using 100% oxygen in the resuscitation of asphyxiated newborn infants should be further discussed and investigated.
Collapse
Affiliation(s)
- M Vento
- Servicio de Pediatría, Hospital Virgen del Consuelo, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|