1
|
Houten SM, Dodatko T, Dwyer W, Violante S, Chen H, Stauffer B, DeVita RJ, Vaz FM, Cross JR, Yu C, Leandro J. Acyl-CoA dehydrogenase substrate promiscuity: Challenges and opportunities for development of substrate reduction therapy in disorders of valine and isoleucine metabolism. J Inherit Metab Dis 2023; 46:931-942. [PMID: 37309295 PMCID: PMC10526699 DOI: 10.1002/jimd.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.
Collapse
Affiliation(s)
- Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William Dwyer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Violante
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frédéric M. Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Justin R. Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Liu X, Zhang W, Wang H, Zhu L, Xu K. Decreased Expression of ACADSB Predicts Poor Prognosis in Clear Cell Renal Cell Carcinoma. Front Oncol 2022; 11:762629. [PMID: 35096573 PMCID: PMC8791850 DOI: 10.3389/fonc.2021.762629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Background Previous reports have shown that short/branched chain acyl-CoA dehydrogenase (ACADSB) plays an important role in glioma, but its role in clear cell renal carcinoma (ccRCC) has not been reported. Methods The TIMER and UALCAN databases were used for pan-cancer analysis. RNA sequencing and microarray data of patients with ccRCC were downloaded from the Cancer Genome Atlas and Gene Expression Omnibus database. The differential expression of ACADSB in ccRCC and normal kidney tissues was tested. Correlations between ACADSB expression and clinicopathological parameters were assessed using the Wilcoxon test. The influences of ACADSB expression and clinicopathological parameters on overall survival were assessed using Cox proportional hazards models. Gene set enrichment analysis (GSEA) was performed to explore the associated gene sets enriched in different ACADSB expression phenotypes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on genes with similar expression patterns to ACADSB. Correlations between ACADSB and ferroptosis-related genes were assessed using Spearman’s correlation analysis. Results Pan-cancer analysis revealed that ACADSB is down-regulated in multiple cancers, and decreased expression of ACADSB correlates with poor prognosis in certain types of cancer. Differential expression analyses revealed that ACADSB was down-regulated in ccRCC, indicating that ACADSB expression could be a single significant parameter to discriminate between normal and tumor tissues. Clinical association analysis indicated that decreased ACADSB expression was associated with high tumor stage and grade. The Cox regression model indicated that low ACADSB expression was an independent risk factor for the overall survival of patients with ccRCC. GSEA showed that 10 gene sets, including fatty acid (FA) metabolism, were differentially enriched in the ACADSB high expression phenotype. GO and KEGG pathway enrichment analysis revealed that ACADSB-related genes were significantly enriched in categories related to FA metabolism, branched-chain amino acid (BCAA) metabolism, and iron regulation. Spearman’s correlation analysis suggested that the expression of ACADSB was positively correlated with the expression of ferroptosis driver genes. Conclusions ACADSB showed good diagnostic and prognostic abilities for ccRCC. The downregulation of ACADSB might promote tumorigenesis and tumor progression by inhibiting FA catabolism, BCAA catabolism, and ferroptosis in ccRCC.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Weiyu Zhang
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Huanrui Wang
- Peking University Applied Lithotripsy Institute, Peking University People's Hospital, Beijing, China
| | - Lin Zhu
- Department of Urology, Peking University People's Hospital, Beijing, China
| | - Kexin Xu
- Department of Urology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
3
|
Warren T, McAllister R, Morgan A, Rai TS, McGilligan V, Ennis M, Page C, Kelly C, Peace A, Corfe BM, Mc Auley M, Watterson S. The Interdependency and Co-Regulation of the Vitamin D and Cholesterol Metabolism. Cells 2021; 10:2007. [PMID: 34440777 PMCID: PMC8392689 DOI: 10.3390/cells10082007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Vitamin D and cholesterol metabolism overlap significantly in the pathways that contribute to their biosynthesis. However, our understanding of their independent and co-regulation is limited. Cardiovascular disease is the leading cause of death globally and atherosclerosis, the pathology associated with elevated cholesterol, is the leading cause of cardiovascular disease. It is therefore important to understand vitamin D metabolism as a contributory factor. From the literature, we compile evidence of how these systems interact, relating the understanding of the molecular mechanisms involved to the results from observational studies. We also present the first systems biology pathway map of the joint cholesterol and vitamin D metabolisms made available using the Systems Biology Graphical Notation (SBGN) Markup Language (SBGNML). It is shown that the relationship between vitamin D supplementation, total cholesterol, and LDL-C status, and between latitude, vitamin D, and cholesterol status are consistent with our knowledge of molecular mechanisms. We also highlight the results that cannot be explained with our current knowledge of molecular mechanisms: (i) vitamin D supplementation mitigates the side-effects of statin therapy; (ii) statin therapy does not impact upon vitamin D status; and critically (iii) vitamin D supplementation does not improve cardiovascular outcomes, despite improving cardiovascular risk factors. For (iii), we present a hypothesis, based on observations in the literature, that describes how vitamin D regulates the balance between cellular and plasma cholesterol. Answering these questions will create significant opportunities for advancement in our understanding of cardiovascular health.
Collapse
Affiliation(s)
- Tara Warren
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Roisin McAllister
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Amy Morgan
- Department of Chemical Engineering, Faculty of Science & Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ, UK; (A.M.); (M.M.A.)
| | - Taranjit Singh Rai
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Matthew Ennis
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Christopher Page
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| | - Aaron Peace
- Cardiology Unit, Western Health and Social Care Trust, Altnagelvin Regional Hospital, Derry BT47 6SB, UK;
| | - Bernard M. Corfe
- Human Nutrition Research Centre, Institute of Cellular Medicine, William Leech Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK;
| | - Mark Mc Auley
- Department of Chemical Engineering, Faculty of Science & Engineering, University of Chester, Parkgate Road, Chester CH1 4BJ, UK; (A.M.); (M.M.A.)
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, C-TRIC, Altnagelvin Hospital Campus, School of Biomedical Sciences, Ulster University, Derry BT47 6SB, UK; (T.W.); (R.M.); (T.S.R.); (V.M.); (M.E.); (C.P.); (C.K.)
| |
Collapse
|
4
|
Baldensperger T, Glomb MA. Pathways of Non-enzymatic Lysine Acylation. Front Cell Dev Biol 2021; 9:664553. [PMID: 33996820 PMCID: PMC8116961 DOI: 10.3389/fcell.2021.664553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Posttranslational protein modification by lysine acylation is an emerging mechanism of cellular regulation and fine-tunes metabolic processes to environmental changes. In this review we focus on recently discovered pathways of non-enzymatic lysine acylation by reactive acyl-CoA species, acyl phosphates, and α-dicarbonyls. We summarize the metabolic sources of these highly reactive intermediates, demonstrate their reaction mechanisms, give an overview of the resulting acyl lysine modifications, and evaluate the consequences for cellular regulatory processes. Finally, we discuss interferences between lysine acylation and lysine ubiquitylation as a potential molecular mechanism of dysregulated protein homeostasis in aging and related diseases.
Collapse
Affiliation(s)
- Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Marcus A Glomb
- Institute of Chemistry, Food Chemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
5
|
Kirby T, Walters DC, Brown M, Jansen E, Salomons GS, Turgeon C, Rinaldo P, Arning E, Ashcraft P, Bottiglieri T, Roullet JB, Gibson KM. Post-mortem tissue analyses in a patient with succinic semialdehyde dehydrogenase deficiency (SSADHD). I. Metabolomic outcomes. Metab Brain Dis 2020; 35:601-614. [PMID: 32172518 PMCID: PMC7180121 DOI: 10.1007/s11011-020-00550-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Metabolomic characterization of post-mortem tissues (frontal and parietal cortices, pons, cerebellum, hippocampus, cerebral cortex, liver and kidney) derived from a 37 y.o. male patient with succinic semialdehyde dehydrogenase deficiency (SSADHD) was performed in conjunction with four parallel series of control tissues. Amino acids, acylcarnitines, guanidino- species (guanidinoacetic acid, creatine, creatinine) and GABA-related intermediates were quantified using UPLC and mass spectrometric methods that included isotopically labeled internal standards. Amino acid analyses revealed significant elevation of aspartic acid and depletion of glutamine in patient tissues. Evidence for disruption of short-chain fatty acid metabolism, manifest as altered C4OH, C5, C5:1, C5DC (dicarboxylic) and C12OH carnitines, was observed. Creatine and guanidinoacetic acids were decreased and elevated, respectively. GABA-associated metabolites (total GABA, γ-hydroxybutyric acid, succinic semialdehyde, 4-guanidinobutyrate, 4,5-dihydroxyhexanoic acid and homocarnosine) were significantly increased in patient tissues, including liver and kidney. The data support disruption of fat, creatine and amino acid metabolism as a component of the pathophysiology of SSADHD, and underscore the observation that metabolites measured in patient physiological fluids provide an unreliable reflection of brain metabolism.
Collapse
Affiliation(s)
- Trevor Kirby
- Department of Pharmacotherapy, Health Sciences Building Room 210C, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - Dana C Walters
- Department of Pharmacotherapy, Health Sciences Building Room 210C, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - Madalyn Brown
- Department of Pharmacotherapy, Health Sciences Building Room 210C, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - Erwin Jansen
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam University Medical Center (Amsterdam UMC) and VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Gajja S Salomons
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam University Medical Center (Amsterdam UMC) and VU University Medical Center (VUmc), Amsterdam, the Netherlands
| | - Coleman Turgeon
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Erland Arning
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Paula Ashcraft
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Baylor Scott & White Research Institute, Institute of Metabolic Disease, Dallas, TX, USA
| | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, Health Sciences Building Room 210C, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, Health Sciences Building Room 210C, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202-2131, USA.
| |
Collapse
|
6
|
Walsh SC, Miles JR, Yao L, Broeckling CD, Rempel LA, Wright‐Johnson EC, Pannier AK. Metabolic compounds within the porcine uterine environment are unique to the type of conceptus present during the early stages of blastocyst elongation. Mol Reprod Dev 2020; 87:174-190. [PMID: 31840336 PMCID: PMC7003770 DOI: 10.1002/mrd.23306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
The objective of this study was to identify metabolites within the porcine uterine milieu during the early stages of blastocyst elongation. At Days 9, 10, or 11 of gestation, reproductive tracts of White cross-bred gilts (n = 38) were collected immediately following harvest and flushed with Roswell Park Memorial Institute-1640 medium. Conceptus morphologies were assessed from each pregnancy and corresponding uterine flushings were assigned to one of five treatment groups based on these morphologies: (a) uniform spherical (n = 8); (b) heterogeneous spherical and ovoid (n = 8); (c) uniform ovoid (n = 8); (d) heterogeneous ovoid and tubular (n = 8); and (e) uniform tubular (n = 6). Uterine flushings from these pregnancies were submitted for nontargeted profiling by gas chromatography-mass spectrometry (GC-MS) and ultra performance liquid chromatography (UPLC)-MS techniques. Unsupervised multivariate principal component analysis (PCA) was performed using pcaMethods and univariate analysis of variance was performed in R with false discovery rate (FDR) adjustment. PCA analysis of the GC-MS and UPLC-MS data identified 153 and 104 metabolites, respectively. After FDR adjustment of the GC-MS and UPLC-MS data, 38 and 59 metabolites, respectively, differed (p < .05) in uterine flushings from pregnancies across the five conceptus stages. Some metabolites were greater (p < .05) in abundance for uterine flushings containing earlier stage conceptuses (i.e., spherical), such as uric acid, tryptophan, and tyrosine. In contrast, some metabolites were greater (p < .05) in abundance for uterine flushings containing later stage conceptuses (i.e., tubular), such as creatinine, serine, and urea. These data illustrate several putative metabolites that change within the uterine milieu during early porcine blastocyst elongation.
Collapse
Affiliation(s)
- Sophie C. Walsh
- Department of Biological Systems EngineeringUniversity of Nebraska‐LincolnLincolnNebraska
| | - Jeremy R. Miles
- United States Department of AgricultureU.S. Meat Animal Research CenterClay CenterNebraska
| | - Linxing Yao
- Proteomics and Metabolomics FacilityColorado State UniversityFort CollinsColorado
| | - Corey D. Broeckling
- Proteomics and Metabolomics FacilityColorado State UniversityFort CollinsColorado
| | - Lea A. Rempel
- United States Department of AgricultureU.S. Meat Animal Research CenterClay CenterNebraska
| | | | - Angela K. Pannier
- Department of Biological Systems EngineeringUniversity of Nebraska‐LincolnLincolnNebraska
| |
Collapse
|
7
|
Lin Y, Gao H, Lin C, Chen Y, Zhou S, Lin W, Zheng Z, Li X, Li M, Fu Q. Biochemical, Clinical, and Genetic Characteristics of Short/Branched Chain Acyl-CoA Dehydrogenase Deficiency in Chinese Patients by Newborn Screening. Front Genet 2019; 10:802. [PMID: 31555323 PMCID: PMC6727870 DOI: 10.3389/fgene.2019.00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of impaired isoleucine catabolism caused by mutations in the ACADSB gene. There are limited SBCADD cases worldwide and to date no Chinese patients with SBCADD have been reported. The aim of this study was to investigate the biochemical, clinical information, and genotypes of twelve patients with SBCADD in China for the first time. The estimated incidence of SBCADD was 1 in 30,379 in Quanzhou, China. The initial newborn screening (NBS) results revealed that all patients showed slightly or moderately elevated C5 concentrations with C5/C2 and C5/C3 ratios in the reference range, which has the highest risk of being missed. All patients who underwent urinary organic acid analysis showed elevation of 2-methylburtyrylglycine in urine. All patients were asymptomatic at diagnosis, and had normal growth and development during follow-up. Eight different variants in the ACADSB gene, including five previously unreported variants were identified, namely c.596A > G (p.Tyr199Cys), c.653T > C (p.Leu218Pro), c.746del (p.Pro249Leufs*15), c.886G > T (p.Gly296*) and c.923G > A (p.Cys308Tyr). The most common variant was c.1165A > G (33.3%), followed by c.275C > G (20.8%). All previously unreported variants may cause structural damage and dysfunction of SBCAD, as predicted by bioinformatics analysis. Thus, our findings indicate that SBCADD may be more frequent in the Chinese population than previously thought and newborn screening, combined with genetic testing is important for timely diagnosis. Although the clinical course of Chinese patients with SBCADD is likely benign, longitudinal follow-up may be helpful to better understand the natural history of SBCADD.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Hongzhi Gao
- Department of Central Laboratory, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Yanru Chen
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Shuang Zhou
- Department of Central Laboratory, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| | - Xiaoqing Li
- Department of Neonatal Intensive Care Unit, Quanzhou Maternal and Children's Hospital Quanzhou, China
| | - Min Li
- Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternal and Children's Hospital, Quanzhou, China
| |
Collapse
|
8
|
Porta F, Chiesa N, Martinelli D, Spada M. Clinical, biochemical, and molecular spectrum of short/branched-chain acyl-CoA dehydrogenase deficiency: two new cases and review of literature. J Pediatr Endocrinol Metab 2019; 32:101-108. [PMID: 30730842 DOI: 10.1515/jpem-2018-0311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023]
Abstract
Background Short/branched-chain acyl-CoA dehydrogenase (SBCAD) deficiency is a rare inborn error of metabolism with uncertain clinical significance. As it leads to C5-carnitine (i.e. isovalerylcarnitine, 2methylbutyrilcarnitine, or pivaloylcarnitine) elevation, SBCAD deficiency is detectable at newborn screening, requiring differential diagnosis from isovaleric acidemia and pivalic acid administration. Increased urinary excretion of 2-methylbutyrylglycine (2MBG) is the hallmark of SBCAD deficiency. Methods We report two cases of SBCAD deficiency and provide a review of the available literature on this condition. Results Two siblings newly diagnosed with SBCAD deficiency are reported. Newborn screening allowed the early diagnosis in the second-born (C5=0.5 μmol/L, normal 0.05-0.3 μmol/L) and addressed selective screening in the 5-year asymptomatic brother (C5=1.9 μmol/L). Both patients showed increased urinary excretion of 2MBG and two mutations in the ACADSB gene (c.443C>T/c.1145C>T). Currently, both the patients are asymptomatic. Longitudinal biochemical monitoring of the two patients while on treatment with carnitine (100 mg/kg/day) was provided. Based on our experience and the literature review (162 patients), SBCAD deficiency is symptomatic in about 10% of reported patients. Clinical onset occurs in newborns or later in life with seizures, developmental delay, hypotonia, and failure to thrive. On longitudinal follow-up, epilepsy, developmental delay, microcephaly, and autism can develop. Acute metabolic decompensation due to catabolic stressors can occur, as observed in one newly reported patient. Fifteen mutations in the ACADSB gene are known, including the newly identified variant c.1145C>T (p.Thr382Met), variably associated to the phenotype. In the Hmong population, SBCAD deficiency is highly prevalent, mostly due to the founder mutation c.1165A>G, and is largely asymptomatic. Conclusions Although mostly asymptomatic, considering SBCAD deficiency as a non-disease in non-Hmong subjects appears unsafe. Catabolic situations can precipitate acute metabolic decompensation. Carnitine supplementation and valproate avoidance appear to be indicated. Providing an emergency protocol for the management of acute catabolic episodes seems reasonable in asymptomatic patients with SBCAD deficiency. Longitudinal follow-up is recommended.
Collapse
Affiliation(s)
- Francesco Porta
- Department of Pediatrics, University of Torino, Torino, Italy
| | | | - Diego Martinelli
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Jiang P, Fang X, Zhao Z, Yu X, Sun B, Yu H, Yang R. The effect of short/branched chain acyl-coenzyme A dehydrogenase gene on triglyceride synthesis of bovine mammary epithelial cells. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-115-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Short/branched chain acyl-CoA dehydrogenase (ACADSB) is a member of
the acyl-CoA dehydrogenase family of enzymes that catalyze the
dehydrogenation of acyl-CoA derivatives in the metabolism of fatty
acids. Our previous transcriptome analysis in dairy cattle showed
that ACADSB was differentially expressed and was associated with milk
fat metabolism. The aim of this study was to elucidate the
background of this differential expression and to evaluate the role
of ACADSB as a candidate for fat metabolism in dairy cattle. After
analysis of ACADSB mRNA abundance by qRT-PCR and Western blot,
overexpression and RNA interference (RNAi) vectors of ACADSB gene
were constructed and then transfected into bovine mammary
epithelial cells (bMECs) to examine the effects of ACADSB on
milk fat synthesis. The results showed that the ACADSB was
differentially expressed in mammary tissue of low and high milk fat
dairy cattle. Overexpression of ACADSB gene could significantly
increase the level of intracellular triglyceride (TG), while ACADSB
gene knockdown could significantly reduce the TG synthesis
in bMECs. This study suggested that the ACADSB was important in
TG synthesis in bMECs, and it could be a candidate gene
to regulate the metabolism of milk fat in dairy cattle.
Collapse
|
10
|
Schlune A, Riederer A, Mayatepek E, Ensenauer R. Aspects of Newborn Screening in Isovaleric Acidemia. Int J Neonatal Screen 2018; 4:7. [PMID: 33072933 PMCID: PMC7548899 DOI: 10.3390/ijns4010007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022] Open
Abstract
Isovaleric acidemia (IVA), an inborn error of leucine catabolism, is caused by mutations in the isovaleryl-CoA dehydrogenase (IVD) gene, resulting in the accumulation of derivatives of isovaleryl-CoA including isovaleryl (C5)-carnitine, the marker metabolite used for newborn screening (NBS). The inclusion of IVA in NBS programs in many countries has broadened knowledge of the variability of the condition, whereas prior to NBS, two distinct clinical phenotypes were known, an "acute neonatal" and a "chronic intermittent" form. An additional biochemically mild and potentially asymptomatic form of IVA and its association with a common missense mutation, c.932C>T (p.A282V), was discovered in subjects identified through NBS. Deficiency of short/branched chain specific acyl-CoA dehydrogenase (2-methylbutyryl-CoA dehydrogenase), a defect of isoleucine degradation whose clinical significance remains unclear, also results in elevated C5-carnitine, and may therefore be detected by NBS for IVA. Treatment strategies for the long-term management of symptomatic IVA comprise the prevention of catabolism, dietary restriction of natural protein or leucine intake, and supplementation with l-carnitine and/or l-glycine. Recommendations on how to counsel and manage individuals with the mild phenotype detected by NBS are required.
Collapse
Affiliation(s)
- Andrea Schlune
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Anselma Riederer
- Department of Obstetrics and Gynecology, Hospital Altötting-Burghausen, Teaching Hospital of the Ludwig-Maximilians-Universität München, Vinzenz-von-Paul-Strasse 10, 84503 Altötting, Germany
| | - Ertan Mayatepek
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Regina Ensenauer
- Experimental Pediatrics and Metabolism, Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-81-17687
| |
Collapse
|
11
|
Abstract
Apoptosis is an important component of normal tissue physiology, and the prompt removal of apoptotic cells is equally essential to avoid the undesirable consequences of their accumulation and disintegration. Professional phagocytes are highly specialized for engulfing apoptotic cells. The recent ability to track cells that have undergone apoptosis in situ has revealed a division of labor among the tissue resident phagocytes that sample them. Macrophages are uniquely programmed to process internalized apoptotic cell-derived fatty acids, cholesterol and nucleotides, as a reflection of their dominant role in clearing the bulk of apoptotic cells. Dendritic cells carry apoptotic cells to lymph nodes where they signal the emergence and expansion of highly suppressive regulatory CD4 T cells. A broad suppression of inflammation is executed through distinct phagocyte-specific mechanisms. A clever induction of negative regulatory nodes is notable in dendritic cells serving to simultaneously shut down multiple pathways of inflammation. Several of the genes and pathways modulated in phagocytes in response to apoptotic cells have been linked to chronic inflammatory and autoimmune diseases such as atherosclerosis, inflammatory bowel disease and systemic lupus erythematosus. Our collective understanding of old and new phagocyte functions after apoptotic cell phagocytosis demonstrates the enormity of ways to mediate immune suppression and enforce tissue homeostasis.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
12
|
Ferdinandusse S, Friederich MW, Burlina A, Ruiter JPN, Coughlin CR, Dishop MK, Gallagher RC, Bedoyan JK, Vaz FM, Waterham HR, Gowan K, Chatfield K, Bloom K, Bennett MJ, Elpeleg O, Van Hove JLK, Wanders RJA. Clinical and biochemical characterization of four patients with mutations in ECHS1. Orphanet J Rare Dis 2015; 10:79. [PMID: 26081110 PMCID: PMC4474341 DOI: 10.1186/s13023-015-0290-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/29/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. Recently, the first patients with SCEH deficiency have been reported revealing only a defect in valine catabolism. We investigated the role of SCEH in fatty acid and branched-chain amino acid metabolism in four newly identified patients. In addition, because of the Leigh-like presentation, we studied enzymes involved in bioenergetics. METHODS Metabolite, enzymatic, protein and genetic analyses were performed in four patients, including two siblings. Palmitate loading studies in fibroblasts were performed to study mitochondrial β-oxidation. In addition, enoyl-CoA hydratase activity was measured with crotonyl-CoA, methacrylyl-CoA, tiglyl-CoA and 3-methylcrotonyl-CoA both in fibroblasts and liver to further study the role of SCEH in different metabolic pathways. Analyses of pyruvate dehydrogenase and respiratory chain complexes were performed in multiple tissues of two patients. RESULTS All patients were either homozygous or compound heterozygous for mutations in the ECHS1 gene, had markedly reduced SCEH enzymatic activity and protein level in fibroblasts. All patients presented with lactic acidosis. The first two patients presented with vacuolating leukoencephalopathy and basal ganglia abnormalities. The third patient showed a slow neurodegenerative condition with global brain atrophy and the fourth patient showed Leigh-like lesions with a single episode of metabolic acidosis. Clinical picture and metabolite analysis were not consistent with a mitochondrial fatty acid oxidation disorder, which was supported by the normal palmitate loading test in fibroblasts. Patient fibroblasts displayed deficient hydratase activity with different substrates tested. Pyruvate dehydrogenase activity was markedly reduced in particular in muscle from the most severely affected patients, which was caused by reduced expression of E2 protein, whereas E2 mRNA was increased. CONCLUSIONS Despite its activity towards substrates from different metabolic pathways, SCEH appears to be only crucial in valine metabolism, but not in isoleucine metabolism, and only of limited importance for mitochondrial fatty acid oxidation. In severely affected patients SCEH deficiency can cause a secondary pyruvate dehydrogenase deficiency contributing to the clinical presentation.
Collapse
Affiliation(s)
- Sacha Ferdinandusse
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands.
| | - Marisa W Friederich
- Department of Pediatrics, Section of Genetics, University of Colorado, Aurora, CO, 80045, USA.
| | - Alberto Burlina
- Department of Paediatrics, Division of Metabolic Diseases, University Hospital of Padua, Padua, Italy.
| | - Jos P N Ruiter
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands.
| | - Curtis R Coughlin
- Department of Pediatrics, Section of Genetics, University of Colorado, Aurora, CO, 80045, USA.
| | - Megan K Dishop
- Department of Pathology, University of Colorado, Aurora, CO, 80045, USA.
| | - Renata C Gallagher
- Department of Pediatrics, Section of Genetics, University of Colorado, Aurora, CO, 80045, USA.
| | - Jirair K Bedoyan
- Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Case Medical Center, Cleveland, OH, 44106, USA. .,Departments of Genetics and Pediatrics, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Frédéric M Vaz
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands.
| | - Hans R Waterham
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands.
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO, 80045, USA.
| | - Kathryn Chatfield
- Department of Pediatrics, Section of Genetics, University of Colorado, Aurora, CO, 80045, USA. .,Department of Pediatrics, Section of Pediatric Cardiology, University of Colorado, Aurora, CO, 80045, USA.
| | - Kaitlyn Bloom
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U74SA, USA.
| | - Michael J Bennett
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U74SA, USA.
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Israel.
| | - Johan L K Van Hove
- Department of Pediatrics, Section of Genetics, University of Colorado, Aurora, CO, 80045, USA.
| | - Ronald J A Wanders
- Departments of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands.
| |
Collapse
|
13
|
Godzien J, Armitage EG, Angulo S, Martinez-Alcazar MP, Alonso-Herranz V, Otero A, Lopez-Gonzalvez A, Barbas C. In-source fragmentation and correlation analysis as tools for metabolite identification exemplified with CE-TOF untargeted metabolomics. Electrophoresis 2015; 36:2188-2195. [DOI: 10.1002/elps.201500016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/08/2015] [Accepted: 02/08/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO); Facultad de Farmacia; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| | - Emily G. Armitage
- Centre for Metabolomics and Bioanalysis (CEMBIO); Facultad de Farmacia; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| | - Santiago Angulo
- Centre for Metabolomics and Bioanalysis (CEMBIO); Facultad de Farmacia; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| | - Mari Paz Martinez-Alcazar
- Centre for Metabolomics and Bioanalysis (CEMBIO); Facultad de Farmacia; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| | - Vanesa Alonso-Herranz
- Centre for Metabolomics and Bioanalysis (CEMBIO); Facultad de Farmacia; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| | - Abraham Otero
- Department of Information and Communications Systems Engineering; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| | - Angeles Lopez-Gonzalvez
- Centre for Metabolomics and Bioanalysis (CEMBIO); Facultad de Farmacia; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO); Facultad de Farmacia; Universidad CEU San Pablo, Campus Montepríncipe; Boadilla del Monte Madrid Spain
| |
Collapse
|
14
|
Schiff M, Haberberger B, Xia C, Mohsen AW, Goetzman ES, Wang Y, Uppala R, Zhang Y, Karunanidhi A, Prabhu D, Alharbi H, Prochownik EV, Haack T, Häberle J, Munnich A, Rötig A, Taylor RW, Nicholls RD, Kim JJ, Prokisch H, Vockley J. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency. Hum Mol Genet 2015; 24:3238-47. [PMID: 25721401 DOI: 10.1093/hmg/ddv074] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/23/2015] [Indexed: 01/05/2023] Open
Abstract
Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunctions.
Collapse
Affiliation(s)
- Manuel Schiff
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA Reference Center for Inborn Errors of Metabolism, Hôpital Robert Debré, APHP, INSERM U1141 and Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Birgit Haberberger
- Institute of Human Genetics, Technische Universität München, Munich, Germany Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Chuanwu Xia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Eric S Goetzman
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yudong Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Radha Uppala
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yuxun Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Anuradha Karunanidhi
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Dolly Prabhu
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Hana Alharbi
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Edward V Prochownik
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Tobias Haack
- Institute of Human Genetics, Technische Universität München, Munich, Germany Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Häberle
- Division of Metabolism, University Children's Hospital Zurich, Zurich, Switzerland
| | - Arnold Munnich
- Institut Imagine and INSERM U781, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, APHP, Université Paris-Descartes, Paris, France
| | - Agnes Rötig
- Institut Imagine and INSERM U781, Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, APHP, Université Paris-Descartes, Paris, France
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, The Medical School, Newcastle University, Newcastle upon Tyne, UK and
| | - Robert D Nicholls
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jung-Ja Kim
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, Munich, Germany Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
15
|
|
16
|
Van Calcar SC, Baker MW, Williams P, Jones SA, Xiong B, Thao MC, Lee S, Yang MK, Rice GM, Rhead W, Vockley J, Hoffman G, Durkin MS. Prevalence and mutation analysis of short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) detected on newborn screening in Wisconsin. Mol Genet Metab 2013; 110:111-5. [PMID: 23712021 PMCID: PMC5006389 DOI: 10.1016/j.ymgme.2013.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/29/2013] [Accepted: 03/29/2013] [Indexed: 11/17/2022]
Abstract
Short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD), also called 2-methylbutyryl CoA dehydrogenase deficiency (2-MBCDD), is a disorder of l-isoleucine metabolism of uncertain clinical significance. SBCADD is inadvertently detected on expanded newborn screening by elevated 2-methylbutyrylcarnitine (C5), which has the same mass to charge (m/s) on tandem mass spectrometry (MS/MS) as isovalerylcarnitine (C5), an analyte that is elevated in isovaleric acidemia (IVA), a disorder in leucine metabolism. SBCADD cases identified in the Hmong-American population have been found in association with the c.1165 A>G mutation in the ACADSB gene. The purposes of this study were to: (a) estimate the prevalence of SBCADD and carrier frequency of the c.1165 A>G mutation in the Hmong ethnic group; (b) determine whether the c.1165 A>G mutation is common to all Hmong newborns screening positive for SBCADD; and (c) evaluate C5 acylcarnitine cut-off values to detect and distinguish between SBCADD and IVA diagnoses. During the first 10years of expanded newborn screening using MS/MS in Wisconsin (2001-2011), 97 infants had elevated C5 values (≥0.44μmol/L), of whom five were Caucasian infants confirmed to have IVA. Of the remaining 92 confirmed SBCADD cases, 90 were of Hmong descent. Mutation analysis was completed on an anonymous, random sample of newborn screening cards (n=1139) from Hmong infants. Fifteen infants, including nine who had screened positive for SBCADD based on a C5 acylcarnitine concentration ≥0.44μmol/L, were homozygous for the c.1165 A>G mutation. This corresponds to a prevalence in this ethnic group of being homozygous for the mutation of 1.3% (95% confidence interval 0.8-2.2%) and of being heterozygous for the mutation of 21.8% (95% confidence interval 19.4-24.3%), which is consistent with the Hardy-Weinberg equilibrium. Detection of homozygous individuals who were not identified on newborn screening suggests that the C5 screening cut-off would need to be as low as 0.20μmol/L to detect all infants homozygous for the ACADSB c.1165 A>G mutation. However, lowering the screening cut-off to 0.20 would also result in five "false positive" (non-homozygous) screening results in the Hmong population for every c.1165 A>G homozygote detected. Increasing the cut-off to 0.60μmol/L and requiring elevated C5/C2 (acetylcarnitine) and C5/C3 (propionylcarnitine) ratios to flag a screen as abnormal would reduce the number of infants screening positive, but would still result in an estimated 5 infants with SBCADD per year who would require follow-up and additional biochemical testing to distinguish between SBCADD and IVA diagnoses. Further research is needed to determine the clinical outcomes of SBCADD detected on newborn screening and the c.1165 A>G mutation before knowing whether the optimal screening cut-off would minimize true positives or false negatives for SBCADD associated with this mutation.
Collapse
Affiliation(s)
- Sandra C. Van Calcar
- Biochemical Genetics Program, Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mei W. Baker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Biochemical Genetics Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI, USA
- Newborn Screening Program, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI, USA
| | - Phillip Williams
- Biochemical Genetics Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI, USA
| | - Susan A. Jones
- Biochemical Genetics Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI, USA
| | - Blia Xiong
- Biochemical Genetics Program, Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Mai Choua Thao
- Biochemical Genetics Program, Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Sheng Lee
- Biochemical Genetics Program, Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Mai Khou Yang
- Biochemical Genetics Program, Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Greg M. Rice
- Biochemical Genetics Program, Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Biochemical Genetics Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI, USA
| | - William Rhead
- Genetics Clinic, Children’s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Hoffman
- Newborn Screening Program, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI, USA
| | - Maureen S. Durkin
- Biochemical Genetics Program, Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Corresponding author at: Population Heath Sciences, University of Wisconsin School of Medicine and Public Health, 1500 Highland Ave., Madison, WI 53705, USA., Fax: +1 608 263 2820., (M.S. Durkin)
| |
Collapse
|
17
|
Knebel LA, Zanatta Â, Tonin AM, Grings M, Alvorcem LDM, Wajner M, Leipnitz G. 2-Methylbutyrylglycine induces lipid oxidative damage and decreases the antioxidant defenses in rat brain. Brain Res 2012; 1478:74-82. [PMID: 22967964 DOI: 10.1016/j.brainres.2012.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/06/2012] [Accepted: 08/22/2012] [Indexed: 11/17/2022]
Abstract
Short/branched chain acyl-CoA dehydrogenase (SBCAD) deficiency is an autosomal recessive disorder of isoleucine metabolism biochemically characterized by accumulation of 2-methylbutyrylglycine (2MBG) and 2-methylbutyric acid (2MB). Affected patients present predominantly neurological symptoms, whose pathophysiology is not yet established. In the present study, we investigated the in vitro effects of 2MBG and 2MB on important parameters of oxidative stress in cerebral cortex of young rats and C6 glioma cells. 2MBG increased thiobarbituric acid-reactive species (TBA-RS), indicating an increase of lipid oxidation. 2MBG induced sulfhydryl oxidation in cortical supernatants and decreased glutathione (GSH) in these brain preparations, as well as in C6 cells, indicating a reduction of nonenzymatic brain antioxidant defenses. In contrast, 2MB did not alter any of these parameters and 2MBG and 2MB did not affect carbonyl formation (protein damage). In addition, 2MBG-induced increase of TBA-RS levels and decrease of GSH were prevented by free radical scavengers, implying that reactive species were involved in these effects. Furthermore, the decrease of GSH levels caused by 2MBG was not due to a direct oxidative action since this metabolite did not alter sulfhydryl content from a commercial solution of GSH. Nitric oxide production was not altered by 2MBG and 2MB, suggesting that reactive oxygen species possibly underlie 2MBG effects. Finally, we verified that 2MBG did not induce cell death in C6 cells. The present data show that 2MBG induces lipid oxidative damage and reduces the antioxidant defenses in rat brain. Therefore, it may be postulated that oxidative stress induced by 2MBG is involved, at least in part, in the pathophysiology of the brain damage found in SBCAD deficiency.
Collapse
Affiliation(s)
- Lisiane Aurélio Knebel
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90035003, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Knerr I, Weinhold N, Vockley J, Gibson KM. Advances and challenges in the treatment of branched-chain amino/keto acid metabolic defects. J Inherit Metab Dis 2012; 35:29-40. [PMID: 21290185 PMCID: PMC4136412 DOI: 10.1007/s10545-010-9269-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/10/2010] [Accepted: 12/23/2010] [Indexed: 12/12/2022]
Abstract
Disorders of branched-chain amino/keto acid metabolism encompass diverse entities, including maple syrup urine disease (MSUD), the 'classical' organic acidurias isovaleric acidemia (IVA), propionic acidemia (PA), methylmalonic acidemia (MMA) and, among others, rarely described disorders such as 2-methylbutyryl-CoA dehydrogenase deficiency (MBDD) or isobutyryl-CoA dehydrogenase deficiency (IBDD). Our focus in this review is to highlight the biochemical basis underlying recent advances and ongoing challenges of long-term conservative therapy including precursor/protein restriction, replenishment of deficient substrates, and the use of antioxidants and anaplerotic agents which refill the Krebs cycle. Ongoing clinical assessments of affected individuals in conjunction with monitoring of disease-specific biochemical parameters remain essential. It is likely that mass spectrometry-based 'metabolomics' may be a helpful tool in the future for studying complete biochemical profiles and diverse metabolic phenotypes. Prospective studies are needed to test the effectiveness of adjunct therapies such as antioxidants, ornithine-alpha-ketoglutarate (OKG) or creatine in addition to specialized diets and to optimize current therapeutic strategies in affected individuals. With the individual life-time risk and degree of severity being unknown in asymptomatic individuals with MBDD or IBDD, instructions regarding risks for metabolic stress and fasting avoidance along with clinical monitoring are reasonable interventions at the current time. Overall, it is apparent that carefully designed prospective clinical investigations and multicenter cohort-controlled trials are needed in order to leverage that knowledge into significant breakthroughs in treatment strategies and appropriate approaches.
Collapse
Affiliation(s)
- Ina Knerr
- Children's and Adolescents' Hospital, Otto-Heubner Centrum, Pediatric Metabolic Unit, Charité - Universitätsmedizin, Berlin, Germany.
| | | | | | | |
Collapse
|
20
|
Wanders RJA, Duran M, Loupatty FJ. Enzymology of the branched-chain amino acid oxidation disorders: the valine pathway. J Inherit Metab Dis 2012; 35:5-12. [PMID: 21104317 PMCID: PMC3249182 DOI: 10.1007/s10545-010-9236-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 11/03/2022]
Abstract
Valine is one of the three branched-chain amino acids which undergoes oxidation within mitochondria. In this paper, we describe the current state of knowledge with respect to the enzymology of the valine oxidation pathway and the different disorders affecting oxidation.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Head Lab Genetic Metabolic Diseases, Room F0-226 Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Valproic acid utilizes the isoleucine breakdown pathway for its complete β-oxidation. Biochem Pharmacol 2011; 82:1740-6. [DOI: 10.1016/j.bcp.2011.07.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/26/2011] [Accepted: 07/29/2011] [Indexed: 11/18/2022]
|
22
|
Luís PBM, Ruiter JPN, Ijlst L, Tavares de Almeida I, Duran M, Mohsen AW, Vockley J, Wanders RJA, Silva MFB. Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway. Drug Metab Dispos 2011; 39:1155-60. [PMID: 21430231 PMCID: PMC3127238 DOI: 10.1124/dmd.110.037606] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/14/2011] [Indexed: 01/27/2023] Open
Abstract
Many biological systems including the oxidative catabolic pathway for branched-chain amino acids (BCAAs) are affected in vivo by valproate therapy. In this study, we investigated the potential effect of valproic acid (VPA) and some of its metabolites on the metabolism of BCAAs. In vitro studies were performed using isovaleryl-CoA dehydrogenase (IVD), isobutyryl-CoA dehydrogenase (IBD), and short branched-chain acyl-CoA dehydrogenase (SBCAD), enzymes involved in the degradation pathway of leucine, valine, and isoleucine. The enzymatic activities of the three purified human enzymes were measured using optimized high-performance liquid chromatography procedures, and the respective kinetic parameters were determined in the absence and presence of VPA and the corresponding CoA and dephosphoCoA conjugates. Valproyl-CoA and valproyl-dephosphoCoA inhibited IVD activity significantly by a purely competitive mechanism with K(i) values of 74 ± 4 and 170 ± 12 μM, respectively. IBD activity was not affected by any of the tested VPA esters. However, valproyl-CoA did inhibit SBCAD activity by a purely competitive mechanism with a K(i) of 249 ± 29 μM. In addition, valproyl-dephosphoCoA inhibited SBCAD activity via a distinct mechanism (K(i) = 511 ± 96 μM) that appeared to be of the mixed type. Furthermore, we show that both SBCAD and IVD are active, using valproyl-CoA as a substrate. The catalytic efficiency of SBCAD turned out to be much higher than that of IVD, demonstrating that SBCAD is the most probable candidate for the first dehydrogenation step of VPA β-oxidation. Our data explain some of the effects of valproate on the branched-chain amino acid metabolism and shed new light on the biotransformation pathway of valproate.
Collapse
Affiliation(s)
- Paula B M Luís
- Research Institute for Medicines and Pharmaceutical Sciences-iMED.UL, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lim TH, De Jesús VR, Meredith NK, Sternberg MR, Chace DH, Mei JV, Hannon WH. Proficiency testing outcomes of 3-hydroxyisovalerylcarnitine measurements by tandem mass spectrometry in newborn screening. Clin Chim Acta 2011; 412:631-5. [DOI: 10.1016/j.cca.2010.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/12/2010] [Accepted: 12/16/2010] [Indexed: 11/25/2022]
|
24
|
Mels CMC, Jansen van Rensburg P, van der Westhuizen FH, Pretorius PJ, Erasmus E. Increased excretion of c4-carnitine species after a therapeutic acetylsalicylic Acid dose: evidence for an inhibitory effect on short-chain Fatty Acid metabolism. ISRN PHARMACOLOGY 2011; 2011:851870. [PMID: 22084721 PMCID: PMC3199914 DOI: 10.5402/2011/851870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/13/2011] [Indexed: 11/23/2022]
Abstract
Acetylsalicylic acid and/or its metabolites are implicated to have various effects on metabolism and, especially, on mitochondrial function. These effects include both inhibitory and stimulatory effects. We investigated the effect of both combined and separate oral acetylsalicylic acid and acetaminophen administration at therapeutic doses on the urinary metabolite profile of human subjects. In this paper, we provided in vivo evidence, in human subjects, of a statistically significant increase in isobutyrylcarnitine after the administration of a therapeutic dose of acetylsalicylic acid. We, therefore, propose an inhibitory effect of acetylsalicylic acid on the short-chain fatty acid metabolism, possibly at the level of isobutyryl-CoA dehydrogenase.
Collapse
Affiliation(s)
- Catharina M C Mels
- Centre for Human Metabonomics, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom 2522, South Africa
| | | | | | | | | |
Collapse
|
25
|
Lewis-Stanislaus AE, Li L. A method for comprehensive analysis of urinary acylglycines by using ultra-performance liquid chromatography quadrupole linear ion trap mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:2105-2116. [PMID: 20971021 DOI: 10.1016/j.jasms.2010.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/04/2010] [Accepted: 09/04/2010] [Indexed: 05/30/2023]
Abstract
Acylglycines are an important class of metabolites that have been used in the diagnosis of several inborn errors of metabolism (IEM). However, current analytical methods detect only a few acylglycines. There is a need to profile these metabolites in a comprehensive manner for studying their functions and improving their diagnostic values for different IEM and potentially other diseases. We describe a sensitive method that combines the chromatographic resolving power of ultra-performance liquid chromatography (UPLC) to separate closely related metabolites including isomers with tandem mass spectrometry (MS/MS). Acylglycines were extracted from urine using an anion exchange solid-phase extraction (SPE) cartridge. After UPLC separation, the acylglycines were detected on a hybrid triple quadrupole linear ion trap mass spectrometer. A set of standards were used for the development of an optimal MS acquisition method. Several acquisition modes using information derived from collision-induced dissociation breakdown curves were used to detect acylglycines. Using this method, 18 acylglycines were detected in the urine of healthy individuals and confirmed using standards, while 47 additional acylglycines were detected and tentatively identified, based on their retention and fragmentation pattern. Among the 65 acylglycines detected, only 18 of them have been previously reported in biofluids of healthy individuals. These results will be deposited in a public human metabolome database. This example illustrates that by developing a method tailored to the analysis of a class of metabolites sharing similar structural moieties, we can potentially identify many more new metabolites, thereby expanding the overall metabolome coverage.
Collapse
|
26
|
Leipnitz G, Seminotti B, Amaral AU, Fernandes CG, Dutra-Filho CS, Wajner M. Evidence that 2-methylacetoacetate induces oxidative stress in rat brain. Metab Brain Dis 2010; 25:261-7. [PMID: 20838866 DOI: 10.1007/s11011-010-9204-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 07/26/2010] [Indexed: 11/28/2022]
Abstract
In the present study we investigated the effects of 2-methylacetoacetate (MAA) and 2-methyl-3-hydroxybutyrate (MHB), the major metabolites accumulating in mitochondrial 2-methylacetoacetyl-CoA thiolase (KT) and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiencies, on important parameters of oxidative stress in cerebral cortex from young rats. We verified that MAA induced lipid peroxidation (increase of thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence values), whereas MHB did not alter these parameters. MAA-induced increase of TBA-RS levels was fully prevented by free radical scavengers, indicating that free radicals were involved in this effect. Furthermore, MAA, but not MHB, significantly induced sulfhydryl oxidation, implying that this organic acid provokes protein oxidative damage. It was also observed that MAA reduced GSH, a naturally-occurring brain antioxidant, whereas MHB did not change this parameter. Furthermore, the decrease of GSH levels caused by MAA was not due to a direct oxidative action, since this organic acid did not alter the sulfhydryl content of a commercial solution of GSH in a cell free medium. Finally, MAA and MHB did not raise nitric oxide production. The data indicate that MAA induces oxidative stress in vitro in cerebral cortex. It is presumed that this pathomechanism may be involved in the brain damage found in patients affected by KT deficiency.
Collapse
Affiliation(s)
- Guilhian Leipnitz
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos, Anexo, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Alfardan J, Mohsen AW, Copeland S, Ellison J, Keppen-Davis L, Rohrbach M, Powell BR, Gillis J, Matern D, Kant J, Vockley J. Characterization of new ACADSB gene sequence mutations and clinical implications in patients with 2-methylbutyrylglycinuria identified by newborn screening. Mol Genet Metab 2010; 100:333-8. [PMID: 20547083 PMCID: PMC2906669 DOI: 10.1016/j.ymgme.2010.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 12/19/2022]
Abstract
Short/branched chain acyl-CoA dehydrogenase (SBCAD) deficiency, also known as 2-methylbutyryl-CoA dehydrogenase deficiency, is a recently described autosomal recessive disorder of isoleucine metabolism. Most patients reported thus far have originated from a founder mutation in the Hmong Chinese population. While the first reported patients had severe disease, most of the affected Hmong have remained asymptomatic. In this study, we describe 11 asymptomatic non-Hmong patients brought to medical attention by elevated C5-carnitine found by newborn screening and one discovered because of clinical symptoms. The diagnosis of SBCAD deficiency was determined by metabolite analysis of blood, urine, and fibroblast samples. PCR and bidirectional sequencing were performed on genomic DNA from five of the patients covering the entire SBCAD (ACADSB) gene sequence of 11 exons. Sequence analysis of genomic DNA from each patient identified variations in the SBCAD gene not previously reported. Escherichia coli expression studies revealed that the missense mutations identified lead to inactivation or instability of the mutant SBCAD enzymes. These findings confirm that SBCAD deficiency can be identified through newborn screening by acylcarnitine analysis. Our patients have been well without treatment and call for careful follow-up studies to learn the true clinical impact of this disorder.
Collapse
Affiliation(s)
| | | | | | | | | | - Marianne Rohrbach
- Hospital for Sick Children and University of Toronto, Ontario, Canada
- University Children‘s Hospital Zürich, Switzerland
| | | | - Jane Gillis
- IWK Health Centre and Dalhousie University, Halifax, Canada
| | | | - Jeffrey Kant
- University of Pittsburgh School of Medicine, USA
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, USA
- University of Pittsburgh Graduate School of Public Health, USA
- Correspondence to: Jerry Vockley, University of Pittsburgh School of Medicine, The Children’s Hospital of Pittsburgh, Department of Pediatrics, 4401 Penn Avenue, Pittsburgh, PA 15224.
| |
Collapse
|
28
|
Mental retardation linked to mutations in the HSD17B10 gene interfering with neurosteroid and isoleucine metabolism. Proc Natl Acad Sci U S A 2009; 106:14820-4. [PMID: 19706438 DOI: 10.1073/pnas.0902377106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the HSD17B10 gene were identified in two previously described mentally retarded males. A point mutation c.776G>C was found from a survivor (SV), whereas a potent mutation, c.419C>T, was identified in another deceased case (SF) with undetectable hydroxysteroid (17beta) dehydrogenase 10 (HSD10) activity. Protein levels of mutant HSD10(R130C) in patient SF and HSD10(E249Q) in patient SV were about half that of HSD10 in normal controls. The E249Q mutation appears to affect HSD10 subunit interactions, resulting in an allosteric regulatory enzyme. For catalyzing the oxidation of allopregnanolone by NAD+ the Hill coefficient of the mutant enzyme is approximately 1.3. HSD10(E249Q) was unable to catalyze the dehydrogenation of 2-methyl-3-hydroxybutyryl-CoA and the oxidation of allopregnanolone, a positive modulator of the gamma-aminobutyric acid type A receptor, at low substrate concentrations. Neurosteroid homeostasis is critical for normal cognitive development, and there is increasing evidence that a blockade of isoleucine catabolism alone does not commonly cause developmental disabilities. The results support the theory that an imbalance in neurosteroid metabolism could be a major cause of the neurological handicap associated with hydroxysteroid (17beta) dehydrogenase 10 deficiency.
Collapse
|
29
|
Dessein AF, Fontaine M, Dobbelaere D, Mention-Mulliez K, Martin-Ponthieu A, Briand G, Vamecq J. Deuterated palmitate-driven acylcarnitine formation by whole-blood samples for a rapid diagnostic exploration of mitochondrial fatty acid oxidation disorders. Clin Chim Acta 2009; 406:23-6. [PMID: 19422814 DOI: 10.1016/j.cca.2009.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The biochemical diagnosis of mitochondrial fatty acid oxidation defects (FAOD) currently rests on enzyme assays. A dynamic ex vivo exploration consisting of incubations of whole-blood samples with stable-labeled palmitate and determining leukocyte capacities to produce deuterated acylcarnitines was developed on healthy controls (n=52) and patients with very-long- (VLCADD) (n=2), medium- (MCADD) (n=6), or short- (SCADD) (n=1) chain acyl-CoA dehydrogenase deficiencies. METHODS Incubations were optimized with L-carnitine and [16-(2)H(3), 15-(2)H(2)]-palmitate at 37 degrees C for various time periods on MCADD and control whole-blood samples. Labeled acylcarnitines were quantified by electrospray-ionization tandem mass spectrometry after thawing, extraction and derivatization to their butyl esters and the method was applied to patients with defects mentioned above. RESULTS The production of acylcarnitines was linear until 6 h of incubation and optimal on 50 to 200 nmol deuterated substrate. A good discrimination between MCADD patient and control data was found, with median C8/C4 acylcarnitine production rate ratios of 81.0 (5th-95th percentile range: 16.6-209.9) and 0.21 (5th-95th percentile range: 0.06-0.79), respectively. The method also discriminated from controls the VLCADD and SCADD patients. Preliminary studies on a healthy control indicated that the storage at 4 degrees C does little or not alter capacities of whole-blood samples to generate labeled acylcarnitines over a period of 48 h. CONCLUSION The rapid management afforded by the method, its abilities to characterize patients and to work on whole-blood samples after a stay of 24-48 h at 4 degrees C make it promising for the diagnostic exploration of FAOD.
Collapse
Affiliation(s)
- Anne-Frédérique Dessein
- Department of Biochemistry and Molecular Biology - Laboratory of Endocrinology, Metabolism-Nutrition, Oncology - Biology Pathology Center, CHRU Lille, 59037 Lille cedex, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Sass JO, Ensenauer R, Röschinger W, Reich H, Steuerwald U, Schirrmacher O, Engel K, Häberle J, Andresen BS, Mégarbané A, Lehnert W, Zschocke J. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency: functional and molecular studies on a defect in isoleucine catabolism. Mol Genet Metab 2008; 93:30-5. [PMID: 17945527 DOI: 10.1016/j.ymgme.2007.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 09/01/2007] [Indexed: 11/25/2022]
Abstract
2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem-mass spectrometry due to elevated pentanoylcarnitine (C5 acylcarnitine) in blood, but little information is available on the clinical relevance of MBD deficiency. We biochemically and genetically characterize six individuals with MBD deficiency from four families of different ethnic backgrounds. None of the six individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant impairment of valproic acid metabolism cannot be excluded and further study is required to assess the long-term outcome of individuals with this condition. The relatively high prevalence of ACADSB gene mutations in control subjects suggests that MBD deficiency may be more common than previously thought but is not detected because of its usually benign nature.
Collapse
Affiliation(s)
- Jörn Oliver Sass
- Zentrum für Kinder-und Jugendmedizin, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
As an important molecule in the pathogenesis of Alzheimer's disease (AD), amyloid-beta (Abeta) interferes with multiple aspects of mitochondrial function, including energy metabolism failure, production of reactive oxygen species (ROS) and permeability transition pore formation. Recent studies have demonstrated that Abeta progressively accumulates within mitochondrial matrix, providing a direct link to mitochondrial toxicity. Abeta-binding alcohol dehydrogenase (ABAD) is localized to the mitochondrial matrix and binds to mitochondrial Abeta. Interaction of ABAD with Abeta exaggerates Abeta-mediated mitochondrial and neuronal perturbation, leading to impaired synaptic function, and dysfunctional spatial learning/memory. Thus, blockade of ABAD/Abeta interaction may be a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- John Xi Chen
- Harvey Cushing Institutes of Neuroscience, North Shore-Long Island Jewish Health System, Great Neck, NY 11021, USA
| | | |
Collapse
|
32
|
Kanavin OJ, Woldseth B, Jellum E, Tvedt B, Andresen BS, Stromme P. 2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report. J Med Case Rep 2007; 1:98. [PMID: 17883863 PMCID: PMC2045671 DOI: 10.1186/1752-1947-1-98] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 09/20/2007] [Indexed: 11/18/2022] Open
Abstract
Background 2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine. Methods We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet. Results We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet. Conclusion This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.
Collapse
Affiliation(s)
- Oivind J Kanavin
- Department of Pediatrics, Ullevål University Hospital, Oslo, Norway
| | - Berit Woldseth
- Department of Clinical Chemistry, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Egil Jellum
- Department of Clinical Chemistry, Rikshospitalet-Radiumhospitalet Medical Center, Oslo, Norway
| | - Bjorn Tvedt
- Department of Pediatrics, Ullevål University Hospital, Oslo, Norway
| | - Brage S Andresen
- Research Unit for Molecular Medicine, Skejby Sygehus, DK 8200, Århus N, Denmark
- Institute of Human Genetics, Aarhus University, Aarhus, Denmark
| | - Petter Stromme
- Department of Pediatrics, Ullevål University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Norway
| |
Collapse
|
33
|
Abstract
Expanded newborn screening for inborn errors of metabolism by tandem mass spectrometry has raised the stakes for specialists in metabolic medicine. New disorders and a broader clinical spectrum of disease call for new paradigms in approaching inborn errors of metabolism. The Society for Inherited Disorders has been at the forefront of advances in newborn screening for manyyears and faces new challenges in meeting new needs.
Collapse
Affiliation(s)
- Jerry Vockley
- Department of Pediatrics, School of Medicine, University of Pittsburgh, and Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Lin WD, Wang CH, Lee CC, Lai CC, Tsai Y, Tsai FJ. Genetic mutation profile of isovaleric acidemia patients in Taiwan. Mol Genet Metab 2007; 90:134-9. [PMID: 17027310 DOI: 10.1016/j.ymgme.2006.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 12/15/2022]
Abstract
Isovaleric acidemia (IVA), a rare recessive autosomal disorder, is caused by isovaleryl-CoA dehydrogenase (IVD) deficiency. IVA may present with symptoms during the acute stage of severe metabolic acidosis, ketosis, vomiting, and altered mental status. With the help of newborn screening (NBS) by tandem mass spectrometry (MS/MS), IVA can now be diagnosed presymptomatically. According to statistic data, the incidence of IVA in Taiwan was about 1/365,000. In this study, six IVA patients from five families were investigated and followed-up clinically. As for the timing, two patients were found before MS technique introduced to Taiwan, the others were identified after MS/MS applied to NBS. The blood level of C5-carnitine in our patients was 7.43-18.96 microM (with upper limit in our laboratory <0.51 microM) and all of their urines contained raised amounts of 3-hydroxyisovaleric acid and isovalerylglycine. Molecular analysis of their IVD gene revealed six mutation profiles, among which the 149G-->A (Arg21His) and 1174 C-->T (Arg363Cys) mutations have been reported previously, while the other four mutations, 386A-->G (His100Arg), 347C-->T (Ser87Phe), 1007G-->A (Cys307Tyr) and 1199A-->G (Tyr371Cys), were first reported. Specially, we found 1199A-->G (Tyr371Cys) mutated was a common recurring missense mutation in our population (4 in 10 mutant alleles).
Collapse
Affiliation(s)
- Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Korman SH. Inborn errors of isoleucine degradation: a review. Mol Genet Metab 2006; 89:289-99. [PMID: 16950638 DOI: 10.1016/j.ymgme.2006.07.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 11/28/2022]
Abstract
Three inborn errors have been identified in the pathway of isoleucine degradation. Deficiency of beta-ketothiolase (beta-KT, also known as T2, mitochondrial acetoacetyl-CoA thiolase and acetyl-CoA acetyltransferase 1) is a well-described disorder which presents with acute episodic ketoacidosis. In contrast, short/branched-chain acyl-CoA dehydrogenase (SBCAD) and 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiencies are recently described and relatively rare defects which present with predominantly neurological manifestations, although acute metabolic decompensation may occur in the early newborn period. Careful examination of urine organic acids is required for identification and differential diagnosis of these disorders, with awareness that the abnormalities may be subtle and variable. Tandem MS analysis of acylcarnitines may reveal elevated C5 (SBCAD) or C5:1 and/or OH-C5 species (MHBD and beta-KT deficiencies) but the abnormalities are non-diagnostic and may be intermittent or absent. Confirmation of diagnosis is therefore advisable by specific enzyme assay and/or mutation analysis of the ACAT1 (beta-KT), ACADSB (SBCAD) or HADH2 (MHBD) genes. The latter is located on the X chromosome, accounting for the milder clinical phenotype in females. If beta-KT deficiency is diagnosed early and treated by fasting avoidance and modest protein restriction, ketoacidosis episodes can be prevented and the prognosis is excellent. The role of treatment in SBCAD deficiency remains unclear pending further delineation of its clinical phenotype and pathogenicity, particularly regarding asymptomatic individuals detected by expanded newborn screening. The ineffectiveness of isoleucine restriction in MHBD deficiency is consistent with the additional roles of this multifunctional enzyme in sex steroid and neurosteroid metabolism and its interaction with amyloid-beta peptide.
Collapse
Affiliation(s)
- Stanley H Korman
- Metabolic Diseases Unit, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
36
|
Merritt JL, Matern D, Vockley J, Daniels J, Nguyen TV, Schowalter DB. In vitro characterization and in vivo expression of human very-long chain acyl-CoA dehydrogenase. Mol Genet Metab 2006; 88:351-8. [PMID: 16621643 DOI: 10.1016/j.ymgme.2006.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 02/17/2006] [Accepted: 02/17/2006] [Indexed: 01/02/2023]
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is a disorder of fatty acid beta-oxidation that can present at any age with cardiomyopathy, rhabdomyolysis, hepatic dysfunction, and/or nonketotic hypoglycemia. Through the expansion of newborn screening programs an increasing number of individuals with VLCAD deficiency are being identified prior to the onset of symptoms allowing early initiation of therapy. The development of a safe, durable, and effective VLCAD gene delivery system for use at the time of diagnosis could result in a significant improvement in the quality and duration of life for patients with VLCAD deficiency. To this end, we developed a construct containing the human VLCAD cDNA under the control of the strong CMV promoter (pCMV-hVLCAD). A novel rabbit polyclonal anti-VLCAD antibody was prepared using a 24 amino-acid peptide unique to the human VLCAD protein to study human VLCAD expression in immune competent mice. Antibody specificity was demonstrated in Western blots of human VLCAD deficient fibroblasts and in pCMV-hVLCAD transiently transfected VLCAD deficient fibroblasts. Transfected fibroblasts showed correction of the metabolic block as demonstrated by normalization of C14- and C16-acylcarnitine species in cell culture media and restoration of VLCAD activity in cells. Following tail vein injection of pCMV-hVLCAD into mice, we demonstrated expression of hVLCAD in liver. Altogether, these steps are important in the development of a durable gene therapy for VLCAD deficiency.
Collapse
Affiliation(s)
- J Lawrence Merritt
- Department of Medical Genetics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
37
|
Pasquali M, Monsen G, Richardson L, Alston M, Longo N. Biochemical findings in common inborn errors of metabolism. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:64-76. [PMID: 16602099 DOI: 10.1002/ajmg.c.30086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The application of tandem mass spectrometry (MS/MS) to newborn screening has led to the detection of patients with a wider spectrum of inborn errors of metabolism. A definitive diagnosis can often be established early enough to start treatment before symptoms appear. Here, we review common biochemical findings in disorders caused by deficiency of 3-methylcrotonyl-CoA carboxylase, isobutyryl-CoA dehydrogenase, 2-methyl-3-hydroxybutyryl-CoA dehydrogenase, 3-ketothiolase, 2-methylbutyryl-CoA dehydrogenase, and medium chain acyl CoA dehydrogenase. The diagnosis of these disorders requires biochemical confirmation by measurement of plasma acylcarnitine profile, urine organic acids, and urine acylglycine profiles followed by measurement of enzyme activity or detection of causative mutations. Early treatment can improve the outcome of these disorders.
Collapse
Affiliation(s)
- Marzia Pasquali
- University of Utah, and ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA.
| | | | | | | | | |
Collapse
|
38
|
Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 142C:95-103. [PMID: 16602101 PMCID: PMC2652706 DOI: 10.1002/ajmg.c.30089] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Isovaleric acidemia (IVA) is an autosomal recessive inborn error of leucine metabolism caused by a deficiency of the mitochondrial enzyme isovaleryl-CoA dehydrogenase (IVD) resulting in the accumulation of derivatives of isovaleryl-CoA. It was the first organic acidemia recognized in humans and can cause significant morbidity and mortality. Early diagnosis and treatment with a protein restricted diet and supplementation with carnitine and glycine are effective in promoting normal development in severely affected individuals. Both intra- and interfamilial variability have been recognized. Initially, two phenotypes with either an acute neonatal or a chronic intermittent presentation were described. More recently, a third group of individuals with mild biochemical abnormalities who can be asymptomatic have been identified through newborn screening of blood spots by tandem mass spectrometry. IVD is a flavoenzyme that catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA and transfers electrons to the electron transfer flavoprotein. Human IVD has been purified from tissue and recombinant sources and its biochemical and physical properties have been extensively studied. Molecular analysis of the IVD gene from patients with IVA has allowed characterization of different types of mutations in this gene. One missense mutation, 932C>T (A282V), is particularly common in patients identified through newborn screening with mild metabolite elevations and who have remained asymptomatic to date. This mutation leads to a partially active enzyme with altered catalytic properties; however, its effects on clinical outcome and the necessity of therapy are still unknown. A better understanding of the heterogeneity of this disease and the relevance of genotype/phenotype correlations to clinical management of patients are among the challenges remaining in the study of this disorder in the coming years.
Collapse
Affiliation(s)
- Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, Pittsburgh, PA 15238, USA.
| | | |
Collapse
|
39
|
Madsen PP, Kibaek M, Roca X, Sachidanandam R, Krainer AR, Christensen E, Steiner RD, Gibson KM, Corydon TJ, Knudsen I, Wanders RJA, Ruiter JPN, Gregersen N, Andresen BS. Short/branched-chain acyl-CoA dehydrogenase deficiency due to an IVS3+3A>G mutation that causes exon skipping. Hum Genet 2005; 118:680-90. [PMID: 16317551 DOI: 10.1007/s00439-005-0070-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/31/2005] [Indexed: 12/23/2022]
Abstract
Short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD) is an autosomal recessive disorder of L: -isoleucine catabolism. Little is known about the clinical presentation associated with this enzyme defect, as it has been reported in only a limited number of patients. Because the presence of C5-carnitine in blood may indicate SBCADD, the disorder may be detected by MS/MS-based routine newborn screening. It is, therefore, important to gain more knowledge about the clinical presentation and the mutational spectrum of SBCADD. In the present study, we have studied two unrelated families with SBCADD, both with seizures and psychomotor delay as the main clinical features. One family illustrates the fact that affected individuals may also remain asymptomatic. In addition, the normal level of newborn blood spot C5-acylcarnitine in one patient underscores the fact that newborn screening by MS/MS currently lacks sensitivity in detecting SBCADD. Until now, seven mutations in the SBCAD gene have been reported, but only three have been tested experimentally. Here, we identify and characterize an IVS3+3A>G mutation (c.303+3A>G) in the SBCAD gene, and provide evidence that this mutation is disease-causing in both families. Using a minigene approach, we show that the IVS3+3A>G mutation causes exon 3 skipping, despite the fact that it does not appear to disrupt the consensus sequence of the 5' splice site. Based on these results and numerous literature examples, we suggest that this type of mutation (IVS+3A>G) induces missplicing only when in the context of non-consensus (weak) 5' splice sites. Statistical analysis of the sequences shows that the wild-type versions of 5' splice sites in which +3A>G mutations cause exon skipping and disease are weaker on average than a random set of 5' splice sites. This finding is relevant to the interpretation of the functional consequences of this type of mutation in other disease genes.
Collapse
Affiliation(s)
- Pia Pinholt Madsen
- Research Unit for Molecular Medicine, Aarhus University Hospital and Faculty of Health Science, Skejby Sygehus, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ghoshal AK, Guo T, Soukhova N, Soldin SJ. Rapid measurement of plasma acylcarnitines by liquid chromatography–tandem mass spectrometry without derivatization. Clin Chim Acta 2005; 358:104-12. [PMID: 16018880 DOI: 10.1016/j.cccn.2005.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/09/2005] [Accepted: 02/10/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND Tandem mass spectrometry (MS/MS) is being increasingly used to identify and measure acylcarnitines in blood and urine of children suspected of having fatty oxidation disorders and other inborn errors of metabolism. Rapid MS/MS analysis requires simple and efficient sample preparation. We developed a LC-MS/MS method for the online extraction of acylcarnitines in plasma without derivatization that requires only precipitation of proteins by acetonitrile followed by centrifugation, thus increasing efficiency. METHODS An API-3000 tandem mass spectrometer (SCIEX, Toronto, Canada) equipped with electrospray ionization (ESI), TurboIon Spray source, three Shimadzu LC10AD micropumps and autosampler (Shimadzu Scientific Instruments, Columbia, MD) was used to perform the analysis. Within-day and between-day imprecision was evaluated for 10 analytes in the MRM mode using 3 levels of controls. Accuracy was determined by comparing the method with another MS/MS procedure and by recovery experiments. Sensitivity and specificity were evaluated by identifying patient samples under a wide variety of clinical conditions. RESULTS Within-day CVs was <10% for all analytes tested and between-day CVs ranged from 4.4% to 14.2%. The method was linear in the range between 1.0 and 100 micromol/l for C2 and 0.1 and 10 micromol/l for the other acylcarnitines. The results of the comparison study yielded r values ranging between 0.948 and 0.999. Recovery ranged from 84% to 112%. The method correctly identified patients with a variety of fatty acid oxidation disorders and organic acidemias. CONCLUSIONS Our method is a simple procedure for the analysis of acylcarnitines in plasma with minimal sample preparation. It is thus ideal in a routine clinical setting where efficient processing of clinical samples is necessary to reduce turnaround time under conditions of high-throughput.
Collapse
Affiliation(s)
- Amit K Ghoshal
- Department of Laboratory Medicine, Children's National Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010-2970, USA
| | | | | | | |
Collapse
|
41
|
Schowalter DB, Matern D, Vockley J. In vitro correction of medium chain acyl CoA dehydrogenase deficiency with a recombinant adenoviral vector. Mol Genet Metab 2005; 85:88-95. [PMID: 15896652 DOI: 10.1016/j.ymgme.2005.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/30/2022]
Abstract
Defects of mitochondrial beta-oxidation are a growing group of disorders with variable clinical presentations ranging from mild hypotonia to sudden infant death. Current therapy involves avoidance of fasting, dietary restrictions, and cofactor supplementation. Unfortunately, times of acute illness and noncompliance can interfere with these therapies and result in a rapid clinical decline. The development of a safe, durable, and effective gene delivery system remains an attractive alternative therapy for individuals with these disorders. To this end, a recombinant first-generation adenovirus vector (Ad/cmv-hMCAD) has been prepared that constitutively expresses the human medium chain acyl CoA dehydrogenase (MCAD) protein under the control of the CMV promoter and bovine polyadenylation signal. Characterization of human fibroblasts deficient in MCAD infected with Ad/cmv-hMCAD including Western analysis, immunohistological staining visualized with confocal microscopy, electron transfer protein (ETF) reduction assay, and palmitate loading studies was performed. Infection of MCAD deficient fibroblast with Ad/cmv-hmcad resulted in the production of a 55kDa protein that co-localized in cells with a mitochondrial marker. Extracts prepared from Ad/cmv-hMCAD infected deficient fibroblasts demonstrated correction of the block seen in the MCAD catalyzed reduction of ETF in the presence of octanoyl CoA. Finally, MCAD deficient fibroblasts infected with increasing amounts of Ad/cmv-hMCAD showed a stepwise improvement of the abnormal acylcarnitine profile exhibited by the deficient cells. Together these studies demonstrate our ability to express and monitor the expression of MCAD in treated cells and support further in vivo murine studies to assess toxicity and duration of correction with this and other MCAD recombinant vectors.
Collapse
Affiliation(s)
- David B Schowalter
- Department of Medical Genetics, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | |
Collapse
|
42
|
Korman SH, Andresen BS, Zeharia A, Gutman A, Boneh A, Pitt JJ. 2-ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency: application to diagnosis and implications for the R-pathway of isoleucine oxidation. Clin Chem 2004; 51:610-7. [PMID: 15615815 DOI: 10.1373/clinchem.2004.043265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Isolated excretion of 2-methylbutyrylglycine (2-MBG) is the hallmark of short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), a recently identified defect in the proximal pathway of L-isoleucine oxidation. SBCADD might be underdiagnosed because detection and recognition of urine acylglycines is problematic. Excretion of 2-ethylhydracrylic acid (2-EHA), an intermediate formed in the normally minor R-pathway of L-isoleucine oxidation, has not previously been described in SBCADD. METHODS Samples from four patients with 2-MBG excretion were analyzed by gas chromatography-mass spectrometry for urine organic acids, quantification of 2-MBG, and chiral determination of 2-methylbutyric acid. Blood-spot acylcarnitines were measured by electrospray-tandem mass spectrometry. Mutations in the ACADSB gene encoding SBCAD were identified by direct sequencing. RESULTS SBCADD was confirmed in each patient by demonstration of different ACADSB gene mutations. In multiple urine samples, organic acid analysis revealed a prominent 2-EHA peak usually exceeding the size of the 2-MBG peak. Approximately 40-46% of total 2-methylbutyric acid conjugates were in the form of the R-isomer, indicating significant metabolism via the R-pathway. CONCLUSIONS If, as generally believed, SBCAD is responsible for R-2-MBG dehydrogenation in the R-pathway, 2-EHA would not be produced in SBCADD. Our observation of 2-ethylhydracrylic aciduria in SBCADD implies that a different or alternative enzyme serves this function. Increased flux through the R-pathway may act as a safety valve for overflow of accumulating S-pathway metabolites and thereby mitigate the severity of SBCADD. Awareness of 2-ethylhydracrylic aciduria as a diagnostic marker could lead to increased detection of SBCADD and improved definition of its clinical phenotype.
Collapse
Affiliation(s)
- Stanley H Korman
- Department of Clinical Biochemistry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Beta-oxidation (beta-ox) occurs exclusively in the peroxisomes of Saccharomyces cerevisiae and other yeasts, leading to the supposition that fungi lack mitochondrial beta-ox. Here we present unequivocal evidence that the filamentous fungus Aspergillus nidulans houses both peroxisomal and mitochondrial beta-ox. While growth of a peroxisomal beta-ox disruption mutant (DeltafoxA) was eliminated on a very long-chain fatty acid (C(22:1)), growth was only partially impeded on a long-chain fatty acid (C(18:1)) and was not affected at all on short chain (C4-C6) fatty acids. In contrast, growth of a putative enoyl-CoA hydratase mutant (DeltaechA) was abolished on short-chain and severely restricted on long- and very long-chain fatty acids. Furthermore fatty acids inhibited growth of the DeltaechA mutant but not the DeltafoxA mutant in the presence of an alternate carbon source (lactose). Disruption of echA led to a 28-fold reduction in 2-butenoyl-CoA hydratase activity in a preparation of organelles. EchA was also required for growth on isoleucine and valine. The subcellular localization of the FoxA and EchA proteins was confirmed through the use of red and green fluorescent protein fusions.
Collapse
Affiliation(s)
- Lori A Maggio-Hall
- Department of Plant Pathology, University of Wisconsin-Madison, 882 Russell Labs, 1630 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
44
|
Goetzman ES, Mohsen AWA, Prasad K, Vockley J. Convergent evolution of a 2-methylbutyryl-CoA dehydrogenase from isovaleryl-CoA dehydrogenase in Solanum tuberosum. J Biol Chem 2004; 280:4873-9. [PMID: 15574432 DOI: 10.1074/jbc.m412640200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The potato cDNAs Solanum tuberosum isovaleryl-CoA dehydrogenases 1 and 2 (St-IVD1 and St-IVD2) encode proteins that are 84% identical to each other and 65 and 64% identical to human IVD, respectively. St-IVD2 protein was previously partially purified from potato tubers and confirmed to be an IVD. The function of St-IVD1 is unknown. In these experiments, both proteins were expressed in Escherichia coli and purified as intact homotetramers. The substrate preference profile of the St-IVD2 protein was similar to that of human IVD. However, recombinant St-IVD1 had maximal activity with 2-methylbutyryl-CoA, which in humans is dehydrogenated by short/branched-chain acyl-CoA dehydrogenase (SBCAD). Whereas molecular modeling predicts that the 2-methylbutyryl-CoA dehydrogenase (2MBCD) and IVD substrate binding pockets are nearly identical, 2MBCD has amino acid substitutions at five residues that are invariant among all of the known and putative IVDs. Site-directed mutagenesis was used to match the human IVD active site with that of potato 2MBCD. The resulting mutant IVD had detectable activity with 2-methylbutyryl-CoA and no activity with isovaleryl-CoA. The 2MBCD active site was compared with that of human SBCAD using molecular modeling. Residues Met-361 and Ala-365 of 2MBCD appear to partially substitute for the function of Tyr-380 in human SBCAD, binding the methyl branch linked to C2 of 2-methylbutyryl-CoA, whereas residues Val-88, Val-92, and Val-96 appear to bind the distal C4 methyl group. The presence of a 2MBCD in potato that is highly homologous to IVD is an example of convergent evolution within the acyl-CoA dehydrogenase family, leading to the independent occurrence of two enzymes (SBCAD and 2MBCD) specific for 2-methylbutyryl-CoA.
Collapse
Affiliation(s)
- Eric S Goetzman
- Department of Pediatrics, School of Medicine and Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
45
|
Ensenauer R, Vockley J, Willard JM, Huey JC, Sass JO, Edland SD, Burton BK, Berry SA, Santer R, Grünert S, Koch HG, Marquardt I, Rinaldo P, Hahn S, Matern D. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet 2004; 75:1136-42. [PMID: 15486829 PMCID: PMC1182150 DOI: 10.1086/426318] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/27/2004] [Indexed: 12/15/2022] Open
Abstract
Isovaleric acidemia (IVA) is an inborn error of leucine metabolism that can cause significant morbidity and mortality. Since the implementation, in many states and countries, of newborn screening (NBS) by tandem mass spectrometry, IVA can now be diagnosed presymptomatically. Molecular genetic analysis of the IVD gene for 19 subjects whose condition was detected through NBS led to the identification of one recurring mutation, 932C-->T (A282V), in 47% of mutant alleles. Surprisingly, family studies identified six healthy older siblings with identical genotype and biochemical evidence of IVA. Our findings indicate the frequent occurrence of a novel mild and potentially asymptomatic phenotype of IVA. This has significant consequences for patient management and counseling.
Collapse
Affiliation(s)
- Regina Ensenauer
- Department of Laboratory Medicine & Pathology, Division of Clinical Epidemiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rinaldo P, Tortorelli S, Matern D. Recent developments and new applications of tandem mass spectrometry in newborn screening. Curr Opin Pediatr 2004; 16:427-33. [PMID: 15273505 DOI: 10.1097/01.mop.0000133635.79661.84] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize recent developments in the field of newborn screening related to the use of tandem mass spectrometry as an analytic platform. RECENT FINDINGS Novel inborn errors of metabolism with informative amino acid and/or acylcarnitine profiles have been characterized, increasing the complexity of the differential diagnosis of abnormal results. In addition, methods have been developed for the analysis in dried blood spots of steroids and lysosomal enzymes. Previously unrecognized genotype/phenotype correlations have been found among cohorts of patients whose conditions were diagnosed by screening rather than clinically. Several government entities and professional organizations have issued position statements on newborn screening, and worldwide outcome studies continue to underscore the clinical and financial benefits of expanded newborn screening. SUMMARY Although it is done inconsistently, newborn screening in the United States is undergoing a rapid expansion driven by the introduction of tandem mass spectrometry in at least 34 state programs. This technology is also used to detect disease markers beyond acylcarnitines and amino acids, as both primary and second-tier tests. In addition to analytic improvements, there is a trend toward the development of joint programs not limited to contiguous geographic areas, often based upon public-private partnerships. This review will summarize several new developments in the field that have occurred since early 2003 and will mention others likely to occur in the near future.
Collapse
Affiliation(s)
- Piero Rinaldo
- Biochemical Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
47
|
Poll-The BT, Wanders RJA, Ruiter JPN, Ofman R, Majoie CBLM, Barth PG, Duran M. Spastic diplegia and periventricular white matter abnormalities in 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, a defect of isoleucine metabolism: differential diagnosis with hypoxic-ischemic brain diseases. Mol Genet Metab 2004; 81:295-9. [PMID: 15059617 DOI: 10.1016/j.ymgme.2003.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 11/17/2003] [Accepted: 11/17/2003] [Indexed: 01/15/2023]
Abstract
A 19-month-old boy with 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) deficiency, a defect of isoleucine degradation, had cognitive and motor development delay, spastic diplegia, dysmorphism, and occipital periventricular white matter lesions on MRI scan of the brain. The urinary accumulation of the isoleucine metabolites 2-methyl-3-hydroxybutyrate and tiglylglycine was only moderate under basal conditions. These abnormalities became more pronounced after a 100mg/kg oral isoleucine challenge. Enzyme studies showed a markedly decreased activity of MHBD in fibroblasts and lymphocytes. Sequence analysis of the involved X-chromosome gene (HADH2), revealed the presence of 364C -->G mutation in the patient. His mother was heterozygous for the 364C-->G mutation, whereas the mutation was not found in the other members of the family (father, brother, and sister). This report indicates that an enzyme defect in the metabolism of branched-chain fatty acid oxidation and isoleucine may present features resembling sequelae of neonatal hypoxic-ischemic brain injury. All patients with MHBD deficiency identified so far are characterized by a neurologic phenotype rather than ketoacidotic attacks, unlike patients with the related isoleucine defect beta-ketothiolase deficiency.
Collapse
Affiliation(s)
- Bwee Tien Poll-The
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Battaile KP, Nguyen TV, Vockley J, Kim JJP. Structures of Isobutyryl-CoA Dehydrogenase and Enzyme-Product Complex. J Biol Chem 2004; 279:16526-34. [PMID: 14752098 DOI: 10.1074/jbc.m400034200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The acyl-CoA dehydrogenases are a family of mitochondrial flavoproteins involved in the catabolism of fatty and amino acids. Isobutyryl-CoA dehydrogenase (IBD) is involved in the catabolism of valine and catalyzes the conversion of isobutyryl-CoA to methacrylyl-CoA. The crystal structure of IBD with and without substrate has been determined to 1.76-A resolution. The asymmetric unit contains a homotetramer with substrate/product bound in two monomers. The overall structure of IBD is similar to those of previously determined acyl-CoA dehydrogenases and consists of an NH2-terminal alpha-helical domain, a medial beta-strand domain and a C-terminal alpha-helical domain. The enzyme-bound ligand has been modeled in as the reaction product, methacrylyl-CoA. The location of Glu-376 with respect to the C-2-C-3 of the bound product and FAD confirms Glu-376 to be the catalytic base. IBD has a shorter and wider substrate-binding cavity relative to short-chain acyl-CoA dehydrogenase, permitting the optimal binding of the isobutyryl-CoA substrate. The dramatic lateral expansion of the binding cavity seen in isovaleryl-CoA dehydrogenase is not observed in IBD. The conserved tyrosine or phenylalanine that defines a side of the binding cavity in other acyl-CoA dehydrogenases is replaced by a leucine (Leu-375) in the current structure. Substrate binding changes the position of some residues lining the binding pocket as well as the position of the loop containing the catalytic glutamate and subsequent helix. Three clinical mutations have been modeled to the structure. The mutations do not affect substrate binding but instead appear to disrupt protein folding and/or stability.
Collapse
Affiliation(s)
- Kevin P Battaile
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
49
|
Röschinger W, Olgemöller B, Fingerhut R, Liebl B, Roscher AA. Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. Eur J Pediatr 2003; 162 Suppl 1:S67-76. [PMID: 14618396 DOI: 10.1007/s00431-003-1356-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED Gas chromatography/mass spectrometry became available more than 30 years ago and has subsequently profoundly contributed not only in the identification of a wide range of inborn errors but also as a key tool for clinical diagnostic screening of genetic metabolic disease. Due to extraordinary advances in liquid chromatography and mass spectrometry (MS) developed in the last decade, the utilisation of MS and the potential number of applications for the purpose of metabolic screening is currently undergoing considerable expansion. CONCLUSIONS This overview aims to describe only current new developments in clinically most relevant applications, in particular with focus on low molecular weight compounds.
Collapse
Affiliation(s)
- Wulf Röschinger
- Research Center, Department of Biochemical Genetics and Molecular Biology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80337, Munich, Germany.
| | | | | | | | | |
Collapse
|
50
|
Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin Chem 2003; 49:1797-817. [PMID: 14578311 DOI: 10.1373/clinchem.2003.022178] [Citation(s) in RCA: 446] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Over the past decade laboratories that test for metabolic disorders have introduced tandem mass spectrometry (MS/MS), which is more sensitive, specific, reliable, and comprehensive than traditional assays, into their newborn-screening programs. MS/MS is rapidly replacing these one-analysis, one-metabolite, one-disease classic screening techniques with a one-analysis, many-metabolites, many-diseases approach that also facilitates the ability to add new disorders to existing newborn-screening panels. METHODS During the past few years experts have authored many valuable articles describing various approaches to newborn metabolic screening by MS/MS. We attempted to document key developments in the introduction and validation of MS/MS screening for metabolic disorders. Our approach used the perspective of the metabolite and which diseases may be present from its detection rather than a more traditional approach of describing a disease and noting which metabolites are increased when it is present. CONTENT This review cites important historical developments in the introduction and validation of MS/MS screening for metabolic disorders. It also offers a basic technical understanding of MS/MS as it is applied to multianalyte metabolic screening and explains why MS/MS is well suited for analysis of amino acids and acylcarnitines in dried filter-paper blood specimens. It also describes amino acids and acylcarnitines as they are detected and measured by MS/MS and their significance to the identification of specific amino acid, fatty acid, and organic acid disorders. CONCLUSIONS Multianalyte technologies such as MS/MS are suitable for newborn screening and other mass screening programs because they improve the detection of many diseases in the current screening panel while enabling expansion to disorders that are now recognized as important and need to be identified in pediatric medicine.
Collapse
Affiliation(s)
- Donald H Chace
- Pediatrix Screening, PO Box 219, 90 Emerson Lane, Bridgeville, PA 15017, USA.
| | | | | |
Collapse
|