1
|
Hong SM, Qian X, Deshpande V, Kulkarni S. Optimization of protocols for immunohistochemical assessment of enteric nervous system in formalin fixed human tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628584. [PMID: 39763767 PMCID: PMC11702535 DOI: 10.1101/2024.12.15.628584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain. Yet, our understanding of ENS aberrations observed in GI dysmotility patients lags behind our understanding of central nervous system aberrations observed in patients with neurological disease. Paucity of optimized methods for histopathological assessment of ENS in pathological specimens represent an important bottleneck in ascertaining how the ENS is altered in diverse GI dysmotility conditions. While recent studies have interrogated ENS structure in surgically resected whole mount human gut, most pathological specimens are banked as formalin fixed paraffin embedded (FFPE) tissue blocks - suggesting that methods to interrogate ENS in FFPE tissue blocks would provide the biggest impetus for ENS histopathology in a clinical setting. In this report, we present optimized methods for immunohistochemical interrogation of the human ENS tissue on the basis of >25 important protein markers that include proteins expressed by all neurons, subset of neurons, hormones, and neurotransmitter receptors. This report provides a resource which will help pathologists and investigators assess ENS aberrations in patients with various GI dysmotility conditions.
Collapse
Affiliation(s)
- Su Min Hong
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Xia Qian
- Dept of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Vikram Deshpande
- Dept of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115
| | - Subhash Kulkarni
- Division of Gastroenterology, Dept of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Division of Medical Sciences, Harvard Medical School, Boston, MA 02115
- Graduate program in Neuroscience, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
2
|
Wang G, Wang H, Zhang L, Guo F, Wu X, Liu Y. MiR-195-5p inhibits proliferation and invasion of nerve cells in Hirschsprung disease by targeting GFRA4. Mol Cell Biochem 2021; 476:2061-2073. [PMID: 33515383 DOI: 10.1007/s11010-021-04055-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
Studies have reported that miR-195-5p plays a role in the Hirschsprung disease (HSCR). Our previous work found GDNF family receptor alpha 4 (GFRA4) is also associated with HSCR. In this study, we focused on whether miR-195-5p induces the absence of enteric neurons and enteric neural crest in HSCR by regulating GFRA4. The expression levels of GFRA4 and miR-195-5p in colon tissues were evaluated by real-time PCR (RT-PCR) assay. We overexpressed GFRA4 or miR-195-5p in SH-SY5Y cells, the cell proliferation, cell cycle, apoptosis and invasion were subsequently investigated by CCK-8 assay, EdU staining, Flow cytometry analysis and Transwell assay, respectively. We also established the xenograft model to detect the effect of miR-195-5p on tumor growth and GFRA4 and p-RET expressions. GFRA4 expression was significantly downregulated in the HSCR colon tissues when compared with that in the control tissues. Overexpression of GFRA4 significantly promoted proliferation, invasion and cell cycle arrest, and inhibited apoptosis of SH-SY5Y cells. We also proved that GFRA4 is a direct target of miR-195-5p, and miR-195-5p inhibited proliferation, invasion, cell cycle arrest and differentiation, and accelerated apoptosis in SH-SY5Y cells which can be reversed by GFRA4 overexpression. Furthermore, we demonstrated that miR-195-5p suppressed tumor growth, and observably decreased GFRA4 and p-RET expressions. Our findings suggest that miR-195-5p plays an important role in the pathogenesis of HSCR. MiR-195-5p inhibited proliferation, invasion and cell cycle arrest, and accelerated apoptosis of nerve cells by targeting GFRA4.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China.
| | - Hefeng Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Xiangyu Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| | - Yang Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Road, Huaiyin District, Jinan, 250021, Shandong, China
| |
Collapse
|
3
|
Gut-Brain-Microbiota Axis: Antibiotics and Functional Gastrointestinal Disorders. Nutrients 2021; 13:nu13020389. [PMID: 33513791 PMCID: PMC7910879 DOI: 10.3390/nu13020389] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota composition and function are major areas of research for functional gastrointestinal disorders. There is a connection between gastrointestinal tract and central nervous system and this is mediated by neurotransmitters, inflammatory cytokines, the vagus nerve and the hypothalamic-pituitary-adrenal axis. Functional gastrointestinal disorders are prevalent diseases affecting more than one third of the population. The etiology of these disorders is not clarified. Visceral hyperalgesia is the main hypothesis for explaining clinical symptoms, however gut-brain axis disorder is a new terminology for functional disorders. In this review, microbiota-gut-brain axis connection pathways and related disorders are discussed. Antibiotics are widely used in developed countries and recent evidence indicates antibiotic-induced dysbiosis as an important factor for functional disorders. Antibiotics exert negative effects on gut microbiota composition and functions. Antibiotic-induced dysbiosis is a major factor for occurrence of post-infectious irritable bowel syndrome. Cognitive and mood disorders are also frequent in functional gastrointestinal disorders. Animal and human trials show strong evidence for the causal relationship between gut microbiota and brain functions. Therapeutic implications of these newly defined pathogenic pathways are also discussed.
Collapse
|
4
|
Questioning the failure of neural crest cell migration theory in Hirschsprung's disease: A case report and literature review. Int J Surg Case Rep 2021; 79:243-247. [PMID: 33485175 PMCID: PMC7820794 DOI: 10.1016/j.ijscr.2021.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Segmental aganglionosis (the absence of ganglions) is a rare presentation of Hirschsprung's disease, whereby only limited segment/segments of aganglionic bowel is interposed between segments of innervated bowel, or "skip'' area of normal innervations is present within an area of aganglionosis. PRESENTATION OF CASE We reported a case of a 3 day old male newborn who presented with failure to pass meconium along with progressive abdominal distension. There were skip lesions present in between. Mikulicz double barrel enterostomy was carried out, which was followed by an uneventful postoperative period. Four months later, the patient was admitted for levelling biopsies which revealed the absence of ganglions in the terminal ileum as well as in the rectosigmoid junction. But the ganglions were present in between and proximal to the terminal ileum where the previously dilated small bowel segment was resected. This presentation was contradicted the most accepted migration theory of Hirschsprung's disease. DISCUSSION As seen in our case, and in21 other cases published between 1954-2016, we highly recommend that leveling/mapping biopsies should definitely include the cecal pole and the small bowel segments proximal to the ileocecal valve as well as the multilevel colonic biopsies down till the rectum. CONCLUSION Reporting of these cases brings out interesting questions with respect to the pathogenesis and serves to highlight the existence of several variants within the spectrum of Hirschsprung's disease.
Collapse
|
5
|
Yarandi SS, Kulkarni S, Saha M, Sylvia KE, Sears CL, Pasricha PJ. Intestinal Bacteria Maintain Adult Enteric Nervous System and Nitrergic Neurons via Toll-like Receptor 2-induced Neurogenesis in Mice. Gastroenterology 2020; 159:200-213.e8. [PMID: 32234538 PMCID: PMC7387157 DOI: 10.1053/j.gastro.2020.03.050] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/01/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS) exists in close proximity to luminal bacteria. Intestinal microbes regulate ENS development, but little is known about their effects on adult enteric neurons. We investigated whether intestinal bacteria or their products affect the adult ENS via toll-like receptors (TLRs) in mice. METHODS We performed studies with conventional C57/BL6, germ-free C57/BL6, Nestin-creERT2:tdTomato, Nestin-GFP, and ChAT-cre:tdTomato. Mice were given drinking water with ampicillin or without (controls). Germ-free mice were given drinking water with TLR2 agonist or without (controls). Some mice were given a blocking antibody against TLR2 or a TLR4 inhibitor. We performed whole gut transit, bead latency, and geometric center studies. Feces were collected and analyzed by 16S ribosomal RNA gene sequencing. Longitudinal muscle myenteric plexus (LMMP) tissues were collected, analyzed by immunohistochemistry, and levels of nitric oxide were measured. Cells were isolated from colonic LMMP of Nestin-creERT2:tdTomato mice and incubated with agonists of TLR2 (receptor for gram-positive bacteria), TLR4 (receptor for gram-negative bacteria), or distilled water (control) and analyzed by flow cytometry. RESULTS Stool from mice given ampicillin had altered composition of gut microbiota with reduced abundance of gram-positive bacteria and increased abundance of gram-negative bacteria, compared with mice given only water. Mice given ampicillin had reduced colon motility compared with mice given only water, and their colonic LMMP had reduced numbers of nitrergic neurons, reduced neuronal nitric oxide synthase production, and reduced colonic neurogenesis. Numbers of colonic myenteric neurons increased after mice were switched from ampicillin to plain water, with increased markers of neurogenesis. Nestin-positive enteric neural precursor cells expressed TLR2 and TLR4. In cells isolated from the colonic LMMP, incubation with the TLR2 agonist increased the percentage of neurons originating from enteric neural precursor cells to approximately 10%, compared with approximately 0.01% in cells incubated with the TLR4 agonist or distilled water. Mice given an antibody against TLR2 had prolonged whole gut transit times; their colonic LMMP had reduced total neurons and a smaller proportion of nitrergic neurons per ganglion, and reduced markers of neurogenesis compared with mice given saline. Colonic LMMP of mice given the TLR4 inhibitor did not have reduced markers of neurogenesis. Colonic LMMP of germ-free mice given TLR2 agonist had increased neuronal numbers compared with control germ-free mice. CONCLUSIONS In the adult mouse colon, TLR2 promotes colonic neurogenesis, regulated by intestinal bacteria. Our findings indicate that colonic microbiota help maintain the adult ENS via a specific signaling pathway. Pharmacologic and probiotic approaches directed towards specific TLR2 signaling processes might be developed for treatment of colonic motility disorders related to use of antibiotics or other factors.
Collapse
Affiliation(s)
- Shadi S Yarandi
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Subhash Kulkarni
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Monalee Saha
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristyn E Sylvia
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cynthia L Sears
- Departments of Medicine, Oncology and Molecular Microbiology & Immunology, the Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, Maryland
| | - Pankaj J Pasricha
- Center for Neurogastroenterology and Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Patel YA, Pasricha PJ. Enteric Neuromodulation for the Gut and Beyond. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034355. [PMID: 30858329 DOI: 10.1101/cshperspect.a034355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The small intestine is the longest organ in the human body, spanning a length of ∼5 m and compartmentalized into three distinct regions with specific roles in maintenance of comprehensive homeostasis. Along its length exists as a unique and independent system-called the enteric nervous system (ENS)-which coordinates the multitude of functions continuously around the clock. Yet, with so many vital roles played, the functions, relationships, and roles of the small intestine and ENS remain largely elusive. This fundamental hole in the physiology of the small intestine and ENS introduces a substantial number of challenges when attempting to create bioelectronic approaches for treatment of various disorders originating in the small intestine. Here, we review existing therapeutic options for modulating the small intestine, discuss fundamental gaps that must be addressed, and highlight novel methods and approaches to consider for development of bioelectronic approaches aiming to modulate the small intestine.
Collapse
Affiliation(s)
- Yogi A Patel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205
| | - Pankaj J Pasricha
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland 21205.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
7
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2634] [Impact Index Per Article: 439.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Wang G, Guo F, Wang H, Liu W, Zhang L, Cui M, Wu X. Downregulation of microRNA-483-5p Promotes Cell Proliferation and Invasion by Targeting GFRA4 in Hirschsprung's Disease. DNA Cell Biol 2017; 36:930-937. [PMID: 29090971 DOI: 10.1089/dna.2017.3821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies have suggested the critical roles of miRNAs for disease progression. miRNA-483-5p (miR-483-5p) was previously found to have a relationship with tumor cell behavior, but its biological function in Hirschsprung's disease (HSCR) remains undefined. Thus, we explored the role of miR-483-5p in the pathogenesis of HSCR. Histological changes of colonic tissues were evaluated by hematoxylin and eosin (HE) staining. Quantitative real-time PCR and western blotting were used to determine relative expression levels of miRNA, mRNA, and proteins in 20 HSCR patients and 20 normal colon tissues. In this study, we found that miR-483-5p expression in HSCR tissues was significantly increased and their downregulation promoted cell proliferation, cell cycle progression and invasion and inhibited cell apoptosis in human 293T and SH-SY5Y cell lines by the CCK-8, flow cytometry, and Transwell assay. GNDF family receptor alpha 4 (GFRA4) was confirmed as a downstream target of miR-483-5p by dual-luciferase reporter gene assay and inversely correlated with miR-483-5p expression in cell lines. Taken together, miR-483-5p may play a crucial role in the pathogenesis of HSCR by targeting GFRA4.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pediatric Surgery, Shandong Province Hospital Affiliated to Shandong University , Jinan, China
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Province Hospital Affiliated to Shandong University , Jinan, China
| | - Hefeng Wang
- Department of Pediatric Surgery, Shandong Province Hospital Affiliated to Shandong University , Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Province Hospital Affiliated to Shandong University , Jinan, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Province Hospital Affiliated to Shandong University , Jinan, China
| | - Mingyu Cui
- Department of Pediatric Surgery, Shandong Province Hospital Affiliated to Shandong University , Jinan, China
| | - Xiangyu Wu
- Department of Pediatric Surgery, Shandong Province Hospital Affiliated to Shandong University , Jinan, China
| |
Collapse
|
9
|
Filpa V, Carpanese E, Marchet S, Pirrone C, Conti A, Rainero A, Moro E, Chiaravalli AM, Zucchi I, Moriondo A, Negrini D, Crema F, Frigo G, Giaroni C, Porta G. Nitric oxide regulates homeoprotein OTX1 and OTX2 expression in the rat myenteric plexus after intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2017; 312:G374-G389. [PMID: 28154013 DOI: 10.1152/ajpgi.00386.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 01/31/2023]
Abstract
Neuronal and inducible nitric oxide synthase (nNOS and iNOS) play a protective and damaging role, respectively, on the intestinal neuromuscular function after ischemia-reperfusion (I/R) injury. To uncover the molecular pathways underlying this dichotomy we investigated their possible correlation with the orthodenticle homeobox proteins OTX1 and OTX2 in the rat small intestine myenteric plexus after in vivo I/R. Homeobox genes are fundamental for the regulation of the gut wall homeostasis both during development and in pathological conditions (inflammation, cancer). I/R injury was induced by temporary clamping the superior mesenteric artery under anesthesia, followed by 24 and 48 h of reperfusion. At 48 h after I/R intestinal transit decreased and was further reduced by Nω-propyl-l-arginine hydrochloride (NPLA), a nNOS-selective inhibitor. By contrast this parameter was restored to control values by 1400W, an iNOS-selective inhibitor. In longitudinal muscle myenteric plexus (LMMP) preparations, iNOS, OTX1, and OTX2 mRNA and protein levels increased at 24 and 48 h after I/R. At both time periods, the number of iNOS- and OTX-immunopositive myenteric neurons increased. nNOS mRNA, protein levels, and neurons were unchanged. In LMMPs, OTX1 and OTX2 mRNA and protein upregulation was reduced by 1400W and NPLA, respectively. In myenteric ganglia, OTX1 and OTX2 staining was superimposed with that of iNOS and nNOS, respectively. Thus in myenteric ganglia iNOS- and nNOS-derived NO may promote OTX1 and OTX2 upregulation, respectively. We hypothesize that the neurodamaging and neuroprotective roles of iNOS and nNOS during I/R injury in the gut may involve corresponding activation of molecular pathways downstream of OTX1 and OTX2.NEW & NOTEWORTHY Intestinal ischemia-reperfusion (I/R) injury induces relevant alterations in myenteric neurons leading to dismotility. Nitrergic neurons seem to be selectively involved. In the present study the inference that both neuronal and inducible nitric oxide synthase (nNOS and iNOS) expressing myenteric neurons may undergo important changes sustaining derangements of motor function is reinforced. In addition, we provide data to suggest that NO produced by iNOS and nNOS regulates the expression of the vital transcription factors orthodenticle homeobox protein 1 and 2 during an I/R damage.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Elisa Carpanese
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Silvia Marchet
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Pirrone
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Andrea Conti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alessia Rainero
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ileana Zucchi
- ITB Consiglio Nazionale delle Ricerche, Segrate, Milan, Italy
| | - Andrea Moriondo
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daniela Negrini
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy;
| | - Giovanni Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
10
|
|
11
|
Abstract
PURPOSE Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system, which occurs due to the failure of neural crest cell migration. Rodent animal models of aganglionosis have contributed greatly to our understanding of the genetic basis of HSCR. Several natural or target mutations in specific genes have been reported to produce developmental defects in neural crest migration, differentiation or survival. The aim of this study was to review the currently available knockout models of HSCR to better understand the molecular basis of HSCR. METHODS A review of the literature using the keywords "Hirschsprung's disease", "aganglionosis", "megacolon" and "knockout mice model" was performed. Resulting publications were reviewed for relevant mouse models of human aganglionosis. Reference lists were screened for additional relevant studies. RESULTS 16 gene knockout mouse models were identified as relevant rodent models of human HSCR. Due to the deletion of a specific gene, the phenotypes of these knockout models are diverse and range from small bowel dilatation and muscular hypertrophy to total intestinal aganglionosis. CONCLUSIONS Mouse models of aganglionosis have been instrumental in the discovery of the causative genes of HSCR. Although important advances have been made in understanding the genetic basis of HSCR, animal models of aganglionosis in future should further help to identify the unknown susceptibility genes in HSCR.
Collapse
Affiliation(s)
- J Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | |
Collapse
|
12
|
Wei R, Qiu X, Wang S, Li Y, Wang Y, Lu K, Fu Y, Xing G, He F, Zhang L. NEDL2 is an essential regulator of enteric neural development and GDNF/Ret signaling. Cell Signal 2014; 27:578-86. [PMID: 25555806 DOI: 10.1016/j.cellsig.2014.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 11/24/2022]
Abstract
Although glial cell line-derived neurotrophic factor (GDNF)/Ret signaling is essential for enteric nervous system (ENS) development, the positive regulators regulating GDNF/Ret signaling and controlling ENS development are poorly understood. Here, we show that Nedd4-related E3 ubiquitin ligase-2 (NEDL2) plays an essential and positive physiological role in regulating ENS development and GDNF/Ret signaling. All of the NEDL2-deficient mice die within 2weeks after birth, showing low body weight. These mice showed a progressive bowel motility defect resulting from intestinal aganglionosis. We show that NEDL2 positively regulates enteric neural precursor proliferation through the GDNF/Akt signaling pathway. Together, these findings unveil the physiological function of NEDL2 in vivo.
Collapse
Affiliation(s)
- Rongfei Wei
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xiao Qiu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Shaoxia Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yiwu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Kefeng Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Yesheng Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Guichun Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Fuchu He
- School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province 116044, China.
| |
Collapse
|
13
|
Castle S, Suliman A, Shayan K, Kling K, Bickler S, Losasso B. Total colonic aganglionosis with skip lesions: report of a rare case and management. J Pediatr Surg 2012; 47:581-4. [PMID: 22424357 DOI: 10.1016/j.jpedsurg.2011.11.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
Abstract
We present an unusual case of total colonic aganglionosis with well-documented skip lesions and discuss our staged approach for diagnosis and surgical management. To date, there have been few reported cases of total colonic aganglionosis with skip areas. This type of presentation challenges the accepted theory regarding the etiology of colonic aganglionosis. Although skip lesions in Hirschsprung disease are extremely rare, their existence must be appreciated especially when a patient's clinical and pathologic findings do not support classic Hirschsprung disease. If not considered, additional areas of aganglionosis can be missed at initial presentation, leading to a delay in definitive treatment. This case illustrates how careful mapping of bowel via multiple biopsies can identify and thereby preserve intervening segments of bowel with normal ganglions cells to yield the maximal amount of bowel possible.
Collapse
|
14
|
Metzger M, Conrad S, Skutella T, Just L. RGMa inhibits neurite outgrowth of neuronal progenitors from murine enteric nervous system via the neogenin receptor in vitro. J Neurochem 2011; 103:2665-78. [PMID: 17953666 DOI: 10.1111/j.1471-4159.2007.04994.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system (ENS) in vertebrate embryos is formed by neural crest-derived cells. During development, these cells undergo extensive migration from the vagal and sacral regions to colonize the entire gut, where they differentiate into neurons and glial cells. Guidance molecules like netrins, semaphorins, slits, and ephrins are known to be involved in neuronal migration and axon guidance. In the CNS, the repulsive guidance molecule (RGMa) has been implicated in neuronal differentiation, migration, and apoptosis. Recently, we described the expression of the subtypes RGMa and RGMb and their receptor neogenin during murine gut development. In the present study, we investigated the influence of RGMa on neurosphere cultures derived from fetal ENS. In functional in vitro assays, RGMa strongly inhibited neurite outgrowth of differentiating progenitors via the receptor neogenin. The repulsive effect of RGMa on processes of differentiated enteric neural progenitors could be demonstrated by collapse assay. The influence of the RGM receptor on ENS was also analyzed in neogenin knockout mice. In the adult large intestine of mutants we observed disturbed ganglia formation in the myenteric plexus. Our data indicate that RGMa may be involved in differentiation processes of enteric neurons in the murine gut.
Collapse
Affiliation(s)
- Marco Metzger
- Institute of Anatomy, Centre for Regenerative Medicine, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
15
|
The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function. J Neurosci 2010; 30:1523-38. [PMID: 20107080 DOI: 10.1523/jneurosci.3861-09.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ret signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF. Furthermore, because different subclasses of ENS precursors withdraw from the cell cycle at different times during development, increases in GDNF at specific times alter the ratio of neuronal subclasses in the mature ENS. In addition, we confirm that esophageal neurons are GDNF responsive and demonstrate that the location of GDNF production influences neuronal process projection for NADPH diaphorase-expressing, but not acetylcholinesterase-, choline acetyltransferase-, or tryptophan hydroxylase-expressing, small bowel myenteric neurons. We further demonstrate that changes in GDNF availability influence intestinal function in vitro and in vivo. Thus, changes in GDNF expression can create a wide variety of alterations in ENS structure and function and may in part contribute to human motility disorders.
Collapse
|
16
|
Prior C, Nunes A, Rios M, Sequeiros J, Maciel P, Gomes L, Temudo T. Trastornos nutricionales y gastrointestinales en el síndrome de Rett: importancia de la intervención temprana. An Pediatr (Barc) 2010; 72:191-8. [DOI: 10.1016/j.anpedi.2009.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/22/2009] [Accepted: 02/03/2009] [Indexed: 12/11/2022] Open
|
17
|
Burns AJ, Roberts RR, Bornstein JC, Young HM. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages. Semin Pediatr Surg 2009; 18:196-205. [PMID: 19782301 DOI: 10.1053/j.sempedsurg.2009.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Motility patterns in the mature intestine require the coordinated interaction of enteric neurons, gastrointestinal smooth muscle, and interstitial cells of Cajal. In Hirschsprung's disease, the aganglionic segment causes functional obstruction, and thus the enteric nervous system (ENS) is essential for gastrointestinal motility after birth. Here we review the development of the ENS. We then focus on motility patterns in the small intestine and colon of fetal mice and larval zebrafish, where recent studies have shown that the first intestinal motility patterns are not neurally mediated. Finally, we review the development of gastrointestinal motility in humans.
Collapse
Affiliation(s)
- Alan J Burns
- Neural Development Unit, UCL Institute of Child Health, London, United Kingdom
| | | | | | | |
Collapse
|
18
|
Abstract
Hirschsprung's disease (HSCR) is a developmental disorder characterized by the absence of ganglion cells in the lower digestive tract. Aganglionosis is attributed to a disorder of the enteric nervous system (ENS) whereby ganglion cells fail to innervate the lower gastrointestinal tract during embryonic development. HSCR is a complex disease that results from the interaction of several genes and manifests with low, sex-dependent penetrance and variability in the length of the aganglionic segment. The genetic complexity observed in HSCR can be conceptually understood in light of the molecular and cellular events that take place during the ENS development. DNA alterations in any of the genes involved in the ENS development may interfere with the colonization process, and represent a primary etiology for HSCR. This review will focus on the genes known to be involved in HSCR pathology, how they interact, and on how technology advances are being employed to uncover the pathological processes underlying this disease.
Collapse
|
19
|
Abstract
Hirschsprung disease is a relatively common condition managed by pediatric surgeons. Significant advances have been made in understanding its etiologies in the last decade, especially with the explosion of molecular genetic techniques and early diagnosis. The surgical management has progressed from a two- or three-stage procedure to a primary operation. More recently, definitive surgery for Hirschsprung disease through minimally invasive techniques has gained popularity. In neonates, the advancement of treatment strategies for Hirschsprung disease continues with reduced patient morbidity and improved outcomes.
Collapse
Affiliation(s)
- Ramanath N Haricharan
- Division of Pediatric Surgery, Department of General Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | | |
Collapse
|
20
|
Sato Y, Heuckeroth RO. Retinoic acid regulates murine enteric nervous system precursor proliferation, enhances neuronal precursor differentiation, and reduces neurite growth in vitro. Dev Biol 2008; 320:185-98. [PMID: 18561907 PMCID: PMC2586054 DOI: 10.1016/j.ydbio.2008.05.524] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/01/2008] [Accepted: 05/02/2008] [Indexed: 02/01/2023]
Abstract
Enteric nervous system (ENS) precursors undergo a complex process of cell migration, proliferation, and differentiation to form an integrated network of neurons and glia within the bowel wall. Although retinoids regulate ENS development, molecular and cellular mechanisms of retinoid effects on the ENS are not well understood. We hypothesized that retinoids might directly affect ENS precursor differentiation and proliferation, and tested that hypothesis using immunoselected fetal ENS precursors in primary culture. We now demonstrate that all retinoid receptors and many retinoid biosynthetic enzymes are present in the fetal bowel at about the time that migrating ENS precursors reach the distal bowel. We further demonstrate that retinoic acid (RA) enhances proliferation of subsets of ENS precursors in a time-dependent fashion and increases neuronal differentiation. Surprisingly, however, enteric neurons that develop in retinoid deficient media have dramatically longer neurites than those exposed to RA. This difference in neurite growth correlates with increased RhoA protein at the neurite tip, decreased Smurf1 (a protein that targets RhoA for degradation), and dramatically decreased Smurf1 mRNA in response to RA. Collectively these data demonstrate diverse effects of RA on ENS precursor development and suggest that altered fetal retinoid availability or metabolism could contribute to intestinal motility disorders.
Collapse
Affiliation(s)
- Yoshiharu Sato
- Department of Pediatrics, Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis MO 63110
| | - Robert O. Heuckeroth
- Department of Pediatrics, Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8208, St. Louis MO 63110
| |
Collapse
|
21
|
Abstract
BACKGROUND Endothelin-B receptor (EDNRB) signaling pathway is associated for Hirschsprung disease (HSCR). The aim of this study was to investigate the EDNRB gene mutation in patients with HSCR in Taiwan and correlate the genotype and phenotype. PATIENTS AND METHODS Using polymerase chain reaction amplification and direct sequencing, we screened for mutations in the coding regions and intron/exon boundaries of the EDNRB gene in 39 isolated HSCR cases and compared them with those in 400 control chromosomes. RESULTS In 3 cases, heterozygous variations in exon 1 and 2 of the EDNRB gene predicted missense mutations of the first cytosolic (M132I), second transmembrane (I157V), second exoplasmic (M173T), and third transmembrane (V185M) domains of the EDNRB protein. Three of the 4 mutations in our study have not been reported previously. For total 39 unrelated cases, the mutation rates were estimated to be 10% (3 of 30) for short-segment HSCR and 7.7% (3 of 39) for all HSCR cases. CONCLUSIONS We did not detect a significant genotype-phenotype correlation. In conclusion, this study identified 4 mutations within the EDNRB gene associated with HSCR. Because HSCR is a multifactorial and multigene disorder, the higher mutation rate of 10% for short-segment HSCR suggests the important role that the EDNRB gene plays in the pathogenesis of short-segment HSCR in Taiwan.
Collapse
|
22
|
Estrada-Mondaca S, Carreón-Rodríguez A, Belkind-Gerson J. Biology of the adult enteric neural stem cell. Dev Dyn 2007; 236:20-32. [PMID: 16972279 DOI: 10.1002/dvdy.20954] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An increasing body of evidence has accumulated in recent years supporting the existence of neural stem cells in the adult gut. There are at least three groups that have obtained them using different methodologies and have described them in vitro. There is a growing amount of knowledge on their biology, but many questions are yet unanswered. Among these questions is whether these cells are part of a permanent undifferentiated pool or are recruited in a regular basis; in addition, the factors and genes involved in their survival, proliferation, migration, and differentiation are largely unknown. Finally, with between 10 and 20% of adults suffering from diseases involving the enteric nervous system, most notably irritable bowel syndrome and gastroesophageal reflux, what is the possible role of enteric nervous stem cells in health and disease?
Collapse
Affiliation(s)
- Sandino Estrada-Mondaca
- Grupo de Medicina Regenerativa, Unidad de Ingeniería de Tejidos y Terapia Celular, Instituto Nacional de Rehabilitación, Secretaría de Salud, Tlalpan, Mexico City, Mexico
| | | | | |
Collapse
|
23
|
Abstract
The G-protein-coupled receptor signaling system, consisting of a huge variety of receptors as well as of many G-proteins and effectors, operates in every cell and is involved in many physiological and pathological processes. The versatility of this system and the involvement of specific components makes G-protein-coupled receptors and their signaling pathways ideal targets for pharmacological interventions. Classical mouse knockout models have often provided important preliminary insights into the biological roles of individual receptors and signaling pathways and they are routinely used in the process of target validation. The recent development of efficient conditional mutagenesis techniques now allows a much more detailed analysis of G-protein-mediated signaling transduction processes. This review summarizes some of the areas in which progress has recently been made by applying conditional mutagenesis of genes coding for G-proteins and G-protein-coupled receptors.
Collapse
Affiliation(s)
- S Offermanns
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Mosher JT, Yeager KJ, Kruger GM, Joseph NM, Hutchin ME, Dlugosz AA, Morrison SJ. Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev Biol 2006; 303:1-15. [PMID: 17113577 PMCID: PMC1910607 DOI: 10.1016/j.ydbio.2006.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 10/12/2006] [Accepted: 10/16/2006] [Indexed: 01/21/2023]
Abstract
We have systematically examined the developmental potential of neural crest stem cells from the enteric nervous system (gut NCSCs) in vivo to evaluate their potential use in cellular therapy for Hirschsprung disease and to assess differences in the properties of postmigratory NCSCs from different regions of the developing peripheral nervous system (PNS). When transplanted into developing chicks, flow-cytometrically purified gut NCSCs and sciatic nerve NCSCs exhibited intrinsic differences in migratory potential and neurogenic capacity throughout the developing PNS. Most strikingly, gut NCSCs migrated into the developing gut and formed enteric neurons, while sciatic nerve NCSCs failed to migrate into the gut or to make enteric neurons, even when transplanted into the gut wall. Enteric potential is therefore not a general property of NCSCs. Gut NCSCs also formed cholinergic neurons in parasympathetic ganglia, but rarely formed noradrenergic sympathetic neurons or sensory neurons. Supporting the potential for autologous transplants in Hirschsprung disease, we observed that Endothelin receptor B (Ednrb)-deficient gut NCSCs engrafted and formed neurons as efficiently in the Ednrb-deficient hindgut as did wild-type NCSCs. These results demonstrate intrinsic differences in the migratory properties and developmental potentials of regionally distinct NCSCs, indicating that it is critical to match the physiological properties of neural stem cells to the goals of proposed cell therapies.
Collapse
Affiliation(s)
- Jack T. Mosher
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Kelly J. Yeager
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Genevieve M. Kruger
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Nancy M. Joseph
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Mark E. Hutchin
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Sean J. Morrison
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216
- *Author for correspondence: 5435 Life Sciences Institute, 210 Washtenaw Ave., Ann Arbor, Michigan, 48109-2216; phone 734-647-6261; fax 734-615-8133; email
| |
Collapse
|
25
|
Mwangi S, Anitha M, Fu H, Sitaraman SV, Srinivasan S. Glial cell line-derived neurotrophic factor-mediated enteric neuronal survival involves glycogen synthase kinase-3beta phosphorylation and coupling with 14-3-3. Neuroscience 2006; 143:241-51. [PMID: 16996218 DOI: 10.1016/j.neuroscience.2006.07.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/25/2006] [Accepted: 07/26/2006] [Indexed: 12/15/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes the growth and survival of enteric neurons, but the mechanisms involved are poorly understood. GDNF is known to promote the survival of enteric neurons through activation of the PI3-Kinase/Akt signaling pathway. We investigated the role of glycogen synthase kinase-3beta (GSK-3beta) in enteric neuronal survival, and the ability of GDNF to regulate the activity of GSK-3beta using primary rat embryonic enteric neurons. GDNF, through activation of the PI3-kinase pathway enhanced the phosphorylation of GSK-3beta at its N-terminal serine-9 residue, and promoted the association of GSK-3beta with 14-3-3. Transfection of a constitutively active S9A-GSK-3beta mutant prevented the survival effects of GDNF, whereas a dominant negative GSK-3beta construct prevented GDNF withdrawal-induced cell death. Increased GSK-3beta activity was associated with an increase in tau phosphorylation. Thus, GDNF promotes enteric neuronal survival by modulating GSK-3beta and its downstream target tau. Inhibitors of GSK-3beta activity may have therapeutic potential in improving enteric neuronal survival.
Collapse
Affiliation(s)
- S Mwangi
- Division of Digestive Diseases, Department of Medicine, Emory University, Whitehead Research Building, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- A Mortell
- Children's Research Centre, Our Lady's Hospital for Sick Children, Crumlin, Dublin 12, Ireland
| | | | | |
Collapse
|
27
|
Metzger M, Bareiss PM, Nikolov I, Skutella T, Just L. Three-dimensional slice cultures from murine fetal gut for investigations of the enteric nervous system. Dev Dyn 2006; 236:128-33. [PMID: 16894627 DOI: 10.1002/dvdy.20920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three-dimensional intestinal cultures offer new possibilities for the examination of growth potential, analysis of time specific gene expression, and spatial cellular arrangement of enteric nervous system in an organotypical environment. We present an easy to produce in vitro model of the enteric nervous system for analysis and manipulation of cellular differentiation processes. Slice cultures of murine fetal colon were cultured on membrane inserts for up to 2 weeks without loss of autonomous contractility. After slice preparation, cultured tissue reorganized within the first days in vitro. Afterward, the culture possessed more than 35 cell layers, including high prismatic epithelial cells, smooth muscle cells, glial cells, and neurons analyzed by immunohistochemistry. The contraction frequency of intestinal slice culture could be modulated by the neurotransmitter serotonin and the sodium channel blocker tetrodotoxin. Coculture experiments with cultured neurospheres isolated from enhanced green fluorescent protein (eGFP) transgenic mice demonstrated that differentiating eGFP-positive neurons were integrated into the intestinal tissue culture. This slice culture model of enteric nervous system proved to be useful for studying cell-cell interactions, cellular signaling, and cell differentiation processes in a three-dimensional cell arrangement.
Collapse
Affiliation(s)
- Marco Metzger
- Institute of Anatomy, Centre for Regenerative Medicine, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
29
|
Alpy F, Ritié L, Jaubert F, Becmeur F, Méchine-Neuville A, Lefebvre O, Arnold C, Sorokin L, Kedinger M, Simon-Assmann P. The expression pattern of laminin isoforms in Hirschsprung disease reveals a distal peripheral nerve differentiation. Hum Pathol 2005; 36:1055-65. [PMID: 16226104 DOI: 10.1016/j.humpath.2005.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/20/2005] [Accepted: 07/25/2005] [Indexed: 12/31/2022]
Abstract
Hirschsprung disease (HD), a developmental disorder, is associated with failure of enteric ganglia formation. Signaling molecules, including secreted basement membrane molecules, derived from the mesenchyme of the gut wall play an important role in the colonization and/or differentiation of the enteric nervous system. The current study aims to define the possible alterations of laminins involved in the pathogenesis of HD. Expression of the various laminin alpha, beta, and gamma chains, was assessed in the aganglionic, transitional, and ganglionic bowel segments of patients with HD or with other motor disorders. Cytoskeletal, neuronal, and glial markers were also included in this study. The major finding highlighted by the present work concerns the clear identification and location of myenteric aganglionic plexuses in HD with some of the laminin antibodies, which reveal a peripheral nerve type of differentiation. Furthermore, we could show an increase of laminin alpha5 chain immunostaining in the dilated muscle of the ganglionic bowel upstream the distal aganglionic region in a subgroup of patients with HD, as well as a relocalization of laminin alpha2 chain in the subepithelial basement membrane. Overall, these basement membrane molecules could provide useful markers for diagnosis of aganglionosis or hypoganglionosis.
Collapse
Affiliation(s)
- Fabien Alpy
- Inserm U682, Univ Louis Pasteur, F-67200 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Srinivasan S, Anitha M, Mwangi S, Heuckeroth RO. Enteric neuroblasts require the phosphatidylinositol 3-kinase/Akt/Forkhead pathway for GDNF-stimulated survival. Mol Cell Neurosci 2005; 29:107-19. [PMID: 15866051 DOI: 10.1016/j.mcn.2005.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 01/19/2005] [Accepted: 02/07/2005] [Indexed: 12/19/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF)/Ret signaling is required for enteric neural crest survival, proliferation, migration and process extension, but signaling pathways that mediate enteric nervous system (ENS) precursor development are poorly understood. We therefore examined GDNF effects on immunoselected ENS precursor survival and neuronal process extension in the presence of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathway inhibitors. These studies demonstrated that GDNF promotes ENS precursor survival through phosphatidylinositol-3-kinase. Specifically, GDNF induces phosphorylation of Akt and loss of the Akt substrates FOXO1 and FOXO3a from the nucleus of ENS precursors. Furthermore, dominant negative Akt or active FOXO1 constructs promote ENS precursor cell death while a dominant negative FOXO1 construct prevents cell death. In contrast, the MAPK kinase inhibitor PD98059 did not influence ENS precursor survival or neurite extension. These data demonstrate a critical role for PI-3 kinase/Akt/FOXO signaling, but not for MAPK in ENS precursor survival and neurite extension.
Collapse
Affiliation(s)
- Shanthi Srinivasan
- Department of Medicine, Division of Digestive Diseases, Emory University, 615 Michael Street, Whitehead Research Building, Suite 246, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
31
|
Young HM, Turner KN, Bergner AJ. The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res 2005; 320:1-9. [PMID: 15714282 DOI: 10.1007/s00441-004-1057-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
Neural crest cells that originate in the caudal hindbrain migrate into and along the developing gastrointestinal tract to form the enteric nervous system. While they are migrating, neural-crest-derived cells are also proliferating. Previous studies have shown that the expression of glial-derived neurotrophic factor (GDNF) and endothelin-3 is highest in the embryonic caecum, and that GDNF alone or in combination with endothelin-3 promotes the proliferation of enteric neural-crest-derived cells in vitro. However, whether neural proliferative zones, like those in the central nervous system, are found along the developing gut is unknown. We used a fluorescent nucleic acid stain to identify dividing cells or BrdU labelling (2 h after administration of BrdU to the mother), combined with antibodies specific to neural crest cells to determine the percentage of proliferating crest-derived cells in various gut regions of embryonic day 11.5 (E11.5) and E12.5 mice. The rate of proliferation of crest-derived cells did not vary significantly in different regions of the gut (including the caecum) or at different distances from the migratory wavefront of vagal crest-derived cells. The phenotype of mitotic enteric crest-derived cells was also examined. Cells expressing the pan-neuronal markers, neurofilament-M and Hu, or the glial marker, S100b, were observed undergoing mitosis. However, no evidence was found for proliferation of cells expressing neuron-type-specific markers, such as nitric oxide synthase (at E12.5) or calcitonin gene-related peptide (at E18.5). Thus, for enteric neurons, exit from the cell cycle appears to occur after the expression of pan-neuronal proteins but prior to the expression of markers of terminally differentiated neurons.
Collapse
Affiliation(s)
- H M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
32
|
Chan KK, Chen YS, Yau TO, Fu M, Lui VCH, Tam PKH, Sham MH. Hoxb3 vagal neural crest-specific enhancer element for controlling enteric nervous system development. Dev Dyn 2005; 233:473-83. [PMID: 15768390 DOI: 10.1002/dvdy.20347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The neural and glial cells of the intrinsic ganglia of the enteric nervous system (ENS) are derived from the hindbrain neural crest at the vagal level. The Hoxb3 gene is expressed in the vagal neural crest and in the enteric ganglia of the developing gut during embryogenesis. We have identified a cis-acting enhancer element b3IIIa in the Hoxb3 gene locus. In this study, by transgenic mice analysis, we examined the tissue specificity of the b3IIIa enhancer element using the lacZ reporter gene, with emphasis on the vagal neural crest cells and their derivatives in the developing gut. We found that the b3IIIa-lacZ transgene marks only the vagal region and not the trunk or sacral region. Using cellular markers, we showed that the b3IIIa-lacZ transgene was expressed in a subset of enteric neuroblasts during early development of the gut, and the expression was maintained in differentiated neurons of the myenteric plexus at later stages. The specificity of the b3IIIa enhancer in directing gene expression in the developing ENS was further supported by genetic analysis using the Dom mutant, a spontaneous mouse model of Hirschsprung's disease characterized by the absence of enteric ganglia in the distal gut. The colonization of lacZ-expressing cells in the large intestine was incomplete in all the Dom/b3IIIa-lacZ hybrid mutants we examined. To our knowledge, this is the only vagal neural crest-specific genetic regulatory element identified to date. This element could be used for a variety of genetic manipulations and in establishing transgenic mouse models for studying the development of the ENS.
Collapse
Affiliation(s)
- Kwok Keung Chan
- Department of Biochemistry, The University of Hong Kong, Faculty of Medicine Building, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Paul K H Tam
- Department of Surgery and Genome Research Centre, The University of Hong Kong, Queen Mary Hospital K15, Pokfulam, Hong Kong, P.R. China.
| | | |
Collapse
|
34
|
Abstract
The enteric nervous system (ENS) is a complex network of interconnected neurons within the wall of the intestine that controls intestinal motility, regulates mucosal secretion and blood flow, and also modulates sensation from the gut. The cells that form the ENS in mammals are derived primarily from vagal neural crest cells. During the past decade there has been an explosion of information about genes that control the development of neural crest. Molecular-genetic analysis has identified several genes that have a role in the development of Hirschsprung's disease. The major susceptibility gene is RET, which is also involved in multiple endocrine neoplasia type 2. Recently, genetic studies have provided strong evidence in animal models that intestinal neuronal dysplasia (IND) is a real entity. HOX11L1 knockout mice and endothelin B receptor-deficient rats demonstrated abnormalities of the ENS resembling IND type B in humans. These findings support the concept that IND may be linked to a genetic defect.
Collapse
Affiliation(s)
- Prem Puri
- Children's Research Centre, Our Lady's Hospital for Sick Children, University College Dublin, Ireland
| | | |
Collapse
|
35
|
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
36
|
Abstract
Understanding the genetics of Hirschsprung disease will naturally expand our understanding of other neurocristopathies, the enteric nervous system, and autonomic system biology. As other disorders of gastrointestinal motility are investigated, genetics may resolve certain clinical questions. For example, isolated hypoganglionosis without aganglionosis has been reported as a primary cause of intestinal pseudo-obstruction. Is such hypoganglionosis merely a forme-fruste of Hirschsprung disease, or a result from an entirely different pathogenetic mechanism? Can irritable bowel syndrome or severe constipation be related to specific mutations, polymorphisms, or haplotypes? How might an understanding of derangements of the ENS be translated to understanding derangements of the CNS? Clearly, we should anticipate improved prognostication, counseling, and hopefully, therapies with future genetic insights.
Collapse
Affiliation(s)
- Douglas R Stewart
- Children's Hospital of Philadelphia, 34th & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
37
|
Schäfer KH, Hagl CI, Rauch U. Differentiation of neurospheres from the enteric nervous system. Pediatr Surg Int 2003; 19:340-4. [PMID: 12845455 DOI: 10.1007/s00383-003-1007-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2002] [Indexed: 11/30/2022]
Abstract
The enteric nervous system (ENS) derives from neural crest cells, which migrate from the neural tube into the developing gut. The neuronal and glial precursor cells migrate mainly from the oral towards the anal end of the gastrointestinal tract. So far, knowledge about the multipotent influences upon the ENS development, especially its neurotrophic support, derives mainly from knock-out models. The in vitro technique of isolating enteric neuronal precursor cells allows to study the effects of various factors upon their appropriate development in more detail. We therefore adapted the method of growing neurospheres, which are agglomerates of neuronal precursor cells and differentiated neurones and glial cells, from the central nervous system (CNS) for the ENS. The gut of NMRI mice at E12 were dissected, mildly dissociated and plated in 25-cm(2) culture flasks. The cultures were maintained in N1 supplemented DMEM/F12 medium with the appropriate neurotrophin cocktails (bFGF, GDNF, Neurturin, CNTF). After several days in culture most of the cells die, while the surviving cells form clusters from which domes, and later spheres arise. The spheres could be harvested and processed for further experiments. First investigations revealed, that the amount of precursor cells was much less in enteric neurospheres as seen in corresponding cultures from the CNS. We found about 43% HNK-1-NCAM+ in enteric and approximately 90% Nestin-+ cells in midbrain neurospheres. Differentiation studies of the enteric neurospheres showed that especially ciliary neurotrophic factor (CNTF) increased the number of enteric neurones (PGP positive), while the amount of HNK-1 precursor cells decreased under the influence of all tested neurotrophins but GDNF. The culture of the freshly dissociated enteric neurospheres in a three-dimensional matrix yielded a secondary network which allows to investigate the pattern formation of the ENS. The generation of enteric neurospheres and the following differentiation and 3D culture in vitro can increase our knowledge of the amount and time point of neurotrophic as well as the ECM-protein influence upon the appropriate development of the ENS.
Collapse
Affiliation(s)
- Karl-Herbert Schäfer
- Department of Pediatric Surgery, University Hospital Mannheim, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
38
|
Young HM, Bergner AJ, Müller T. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J Comp Neurol 2003; 456:1-11. [PMID: 12508309 DOI: 10.1002/cne.10448] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enteric neurons and glia arise from the neural crest. The phenotype of crest-derived cells was examined as they differentiated into neurons or glia in the mouse small and large intestine. Previous studies have shown that undifferentiated enteric crest-derived cells are Phox2b(+)/Ret(+)/p75(+)/Sox10(+), and at embryonic day (E) 10.5, about 10-15% of the crest-derived cells in the small intestine have started to differentiate into neurons. In the current study, by E12.5 and E14.5, about 25% and 47%, respectively, of Phox2b(+) cells in the small intestine were immunoreactive to the pan-neuronal protein, ubitquitin hydrolase (PGP9.5), and the percentage did not change dramatically from E14.5 onward. The differentiation of crest-derived cells into neurons in the colon lagged behind that in the small intestine by several days. Differentiating enteric neurons showed high Ret, low p75, and undetectable Sox10 immunostaining. Glial precursors were identified by the presence of brain-specific fatty acid binding protein (B-FABP) and detected first in the fore- and rostral midgut at E11.5. Glial precursors appeared to be B-FABP(+)/Sox10(+)/p75(+) but showed low Ret immunostaining. S100b was not detected until E14.5. Adult glial cells were B-FABP(+)/Sox10(+)/p75(+)/S100b(+). A nucleic acid stain (to identify all ganglion cells) was combined with immunostaining for PGP9.5 and S100b to detect neurons and glial cells, respectively, in the postnatal intestine. At postnatal day 0, fewer than 5% and 10% of cells in myenteric ganglia of the small and large intestine, respectively, were neither PGP9.5(+) nor S100b(+). Because some classes of neurons are not present in significant numbers until after birth, the expression of PGP9.5 by developing enteric neurons appeared to precede the expression of neuron type-specific markers.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Victoria, Australia.
| | | | | |
Collapse
|
39
|
Abstract
Development of the ENS requires the function of a diverse set of genes encoding transcription factors, signaling molecules, and their receptors. Mutations of these genes result in altered ENS function in animals and humans. In particular, such mutations have been shown to contribute to many cases of Hirschsprung's disease. Elucidation of the mechanisms of ENS development and function allow the development of new approaches to the diagnosis, therapy, and prevention of human disorders of gastrointestinal motility.
Collapse
Affiliation(s)
- Michael D Bates
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
40
|
Abstract
Hirschsprung disease is the most common congenital malformation of the enteric nervous system. Phenotypic expression is variable because of incomplete penetrance, and the pathogenesis is multifactorial. Although mutations of the RET tyrosine kinase gene remain the most commonly identified cause, there are now eight separate human gene loci identified whose mutations result in this disease. Analysis of these gene products in experimental animal models and cell systems has led to an increasing elucidation of the signaling pathways that are in operation during specific embryonic time stages and that direct the spatial arrangements and differentiation of enteric neuroblasts. Mutation analysis through in vitro cell expression studies has led to detailed descriptions of the affected microdomains of signal pathway receptors and the cellular pathogenesis of abnormal signaling that leads to apoptosis of developing neurons before the completion of enteric nervous system development. The full description of the pathogenesis of this disorder awaits the definition of new genetic loci, multiple gene interactions, and the acknowledgment of random events that may lead to aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- William M Belknap
- Section of Pediatric Gastroenterology, Department of Pediatrics, Henry Ford Health System, Detroit, Michigan 48202, USA.
| |
Collapse
|
41
|
Abstract
The endothelin system consists of two G-protein-coupled receptors, three peptide ligands, and two activating peptidases. Its pharmacological complexity is reflected by the diverse expression pattern of endothelin system components, which have a variety of physiological and pathophysiological roles. In the vessels, the endothelin system has a basal vasoconstricting role and participates in the development of diseases such as hypertension, atherosclerosis, and vasospasm after subarachnoid hemorrhage. In the heart, the endothelin system affects inotropy and chronotropy, and it mediates cardiac hypertrophy and remodeling in congestive heart failure. In the lungs, the endothelin system regulates the tone of airways and blood vessels, and it is involved in the development of pulmonary hypertension. In the kidney, it controls water and sodium excretion and acid-base balance, and it participates in acute and chronic renal failure. In the brain, the endothelin system modulates cardiorespiratory centers and the release of hormones. More advanced functional analysis of the endothelin system awaits not only additional pharmacological studies using highly specific endothelin antagonists but also the generation of genetically altered rodent models with conditional loss-of-function and gain-of-function manipulations.
Collapse
Affiliation(s)
- R M Kedzierski
- Department of Molecular Genetics University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9050, USA.
| | | |
Collapse
|