1
|
Wang C, Wang N, Deng Y, Zha A, Li J, Tan B, Qi M, Wang J, Yin Y. β-hydroxybutyrate administration improves liver injury and metabolic abnormality in postnatal growth retardation piglets. Front Vet Sci 2023; 10:1294095. [PMID: 38026634 PMCID: PMC10654993 DOI: 10.3389/fvets.2023.1294095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Abnormal hepatic energy metabolism limits the growth and development of piglets. We hypothesized that β-hydroxybutyrate (BHB) might improve the growth performance of piglets by maintaining hepatic caloric homeostasis. A total of 30 litters of newborn piglets were tracked, and 30 postnatal growth retardation (PGR) piglets and 40 healthy piglets were selected to treat with normal saline with or without BHB (25 mg/kg/days) at 7-d-old. At the age of 42 days, 8 piglets in each group were sacrificed, and serum and liver were collected. Compared with the healthy-control group piglets, PGR piglets showed lower body weight (BW) and liver weight (p < 0.05), and exhibited liver injury and higher inflammatory response. The contents of serum and hepatic BHB were lower (p < 0.05), and gene expression related to hepatic ketone body production were down-regulated in PGR piglets (p < 0.05). While BHB treatment increased BW and serum BHB levels, but decreased hepatic BHB levels in PGR piglets (p < 0.05). BHB alleviated the liver injury by inhibiting the apoptosis and inflammation in liver of PGR piglets (p < 0.05). Compared with the healthy-control group piglets, liver glycogen content and serum triglyceride level of PGR piglets were increased (p < 0.05), liver gluconeogenesis gene and lipogenesis gene expression were increased (p < 0.05), and liver NAD+ level was decreased (p < 0.05). BHB supplementation increased the ATP levels in serum and liver (p < 0.05), whereas decreased the serum glucose, cholesterol, triglyceride and high-density lipoprotein cholesterol levels and glucose and lipid metabolism in liver of PGR piglets (p < 0.05). Therefore, BHB treatment might alleviate the liver injury and inflammation, and improve hepatic energy metabolism by regulating glucose and lipid metabolism, thereby improving the growth performance of PGR piglets.
Collapse
Affiliation(s)
- Chengming Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Andong Zha
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Junyao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Ming Qi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Yuelushan Laboratory, Changsha, Hunan, China
- Institute of Yunnan Circular Agricultural Industry, Puer, Yunnan, China
| |
Collapse
|
2
|
Mohammed S, Qadri SSYH, Molangiri A, Basak S, Rajkumar H. Gestational low dietary protein induces intrauterine inflammation and alters the programming of adiposity & insulin sensitivity in the adult offspring. J Nutr Biochem 2023; 116:109330. [PMID: 36967094 DOI: 10.1016/j.jnutbio.2023.109330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/08/2023]
Abstract
Malnutrition associated with low dietary protein can induce gestational inflammation and sets a long-lasting metabolic impact on the offspring even after replenishment. The work investigated whether a low-protein diet (LPD) during pregnancy and lactation induces intrauterine inflammation and predisposes offspring to adiposity and insulin resistance in their adult life. Female Golden Syrian hamsters were fed LPD (10.0% energy from protein) or a control diet (CD, 20.0 % energy from protein) from preconception until lactation. All pups were switched to CD after lactation and continued until the end. Maternal LPD increased intrauterine inflammation by enhancing neutrophil infiltration, amniotic hsCRP, oxidative stress, and mRNA expression of NFκβ, IL8, COX2, and TGFβ in the chorioamniotic membrane (P<.05). The prepregnancy body weight, placental, and fetal weights, serum AST and ALT were decreased, while blood platelets, lymphocytes, insulin, and HDL were significantly increased in LPD-fed dams (P<.05). A postnatal switch to an adequate protein could not prevent hyperlipidemia in the 6-months LPD/CD offspring. The lipid profile and liver functions were restored over 10 months of protein feeding but failed to normalize fasting glucose and body fat accumulation compared to CD/CD. LPD/CD showed elevated GLUT4 expression & activated pIRS1 in the skeletal muscle and increased expression of IL6, IL1β, and p65-NFκB proteins in the liver (P<.05). In conclusion, present data suggest that maternal protein restriction may induce intrauterine inflammation and affect liver inflammation in the adult offspring by an influx of fats from adipose that may alter lipid metabolism and reduce insulin sensitivity in skeletal muscle.
Collapse
|
3
|
Perinatal Obesity Induces Hepatic Growth Restriction with Increased DNA Damage Response, Senescence, and Dysregulated Igf-1-Akt-Foxo1 Signaling in Male Offspring of Obese Mice. Int J Mol Sci 2022; 23:ijms23105609. [PMID: 35628414 PMCID: PMC9144113 DOI: 10.3390/ijms23105609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Maternal obesity predisposes for hepato-metabolic disorders early in life. However, the underlying mechanisms causing early onset dysfunction of the liver and metabolism remain elusive. Since obesity is associated with subacute chronic inflammation and accelerated aging, we test the hypothesis whether maternal obesity induces aging processes in the developing liver and determines thereby hepatic growth. To this end, maternal obesity was induced with high-fat diet (HFD) in C57BL/6N mice and male offspring were studied at the end of the lactation [postnatal day 21 (P21)]. Maternal obesity induced an obese body composition with metabolic inflammation and a marked hepatic growth restriction in the male offspring at P21. Proteomic and molecular analyses revealed three interrelated mechanisms that might account for the impaired hepatic growth pattern, indicating prematurely induced aging processes: (1) Increased DNA damage response (γH2AX), (2) significant upregulation of hepatocellular senescence markers (Cdnk1a, Cdkn2a); and (3) inhibition of hepatic insulin/insulin-like growth factor (IGF)-1-AKT-p38-FoxO1 signaling with an insufficient proliferative growth response. In conclusion, our murine data demonstrate that perinatal obesity induces an obese body composition in male offspring with hepatic growth restriction through a possible premature hepatic aging that is indicated by a pathologic sequence of inflammation, DNA damage, senescence, and signs of a possibly insufficient regenerative capacity.
Collapse
|
4
|
Ward DL, Schroeder L, Pomeroy E, Roy JE, Buck LT, Stock JT, Martin-Gronert M, Ozanne SE, Silcox MT, Viola TB. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat Rec (Hoboken) 2021; 304:2645-2660. [PMID: 33586866 DOI: 10.1002/ar.24601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Abstract
Maternal malnutrition during gestation and lactation is known to have adverse effects on offspring. We evaluate the impact of maternal diet on offspring bony labyrinth morphology. The bony labyrinth develops early and is thought to be stable to protect vital sensory organs within. For these reasons, bony labyrinth morphology has been used extensively to assess locomotion, hearing function, and phylogeny in primates and numerous other taxa. While variation related to these parameters has been documented, there is still a component of intraspecific variation that is unexplained. Although the labyrinthine developmental window is small, it may provide the opportunity for developmental instability to produce corresponding shape differences, as measured by fluctuating asymmetry (FA). We hypothesized that (a) offspring with poor maternal diet would exhibit increased FA, but (b) no unilateral shape difference. To test these hypotheses, we used two groups of rats (Rattus norvegicus; Crl:WI[Han] strain), one control group and one group exposed to a isocaloric, protein-restricted maternal diet during gestation and suckling. Individuals were sampled at weaning, sexual maturity, and old age. A Procrustes analysis of variance identified statistically significant FA in all diet-age subgroups. No differences in level of FA were identified among the subgroups, rejecting our first hypothesis. A principal components analysis identified no unilateral shape differences, supporting our second hypothesis. These results indicate that bony labyrinth morphology is remarkably stable and likely protected from a poor maternal diet during development. In light of this result, other factors must be explored to explain intraspecific variation in labyrinthine shape.
Collapse
Affiliation(s)
- Devin L Ward
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Jocelyn E Roy
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Laura T Buck
- Department of Archaeology, University of Cambridge, Cambridge, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jay T Stock
- Department of Anthropology, Western University, London, Ontario, Canada
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Malgorzata Martin-Gronert
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mary T Silcox
- Department of Anthropology, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - T Bence Viola
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
- Institute for Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
5
|
Sandoval C, Wu G, Smith SB, Dunlap KA, Satterfield MC. Maternal Nutrient Restriction and Skeletal Muscle Development: Consequences for Postnatal Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:153-165. [PMID: 32761575 DOI: 10.1007/978-3-030-45328-2_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe undernutrition and famine continue to be a worldwide concern, as cases have been increasing in the past 5 years, particularly in developing countries. The occurrence of nutrient restriction (NR) during pregnancy affects fetal growth, leading to small for gestational age (SGA) or intrauterine growth restricted (IUGR) offspring. During adulthood, SGA and IUGR offspring are at a higher risk for the development of metabolic syndrome. Skeletal muscle is particularly sensitive to prenatal NR. This tissue plays an essential role in oxidation and glucose metabolism because roughly 80% of insulin-mediated glucose uptake occurs in muscle, and it represents around 40% of body weight. Alterations in myofiber number, hypertrophy and myofiber type composition, decreased protein synthesis, lower mitochondrial content and activity of oxidative enzymes, and increased accumulation of intramuscular triglycerides are among the described programming effects of maternal NR on skeletal muscle. Together, these features would add to a phenotype that is prone to insulin resistance, type 2 diabetes, obesity, and metabolic syndrome. Insights from diverse animal models (i.e. ovine, swine, and rodent) have provided valuable information regarding the molecular mechanisms behind those altered developmental pathways. Understanding those molecular signatures supports the development of efficient treatments to counteract the effects of maternal NR on skeletal muscle, and its negative implications for postnatal health.
Collapse
Affiliation(s)
- Camila Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Larsen LH, Sandø-Pedersen S, Ørstrup LKH, Grunnet N, Quistorff B, Mortensen OH. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:413-433. [PMID: 28849472 DOI: 10.1007/978-94-024-1079-2_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Taurine ameliorates changes occurring in newborn skeletal muscle as a result of gestational protein restriction in C57BL/6 mice, but taurine supplementation effects may be exaggerated in C57BL/6 mice due to their inherent excessive taurinuria.We examined if maternal taurine supplementation could ameliorate changes in gene expression levels, properties of mitochondria, myogenesis, and nutrient transport and sensing, in male newborn skeletal muscle caused by a maternal low protein (LP) diet in Wistar rats.LP diet resulted in an 11% non-significant decrease in birth weight, which was not rescued by taurine supplementation (LP-Tau). LP-Tau offspring had significantly lower birth weight compared to controls. Gene expression profiling revealed 895 significantly changed genes, mainly an LP-induced down-regulation of genes involved in protein translation. Taurine fully or partially rescued 32% of these changes, but with no distinct pattern as to which genes were rescued.Skeletal muscle taurine content in LP-Tau offspring was increased, but no changes in mRNA levels of the taurine synthesis pathway were observed. Taurine transporter mRNA levels, but not protein levels, were increased by LP diet.Nutrient sensing signaling pathways were largely unaffected in LP or LP-Tau groups, although taurine supplementation caused a decrease in total Akt and AMPK protein levels. PAT4 amino acid transporter mRNA was increased by LP, and normalized by taurine supplementation.In conclusion, gestational protein restriction in rats decreased genes involved in protein translation in newborn skeletal muscle and led to changes in nutrient transporters. Taurine partly rescued these changes, hence underscoring the importance of taurine in development.
Collapse
Affiliation(s)
- Lea Hüche Larsen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Sofie Sandø-Pedersen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Laura Kofoed Hvidsten Ørstrup
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Niels Grunnet
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Bjørn Quistorff
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark
| | - Ole Hartvig Mortensen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, University of Copenhagen, København, Denmark.
| |
Collapse
|
7
|
Abstract
Identifying microRNA (miRNA) signatures in animal tissues is an essential first step in studies assessing post-transcriptional regulation of gene expression in health or disease. Small RNA sequencing (sRNA-Seq) is a next-generation sequencing-based technology that is currently considered the most powerful and versatile tool for miRNA profiling. Here, we describe a sRNA-Seq protocol including RNA purification from mammalian tissues, library preparation, and raw data analysis.
Collapse
Affiliation(s)
- Lucas Carminatti Pantaleão
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Ozanne
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
8
|
Lowe AD, Bawazeer S, Watson DG, McGill S, Burchmore RJS, Pomeroy PPP, Kennedy MW. Rapid changes in Atlantic grey seal milk from birth to weaning - immune factors and indicators of metabolic strain. Sci Rep 2017; 7:16093. [PMID: 29170469 PMCID: PMC5700954 DOI: 10.1038/s41598-017-16187-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/08/2017] [Indexed: 11/21/2022] Open
Abstract
True seals have the shortest lactation periods of any group of placental mammal. Most are capital breeders that undergo short, intense lactations, during which they fast while transferring substantial proportions of their body reserves to their pups, which they then abruptly wean. Milk was collected from Atlantic grey seals (Halichoerus grypus) periodically from birth until near weaning. Milk protein profiles matured within 24 hours or less, indicating the most rapid transition from colostrum to mature phase lactation yet observed. There was an unexpected persistence of immunoglobulin G almost until weaning, potentially indicating prolonged trans-intestinal transfer of IgG. Among components of innate immune protection were found fucosyllactose and siallylactose that are thought to impede colonisation by pathogens and encourage an appropriate milk-digestive and protective gut microbiome. These oligosaccharides decreased from early lactation to almost undetectable levels by weaning. Taurine levels were initially high, then fell, possibly indicative of taurine dependency in seals, and progressive depletion of maternal reserves. Metabolites that signal changes in the mother’s metabolism of fats, such as nicotinamide and derivatives, rose from virtual absence, and acetylcarnitines fell. It is therefore possible that indicators of maternal metabolic strain exist that signal the imminence of weaning.
Collapse
Affiliation(s)
- Amanda D Lowe
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Sami Bawazeer
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - David G Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, Scotland, UK
| | - Suzanne McGill
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - Richard J S Burchmore
- Institute of Infection, Immunity and Inflammation, and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G12 1QH, Scotland, UK
| | - P P Paddy Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health & Comparative Medicine, and School of Life Sciences, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK.
| |
Collapse
|
9
|
Vega CC, Reyes-Castro LA, Rodríguez-González GL, Bautista CJ, Vázquez-Martínez M, Larrea F, Chamorro-Cevallos GA, Nathanielsz PW, Zambrano E. Resveratrol partially prevents oxidative stress and metabolic dysfunction in pregnant rats fed a low protein diet and their offspring. J Physiol 2016; 594:1483-99. [PMID: 26662841 DOI: 10.1113/jp271543] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Protein restriction in pregnancy produces maternal and offspring metabolic dysfunction potentially as a result of oxidative stress. Data are lacking on the effects of inhibition of oxidative stress. We hypothesized that maternal resveratrol administration decreases oxidative stress, preventing, at least partially, maternal low protein-induced maternal and offspring metabolic dysfunction. In the present study, pregnant wistar rats ate control (C) (20% casein) or a protein-restricted (R) (10% casein) isocaloric diet. Half of each group received resveratrol orally, 20 mg kg(-1) day(-1), throughout pregnancy. Post-delivery, mothers and offspring ate C. Oxidative stress biomarkers and anti-oxidant enzymes were measured in placenta, maternal and fetal liver, and maternal serum corticosterone at 19 days of gestation (dG). Maternal (19 dG) and offspring (postnatal day 110) glucose, insulin, triglycerides, cholesterol, fat and leptin were determined. R mothers showed metabolic dysfunction, increased corticosterone and oxidative stress and reduced anti-oxidant enzyme activity vs. C. R placental and fetal liver oxidative stress biomarkers and anti-oxidant enzyme activity increased. R offspring showed higher male and female leptin, insulin and corticosterone, male triglycerides and female fat than C. Resveratrol decreased maternal leptin and improved maternal, fetal and placental oxidative stress markers. R induced offspring insulin and leptin increases were prevented and other R changes were offspring sex-dependent. Resveratrol partially prevents low protein diet-induced maternal, placental and sex-specific offspring oxidative stress and metabolic dysfunction. Oxidative stress is one mechanism programming offspring metabolic outcomes. These studies provide mechanistic evidence to guide human pregnancy interventions when fetal nutrition is impaired by poor maternal nutrition or placental function.
Collapse
Affiliation(s)
- Claudia C Vega
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Pharmacy Department, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Claudia J Bautista
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Magaly Vázquez-Martínez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fernando Larrea
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Germán A Chamorro-Cevallos
- Pharmacy Department, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Peter W Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University Wyoming, Laramie, WY
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
10
|
He J, Dong L, Xu W, Bai K, Lu C, Wu Y, Huang Q, Zhang L, Wang T. Dietary Tributyrin Supplementation Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Suckling Piglets with Intrauterine Growth Retardation. PLoS One 2015; 10:e0136848. [PMID: 26317832 PMCID: PMC4552672 DOI: 10.1371/journal.pone.0136848] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023] Open
Abstract
Intrauterine growth retardation (IUGR) is associated with insulin resistance and lipid disorder. Tributyrin (TB), a pro-drug of butyrate, can attenuate dysfunctions in body metabolism. In this study, we investigated the effects of TB supplementation on insulin resistance and lipid metabolism in neonatal piglets with IUGR. Eight neonatal piglets with normal birth weight (NBW) and 16 neonatal piglets with IUGR were selected, weaned on the 7th day, and fed basic milk diets (NBW and IUGR groups) or basic milk diets supplemented with 0.1% tributyrin (IT group, IUGR piglets) until day 21 (n = 8). Relative parameters for lipid metabolism and mRNA expression were measured. Piglets with IUGR showed higher (P < 0.05) concentrations of insulin in the serum, higher (P < 0.05) HOMA-IR and total cholesterol, triglycerides (TG), non-esterified fatty acid (NEFA) in the liver, and lower (P < 0.05) enzyme activities (hepatic lipase [HL], lipoprotein lipase [LPL], total lipase [TL]) and concentration of glycogen in the liver than the NBW group. TB supplementation decreased (P < 0.05) the concentrations of insulin, HOMA-IR, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the serum, and the concentrations of TG and NEFA in the liver, and increased (P < 0.05) enzyme activities (HL, LPL, and TL) and concentration of glycogen in the liver of the IT group. The mRNA expression for insulin signal transduction pathway and hepatic lipogenic pathway (including transcription factors and nuclear factors) was significantly (P < 0.05) affected in the liver by IUGR, which was efficiently (P < 0.05) attenuated by diets supplemented with TB. TB supplementation has therapeutic potential for attenuating insulin resistance and abnormal lipid metabolism in IUGR piglets by increasing enzyme activities and upregulating mRNA expression, leading to an early improvement in the metabolic efficiency of IUGR piglets.
Collapse
Affiliation(s)
- Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Li Dong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Wen Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Kaiwen Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Changhui Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Yanan Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Qiang Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Taurine is a natural amino acid present as free form in many mammalian tissues and in particular in skeletal muscle. Taurine exerts many physiological functions, including membrane stabilization, osmoregulation and cytoprotective effects, antioxidant and anti-inflammatory actions as well as modulation of intracellular calcium concentration and ion channel function. In addition taurine may control muscle metabolism and gene expression, through yet unclear mechanisms. This review summarizes the effects of taurine on specific muscle targets and pathways as well as its therapeutic potential to restore skeletal muscle function and performance in various pathological conditions. Evidences support the link between alteration of intracellular taurine level in skeletal muscle and different pathophysiological conditions, such as disuse-induced muscle atrophy, muscular dystrophy and/or senescence, reinforcing the interest towards its exogenous supplementation. In addition, taurine treatment can be beneficial to reduce sarcolemmal hyper-excitability in myotonia-related syndromes. Although further studies are necessary to fill the gaps between animals and humans, the benefit of the amino acid appears to be due to its multiple actions on cellular functions while toxicity seems relatively low. Human clinical trials using taurine in various pathologies such as diabetes, cardiovascular and neurological disorders have been performed and may represent a guide-line for designing specific studies in patients of neuromuscular diseases.
Collapse
Affiliation(s)
- Annamaria De Luca
- Sezione di Farmacologia, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Sabata Pierno
- Sezione di Farmacologia, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Diana Conte Camerino
- Sezione di Farmacologia, Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
12
|
Induction of autophagy through the activating transcription factor 4 (ATF4)-dependent amino acid response pathway in maternal skeletal muscle may function as the molecular memory in response to gestational protein restriction to alert offspring to maternal nutrition. Br J Nutr 2015. [DOI: 10.1017/s0007114515002172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to investigate the mechanistic basis of protein deficiency during pregnancy in mother that is transduced to offspring. To this end, timed-pregnant Sprague–Dawley rats were fed either a control (20 % of energy from protein) or low-protein (LP, 8 % of energy from protein) diet during gestation. Tissues were collected after delivery from rat dams, and skeletal muscle was collected at postnatal day 38 from the offspring. Quantitative RT-PCR and Western blot analyses were performed to determine mRNA and protein levels. Histological analysis was performed to evaluate myofibre size. LP dams gained significantly less weight during pregnancy, developed muscle atrophy, and had significantly lower circulating threonine and histidine levels than control dams. The mRNA expression of the well-known amino acid response (AAR) pathway-related target genes was increased only in the skeletal muscle of LP dams, as well as the protein expression levels of activating transcription factor 4 (ATF4) and phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α). The mRNA expression of autophagy-related genes was significantly increased in the skeletal muscle of LP dams. Moreover, the mRNA expression of genes involved in both AAR and autophagy pathways remained elevated and was memorised in the muscle of LP offspring that consumed a post-weaning control diet. Additionally, the LP diet increased an autophagy marker, microtubule-associated proteins 1A/1B light chain 3B (LC3B) protein expression in the skeletal muscle of rat dams, consistent with the initiation of autophagy. The LP diet further increased ATF4 binding at the predicted regions of AAR and autophagy pathway-related genes. Increased binding of ATF4 unveils the crucial role of ATF4 in the activation of autophagy in response to protein restriction. Our data suggest that molecular changes in maternal muscle are memorised in the offspring long after gestational protein restriction, reinforcing the role of maternal signalling in programming offspring health.
Collapse
|
13
|
Xu J, He G, Zhu J, Zhou X, St Clair D, Wang T, Xiang Y, Zhao Q, Xing Q, Liu Y, Wang L, Li Q, He L, Zhao X. Prenatal nutritional deficiency reprogrammed postnatal gene expression in mammal brains: implications for schizophrenia. Int J Neuropsychopharmacol 2015; 18:pyu054. [PMID: 25522397 PMCID: PMC4360220 DOI: 10.1093/ijnp/pyu054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epidemiological studies have identified prenatal exposure to famine as a risk factor for schizophrenia, and animal models of prenatal malnutrition display structural and functional brain abnormalities implicated in schizophrenia. METHODS The offspring of the RLP50 rat, a recently developed animal model of prenatal famine malnutrition exposure, was used to investigate the changes of gene expression and epigenetic modifications in the brain regions. Microarray gene expression analysis was carried out in the prefrontal cortex and the hippocampus from 8 RLP50 offspring rats and 8 controls. MBD-seq was used to test the changes in DNA methylation in hippocampus depending on prenatal malnutrition exposure. RESULTS In the prefrontal cortex, offspring of RLP50 exhibit differences in neurotransmitters and olfactory-associated gene expression. In the hippocampus, the differentially-expressed genes are related to synaptic function and transcription regulation. DNA methylome profiling of the hippocampus also shows widespread but systematic epigenetic changes; in most cases (87%) this involves hypermethylation. Remarkably, genes encoded for the plasma membrane are significantly enriched for changes in both gene expression and DNA methylome profiling screens (p = 2.37×10(-9) and 5.36×10(-9), respectively). Interestingly, Mecp2 and Slc2a1, two genes associated with cognitive impairment, show significant down-regulation, and Slc2a1 is hypermethylated in the hippocampus of the RLP50 offspring. CONCLUSIONS Collectively, our results indicate that prenatal exposure to malnutrition leads to the reprogramming of postnatal brain gene expression and that the epigenetic modifications contribute to the reprogramming. The process may impair learning and memory ability and result in higher susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Jiawei Xu
- *These authors contributed equally to this work
| | - Guang He
- *These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | - Lin He
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China (Drs Xu, Zhou, T. Wang, Xiang, Xing, Liu, L. Wang, Li, L. He and X. Zhao); Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China (Drs Xu, G. He, Zhou, T. Wang, Xiang, Q. Zhao, Xing, Liu, L.Wang, Li, L. He and X. Zhao); Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Shanghai, China (Dr Xu); Cancer Epigenetics and Gene Therapy Program, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China (Dr Zhu); Department of Mental Health, University of Aberdeen, Scotland (Dr St Clair).
| | - Xinzhi Zhao
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China (Drs Xu, Zhou, T. Wang, Xiang, Xing, Liu, L. Wang, Li, L. He and X. Zhao); Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China (Drs Xu, G. He, Zhou, T. Wang, Xiang, Q. Zhao, Xing, Liu, L.Wang, Li, L. He and X. Zhao); Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Shanghai, China (Dr Xu); Cancer Epigenetics and Gene Therapy Program, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China (Dr Zhu); Department of Mental Health, University of Aberdeen, Scotland (Dr St Clair).
| |
Collapse
|
14
|
Taurine Enhances Proliferation and Promotes Neuronal Specification of Murine and Human Neural Stem/Progenitor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:457-72. [DOI: 10.1007/978-3-319-15126-7_36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Liu X, Pan S, Li X, Sun Q, Yang X, Zhao R. Maternal low-protein diet affects myostatin signaling and protein synthesis in skeletal muscle of offspring piglets at weaning stage. Eur J Nutr 2014; 54:971-9. [PMID: 25266448 DOI: 10.1007/s00394-014-0773-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/19/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE We tested the hypothesis that maternal low-protein (LP) diet during gestation and lactation can program myostatin (MSTN) signaling and protein synthesis in skeletal muscle of offspring at weaning stage (35 days). METHODS Fourteen Meishan sows were fed either LP or standard-protein diets throughout gestation and lactation, male offspring piglets were killed at weaning stage and longissimus dorsi (LD) muscles were taken. The cross-sectional areas (CSA) of LD muscles were measured by hematoxylin and eosin staining. The levels of free amino acids in plasma were measured by amino acid auto-analyzer. Proteins and mRNA were determined by Western blot and RT-qPCR, respectively. RESULTS Body weight, LD muscle weight and the myofiber CSA were significantly decreased (P < 0.05) in LP piglets; meanwhile, the concentration of branched-chain amino acids was also significantly decreased (P < 0.001). MSTN protein content tended to be higher (P = 0.098) in LP piglets, while the expression of MSTN receptors, activin type II receptor-beta and transforming growth factor type-beta type I receptor kinase, was significantly up-regulated (P < 0.05). Furthermore, p38 mitogen-activated protein kinase, the downstream signaling factor of MSTN, was also enhanced significantly (P < 0.05). In addition, key factors of translation initiation, phosphorylated eukaryotic initiation factor 4E and the 70 kDa ribosomal protein S6 kinase, were significantly decreased (P < 0.05) in LP piglets. CONCLUSIONS Our results suggest that maternal LP diet during gestation and lactation affects MSTN signaling and protein synthesis in skeletal muscle of offspring at weaning stage.
Collapse
Affiliation(s)
- Xiujuan Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Eya JC, Yossa R, Ashame MF, Pomeroy CF, Gannam AL. Effects of dietary lipid levels on mitochondrial gene expression in low and high-feed efficient families of rainbow trout Oncorhynchus mykiss. JOURNAL OF FISH BIOLOGY 2014; 84:1708-1720. [PMID: 24890403 DOI: 10.1111/jfb.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on mitochondrial gene expression in mixed sex rainbow trout Oncorhynchus mykiss. Practical diets with a fixed crude protein content of 42%, formulated to contain 10% (42/10), 20% (42/20) and 30% (42/30) dietary lipid, were fed to triplicate groups of either low-feed efficient (F129; mean ± s.d. = 105.67 ± 3.04 g initial average mass) or high-feed efficient (F134; mean ± s.d. = 97.86 ± 4.02 g) families of fish, to apparent satiety, twice per day, for 108 days. At the end of the experiment, diets 42/20 and 42/30 led to similar fish condition factors, which were higher than that observed with diet 42/10 (P < 0.05). F134 fish fed diet 42/10 showed the highest hepato-somatic index, while there was no significant difference among all the other treatments (P < 0.05). When the group of F134 fish fed diet 42/10 was used as the calibrator for gene expression analysis, the five genes selected for their involvement in lipid metabolism (complex I-nd1, complex III-cytb, complex IV-cox1, complex IV-cox2 and complex V-atp6) were up-regulated in the muscle and down-regulated in both the liver and the intestine. There was a significant family × diet interaction regarding nd1, cox2 and atp6 in the liver; nd1, cytb, cox1, cox2 and atp6 in the intestine, and nd1, cytb, cox1, cox2 and atp6 in the muscle (P < 0.05). The overall results of this study constitute basic information for the understanding of molecular mechanisms of lipid metabolism at the mitochondrial level in fishes.
Collapse
Affiliation(s)
- J C Eya
- Department of Biology/Gus R. Douglass Institute, West Virginia State University, Institute, WV, 25112, U.S.A
| | | | | | | | | |
Collapse
|
17
|
Maternal obesity, inflammation, and developmental programming. BIOMED RESEARCH INTERNATIONAL 2014; 2014:418975. [PMID: 24967364 PMCID: PMC4055365 DOI: 10.1155/2014/418975] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming.
Collapse
|
18
|
Ramos-Mandujano G, Hernández-Benítez R, Pasantes-Morales H. Multiple mechanisms mediate the taurine-induced proliferation of neural stem/progenitor cells from the subventricular zone of the adult mouse. Stem Cell Res 2014; 12:690-702. [PMID: 24681519 DOI: 10.1016/j.scr.2014.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/15/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022] Open
Abstract
Taurine was previously reported to increase the proliferation of neural precursor cells (NPCs) from subventricular zone of the mouse brain. The results of a study that aimed to understand the mechanisms of this effect are presented here. Because taurine was not found in NPC nuclei, direct interactions with nuclear elements seem unlikely. A gene expression profile analysis indicated that genes that are regulated by taurine have roles in i) proliferation, including the Shh and Wnt pathways; ii) cellular adhesion; iii) cell survival; and iv) mitochondrial functioning. Cell cycle analysis of propidium iodide and CFSE-labeled cells using flow cytometry revealed an increase in the number of cells in the S-phase and a decrease in those in the G0/G1 phase in taurine-treated cultures. No changes in the length of the cell cycle were observed. Quantification of the viable, apoptotic, and necrotic cells in cultures using flow cytometry and calcein-AM, annexin-V, and propidium iodide staining showed reductions in the number of apoptotic and necrotic cells (18% to 11% and 13% to 10%, respectively) and increases in the number of viable cells (61% to 69%) in the taurine-treated cultures. Examination of the relative mitochondrial potential values by flow cytometry and rhodamine123 or JC-1 staining showed a 44% increase in the number of cells with higher mitochondrial potential and a 38% increase in the mitochondrial membrane potential in taurine cultures compared with those of controls. Taken together, the results suggest that taurine provides more favorable conditions for cell proliferation by improving mitochondrial functioning.
Collapse
Affiliation(s)
- Gerardo Ramos-Mandujano
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Reyna Hernández-Benítez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Herminia Pasantes-Morales
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
19
|
Rees WD, Hay SM. Lipocalin-2 (Lcn2) expression is mediated by maternal nutrition during the development of the fetal liver. GENES AND NUTRITION 2014; 9:380. [PMID: 24382649 DOI: 10.1007/s12263-013-0380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/07/2013] [Indexed: 11/26/2022]
Abstract
The mechanisms by which maternal protein deficiency programs insulin action in the offspring are poorly understood. The interpretation of transcriptomics is complicated by homeostatic adaptations, for example, changes in amino acid metabolism, which are potentially unrelated to the programming mechanism. The fatty acid composition of the maternal diet modulates the programming of insulin action, offering a possible strategy to circumvent these complications. Fetal livers harvested on d21 of gestation from pregnant rats fed high-protein (18 % w/w) and low-protein (9 % w/w) diets prepared with either corn or soya oil were screened with rat genome microarrays. Although a low-protein maternal diet altered the abundance of more than one hundred mRNAs in the fetal liver, only 40 were changed by the fatty acid composition of the diet (P < 0.05). One of these mRNAs was identified as lipocalin-2 (Lcn2). This pattern of differential expression was confirmed by qRT-PCR. The expression of Lcn2 was decreased by low-protein diets when the diet contained soya oil, whereas the effect of protein was much smaller in the group fed diets prepared with corn oil. The decrease in Lcn2 expression produced by soya oil persisted into adult life. Levels of the Lcn2 protein were closely correlated to the mRNA abundance. The results suggest a possible involvement of Lcn2 in the programming of hepatic function.
Collapse
Affiliation(s)
- William D Rees
- The Rowett Institute of Nutrition and Health, The University of Aberdeen, Greenburn Road, Bucksburn, Aberdeen, AB21 9SB, Scotland, UK,
| | | |
Collapse
|
20
|
Duque-Guimarães DE, Ozanne SE. Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 2013; 24:525-35. [PMID: 23791137 DOI: 10.1016/j.tem.2013.05.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 02/06/2023]
Abstract
Strong evidence indicates that adverse prenatal and early postnatal environments have a significant long-term influence on risk factors that result in insulin resistance, type 2 diabetes (T2D), and cardiovascular disease later in life. Here we discuss current knowledge of how maternal and neonatal nutrition influence early growth and the long-term risk of developing insulin resistance in different organs and at the whole-body level. Accumulating evidence supports a role for epigenetic mechanisms underlying this nutritional programming, consisting of heritable changes that regulate gene expression which in turn shapes the phenotype across generations. Deciphering these molecular mechanisms in key tissues and discovering key biological markers may provide valuable insight towards the development of effective intervention strategies.
Collapse
Affiliation(s)
- Daniella E Duque-Guimarães
- University of Cambridge Metabolic Research Laboratories and Medical Research Council (MRC) Metabolic Disease Unit, Institute of Metabolic Sciences, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | |
Collapse
|
21
|
Abstract
Development of metabolic syndrome is attributed to genes, dietary intake, physical activity and environmental factors. Fetal programming due to maternal nutrition is also an important factor especially in developing countries where intrauterine growth retardation followed by excess nutrition postnatally is causing mismatch predisposing individuals to development of metabolic syndrome and its components. Several epidemiological and animal studies have provided evidence for the link between intrauterine growth retardation and adult metabolic diseases. Deficiency of macronutrients, protein and carbohydrates, during pregnancy and gestation results in lower infant birth weight, a surrogate marker of fetal growth and subsequently insulin resistance, glucose intolerance, hypertension and adiposity in adulthood. The role of micronutrients is less extensively studied but however gaining attention with several recent studies focusing on this aspect. Several mechanisms have been proposed to explain the developmental origin of adult diseases important among them being alteration of hypothalamic pituitary axis, epigenetic regulation of gene expression and oxidative stress. All of these mechanisms may be acting at different time during gestation and contributing to development of metabolic syndrome in adulthood.
Collapse
Affiliation(s)
- Ramakrishnan Lakshmy
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, 110049, India,
| |
Collapse
|
22
|
Cox AR, Beamish CA, Carter DE, Arany EJ, Hill DJ. Cellular mechanisms underlying failed beta cell regeneration in offspring of protein-restricted pregnant mice. Exp Biol Med (Maywood) 2013; 238:1147-59. [PMID: 23986224 DOI: 10.1177/1535370213493715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Low birth weight and poor foetal growth following low protein (LP) exposure are associated with altered islet development and glucose intolerance in adulthood. Additionally, LP-fed offspring fail to regenerate their β-cells following depletion with streptozotocin (STZ) in contrast to control-fed offspring that restore β-cell mass. Our objective was to identify signalling pathways and cellular functions that may be critically altered in LP offspring rendering them susceptible to developing long-term glucose intolerance and decreased β-cell plasticity. Pregnant Balb/c mice were fed a control (C; 20% protein) or an isocaloric LP (8% protein) diet throughout gestation and C diet thereafter. Female offspring were injected intraperitoneally with 35 mg/kg STZ or vehicle on days 1 to 5 for each dietary treatment. At 30 days of age, total RNA was extracted from pancreatic tissue for microarray analysis using the Affymetrix GeneChip Mouse Genome 430 2.0. Gene and protein expression were quantified from isolated islets. Finally, β-cell proliferation was determined in vitro following REG1α treatment. The microarray data and GO enrichment analysis indicated that foetal protein restriction alters the early expression of genes necessary for many cell functions, such as oxidative phosphorylation and free radical scavenging. Expression of Reg1 was upregulated following STZ, whereas protein content was decreased in LP + STZ islets. Furthermore, REG1α failed to stimulate β-cell proliferation in vitro in LP + STZ islets. Therefore, early nutritional insults may programme the Reg1 pathway resulting in a limited ability to increase β-cell mass during metabolic stress. In conclusion, this study implicates the Reg1 pathway in β-cell regeneration and describes altered programming of gene expression in LP offspring, which underlies later development of cell dysfunction and glucose intolerance in adulthood.
Collapse
Affiliation(s)
- Aaron R Cox
- Lawson Health Research Institute, St. Joseph's Health Care, London, Ontario, Canada, N6A 4V2
| | | | | | | | | |
Collapse
|
23
|
Siebel AL, Carey AL, Kingwell BA. Can exercise training rescue the adverse cardiometabolic effects of low birth weight and prematurity? Clin Exp Pharmacol Physiol 2013; 39:944-57. [PMID: 22882133 DOI: 10.1111/j.1440-1681.2012.05732.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Being born preterm and/or small for gestational age are well-established risk factors for cardiometabolic disease in adulthood. Physical activity has the potential to mitigate against the detrimental cardiometabolic effects of low birth weight from two perspectives: (i) maternal exercise prior to and during pregnancy; and (ii) exercise during childhood or adulthood for those born small or prematurely. Evidence from epidemiological birth cohort studies suggests that the effects of moderate-intensity physical activity during pregnancy on mean birth weight are small, but reduce the risk of either high or low birth weight infants. In contrast, vigorous and/or high-intensity exercise during pregnancy has been associated with reduced birth weight. In childhood and adolescence, exercise ability is compromised in extremely low birth weight individuals (< 1000 g), but only marginally reduced in those of very low to low birth weight (1000-2500 g). Epidemiological studies show that the association between birth weight and metabolic disease is lost in physically fit individuals and, consistently, that the association between low birth weight and metabolic syndrome is accentuated in unfit individuals. Physical activity intervention studies indicate that most cardiometabolic risk factors respond to exercise in a protective manner, independent of birth weight. The mechanisms by which exercise may protect low birth weight individuals include restoration of muscle mass, reduced adiposity and enhanced β-cell mass and function, as well as effects on both aerobic and anaerobic muscle metabolism, including substrate utilization and mitochondrial function. Vascular and cardiac adaptations are also likely important, but are less well studied.
Collapse
Affiliation(s)
- Andrew L Siebel
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
24
|
Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S. Dietary protein restriction and excess of pregnant German Landrace sows induce changes in hepatic gene expression and promoter methylation of key metabolic genes in the offspring. J Nutr Biochem 2013; 24:484-95. [DOI: 10.1016/j.jnutbio.2012.01.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 01/26/2012] [Indexed: 02/01/2023]
|
25
|
Döring F, Lüersen K, Schmelzer C, Hennig S, Lang IS, Görs S, Rehfeldt C, Otten W, Metges CC. Influence of maternal low protein diet during pregnancy on hepatic gene expression signature in juvenile female porcine offspring. Mol Nutr Food Res 2012. [PMID: 23197441 DOI: 10.1002/mnfr.201200315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SCOPE Epidemiological and experimental evidence indicates that maternal nutrition status contributes to long-term changes in the metabolic phenotype of the offspring, a process known as fetal programming. METHODS AND RESULTS We have used a swine model (Sus scrofa) to analyze consequences of a maternal low protein diet (about 50% of control) during pregnancy on hepatic lipid metabolism and genome-wide hepatic gene expression profile of juvenile female offspring (mean age 85 days). We found 318 S. scrofa genes to be differentially expressed in the liver at age 85 days. In the low protein offspring group key genes of fatty acid de novo synthesis were downregulated whereas several genes of lipolysis and phospholipid biosynthesis were upregulated. qRT-PCR analysis of selected genes verified microarray data and revealed linear correlations between gene expression levels and slaughter weight. Hepatic cholesterol 7α hydroxylase protein expression tended to be lower in the low protein group. Total lipid and triglyceride content and fatty acid composition of total lipids were not different between groups. CONCLUSION A maternal low protein diet during pregnancy induces a distinct hepatic gene expression signature in juvenile female pigs which was not translated into phenotypical changes of liver lipid metabolism.
Collapse
Affiliation(s)
- Frank Döring
- Institute of Human Nutrition and Food Science, Molecular Prevention, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Roysommuti S, Wyss JM. Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 2012; 46:57-72. [PMID: 23070226 DOI: 10.1007/s00726-012-1417-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022]
Abstract
Taurine is an abundant, free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine's contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin-angiotensin system, glucose-insulin interaction and changes to heart, blood vessels and kidney function.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | |
Collapse
|
28
|
Influence of angiotensin II type 1 receptor-associated protein on prenatal development and adult hypertension after maternal dietary protein restriction during pregnancy. ACTA ACUST UNITED AC 2012; 6:324-30. [DOI: 10.1016/j.jash.2012.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/05/2012] [Accepted: 07/05/2012] [Indexed: 11/20/2022]
|
29
|
Maloney CA, Hay SM, Reid MD, Duncan G, Nicol F, Sinclair KD, Rees WD. A methyl-deficient diet fed to rats during the pre- and peri-conception periods of development modifies the hepatic proteome in the adult offspring. GENES AND NUTRITION 2012; 8:181-90. [PMID: 22907820 DOI: 10.1007/s12263-012-0314-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 08/02/2012] [Indexed: 01/03/2023]
Abstract
A methyl-deficient diet (MD) lacking folic acid and the associated methyl donors choline and methionine, fed to the laboratory rat during the periods of oocyte and embryo development, has been shown to programme glucose metabolism in the offspring. The hepatic proteome of the male offspring of female rats fed MD diets for 3 weeks prior to mating and for the first 5 days of gestation has been examined by 2-dimensional gel electrophoresis. Three groups of differentially abundant proteins associated with energy metabolism, amino acid metabolism and antioxidant defence were identified in the soluble proteins extracted from the liver from the MD offspring at both 6 and 12 months of age. Altered mitochondrial activity in other programming models leads to a similar pattern of differential protein abundance. Two of the differentially abundant proteins were identified as GAPDH and PGK-1 by mass spectrometry. Western blotting showed that there were multiple isoforms of both proteins with similar molecular weights but different isoelectric points. The differentially abundant spots reduced in the MD offspring corresponded to minor isoforms of GAPDH and PGK-1. The levels of PPAR-alpha, SREBP and glucocorticoid receptor mRNAs associated with other models of prenatal programming were unchanged in the MD offspring. The data suggest that a diet deficient in folic acid and associated methyl donors fed during the peri-conception and early preimplantation periods of mammalian development affects mitochondrial function in the offspring and that the posttranslational modification of proteins may be important.
Collapse
Affiliation(s)
- Christopher A Maloney
- School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu J, Yu B, Mao X, He J, Yu J, Zheng P, Huang Z, Chen D. Effects of intrauterine growth retardation and maternal folic acid supplementation on hepatic mitochondrial function and gene expression in piglets. Arch Anim Nutr 2012; 66:357-71. [PMID: 22889112 DOI: 10.1080/1745039x.2012.710084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Piglets with intrauterine growth retardation (IUGR) or with normal birth weight (NBW) were selected to evaluate the effects of maternal folic acid supplementation on hepatic mitochondrial function and expression levels of genes involved in mitochondrial DNA (mtDNA) biogenesis and mitochondrial function. During gestation, primiparous Yorkshire sows were fed a Control diet (folic acid 1.3 mg/kg) or a folic acid-supplemented diet (folic acid 30 mg/kg) with 16 replicates per diet. During the 28-d lactation period, sows were fed a common diet. Compared with NBW piglets, hepatic ATP concentrations and mtDNA contents were decreased in IUGR piglets. Furthermore, IUGR piglets exhibited lower membrane potential and decreased oxygen consumption in liver mitochondria, but these parameters were not affected by maternal folic acid supplementation. Intrauterine growth retardation decreased mRNA expression abundance of peroxisomal proliferator-activated receptor-γ coactivator-1α, mitochondrial transcription factor A, uncoupling protein 3, and cytochrome c oxidase subunit I and IV. Impaired antioxidant capacity characterised by increased malondialdehyde content and decreased manganese-superoxide dismutase activity was also observed in IUGR pigs. In IUGR piglets, however, nearly all of these parameters were normalised to the level of NBW piglets when the maternal diet was supplemented with folic acid during pregnancy. Hence, maternal folic acid supplementation was proved to be an effective way to reverse the changes in gene expressions in IUGR pigs, which provided a possible nutritional strategy to improve growth development of IUGR individuals.
Collapse
Affiliation(s)
- Jingbo Liu
- Institute of Animal Nutrition, Sichuan Agricultural University , Ya'an, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S. Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle. Epigenetics 2012; 7:239-52. [PMID: 22430800 DOI: 10.4161/epi.7.3.19183] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent evidence indicates that maternal nutrition during pregnancy influences gene expression in offspring through epigenetic alterations. In the present study we evaluated the effect of protein excess and deficiency during porcine pregnancy on offspring hepatic and skeletal muscular expression patterns of key genes of methionine metabolism (DNMT1, DNMT3a, DNMT3b, BHMT, MAT2B and AHCYL1), condensin I subunit genes (NCAPD2, NCAPG and NCAPH), important for chromosome condensation and segregation, global DNA methylation and gene-specific DNA methylation. German Landrace sows were randomly assigned to control (CO), high protein (HP) and low protein (LP) diet groups. Tissue samples of offspring were collected from fetal (dpc95), newborn (dpn1), weanling (dpn28) and finisher pigs (dpn188). Gene expression of DNMT1, DNMT3a and DNMT3b was influenced by both HP and LP diets, indicating an involvement of DNA methylation in fetal programming by maternal protein supply. Moreover, hepatic global methylation was significantly affected by protein restriction at dpc95 (p = 0.004) and by protein excess at dpn188 (p = 0.034). Gene expression in fetal liver was significantly different between CO and LP for NCAPD2 (p = 0.0005), NCAPG (p = 0.0009) and NCAPH (p < 0.0001). In skeletal muscle, LP fetuses had significantly altered gene expression of NCAPD2 (p = 0.020) and NCAPH (p = 0.001), compared with CO. Furthermore, NCAPG was differentially methylated among LP, HP and CO; indeed, a significant positive correlation was detected with transcript amount in fetal pigs (r = 0.47, p = 0.002). These data demonstrate that both restriction and excess dietary protein during pregnancy alters the offspring's epigenetic marks and influences gene expression.
Collapse
Affiliation(s)
- Simone Altmann
- Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Methionine and folate are the key components of one carbon metabolism, providing the methyl groups for numerous methyl transferase reactions via the ubiquitous methyl donor, s-adenosyl methionine. Methionine metabolism is responsive to nutrient intake, is regulated by several hormones and requires a number of vitamins (B12, pyridoxine, riboflavin) as co-factors. The critical relationship between perturbations in the mother's methionine metabolism and its impact on fetal growth and development is now becoming evident. The relation of folate intake to fetal teratogenesis has been known for some time. Studies in human pregnancy show a continuous decrease in plasma homocysteine, and an increase in plasma choline concentrations with advancing gestation. A higher rate of transsulfuration of methionine in early gestation and of transmethylation in the 3rd trimester was seen in healthy pregnant women. How these processes are impacted by nutritional, hormonal and other influences in human pregnancy and their effect on fetal growth has not been examined. Isocaloric protein restriction in pregnant rats, resulted in fetal growth restriction and metabolic reprogramming. Isocaloric protein restriction in the non-pregnant rat, resulted in differential expression of a number of genes in the liver, a 50% increase in whole body serine biosynthesis and high rate of transmethylation, suggesting high methylation demands. These responses were associated with a significant decrease in intracellular taurine levels in the liver suggesting a role of cellular osmolarity in the observed metabolic responses. These unique changes in methionine and one carbon metabolism in response to physiological, nutritional and hormonal influences make these processes critical for cellular and organ function and growth.
Collapse
Affiliation(s)
- Satish C Kalhan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
33
|
Liu J, Chen D, Yao Y, Yu B, Mao X, He J, Huang Z, Zheng P. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle. PLoS One 2012; 7:e34835. [PMID: 22523560 PMCID: PMC3327708 DOI: 10.1371/journal.pone.0034835] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/06/2012] [Indexed: 01/07/2023] Open
Abstract
It has been recognized that there is a relationship between prenatal growth restriction and the development of metabolic-related diseases in later life, a process involved in mitochondrial dysfunction. In addition, intrauterine growth retardation (IUGR) increases the susceptibility of offspring to high-fat (HF) diet-induced metabolic syndrome. Recent findings suggested that HF feeding decreased mitochondrial oxidative capacity and impaired mitochondrial function in skeletal muscle. Therefore, we hypothesized that the long-term consequences of IUGR on mitochondrial biogenesis and function make the offspring more susceptible to HF diet-induced mitochondrial dysfunction. Normal birth weight (NBW), and IUGR pigs were allotted to control or HF diet in a completely randomized design, individually. After 4 weeks of feeding, growth performance and molecular pathways related to mitochondrial function were determined. The results showed that IUGR decreased growth performance and plasma insulin concentrations. In offspring fed a HF diet, IUGR was associated with enhanced plasma leptin levels, increased concentrations of triglyceride and malondialdehyde (MDA), and reduced glycogen and ATP contents in skeletal muscle. High fat diet-fed IUGR offspring exhibited decreased activities of lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD). These alterations in metabolic traits of IUGR pigs were accompanied by impaired mitochondrial respiration function, reduced mitochondrial DNA (mtDNA) contents, and down-regulated mRNA expression levels of genes responsible for mitochondrial biogenesis and function. In conclusion, our results suggest that IUGR make the offspring more susceptible to HF diet-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jingbo Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Ying Yao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, People's Republic of China
| |
Collapse
|
34
|
Altmann S, Murani E, Metges CC, Schwerin M, Wimmers K, Ponsuksili S. Effect of gestational protein deficiency and excess on hepatic expression of genes related to cell cycle and proliferation in offspring from late gestation to finishing phase in pig. Mol Biol Rep 2012; 39:7095-104. [DOI: 10.1007/s11033-012-1541-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/24/2012] [Indexed: 12/20/2022]
|
35
|
Taurine attenuates maternal and embryonic oxidative stress in a streptozotocin-diabetic rat model. Reprod Biomed Online 2012; 24:558-66. [PMID: 22414371 DOI: 10.1016/j.rbmo.2012.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 01/14/2012] [Accepted: 01/17/2012] [Indexed: 11/24/2022]
Abstract
Oxidative stress mechanisms have been implicated in congenital anomalies and morbidity/mortality of fetus/newborn in diabetic pregnancy. Numerous antioxidant treatments have shown varied beneficial effects in improving both maternal and fetal outcomes. The present study examined the propensity of taurine to attenuate the degree of embryopathy and oxidative stress among pregnant diabetic rats. Adult rats (CFT-Wistar) were rendered diabetic with an acute dose of streptozotocin (STZ; 45 mg/kg bodyweight) on gestation day (GD) 4. Both Diabetic and non-diabetic dams were given oral supplements of taurine (0.5 and 1g/kg bodyweight/day) from GD 5 to GD 12. Maternal diet intake, bodyweight gain and urine output were monitored and dams were killed on GD 13. Markers of oxidative stress were determined in embryos and maternal livers. STZ treatment induced marked embryopathy (32%) and taurine supplements markedly reduced the degree of embryopathy (54% protection). The STZ-induced higher oxidative stress was significantly attenuated in rats given taurine supplements (P<0.05) and a similar effect was seen in embryos (P<0.05). These data suggest that dietary taurine during pregnancy provides significant protection against diabetes-induced oxidative stress in both the mother and the embryos and thus may serve as a therapeutic supplement during diabetic pregnancy. Diabetes during pregnancy affects >5% of all pregnancies, causing reproductive abnormalities that enhance spontaneous abortion - congenital anomalies, morbidity and mortality of both mother and fetus/newborn. One of the major mechanisms is increased oxidative stress caused by hyperglycaemia and the most prominent anti-teratogenic effect was achieved using antioxidative agents. Management of oxidative stress is considered, along with tight glycaemic control, to be beneficial both before conception and during pregnancy. Taurine, a ubiquitous amino acid found in almost all mammalian tissues, constitutes more than 50% of free amino acids. The aim of the study was to determine whether oral taurine supplementation given to pregnant diabetic rats during the post-implantation period could reduce embryo lethality and protect the developing embryos against maternal hyperglycaemia-induced oxidative stress. Adult rats were rendered diabetic with an acute dose of streptozotocin on gestation day (GD) 4. Both diabetic and non-diabetic dams were administered oral taurine for a period of 8 days (GD 5-13). Maternal diet intake, bodyweight gain and urine output were monitored and dams were killed on GD 13. Markers of oxidative stress and antioxidant defences were studied in embryos and maternal livers. STZ induced marked embryopathy (32%) and taurine supplementation offered significant protection (54%). Taurine significantly offset diabetes-associated oxidative stress in the embryos of diabetic rats. These data suggest that dietary taurine supplementation during pregnancy provides significant protection against diabetes-induced oxidative stress both in mother and embryos and thus may serve as a therapeutic supplement under diabetic pregnancy.
Collapse
|
36
|
Balasa A, Sanchez-Valle A, Sadikovic B, Sangi-Haghpeykar H, Bravo J, Chen L, Liu W, Wen S, Fiorotto ML, Van den Veyver IB. Chronic maternal protein deprivation in mice is associated with overexpression of the cohesin-mediator complex in liver of their offspring. J Nutr 2011; 141:2106-12. [PMID: 22013202 PMCID: PMC3223869 DOI: 10.3945/jn.111.146597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/06/2011] [Accepted: 09/05/2011] [Indexed: 12/31/2022] Open
Abstract
Epigenetic mechanisms may play an important role in the developmental programming of adult-onset chronic metabolic diseases resulting from suboptimal fetal nutrition, but the exact molecular mechanisms are incompletely understood. Given the central role of the liver in metabolic regulation, we investigated whether chronic maternal dietary protein restriction has long-term effects on liver gene expression in the offspring. We fed adult C57BL/6J dams ad libitum an 8% maternal low-protein (MLP) or 20% protein control diet (C) from 4 wk prior to mating until the end of lactation. Male pups were weaned to standard nonpurified diet and singly housed at 21 d of age (d 21). Body weights were followed to 1 y of age (1 y). At d 21 and 1 y, organs were quantitatively dissected and analyzed. MLP offspring had significantly lower body weights at all ages and significantly lower serum activity of alanine aminotransferase and lactate dehydrogenase at 1 y. Gene expression profiling of liver at 1 y showed 521 overexpressed and 236 underexpressed genes in MLP compared to C offspring. The most important novel finding was the overexpression of genes found in liver that participate in organization and maintenance of higher order chromatin architecture and regulation of transcriptional activation. These included members of the cohesin-mediator complex, which regulate gene expression by forming DNA loops between promoters and enhancers in a cell type-specific fashion. Thus, our findings of increased expression of these factors in liver of MLP offspring implicate a possible novel epigenetic mechanism in developmental programming.
Collapse
Affiliation(s)
- Alfred Balasa
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, and
| | | | | | | | | | - Liang Chen
- Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | | | - Shu Wen
- Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Marta L. Fiorotto
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, and
| | - Ignatia B. Van den Veyver
- Department of Molecular and Human Genetics
- Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
37
|
Somatic cytochrome c (CYCS) gene expression and promoter-specific DNA methylation in a porcine model of prenatal exposure to maternal dietary protein excess and restriction. Br J Nutr 2011; 107:791-9. [DOI: 10.1017/s0007114511003667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is growing evidence that maternal nutrition during gestation has an important effect on offspring development as well as on their gene expression with long-term effects on the metabolic state. A potential mechanism forming long-lasting gene expression patterns is DNA methylation of cytosine in CpG dinucleotides within the promoter region of distinct genes. There has been special focus on mitochondrial dysfunction by prenatal malnourishment over the recent years. To this end, we investigated the gene expression of somatic cytochrome c (CYCS), an important member of the respiratory chain, in a porcine model of gestational protein over- and undersupply at 94 d post-conception and 1, 28 and 188 d of age, and analysed the association with the DNA methylation status within the CYCS promoter. Gene expression on day 1 post natum showed a significant increase in the low protein (LP) group (P = 0·0005) and a slight increase in the high protein (HP) group (P = 0·079) compared with the control (CO) group in the liver. The mean of the methylation level over forty-seven CpG sites from nucleotide (nt) − 417 to − 10 was significantly decreased in the LP (P = 0·007) and HP (P = 0·009) groups compared with that in the CO group. Excess and restricted protein supply during pregnancy led to hypomethylation of a number of CpG sites in the CYCS promoter, including those representing putative transcription factor-binding sites, associated with elevated expression levels. However, the impact of the low-protein gestation diet is more pronounced, indicating that the offspring could better adapt to excess rather than restricted protein supply.
Collapse
|
38
|
Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N, Quistorff B. A maternal low protein diet has pronounced effects on mitochondrial gene expression in offspring liver and skeletal muscle; protective effect of taurine. J Biomed Sci 2010; 17 Suppl 1:S38. [PMID: 20804614 PMCID: PMC2994375 DOI: 10.1186/1423-0127-17-s1-s38] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Low birth weight is associated with an increased risk of developing impaired glucose tolerance, and eventually type 2 diabetes in adult life. Gestational protein restriction in rodents gives rise to a low birth weight phenotype in the offspring. Results We examined gene expression changes in liver and skeletal muscle of mice subjected to gestational protein restriction (LP) or not (NP), with or without taurine supplementation in the drinking water. LP offspring had a 40% lower birth weight than NP offspring, with taurine preventing half the decrease. Microarray gene expression analysis of newborn mice revealed significant changes in 2012 genes in liver and 967 genes in skeletal muscle of LP offspring. Taurine prevented 30% and 46% of these expression changes, respectively. Mitochondrial genes, especially those involved with oxidative phosphorylation, were more abundantly changed than other genes. The mitochondrial genes were mainly upregulated in liver, but downregulated in skeletal muscle, despite no change in citrate synthase activity in either tissue. Taurine preferentially rescued genes concerned with fatty acid metabolism in liver and with oxidative phosphorylation and TCA cycle in skeletal muscle. A mitochondrial signature was seen in the liver of NP offspring with taurine supplementation, as gene sets for mitochondrial ribosome as well as lipid metabolism were over represented in 4-week-old offspring subjected to gestational taurine supplementation. Likewise, 11 mitochondrial genes were significantly upregulated by gestational taurine supplementation in 4-week-old NP offspring. Conclusions Gestational protein restriction resulted in lower birth weight associated with significant gene expression changes, which was different in liver and muscle of offspring. However, a major part of the birth weight decrease and the expression changes were prevented by maternal taurine supplementation, implying taurine is a key factor in determining expression patterns during development and in that respect also an important component in metabolic fetal programming.
Collapse
Affiliation(s)
- Ole Hartvig Mortensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
39
|
Heerwagen MJR, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol 2010; 299:R711-22. [PMID: 20631295 DOI: 10.1152/ajpregu.00310.2010] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence of obesity and overweight has reached epidemic levels in the United States and developed countries worldwide. Even more alarming is the increasing prevalence of metabolic diseases in younger children and adolescents. Infants born to obese, overweight, and diabetic mothers (even when normal weight) have increased adiposity and are at increased risk of later metabolic disease. In addition to maternal glucose, hyperlipidemia and inflammation may contribute to the childhood obesity epidemic through fetal metabolic programming, the mechanisms of which are not well understood. Pregravid obesity, when combined with normal changes in maternal metabolism, may magnify increases in inflammation and blood lipids, which can have profound effects on the developing embryo and the fetus in utero. Fetal exposure to excess blood lipids, particularly saturated fatty acids, can activate proinflammatory pathways, which could impact substrate metabolism and mitochondrial function, as well as stem cell fate, all of which affect organ development and the response to the postnatal environment. Fetal and neonatal life are characterized by tremendous plasticity and the ability to respond to environmental factors (nutrients, oxygen, hormones) by altering gene expression levels via epigenetic modifications. Given that lipids act as both transcriptional activators and signaling molecules, excess fetal lipid exposure may regulate genes involved in lipid sensing and metabolism through epigenetic mechanisms. Epigenetic regulation of gene expression is characterized by covalent modifications to DNA and chromatin that alter gene expression independent of gene sequence. Epigenetic modifications can be maintained through positive and negative feedback loops, thereby creating stable changes in the expression of metabolic genes and their main transcriptional regulators. The purpose of this article is to review current literature on maternal-fetal lipid metabolism and maternal obesity outcomes and to suggest some potential mechanisms for fetal metabolic programming in key organ systems that regulate postnatal energy balance, with an emphasis on epigenetics and the intrauterine environment.
Collapse
Affiliation(s)
- Margaret J R Heerwagen
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|