1
|
Magro G, Laterza V, Tosto F. Leigh Syndrome: A Comprehensive Review of the Disease and Present and Future Treatments. Biomedicines 2025; 13:733. [PMID: 40149709 PMCID: PMC11940177 DOI: 10.3390/biomedicines13030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Leigh syndrome (LS) is a severe neurodegenerative condition with an early onset, typically during early childhood or infancy. The disorder exhibits substantial clinical and genetic diversity. From a clinical standpoint, Leigh syndrome showcases a broad range of irregularities, ranging from severe neurological issues to minimal or no discernible abnormalities. The central nervous system is most affected, resulting in psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also experience involvement of the peripheral nervous system, such as polyneuropathy or myopathy, as well as non-neurological anomalies, such as diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). Mutations associated with Leigh syndrome impact genes in both the mitochondrial and nuclear genomes. Presently, LS remains without a cure and shows limited response to various treatments, although certain case reports suggest potential improvement with supplements. Ongoing preclinical studies are actively exploring new treatment approaches. This review comprehensively outlines the genetic underpinnings of LS, its current treatment methods, and preclinical investigations, with a particular focus on treatment.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Federico Tosto
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| |
Collapse
|
2
|
Wang N, Pan Y, Starling SC, Haskell DH, Quintero AC, Kawatani K, Inoue Y, Shue F, Ma X, Aikawa T, Martens YA, Kurti A, Parsons TM, Perkerson RB, Roy B, Raulin A, Ren Y, DeTure M, Dickson DW, Bao H, Han X, Bu G, Kanekiyo T. Neuronal ABCA7 deficiency aggravates mitochondrial dysfunction and neurodegeneration in Alzheimer's disease. Alzheimers Dement 2025; 21:e70112. [PMID: 40145325 PMCID: PMC11947734 DOI: 10.1002/alz.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Loss-of-function variants of the ABCA7 gene are associated with an increased risk of Alzheimer's disease (AD). How neuronal ABCA7 contributes to AD pathogenesis is unknown. METHODS Using neuron-specific Abca7 KO mice (nAbca7-/-) with or without 5×FAD amyloid model background and post mortem AD brains, we investigated AD-related phenotypes through comprehensive approaches including transcriptomics and lipidomics. RESULTS Lipidomics analysis detected altered lipid profiles in the brains and synaptosomes of 5×FAD; nAbca7-/- mice compared to controls. Transcriptomics profiling revealed that neuronal ABCA7 deficiency altered the expression of genes and pathways related to mitochondrial homeostasis and apoptosis, particularly in excitatory neurons. Consistently, synaptosomes isolated from 5×FAD; nAbca7-/- mice showed diminished mitochondria respiration and reduced synaptic protein levels, which is further supported by results from human AD brains. DISCUSSION Our findings reveal that neuronal ABCA7 plays a critical role in mitochondrial homeostasis important for neuronal function and survival in the presence of AD pathology. HIGHLIGHTS Neuronal ABCA7 deficiency exacerbates Aβ pathology and neuronal damage in 5×FAD mice. Neuronal ABCA7 deficiency alters brain transcriptomes and lipidomes of 5×FAD mice. Neuronal ABCA7 deficiency disturbs mitochondria functions in synaptosomes from 5×FAD mice. Neuronal ABCA7 expression associates with genes and pathways related to mitochondrial homeostasis in AD brains.
Collapse
Affiliation(s)
- Ni Wang
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yining Pan
- Department of Public HealthUniversity of North FloridaJacksonvilleFloridaUSA
| | | | | | | | - Keiji Kawatani
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yasuteru Inoue
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Francis Shue
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xiaoye Ma
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Yuka A. Martens
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- SciNeuro PharmaceuticalsRockvilleMarylandUSA
| | - Aishe Kurti
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Bhaskar Roy
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Yingxue Ren
- Department of Quantitative Health SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Michael DeTure
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Hanmei Bao
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Division of Life ScienceThe Hong Kong University of Science and TechnologyClear Water Bay Hong KongChina
| | | |
Collapse
|
3
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Mierzejewski K, Stryiński R, Bogacka I, Golubska M, Carrera M, Kurzynska A. Lipopolysaccharide affects metabolic processes and energy homeostasis in the corpus luteum. Front Mol Biosci 2025; 11:1523098. [PMID: 39845899 PMCID: PMC11753227 DOI: 10.3389/fmolb.2024.1523098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Chronic inflammation caused by Escherichia coli infections has a significant negative impact on the reproductive system and impairs fertility. The corpus luteum (CL) plays a central role not only in regulating the ovary cycle, but also in implantation of the embryo and maintenance of early pregnancy through the secretion of progesterone. Understanding the intricate interplay between inflammatory processes and reproductive organ's function is crucial for the development of effective therapeutic strategies to alleviate reproductive disorders and improve fertility. Methods The aim of this study was to determine the in vitro effects of lipopolysaccharide (LPS) on the proteomic profile of the porcine CL in the mid-luteal phase of the estrous cycle using LC-MS/MS analysis. The CL slices were incubated in the presence of LPS for 24 h. Results We identified 12 differentially regulated proteins after treatment with LPS (7 of them were upregulated, while 5 were downregulated). The analysis showed that these proteins are involved in processes such as glucose metabolism, the tricarboxylic acid cycle (TCA), detoxification processes as well as steroid biosynthesis in the CL. Moreover, we demonstrated that LPS decreases glucose levels and increases progesterone levels in the CL. Conclusion These findings suggest that LPS modulates key metabolic pathways in the CL, potentially impacting its functional activity.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Monika Golubska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Mónica Carrera
- Department of Food Technology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Aleksandra Kurzynska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
5
|
Xu P, Kong Y, Palmer ND, Ng MCY, Zhang B, Das SK. Integrated multi-omic analyses uncover the effects of aging on cell-type regulation in glucose-responsive tissues. Aging Cell 2024; 23:e14199. [PMID: 38932492 PMCID: PMC11320340 DOI: 10.1111/acel.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/28/2024] Open
Abstract
Aging significantly influences cellular activity and metabolism in glucose-responsive tissues, yet a comprehensive evaluation of the impacts of aging and associated cell-type responses has been lacking. This study integrates transcriptomic, methylomic, single-cell RNA sequencing, and metabolomic data to investigate aging-related regulations in adipose and muscle tissues. Through coexpression network analysis of the adipose tissue, we identified aging-associated network modules specific to certain cell types, including adipocytes and immune cells. Aging upregulates the metabolic functions of lysosomes and downregulates the branched-chain amino acids (BCAAs) degradation pathway. Additionally, aging-associated changes in cell proportions, methylation profiles, and single-cell expressions were observed in the adipose. In the muscle tissue, aging was found to repress the metabolic processes of glycolysis and oxidative phosphorylation, along with reduced gene activity of fast-twitch type II muscle fibers. Metabolomic profiling linked aging-related alterations in plasma metabolites to gene expression in glucose-responsive tissues, particularly in tRNA modifications, BCAA metabolism, and sex hormone signaling. Together, our multi-omic analyses provide a comprehensive understanding of the impacts of aging on glucose-responsive tissues and identify potential plasma biomarkers for these effects.
Collapse
Affiliation(s)
- Peng Xu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and HealthSoutheast UniversityNanjingChina
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence and Human Health, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yimeng Kong
- Center of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and HealthSoutheast UniversityNanjingChina
| | - Nicholette D. Palmer
- Department of BiochemistryWake Forest University School of MedicineWinston–SalemNorth CarolinaUSA
| | - Maggie C. Y. Ng
- Division of Genetic Medicine, Vanderbilt Genetics InstituteVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Bin Zhang
- Department of Genetics & Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Artificial Intelligence and Human Health, Mount Sinai Center for Transformative Disease Modeling, Icahn Genomics InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and MetabolismWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
6
|
Hegarty R, Thompson RJ. Genetic aetiologies of acute liver failure. J Inherit Metab Dis 2024; 47:582-597. [PMID: 38499319 DOI: 10.1002/jimd.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Acute liver failure (ALF) is a rare, rapidly evolving, clinical syndrome with devastating consequences where definitive treatment is by emergency liver transplantation. Establishing a diagnosis can be challenging and, historically, the cause of ALF was unidentified in up to half of children. However, recent technological and clinical advances in genomic medicine have led to an increasing proportion being diagnosed with monogenic aetiologies of ALF. The conditions encountered include a diverse group of inherited metabolic disorders each with prognostic and treatment implications. Often these disorders are clinically indistinguishable and may even mimic disorders of immune regulation or red cell disorders. Rapid genomic sequencing for children with ALF is, therefore, a key component in the diagnostic work up today. This review focuses on the monogenic aetiologies of ALF.
Collapse
Affiliation(s)
- Robert Hegarty
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| | - Richard J Thompson
- Paediatric Liver, GI and Nutrition Centre, King's College Hospital, London, UK
- Institute of Liver Studies, King's College London, London, UK
| |
Collapse
|
7
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
8
|
Mathew AR, Di Matteo G, La Rosa P, Barbati SA, Mannina L, Moreno S, Tata AM, Cavallucci V, Fidaleo M. Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation-Comparing Biological Models and Gaining New Insights into Molecular and Cellular Mechanisms. Int J Mol Sci 2024; 25:590. [PMID: 38203763 PMCID: PMC10778862 DOI: 10.3390/ijms25010590] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Vitamin B12 (VitB12) is a micronutrient and acts as a cofactor for fundamental biochemical reactions: the synthesis of succinyl-CoA from methylmalonyl-CoA and biotin, and the synthesis of methionine from folic acid and homocysteine. VitB12 deficiency can determine a wide range of diseases, including nervous system impairments. Although clinical evidence shows a direct role of VitB12 in neuronal homeostasis, the molecular mechanisms are yet to be characterized in depth. Earlier investigations focused on exploring the biochemical shifts resulting from a deficiency in the function of VitB12 as a coenzyme, while more recent studies propose a broader mechanism, encompassing changes at the molecular/cellular levels. Here, we explore existing study models employed to investigate the role of VitB12 in the nervous system, including the challenges inherent in replicating deficiency/supplementation in experimental settings. Moreover, we discuss the potential biochemical alterations and ensuing mechanisms that might be modified at the molecular/cellular level (such as epigenetic modifications or changes in lysosomal activity). We also address the role of VitB12 deficiency in initiating processes that contribute to nervous system deterioration, including ROS accumulation, inflammation, and demyelination. Consequently, a complex biological landscape emerges, requiring further investigative efforts to grasp the intricacies involved and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
| | - Giacomo Di Matteo
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy;
- European Center for Brain Research, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Saviana Antonella Barbati
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Luisa Mannina
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Sandra Moreno
- Department of Science, University Roma Tre, 00146 Rome, Italy;
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Centre of Neurobiology “Daniel Bovet”, Sapienza University of Rome, 00185 Rome, Italy
| | - Virve Cavallucci
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (A.M.T.)
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Mahé M, Rios-Fuller TJ, Karolin A, Schneider RJ. Genetics of enzymatic dysfunctions in metabolic disorders and cancer. Front Oncol 2023; 13:1230934. [PMID: 37601653 PMCID: PMC10433910 DOI: 10.3389/fonc.2023.1230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Inherited metabolic disorders arise from mutations in genes involved in the biogenesis, assembly, or activity of metabolic enzymes, leading to enzymatic deficiency and severe metabolic impairments. Metabolic enzymes are essential for the normal functioning of cells and are involved in the production of amino acids, fatty acids and nucleotides, which are essential for cell growth, division and survival. When the activity of metabolic enzymes is disrupted due to mutations or changes in expression levels, it can result in various metabolic disorders that have also been linked to cancer development. However, there remains much to learn regarding the relationship between the dysregulation of metabolic enzymes and metabolic adaptations in cancer cells. In this review, we explore how dysregulated metabolism due to the alteration or change of metabolic enzymes in cancer cells plays a crucial role in tumor development, progression, metastasis and drug resistance. In addition, these changes in metabolism provide cancer cells with a number of advantages, including increased proliferation, resistance to apoptosis and the ability to evade the immune system. The tumor microenvironment, genetic context, and different signaling pathways further influence this interplay between cancer and metabolism. This review aims to explore how the dysregulation of metabolic enzymes in specific pathways, including the urea cycle, glycogen storage, lysosome storage, fatty acid oxidation, and mitochondrial respiration, contributes to the development of metabolic disorders and cancer. Additionally, the review seeks to shed light on why these enzymes represent crucial potential therapeutic targets and biomarkers in various cancer types.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology, Grossman NYU School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Lancaster MS, Graham BH. Succinyl-CoA Synthetase Dysfunction as a Mechanism of Mitochondrial Encephalomyopathy: More than Just an Oxidative Energy Deficit. Int J Mol Sci 2023; 24:10725. [PMID: 37445899 PMCID: PMC10342173 DOI: 10.3390/ijms241310725] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Biallelic pathogenic variants in subunits of succinyl-CoA synthetase (SCS), a tricarboxylic acid (TCA) cycle enzyme, are associated with mitochondrial encephalomyopathy in humans. SCS catalyzes the interconversion of succinyl-CoA to succinate, coupled to substrate-level phosphorylation of either ADP or GDP, within the TCA cycle. SCS-deficient encephalomyopathy typically presents in infancy and early childhood, with many patients succumbing to the disease during childhood. Common symptoms include abnormal brain MRI, basal ganglia lesions and cerebral atrophy, severe hypotonia, dystonia, progressive psychomotor regression, and growth deficits. Although subunits of SCS were first identified as causal genes for progressive metabolic encephalomyopathy in the early 2000s, recent investigations are now beginning to unravel the pathomechanisms underlying this metabolic disorder. This article reviews the current understanding of SCS function within and outside the TCA cycle as it relates to the complex and multifactorial mechanisms underlying SCS-related mitochondrial encephalomyopathy.
Collapse
Affiliation(s)
| | - Brett H. Graham
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 W. Walnut St., Room IB257, Indianapolis, IN 46202, USA;
| |
Collapse
|
11
|
Roesch S, O'Sullivan A, Zimmermann G, Mair A, Lipuš C, Mayr JA, Wortmann SB, Rasp G. Mitochondrial Disease and Hearing Loss in Children: A Systematic Review. Laryngoscope 2022; 132:2459-2472. [PMID: 35188226 PMCID: PMC9790539 DOI: 10.1002/lary.30067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Hearing loss is a clinical symptom, frequently mentioned in the context of mitochondrial disease. With no cure available for mitochondrial disease, supportive treatment of clinical symptoms like hearing loss is of the utmost importance. The aim of this study was to summarize current knowledge on hearing loss in genetically proven mitochondrial disease in children and deduce possible and necessary consequences in patient care. METHODS Systematic literature review, including Medline, Embase, and Cochrane library. Review protocol was established and registered prior to conduction (International prospective register of systematic reviews-PROSPERO: CRD42020165356). Conduction of this review was done in accordance with MOOSE criteria. RESULTS A total of 23 articles, meeting predefined criteria and providing sufficient information on 75 individuals with childhood onset hearing loss was included for analysis. Both cochlear and retro-cochlear origin of hearing loss can be identified among different types of mitochondrial disease. Analysis was hindered by inhomogeneous reporting and methodical limitations. CONCLUSION Overall, the findings do not allow for a general statement on hearing loss in children with mitochondrial disease. Retro-cochlear hearing loss seems to be found more often than expected. A common feature appears to be progression of hearing loss over time. However, hearing loss in these patients shows manifold characteristics. Therefore, awareness of mitochondrial disease as a possible causative background is important for otolaryngologists. Future attempts rely on standardized reporting and long-term follow-up. LEVEL OF EVIDENCE NA Laryngoscope, 132:2459-2472, 2022.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria
| | - Anna O'Sullivan
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria,Insitute of PathologyParacelsus Medical UniversitySalzburgAustria
| | - Georg Zimmermann
- Team Biostatistics and Big Medical Data, IDA Lab SalzburgParacelsus Medical UniversitySalzburgAustria,Department of Research and InnovationParacelsus Medical UniversitySalzburgAustria
| | - Alois Mair
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria
| | - Cvetka Lipuš
- PMU University LibraryParacelsus Medical UniversitySalzburgAustria
| | - Johannes A. Mayr
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria
| | - Saskia B. Wortmann
- University Children's HospitalParacelsus Medical UniversitySalzburgAustria,Amalia Children's Hospital, RadboudumcNijmegenThe Netherlands
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck SurgeryParacelsus Medical UniversitySalzburgAustria
| |
Collapse
|
12
|
Abstract
Mitochondrial hepatopathies are a subset of mitochondrial diseases defined by primary dysfunction of hepatocyte mitochondria leading to a phenotype of hepatocyte cell injury, steatosis, or liver failure. Increasingly, the diagnosis is established by new sequencing approaches that combine analysis of both nuclear DNA and mitochondrial DNA and allow for timely diagnosis in most patients. Despite advances in diagnostics, for most affected children their disorders are relentlessly progressive, and result in substantial morbidity and mortality. Treatment remains mainly supportive; however, novel therapeutics and a more definitive role for liver transplantation hold promise for affected children.
Collapse
Affiliation(s)
- Mary Ayers
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Simon P Horslen
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Anna María Gómez
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - James E Squires
- University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
13
|
Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schiöth HB. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev 2022; 74:506-551. [PMID: 35710135 DOI: 10.1124/pharmrev.121.000408] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acylcarnitines are fatty acid metabolites that play important roles in many cellular energy metabolism pathways. They have historically been used as important diagnostic markers for inborn errors of fatty acid oxidation and are being intensively studied as markers of energy metabolism, deficits in mitochondrial and peroxisomal β -oxidation activity, insulin resistance, and physical activity. Acylcarnitines are increasingly being identified as important indicators in metabolic studies of many diseases, including metabolic disorders, cardiovascular diseases, diabetes, depression, neurologic disorders, and certain cancers. The US Food and Drug Administration-approved drug L-carnitine, along with short-chain acylcarnitines (acetylcarnitine and propionylcarnitine), is now widely used as a dietary supplement. In light of their growing importance, we have undertaken an extensive review of acylcarnitines and provided a detailed description of their identity, nomenclature, classification, biochemistry, pathophysiology, supplementary use, potential drug targets, and clinical trials. We also summarize these updates in the Human Metabolome Database, which now includes information on the structures, chemical formulae, chemical/spectral properties, descriptions, and pathways for 1240 acylcarnitines. This work lays a solid foundation for identifying, characterizing, and understanding acylcarnitines in human biosamples. We also discuss the emerging opportunities for using acylcarnitines as biomarkers and as dietary interventions or supplements for many wide-ranging indications. The opportunity to identify new drug targets involved in controlling acylcarnitine levels is also discussed. SIGNIFICANCE STATEMENT: This review provides a comprehensive overview of acylcarnitines, including their nomenclature, structure and biochemistry, and use as disease biomarkers and pharmaceutical agents. We present updated information contained in the Human Metabolome Database website as well as substantial mapping of the known biochemical pathways associated with acylcarnitines, thereby providing a strong foundation for further clarification of their physiological roles.
Collapse
Affiliation(s)
- Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Janis Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Didi Nordberg
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Misty M Attwood
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Stefan Smesny
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Zumrut Duygu Sen
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - An Chi Guo
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Eponine Oler
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Siyang Tian
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Jiamin Zheng
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - David S Wishart
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| | - Helgi B Schiöth
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia (M.D., M.M.-K., J.K., R.V., E.L.); Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden, (D.N., M.M.A., H.B.S.); Department of Psychiatry, Jena University Hospital, Jena, Germany (S.S., Z.D.S.); and Department of Biological Sciences, University of Alberta, Edmonton, Canada (A.C.G., E.O., S.T., J.Z., D.S.W.)
| |
Collapse
|
14
|
Chen YM, Chen W, Xu Y, Lu CS, Zhu MM, Sun RY, Wang Y, Chen Y, Shi J, Wang D. Novel compound heterozygous SUCLG1 variants may contribute to mitochondria DNA depletion syndrome-9. Mol Genet Genomic Med 2022; 10:e2010. [PMID: 35762302 PMCID: PMC9482404 DOI: 10.1002/mgg3.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Succinate-CoA ligase/synthetase (SCS) deficiency is responsible for encephalomyopathy with mitochondrial DNA depletion and mild methylmalonic aciduria. Variants in SUCLG1, the nuclear gene encoding the alpha subunit of the SCS enzyme playing a pivotal role in maintaining mtDNA integrity and stability, are associated with mitochondrial DNA depletion syndrome 9 (MTDPS9). METHODS In this study, we reported an infant with clinical features of MTDPS9 from China. Whole exome sequencing (WES) was used to identify the genetic cause. Bioinformatic analysis and mtDNA level detection were performed to assess pathogenicity. RESULTS The proband manifested with hypotonia, lactic acidosis, mild methylmalonic aciduria, hearing loss and psychomotor retardation. WES identified new compound heterozygous SUCLG1 variants of c.601A>G (p.R201G) in exon 6 and c.871G>C (p.A291P) in exon 8. Computational analysis predicted that these missense variants might alter structure stability and mitochondrial translocation of SUCLG1. qRT-PCR showed 68% depletion of mtDNA content in proband as compared to controls. CONCLUSION Novel compound heterozygous variants c.601A>G (p.R201G) and c.871G>C (p.A291P) in SUCLG1 may cause MTDPS9 in this family. Our finding should be helpful for molecular diagnosis, genetic counseling and clinical management of SCS deficiency disorders.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Xu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao-Sheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mian-Mian Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rong-Yue Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yihong Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Chen
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaming Shi
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Betaine Supplementation Causes an Increase in Fatty Acid Oxidation and Carbohydrate Metabolism in Livers of Mice Fed a High-Fat Diet: A Proteomic Analysis. Foods 2022; 11:foods11060881. [PMID: 35327303 PMCID: PMC8949908 DOI: 10.3390/foods11060881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Betaine, a common methyl donor whose methylation is involved in the biosynthesis of carnitine and phospholipids in animals, serves as food and animal feed additive. The present study used liquid chromatography-mass spectrometry (LC-MS) to analyze the liver protein profile of mice on a high fat (HF) diet to investigate the mechanism by which betaine affects hepatic metabolism. Although betaine supplementation had no significant effect on body weight, a total of 103 differentially expressed proteins were identified between HF diet + 1% betaine group (HFB) and HF diet group by LC-MS (fold change > 2, p < 0.05). The addition of 1% betaine had a significant enhancement of the expression of enzymes related to fatty acid oxidation metabolism, such as hydroxyacyl-Coenzyme A dehydrogenase (HADHA), enoyl Coenzyme A hydratase 1 (ECHS1) (p < 0.05) etc., and the expression of apolipoprotein A-II (APOA2) protein was significantly reduced (p < 0.01). Meanwhile, the protein expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and succinate-CoA ligase (SUCLG1) were highly significant (p < 0.01). Pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the functions of differential proteins involved fatty acid catabolism, carbohydrate metabolism, tricarboxylic acid cycle (TCA) and peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway. Protein−protein interaction (PPI) analysis discovered that acetyl-Coenzyme A acetyltransferase 1 (ACAT1), HADHA and ECHS1 were central hubs of hepatic proteomic changes in the HFB group of mice. Betaine alleviates hepatic lipid accumulation by enhancing fatty acid oxidation and accelerating the TCA cycle and glycolytic process in the liver of mice on an HF diet.
Collapse
|
16
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
17
|
Auger C, Vinaik R, Appanna VD, Jeschke MG. Beyond mitochondria: Alternative energy-producing pathways from all strata of life. Metabolism 2021; 118:154733. [PMID: 33631145 PMCID: PMC8052308 DOI: 10.1016/j.metabol.2021.154733] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that mitochondria are the powerhouses of the cell, producing adenosine triphosphate (ATP), the universal energy currency. However, the most significant strengths of the electron transport chain (ETC), its intricacy and efficiency, are also its greatest downfalls. A reliance on metal complexes (FeS clusters, hemes), lipid moities such as cardiolipin, and cofactors including alpha-lipoic acid and quinones render oxidative phosphorylation vulnerable to environmental toxins, intracellular reactive oxygen species (ROS) and fluctuations in diet. To that effect, it is of interest to note that temporal disruptions in ETC activity in most organisms are rarely fatal, and often a redundant number of failsafes are in place to permit continued ATP production when needed. Here, we highlight the metabolic reconfigurations discovered in organisms ranging from parasitic Entamoeba to bacteria such as pseudomonads and then complex eukaryotic systems that allow these species to adapt to and occasionally thrive in harsh environments. The overarching aim of this review is to demonstrate the plasticity of metabolic networks and recognize that in times of duress, life finds a way.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Roohi Vinaik
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | | | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
18
|
Wang B, Xu CC, Liu C, Qu YH, Zhang H, Luo HL. The Effect of Dietary Lycopene Supplementation on Drip Loss during Storage of Lamb Meat by iTRAQ Analysis. Antioxidants (Basel) 2021; 10:198. [PMID: 33573002 PMCID: PMC7911479 DOI: 10.3390/antiox10020198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
This study was designed to investigate the impact of dietary lycopene (antioxidant extracted from tomato) supplementation on postmortem antioxidant capacity, drip loss and protein expression profiles of lamb meat during storage. Thirty male Hu lambs were randomly divided into three treatment groups and housed in individual pens and received 0, 200 or 400 mg·kg-1 lycopene in their diet, respectively. All lambs were slaughtered after 3 months of fattening, and the longissimus thoracis (LT) muscle was collected for analyses. The results indicated that drip loss of LT muscle increased with storage days (P < 0.05). After storage for 7 days, significantly lower drip loss of meat was found in fed the lycopene-supplemented diet (P < 0.05). Dietary lycopene supplementation increased the activity of antioxidant enzymes (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT)) (P < 0.05) and decreased the thiobarbituric acid reactive substance (TBARS) and carbonyl contents (P < 0.05). During the storage period (days 0, 5 and 7), a number of differentially abundant proteins (DAPs), including oxidases, metabolic enzymes, calcium channels and structural proteins, were identified based on iTRAQ data, with roles predominantly in carbon metabolism, oxidative phosphorylation, cardiac muscle contraction and proteasome pathways, and which contribute to decreased drip loss of lamb meat during storage. It can be concluded that dietary lycopene supplementation increased antioxidant capacity after slaughter, and the decreased drip loss during postmortem storage might occur by changing the expression of proteins related to enzyme activity and cellular structure in lamb muscle.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Chen-chen Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Ce Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Yang-hua Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian, Beijing 100083, China;
| | - Hai-ling Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, NO.2 Yuanmingyuan West Road, Haidian, Beijing 100193, China; (B.W.); (C.-c.X.); (C.L.); (Y.-h.Q.)
| |
Collapse
|
19
|
Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett 2020; 595:976-1002. [PMID: 33314045 PMCID: PMC8247411 DOI: 10.1002/1873-3468.14021] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
Most of the genetic information has been lost or transferred to the nucleus during the evolution of mitochondria. Nevertheless, mitochondria have retained their own genome that is essential for oxidative phosphorylation (OXPHOS). In mammals, a gene‐dense circular mitochondrial DNA (mtDNA) of about 16.5 kb encodes 13 proteins, which constitute only 1% of the mitochondrial proteome. Mammalian mtDNA is present in thousands of copies per cell and mutations often affect only a fraction of them. Most pathogenic human mtDNA mutations are recessive and only cause OXPHOS defects if present above a certain critical threshold. However, emerging evidence strongly suggests that the proportion of mutated mtDNA copies is not the only determinant of disease but that also the absolute copy number matters. In this review, we critically discuss current knowledge of the role of mtDNA copy number regulation in various types of human diseases, including mitochondrial disorders, neurodegenerative disorders and cancer, and during ageing. We also provide an overview of new exciting therapeutic strategies to directly manipulate mtDNA to restore OXPHOS in mitochondrial diseases.
Collapse
Affiliation(s)
- Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Molaei Ramsheh S, Erfanian Omidvar M, Tabasinezhad M, Alipoor B, Salmani TA, Ghaedi H. SUCLG1 mutations and mitochondrial encephalomyopathy: a case study and review of the literature. Mol Biol Rep 2020; 47:9699-9714. [PMID: 33230783 DOI: 10.1007/s11033-020-05999-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
The mitochondrial encephalomyopathies represent a clinically heterogeneous group of neurodegenerative disorders. The clinical phenotype of patients could be explained by mutations of mitochondria-related genes, notably SUCLG1 and SUCLA2. Here, we presented a 5-year-old boy with clinical features of mitochondrial encephalomyopathy from Iran. Also, a systematic review was performed to explore the involvement of SUCLG1 mutations in published mitochondrial encephalomyopathies cases. Genotyping was performed by implementing whole-exome sequencing. Moreover, quantification of the mtDNA content was performed by real-time qPCR. We identified a novel, homozygote missense variant chr2: 84676796 A > T (hg19) in the SUCLG1 gene. This mutation substitutes Cys with Ser at the 60-position of the SUCLG1 protein. Furthermore, the in-silico analysis revealed that the mutated position in the genome is well conserved in mammalians, that implies mutation in this residue would possibly result in phenotypic consequences. Here, we identified a novel, homozygote missense variant chr2: 84676796 A > T in the SUCLG1 gene. Using a range of experimental and in silico analysis, we found that the mutation might explain the observed phenotype in the family.
Collapse
Affiliation(s)
- Samira Molaei Ramsheh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Erfanian Omidvar
- Department of Medical Laboratory Technology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Behnam Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Tayyeb Ali Salmani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Granados JZ, Ten Have GAM, Letsinger AC, Thaden JJ, Engelen MPKJ, Lightfoot JT, Deutz NEP. Activated whole-body arginine pathway in high-active mice. PLoS One 2020; 15:e0235095. [PMID: 32589680 PMCID: PMC7319332 DOI: 10.1371/journal.pone.0235095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Our previous studies suggest that physical activity (PA) levels are potentially regulated by endogenous metabolic mechanisms such as the vasodilatory roles of nitric oxide (NO) production via the precursor arginine (ARG) and ARG-related pathways. We assessed ARG metabolism and its precursors [citrulline (CIT), glutamine (GLN), glutamate (GLU), ornithine (ORN), and phenylalanine (PHE)] by measuring plasma concentration, whole-body production (WBP), de novo ARG and NO production, and clearance rates in previously classified low-active (LA) or high-active (HA) mice. We assessed LA (n = 23) and HA (n = 20) male mice by administering a stable isotope tracer pulse via jugular catheterization. We measured plasma enrichments via liquid chromatography tandem mass spectrometry (LC-MS/MS) and body compostion by echo-MRI. WBP, clearance rates, and de novo ARG and NO were calculated. Compared to LA mice, HA mice had lower plasma concentrations of GLU (71.1%; 36.8 ± 2.9 vs. 17.5 ± 1.7μM; p<0.0001), CIT (21%; 57.3 ± 2.3 vs. 46.4 ± 1.5μM; p = 0.0003), and ORN (40.1%; 55.4 ± 7.3 vs. 36.9 ± 2.6μM; p = 0.0241), but no differences for GLN, PHE, and ARG. However, HA mice had higher estimated NO production ratio (0.64 ± 0.08; p = 0.0197), higher WBP for CIT (21.8%, 8.6 ± 0.2 vs. 10.7 ± 0.3 nmol/g-lbm/min; p<0.0001), ARG (21.4%, 35.0 ± 0.6 vs. 43.4 ± 0.7 nmol/g-lbm/min; p<0.0001), PHE (7.6%, 23.8 ± 0.5 vs. 25.6 ± 0.5 nmol/g-lbm/min; p<0.0100), and lower GLU (78.5%; 9.4 ± 1.1 vs. 4.1 ± 1.6 nmol/g lbm/min; p = 0.0161). We observed no significant differences in WBP for GLN, ORN, PHE, or de novo ARG. We concluded that HA mice have an activated whole-body ARG pathway, which may be associated with regulating PA levels via increased NO production.
Collapse
Affiliation(s)
- Jorge Z. Granados
- Department of Health and Kinesiology, Biology of Physical Activity Laboratory, Texas A&M University, College Station, TX, United States of America
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| | - Gabriella A. M. Ten Have
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| | - Ayland C. Letsinger
- Department of Health and Kinesiology, Biology of Physical Activity Laboratory, Texas A&M University, College Station, TX, United States of America
| | - John J. Thaden
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| | - Marielle P. K. J. Engelen
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| | - J. Timothy Lightfoot
- Department of Health and Kinesiology, Biology of Physical Activity Laboratory, Texas A&M University, College Station, TX, United States of America
| | - Nicolaas E. P. Deutz
- Department of Health and Kinesiology, Center for Translational Research in Aging & Longevity, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
22
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
23
|
Ronquillo MD, Mellnyk A, Cárdenas-Rodríguez N, Martínez E, Comoto DA, Carmona-Aparicio L, Herrera NE, Lara E, Pereyra A, Floriano-Sánchez E. Different gene expression profiles in subcutaneous & visceral adipose tissues from Mexican patients with obesity. Indian J Med Res 2020; 149:616-626. [PMID: 31417029 PMCID: PMC6702687 DOI: 10.4103/ijmr.ijmr_1165_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background & objectives Obesity is a health problem that requires substantial efforts to understand the physiopathology of its various types and to determine therapeutic strategies for its treatment. The objective of this study was to characterize differences in the global gene expression profiles of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) between control patients (normal weight) and patients with obesity (IMC≥30) using microarrays. Methods Employing RNA isolated from SAT and VAT samples obtained from eight control and eight class I, II and III patients with obesity, the gene expression profiles were compared between SAT and VAT using microarrays and the findings were validated via real-time quantitative polymerase chain reaction. Results A total of 327 and 488 genes were found to be differentially expressed in SAT and VAT, respectively (P≤0.05). Upregulation of PPAP2C, CYP4A11 and CYP17A1 genes was seen in the VAT of obese individuals. Interpretation & conclusions SAT and VAT exhibited significant differences in terms of the expression of specific genes. These genes might be related to obesity. These findings may be used to improve the clinical diagnosis of obesity and could be a tool leading to the proposal of new therapeutic strategies for the treatment of obesity.
Collapse
Affiliation(s)
- María D Ronquillo
- Laboratory of Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alla Mellnyk
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Noemí Cárdenas-Rodríguez
- Subdirection of Experimental Medicine, Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City, Mexico
| | - Emmanuel Martínez
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - David A Comoto
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - Liliana Carmona-Aparicio
- Subdirection of Experimental Medicine, Laboratory of Neurosciences, National Institute of Pediatrics, Mexico City, Mexico
| | - Norma E Herrera
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Eleazar Lara
- Laboratory of Molecular Oncology and Oxidative Stress, Section of Research & Graduate Studies, Superior School of Medicine, National Polytechnic Institute, Mexico City, Mexico
| | - Armando Pereyra
- Department of Surgery, Military Central Hospital, SEDENA, Mexico City, Mexico
| | - Esaú Floriano-Sánchez
- Research Subdirection, Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| |
Collapse
|
24
|
Kamel KS, Oh MS, Halperin ML. L-lactic acidosis: pathophysiology, classification, and causes; emphasis on biochemical and metabolic basis. Kidney Int 2020; 97:75-88. [DOI: 10.1016/j.kint.2019.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 11/30/2022]
|
25
|
A Brief History of Mitochondrial Pathologies. Int J Mol Sci 2019; 20:ijms20225643. [PMID: 31718067 PMCID: PMC6888695 DOI: 10.3390/ijms20225643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/19/2023] Open
Abstract
The history of "mitochondrial pathologies", namely genetic pathologies affecting mitochondrial metabolism because of mutations in nuclear DNA-encoded genes for proteins active inside mitochondria or mutations in mitochondrial DNA-encoded genes, began in 1988. In that year, two different groups of researchers discovered, respectively, large-scale single deletions of mitochondrial DNA (mtDNA) in muscle biopsies from patients with "mitochondrial myopathies" and a point mutation in the mtDNA gene for subunit 4 of NADH dehydrogenase (MTND4), associated with maternally inherited Leber's hereditary optic neuropathy (LHON). Henceforth, a novel conceptual "mitochondrial genetics", separate from mendelian genetics, arose, based on three features of mtDNA: (1) polyplasmy; (2) maternal inheritance; and (3) mitotic segregation. Diagnosis of mtDNA-related diseases became possible through genetic analysis and experimental approaches involving histochemical staining of muscle or brain sections, single-fiber polymerase chain reaction (PCR) of mtDNA, and the creation of patient-derived "cybrid" (cytoplasmic hybrid) immortal fibroblast cell lines. The availability of the above-mentioned techniques along with the novel sensitivity of clinicians to such disorders led to the characterization of a constantly growing number of pathologies. Here is traced a brief historical perspective on the discovery of autonomous pathogenic mtDNA mutations and on the related mendelian pathology altering mtDNA integrity.
Collapse
|
26
|
Gafson AR, Savva C, Thorne T, David M, Gomez-Romero M, Lewis MR, Nicholas R, Heslegrave A, Zetterberg H, Matthews PM. Breaking the cycle: Reversal of flux in the tricarboxylic acid cycle by dimethyl fumarate. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e562. [PMID: 31086805 PMCID: PMC6481230 DOI: 10.1212/nxi.0000000000000562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022]
Abstract
Objective To infer molecular effectors of therapeutic effects and adverse events for dimethyl fumarate (DMF) in patients with relapsing-remitting MS (RRMS) using untargeted plasma metabolomics. Methods Plasma from 27 patients with RRMS was collected at baseline and 6 weeks after initiating DMF. Patients were separated into discovery (n = 15) and validation cohorts (n = 12). Ten healthy controls were also recruited. Metabolomic profiling using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS) was performed on the discovery cohort and healthy controls at Metabolon Inc (Durham, NC). UPLC-MS was performed on the validation cohort at the National Phenome Centre (London, UK). Plasma neurofilament concentration (pNfL) was assayed using the Simoa platform (Quanterix, Lexington, MA). Time course and cross-sectional analyses were performed to identify pharmacodynamic changes in the metabolome secondary to DMF and relate these to adverse events. Results In the discovery cohort, tricarboxylic acid (TCA) cycle intermediates fumarate and succinate, and TCA cycle metabolites succinyl-carnitine and methyl succinyl-carnitine increased 6 weeks following treatment (q < 0.05). Methyl succinyl-carnitine increased in the validation cohort (q < 0.05). These changes were not observed in the control population. Increased succinyl-carnitine and methyl succinyl-carnitine were associated with adverse events from DMF (flushing and abdominal symptoms). pNfL concentration was higher in patients with RRMS than in controls and reduced over 15 months of treatment. Conclusion TCA cycle intermediates and metabolites are increased in patients with RRMS treated with DMF. The results suggest reversal of flux through the succinate dehydrogenase complex. The contribution of succinyl-carnitine ester agonism at hydroxycarboxylic acid receptor 2 to both therapeutic effects and adverse events requires investigation.
Collapse
Affiliation(s)
- Arie R Gafson
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Constantinos Savva
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Tom Thorne
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Mark David
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Maria Gomez-Romero
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Matthew R Lewis
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Richard Nicholas
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Amanda Heslegrave
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Henrik Zetterberg
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| | - Paul M Matthews
- Division of Brain Sciences (T.T., R.N., P.M.M.), Department of Medicine, Imperial College, London; St Edmund Hall (C.S., P.M.M.), Oxford University, Oxford, UK; MRC-NIHR National Phenome Centre (M.D., M.G.-R., M.R.L.), Department of Surgery and Cancer, Imperial College; University College London Queen Square Institute of Neurology (A.H., H.Z.); UK Dementia Research Institute, University College London (A.H., H.Z.), London, UK; Department of Psychiatry and Neurochemistry (H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy, the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; and UK Dementia Research Institute at Imperial College (P.M.M.), London
| |
Collapse
|
27
|
Maalej M, Tej A, Bouguila J, Tilouche S, Majdoub S, Khabou B, Tabbebi M, Felhi R, Ammar M, Mkaouar-Rebai E, Keskes L, Boughamoura L, Fakhfakh F. Clinical, Molecular, and Computational Analysis in two cases with mitochondrial encephalomyopathy associated with SUCLG1 mutation in a consanguineous family. Biochem Biophys Res Commun 2017; 495:1730-1737. [PMID: 29217198 DOI: 10.1016/j.bbrc.2017.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/02/2017] [Indexed: 11/28/2022]
Abstract
Deficiency of the mitochondrial enzyme succinyl COA ligase (SUCL) is associated with encephalomyopathic mtDNA depletion syndrome and methylmalonic aciduria. This disorder is caused by mutations in both SUCL subunits genes: SUCLG1 (α subnit) and SUCLA2 (β subnit). We report here, two Tunisian patients belonging to a consanguineous family with mitochondrial encephalomyopathy, hearing loss, lactic acidosis, hypotonia, psychomotor retardation and methylmalonic aciduria. Mutational analysis of SUCLG1 gene showed, for the first time, the presence of c.41T > C in the exon 1 at homozygous state. In-silico analysis revealed that this mutation substitutes a conserved methionine residue to a threonine at position 14 (p.M14T) located at the SUCLG1 protein mitochondrial targeting sequence. Moreover, these analysis predicted that this mutation alter stability structure and mitochondrial translocation of the protein. In Addition, a decrease in mtDNA copy number was revealed by real time PCR in the peripheral blood leukocytes in the two patients compared with controls.
Collapse
Affiliation(s)
- Marwa Maalej
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, University of Sfax, Tunisia; Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Tunisia.
| | - Amel Tej
- Service de pédiatrie, C.H.U. Farhat Hachad de sousse, University of Sousse, Tunisia
| | - Jihène Bouguila
- Service de pédiatrie, C.H.U. Farhat Hachad de sousse, University of Sousse, Tunisia
| | - Samia Tilouche
- Service de pédiatrie, C.H.U. Farhat Hachad de sousse, University of Sousse, Tunisia
| | - Senda Majdoub
- Service de Radiologie, CHU Farhat Hached, Sousse, University of Sousse, Tunisia
| | - Boudour Khabou
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Mouna Tabbebi
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Rahma Felhi
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, University of Sfax, Tunisia
| | - Marwa Ammar
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, University of Sfax, Tunisia
| | - Emna Mkaouar-Rebai
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, University of Sfax, Tunisia
| | - Leila Keskes
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | - Lamia Boughamoura
- Service de pédiatrie, C.H.U. Farhat Hachad de sousse, University of Sousse, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, University of Sfax, Tunisia.
| |
Collapse
|
28
|
Hepatic proteome changes induced by dietary supplementation with two levels of native chicory inulin in young pigs. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Loss of succinyl-CoA synthase ADP-forming β subunit disrupts mtDNA stability and mitochondrial dynamics in neurons. Sci Rep 2017; 7:7169. [PMID: 28769029 PMCID: PMC5541051 DOI: 10.1038/s41598-017-05168-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/24/2017] [Indexed: 11/30/2022] Open
Abstract
Succinyl Coenzyme A synthetase (SCS) is a key mitochondrial enzyme. Defected SCS ADP-forming β subunit (SCS A-β) is linked to lethal infantile Leigh or leigh-like syndrome. However, the impacts of SCS A-β deficiency on mitochondria specifically in neurons have not yet been comprehensively investigated. Here, by down-regulating the expression levels of SCS A-β in cultured mouse neurons, we have found that SCS A-β deficiency induces severe mitochondrial dysfunction including lowered oxidative phosphorylation (OXPHOS) efficiency, increased mitochondrial superoxide production, and mtDNA depletion as well as aberrations of mitochondrial fusion and fission proteins, which eventually leads to neuronal stress. Our data also suggest that the deregulation of mitochondrial nucleoside diphosphate kinase (NDPK) together with defects in mitochondrial transcription factors including mitochondrial DNA pol γ and Twinkle contribute to SCS A-β deficiency-mediated mtDNA instability. Furthermore, we have found that SCS A-β deficiency has detrimental influence on neuronal mitochondrial dynamics. Put together, the results have furnished our knowledge on the pathogenesis of SCS A-β deficiency-related mitochondrial diseases and revealed the vital role of SCS A-β in maintaining neuronal mitochondrial quality control and neuronal physiology.
Collapse
|
30
|
Huang X, Bedoyan JK, Demirbas D, Harris DJ, Miron A, Edelheit S, Grahame G, DeBrosse SD, Wong LJ, Hoppel CL, Kerr DS, Anselm I, Berry GT. Succinyl-CoA synthetase (SUCLA2) deficiency in two siblings with impaired activity of other mitochondrial oxidative enzymes in skeletal muscle without mitochondrial DNA depletion. Mol Genet Metab 2017; 120:213-222. [PMID: 27913098 PMCID: PMC5346465 DOI: 10.1016/j.ymgme.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/18/2022]
Abstract
Mutations in SUCLA2 result in succinyl-CoA ligase (ATP-forming) or succinyl-CoA synthetase (ADP-forming) (A-SCS) deficiency, a mitochondrial tricarboxylic acid cycle disorder. The phenotype associated with this gene defect is largely encephalomyopathy. We describe two siblings compound heterozygous for SUCLA2 mutations, c.985A>G (p.M329V) and c.920C>T (p.A307V), with parents confirmed as carriers of each mutation. We developed a new LC-MS/MS based enzyme assay to demonstrate the decreased SCS activity in the siblings with this unique genotype. Both siblings shared bilateral progressive hearing loss, encephalopathy, global developmental delay, generalized myopathy, and dystonia with choreoathetosis. Prior to diagnosis and because of lactic acidosis and low activity of muscle pyruvate dehydrogenase complex (PDC), sibling 1 (S1) was placed on dichloroacetate, while sibling 2 (S2) was on a ketogenic diet. S1 developed severe cyclic vomiting refractory to therapy, while S2 developed Leigh syndrome, severe GI dysmotility, intermittent anemia, hypogammaglobulinemia and eventually succumbed to his disorder. The mitochondrial DNA contents in skeletal muscle (SM) were normal in both siblings. Pyruvate dehydrogenase complex, ketoglutarate dehydrogenase complex, and several mitochondrial electron transport chain (ETC) activities were low or at the low end of the reference range in frozen SM from S1 and/or S2. In contrast, activities of PDC, other mitochondrial enzymes of pyruvate metabolism, ETC and, integrated oxidative phosphorylation, in skin fibroblasts were not significantly impaired. Although we show that propionyl-CoA inhibits PDC, it does not appear to account for decreased PDC activity in SM. A better understanding of the mechanisms of phenotypic variability and the etiology for tissue-specific secondary deficiencies of mitochondrial enzymes of oxidative metabolism, and independently mitochondrial DNA depletion (common in other cases of A-SCS deficiency), is needed given the implications for control of lactic acidosis and possible clinical management.
Collapse
Affiliation(s)
- Xiaoping Huang
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Jirair K Bedoyan
- Center for Human Genetics, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Didem Demirbas
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - David J Harris
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Alexander Miron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Simone Edelheit
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - George Grahame
- Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Suzanne D DeBrosse
- Center for Human Genetics, University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Charles L Hoppel
- Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Douglas S Kerr
- Center for Inherited Disorders of Energy Metabolism (CIDEM), University Hospitals Cleveland Medical Center, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
El-Hattab AW, Craigen WJ, Scaglia F. Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1539-1555. [PMID: 28215579 DOI: 10.1016/j.bbadis.2017.02.017] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/31/2017] [Accepted: 02/14/2017] [Indexed: 01/12/2023]
Abstract
The maintenance of mitochondrial DNA (mtDNA) depends on a number of nuclear gene-encoded proteins including a battery of enzymes forming the replisome needed to synthesize mtDNA. These enzymes need to be in balanced quantities to function properly that is in part achieved by exchanging intramitochondrial contents through mitochondrial fusion. In addition, mtDNA synthesis requires a balanced supply of nucleotides that is achieved by nucleotide recycling inside the mitochondria and import from the cytosol. Mitochondrial DNA maintenance defects (MDMDs) are a group of diseases caused by pathogenic variants in the nuclear genes involved in mtDNA maintenance resulting in impaired mtDNA synthesis leading to quantitative (mtDNA depletion) and qualitative (multiple mtDNA deletions) defects in mtDNA. Defective mtDNA leads to organ dysfunction due to insufficient mtDNA-encoded protein synthesis, resulting in an inadequate energy production to meet the needs of affected organs. MDMDs are inherited as autosomal recessive or dominant traits, and are associated with a broad phenotypic spectrum ranging from mild adult-onset ophthalmoplegia to severe infantile fatal hepatic failure. To date, pathogenic variants in 20 nuclear genes known to be crucial for mtDNA maintenance have been linked to MDMDs, including genes encoding enzymes of mtDNA replication machinery (POLG, POLG2, TWNK, TFAM, RNASEH1, MGME1, and DNA2), genes encoding proteins that function in maintaining a balanced mitochondrial nucleotide pool (TK2, DGUOK, SUCLG1, SUCLA2, ABAT, RRM2B, TYMP, SLC25A4, AGK, and MPV17), and genes encoding proteins involved in mitochondrial fusion (OPA1, MFN2, and FBXL4).
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
32
|
Donti TR, Masand R, Scott DA, Craigen WJ, Graham BH. Expanding the phenotypic spectrum of Succinyl-CoA ligase deficiency through functional validation of a new SUCLG1 variant. Mol Genet Metab 2016; 119:68-74. [PMID: 27484306 PMCID: PMC5031536 DOI: 10.1016/j.ymgme.2016.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 11/21/2022]
Abstract
Deficiency of the TCA cycle enzyme Succinyl-CoA Synthetase/Ligase (SCS), due to pathogenic variants in subunits encoded by SUCLG1 and SUCLA2, causes mitochondrial encephalomyopathy, methylmalonic acidemia, and mitochondrial DNA (mtDNA) depletion. In this study, we report an 11year old patient who presented with truncal ataxia, chorea, hypotonia, bilateral sensorineural hearing loss and preserved cognition. Whole exome sequencing identified a heterozygous known pathogenic variant and a heterozygous novel missense variant of uncertain clinical significance (VUS) in SUCLG1. To validate the suspected pathogenicity of the novel VUS, molecular and biochemical analyses were performed using primary skin fibroblasts from the patient. The patient's cells lack the SUCLG1 protein, with significantly reduced levels of SUCLA2 and SUCLG2 protein. This leads to essentially undetectable SCS enzyme activity, mtDNA depletion, and cellular respiration defects. These abnormal phenotypes are rescued upon ectopic expression of wild-type SUCLG1 in the patient's fibroblasts, thus functionally confirming the pathogenic nature of the SUCLG1 VUS identified in this patient and expanding the phenotypic spectrum for SUCLG1 deficiency.
Collapse
Affiliation(s)
- Taraka R Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ruchi Masand
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
33
|
Chu J, Pupavac M, Watkins D, Tian X, Feng Y, Chen S, Fenter R, Zhang VW, Wang J, Wong LJ, Rosenblatt DS. Next generation sequencing of patients with mut methylmalonic aciduria: Validation of somatic cell studies and identification of 16 novel mutations. Mol Genet Metab 2016; 118:264-71. [PMID: 27233228 DOI: 10.1016/j.ymgme.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022]
Abstract
Mutations in the MUT gene, which encodes the mitochondrial enzyme methylmalonyl-CoA mutase, are responsible for the mut form of methylmalonic aciduria (MMA). In this study, a next generation sequencing (NGS) based gene panel was used to analyze 53 patients that had been diagnosed with mut MMA by somatic cell complementation analysis. A total of 54 different mutations in MUT were identified in 48 patients; 16 novel mutations were identified, including 1 initiation site mutation (c.2T>C [p.M1?]), 1 missense mutation (c.566A>T [p.N189I]), 2 nonsense mutations (c.129G>A [p.W43*] and c.1975C>T [p.Q659*]), 2 mutations affecting splice sites (c.753+3A>G and c.754-2A>G), 8 small insertions, deletions, and duplications (c.29dupT [p.L10Ffs*39], c.55dupG [p.V19Gfs*30], c.631_633delGAG [p.E211del], c.795_796insT [p.M266Yfs*7], c.1061delCinsGGA [p.S354Wfs*20], c.1065_1068dupATGG [p.S357Mfs*5], c.1181dupT [p.L394Ffs*30], c.1240delG [p.E414Kfs*17]), a large insertion (c.146_147ins279), and a large deletion involving exon 13. Phenotypic rescue and cDNA analysis were used to confirm that the c.146_147ins279 and c.631_633delGAG mutations were associated with the decreased methylmalonyl-CoA mutase function observed in the patient fibroblasts. In five patients, the NGS panel did not confirm the diagnosis made by complementation analysis. One of these patients was found to carry 2 novel mutations (c.433G > A [p.E145K] and c.511A>C [p.N171H]) in the SUCLG1 gene.
Collapse
Affiliation(s)
- Jordan Chu
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mihaela Pupavac
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Xia Tian
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Yanming Feng
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Stella Chen
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Remington Fenter
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Victor W Zhang
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Jing Wang
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Lee-Jun Wong
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
34
|
Molloy A, Pangilinan F, Mills J, Shane B, O’Neill M, McGaughey D, Velkova A, Abaan H, Ueland P, McNulty H, Ward M, Strain J, Cunningham C, Casey M, Cropp C, Kim Y, Bailey-Wilson J, Wilson A, Brody L. A Common Polymorphism in HIBCH Influences Methylmalonic Acid Concentrations in Blood Independently of Cobalamin. Am J Hum Genet 2016; 98:869-882. [PMID: 27132595 DOI: 10.1016/j.ajhg.2016.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Methylmalonic acid (MMA) is a by-product of propionic acid metabolism through the vitamin B12 (cobalamin)-dependent enzyme methylmalonyl CoA mutase. Elevated MMA concentrations are a hallmark of several inborn errors of metabolism and indicators of cobalamin deficiency in older persons. In a genome-wide analysis of 2,210 healthy young Irish adults (median age 22 years) we identified a strong association of plasma MMA with SNPs in 3-hydroxyisobutyryl-CoA hydrolase (HIBCH, p = 8.42 × 10(-89)) and acyl-CoA synthetase family member 3 (ACSF3, p = 3.48 × 10(-19)). These loci accounted for 12% of the variance in MMA concentration. The most strongly associated SNP (HIBCH rs291466; c:2T>C) causes a missense change of the initiator methionine codon (minor-allele frequency = 0.43) to threonine. Surprisingly, the resulting variant, p.Met1?, is associated with increased expression of HIBCH mRNA and encoded protein. These homozygotes had, on average, 46% higher MMA concentrations than methionine-encoding homozygotes in young adults with generally low MMA concentrations (0.17 [0.14-0.21] μmol/L; median [25(th)-75(th) quartile]). The association between MMA levels and HIBCH rs291466 was highly significant in a replication cohort of 1,481 older individuals (median age 79 years) with elevated plasma MMA concentrations (0.34 [0.24-0.51] μmol/L; p = 4.0 × 10(-26)). In a longitudinal study of 185 pregnant women and their newborns, the association of this SNP remained significant across the gestational trimesters and in newborns. HIBCH is unique to valine catabolism. Studies evaluating flux through the valine catabolic pathway in humans should account for these variants. Furthermore, this SNP could help resolve equivocal clinical tests where plasma MMA values have been used to diagnose cobalamin deficiency.
Collapse
|
35
|
Lane M, Boczonadi V, Bachtari S, Gomez-Duran A, Langer T, Griffiths A, Kleinle S, Dineiger C, Abicht A, Holinski-Feder E, Schara U, Gerner P, Horvath R. Mitochondrial dysfunction in liver failure requiring transplantation. J Inherit Metab Dis 2016; 39:427-436. [PMID: 27053192 PMCID: PMC4851707 DOI: 10.1007/s10545-016-9927-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/10/2016] [Accepted: 03/10/2016] [Indexed: 01/14/2023]
Abstract
Liver failure is a heterogeneous condition which may be fatal and the primary cause is frequently unknown. We investigated mitochondrial oxidative phosphorylation in patients undergoing liver transplantation. We studied 45 patients who had liver transplantation due to a variety of clinical presentations. Blue native polyacrylamide gel electrophoresis with immunodetection of respiratory chain complexes I-V, biochemical activity of respiratory chain complexes II and IV and quantification of mitochondrial DNA (mtDNA) copy number were investigated in liver tissue collected from the explanted liver during transplantation. Abnormal mitochondrial function was frequently present in this cohort: ten of 40 patients (25 %) had a defect of one or more respiratory chain enzyme complexes on blue native gels, 20 patients (44 %) had low activity of complex II and/or IV and ten (22 %) had a reduced mtDNA copy number. Combined respiratory chain deficiency and reduced numbers of mitochondria were detected in all three patients with acute liver failure. Low complex IV activity in biliary atresia and complex II defects in cirrhosis were common findings. All six patients diagnosed with liver tumours showed variable alterations in mitochondrial function, probably due to the heterogeneity of the presenting tumour. In conclusion, mitochondrial dysfunction is common in severe liver failure in non-mitochondrial conditions. Therefore, in contrast to the common practice detection of respiratory chain abnormalities in liver should not restrict the inclusion of patients for liver transplantation. Furthermore, improving mitochondrial function may be targeted as part of a complex therapy approach in different forms of liver diseases.
Collapse
Affiliation(s)
- Maria Lane
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | - Veronika Boczonadi
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | - Sahar Bachtari
- Department of Paediatric Gastroenterology, University of Duisburg-Essen, Essen, Germany
| | - Aurora Gomez-Duran
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | - Thorsten Langer
- Department for Neuropediatrics and Muscular Diseases, Center for Pediatrics and Adolescent Medicine University Medical Center Freiburg, Freiburg, Germany
| | - Alexandra Griffiths
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK
| | | | | | | | | | - Ulrike Schara
- Department of Paediatric Neurology, University of Duisburg-Essen, Essen, Germany
| | - Patrick Gerner
- Department of Paediatric Gastroenterology, University of Duisburg-Essen, Essen, Germany
- Paediatric Gastroenterology/Hepatology, University of Freiburg, Freiburg, Germany
| | - Rita Horvath
- Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre and Wellcome Trust Centre for Mitochondrial Research, Central Parkway, NE1 3BZ, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Gerards M, Sallevelt SCEH, Smeets HJM. Leigh syndrome: Resolving the clinical and genetic heterogeneity paves the way for treatment options. Mol Genet Metab 2016; 117:300-12. [PMID: 26725255 DOI: 10.1016/j.ymgme.2015.12.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
Abstract
Leigh syndrome is a progressive neurodegenerative disorder, affecting 1 in 40,000 live births. Most patients present with symptoms between the ages of three and twelve months, but adult onset Leigh syndrome has also been described. The disease course is characterized by a rapid deterioration of cognitive and motor functions, in most cases resulting in death due to respiratory failure. Despite the high genetic heterogeneity of Leigh syndrome, patients present with identical, symmetrical lesions in the basal ganglia or brainstem on MRI, while additional clinical manifestations and age of onset varies from case to case. To date, mutations in over 60 genes, both nuclear and mitochondrial DNA encoded, have been shown to cause Leigh syndrome, still explaining only half of all cases. In most patients, these mutations directly or indirectly affect the activity of the mitochondrial respiratory chain or pyruvate dehydrogenase complex. Exome sequencing has accelerated the discovery of new genes and pathways involved in Leigh syndrome, providing novel insights into the pathophysiological mechanisms. This is particularly important as no general curative treatment is available for this devastating disorder, although several recent studies imply that early treatment might be beneficial for some patients depending on the gene or process affected. Timely, gene-based personalized treatment may become an important strategy in rare, genetically heterogeneous disorders like Leigh syndrome, stressing the importance of early genetic diagnosis and identification of new genes/pathways. In this review, we provide a comprehensive overview of the most important clinical manifestations and genes/pathways involved in Leigh syndrome, and discuss the current state of therapeutic interventions in patients.
Collapse
Affiliation(s)
- Mike Gerards
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands; Maastricht Center for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
37
|
Carrozzo R, Verrigni D, Rasmussen M, de Coo R, Amartino H, Bianchi M, Buhas D, Mesli S, Naess K, Born AP, Woldseth B, Prontera P, Batbayli M, Ravn K, Joensen F, Cordelli DM, Santorelli FM, Tulinius M, Darin N, Duno M, Jouvencel P, Burlina A, Stangoni G, Bertini E, Redonnet-Vernhet I, Wibrand F, Dionisi-Vici C, Uusimaa J, Vieira P, Osorio AN, McFarland R, Taylor RW, Holme E, Ostergaard E. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis 2016; 39:243-52. [PMID: 26475597 DOI: 10.1007/s10545-015-9894-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND The encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings in these and 46 previously reported patients. PATIENTS AND RESULTS Of the 71 patients, 50 had SUCLA2 mutations and 21 had SUCLG1 mutations. In the newly-reported 20 SUCLA2 patients we found 16 different mutations, of which nine were novel: two large gene deletions, a 1 bp duplication, two 1 bp deletions, a 3 bp insertion, a nonsense mutation and two missense mutations. In the newly-reported SUCLG1 patients, five missense mutations were identified, of which two were novel. The median onset of symptoms was two months for patients with SUCLA2 mutations and at birth for SUCLG1 patients. Median survival was 20 years for SUCLA2 and 20 months for SUCLG1. Notable clinical differences between the two groups were hepatopathy, found in 38% of SUCLG1 cases but not in SUCLA2 cases, and hypertrophic cardiomyopathy which was not reported in SUCLA2 patients, but documented in 14% of cases with SUCLG1 mutations. Long survival, to age 20 years or older, was reported in 12% of SUCLA2 and in 10% of SUCLG1 patients. The most frequent abnormality on neuroimaging was basal ganglia involvement, found in 69% of SUCLA2 and 80% of SUCLG1 patients. Analysis of respiratory chain enzyme activities in muscle generally showed a combined deficiency of complexes I and IV, but normal histological and biochemical findings in muscle did not preclude a diagnosis of succinate-CoA ligase deficiency. In five patients, the urinary excretion of methylmalonic acid was only marginally elevated, whereas elevated plasma methylmalonic acid was consistently found. CONCLUSIONS To our knowledge, this is the largest study of patients with SUCLA2 and SUCLG1 deficiency. The most important findings were a significantly longer survival in patients with SUCLA2 mutations compared to SUCLG1 mutations and a trend towards longer survival in patients with missense mutations compared to loss-of-function mutations. Hypertrophic cardiomyopathy and liver involvement was exclusively found in patients with SUCLG1 mutations, whereas epilepsy was much more frequent in patients with SUCLA2 mutations compared to patients with SUCLG1 mutations. The mutation analysis revealed a number of novel mutations, including a homozygous deletion of the entire SUCLA2 gene, and we found evidence of two founder mutations in the Scandinavian population, in addition to the known SUCLA2 founder mutation in the Faroe Islands.
Collapse
Affiliation(s)
- Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Verrigni
- Unit of Muscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Magnhild Rasmussen
- Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
| | - Rene de Coo
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Hernan Amartino
- Servicio de Neurología Infantil, Hospital Universitario Austral, Buenos Aires, Argentina
| | - Marzia Bianchi
- Unit of Muscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Buhas
- Department of Medical Genetics, Montreal Children's Hospital, Montréal, Quebéc, Canada
| | - Samir Mesli
- Biochemistry, CHU de Bordeaux, Bordeaux, France
| | - Karin Naess
- Department of Laboratory Medicine and Centre for Inherited Metabolic Diseases, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Alfred Peter Born
- Department of Pediatrics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Berit Woldseth
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Paolo Prontera
- Centro di Riferimento Regionale di Genetica Medica, Azienda Ospedaliera di Perugia, CREO, Perugia, Italy
| | - Mustafa Batbayli
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kirstine Ravn
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Fróði Joensen
- Department of Pediatrics, National Hospital of the Faroe Islands, Tórshavn, Faroe Islands
| | - Duccio M Cordelli
- U.O. Neuropsichiatria Infantile - Franzoni, Policlinico S. Orsola Malpighi, Bologna, Italy
| | | | - Mar Tulinius
- Department of Pediatrics, University of Gothenburg, The Queen Silvia's Children Hospital, Gothenburg, Sweden
| | - Niklas Darin
- Department of Pediatrics, University of Gothenburg, The Queen Silvia's Children Hospital, Gothenburg, Sweden
| | - Morten Duno
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Philippe Jouvencel
- Neonatal and Pediatric Intensive Care Unit, Children's Hospital, Bordeaux, France
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital of Padua, Padua, Italy
| | - Gabriela Stangoni
- Centro di Riferimento Regionale di Genetica Medica, Azienda Ospedaliera di Perugia, CREO, Perugia, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Flemming Wibrand
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Johanna Uusimaa
- Institute of Clinical Medicine/Department of Paediatrics, Finland and Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Paivi Vieira
- Institute of Clinical Medicine/Department of Paediatrics, Finland and Medical Research Center, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Andrés Nascimento Osorio
- Unidad de patología neuromuscular, Servicio de Neurología, Hospital Sant Joan de Déu. Hospital Sant Joan de Déu and CIBERER, ISCIII, Barcelona, Spain
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Elisabeth Holme
- Department of Clinical Chemistry, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elsebet Ostergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
38
|
Liu Y, Li X, Wang Q, Ding Y, Song J, Yang Y. Five novel SUCLG1 mutations in three Chinese patients with succinate-CoA ligase deficiency noticed by mild methylmalonic aciduria. Brain Dev 2016; 38:61-7. [PMID: 26028457 DOI: 10.1016/j.braindev.2015.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/02/2015] [Accepted: 05/07/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Methylmalonic aciduria is the most common organic aciduria in mainland China. Succinate-CoA ligase deficiency causes encephalomyopathy with mitochondrial DNA depletion and mild methylmalonic aciduria. Patients usually present with severe encephalomyopathy, infantile lactic acidosis, which can be fatal, and mild methylmalonic aciduria. PATIENTS AND METHODS Three Chinese patients (two boys and one girl) were hospitalized because of severe encephalomyopathy between 7 and 9 months. They presented with severe psychomotor retardation, hypotonia, dystonia, athetoid movements, seizures, feeding problems and failure to thrive. Mild elevated urine methylmalonic acid and blood propionylcarnitine indicated methylmalonic aciduria. Gene capture and high-throughput genomic sequencing was carried out. RESULTS Five novel mutations in SUCLG1 were identified in these patients: c.550G>A (p.G184S) in exon 5, c.751C>T (p.G251S) in exon 7, c.809A>C (p.L270W) in exon 7, c.961C>G (p.A321P) in exon 8 and c.826-2A>G (Splicing) in exon 9. Significant depletion of mtDNA was not observed in the peripheral leukocytes of the three patients in spite of mild decreasing of mitochondrial respiratory chain complex I in two patients and complex V in one patient. After treatment with cobalamin, calcium folinate, L-carnitine, vitamin B1, C, and coenzyme Q10, and nutrition intervention, the patients improved. CONCLUSIONS Succinate-CoA ligase deficiency due to SUCLG1 mutations is a rare cause of methylmalonic aciduria. Biochemical and gene studies are keys for the differential diagnoses. Three Chinese patients with mild methylmalonic aciduria were genetically diagnosed using high-throughput genomic sequencing. Five novel pathogenic mutations in SUCLG1 were identified.
Collapse
Affiliation(s)
- Yupeng Liu
- Peking University First Hospital, Beijing 100034, China
| | - Xiyuan Li
- Peking University First Hospital, Beijing 100034, China
| | - Qiao Wang
- Peking University First Hospital, Beijing 100034, China
| | - Yuan Ding
- Peking University First Hospital, Beijing 100034, China
| | - Jinqing Song
- Peking University First Hospital, Beijing 100034, China
| | - Yanling Yang
- Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
39
|
Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol 2015; 79:190-203. [PMID: 26506407 DOI: 10.1002/ana.24551] [Citation(s) in RCA: 343] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
Leigh syndrome is the most common pediatric presentation of mitochondrial disease. This neurodegenerative disorder is genetically heterogeneous, and to date pathogenic mutations in >75 genes have been identified, encoded by 2 genomes (mitochondrial and nuclear). More than one-third of these disease genes have been characterized in the past 5 years alone, reflecting the significant advances made in understanding its etiological basis. We review the diverse biochemical and genetic etiology of Leigh syndrome and associated clinical, neuroradiological, and metabolic features that can provide clues for diagnosis. We discuss the emergence of genotype-phenotype correlations, insights gleaned into the molecular basis of disease, and available therapeutic options.
Collapse
Affiliation(s)
- Nicole J Lake
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alison G Compton
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, Institute of Child Health, University College London and Metabolic Unit, Great Ormond Street Hospital, London, United Kingdom
| | - David R Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Ferguson DP, Dangott LJ, Vellers HL, Schmitt EE, Lightfoot JT. Differential protein expression in the nucleus accumbens of high and low active mice. Behav Brain Res 2015; 291:283-288. [DOI: 10.1016/j.bbr.2015.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/08/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
|
41
|
Wang X, Wang J, Wang Z, Wang Q, Li H. Dynamic monitoring of plasma amino acids and carnitine during chemotherapy of patients with alimentary canal malignancies and its clinical value. Onco Targets Ther 2015; 8:1989-96. [PMID: 26300648 PMCID: PMC4535544 DOI: 10.2147/ott.s86562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The aim of this study was to observe the plasma amino acid and carnitine characteristics in patients with metastatic gastrointestinal malignancies during chemotherapy and to identify markers for the early diagnosis and evaluation of adverse reactions and prognosis of the digestive tract malignant tumor patients. METHODS Blood samples of 30 patients with metastatic gastrointestinal malignancies were collected at four time points: before chemotherapy, the first day after chemotherapy (+1 day), bone marrow depression period (+14 days), and hematopoietic recovery period (+21 days). The plasma amino acids and carnitine from those 30 patients were determined by high-performance liquid chromatography-tandem mass spectrometry method. Simultaneously, the levels of 21 amino acids were detected in 30 healthy individuals, who were considered as control. Biochemical indexes were also detected at four time points, adverse reactions were recorded during the chemotherapy process, and patients were followed up for 1 year to observe time to progression (TTP) and progression-free survival (PFS). RESULTS Compared to healthy people in the control group, patients with malignancies showed significantly increased levels of plasma amino acids such as Arg, Asp, Cit, Gly, Orn, Tyr, Val, and carnitine (such as C2). The levels of compounds such as C3, Asn, Leu, Lys, Pip, Pro, C0, C5:1 decreased significantly before chemotherapy. The levels of Cit, Cys, Lys, Pro, Tyr, Val, C0, and C2 decreased significantly on the second day of chemotherapy (+1 day), whereas the level of C3 increased significantly. During myelosuppression (+14 days), the levels of Asp, Cit, Met, and Orn were observed to still decrease significantly, whereas the level of Val appeared to increase significantly. The levels of Asp, Glu, and Met were clearly different among patients with gastric carcinoma, rectal cancer, and colon cancer. Compared to the control group, aspartate amino transferase and alanine aminotransferase were found to be higher in eight patients with hypocarnitinemia, yet TTP, PFS, and RR (response rate) were lower. No significant difference was observed for adverse reactions. The indexes in 12 patients with citrullinemia showed no difference compared with control group. All the results showed statistically significant differences (P<0.05). CONCLUSION Real-time monitoring of plasma amino acids and carnitine in patients with metastatic gastrointestinal malignancies can directly reflect the body's metabolism and nutritional status. The results provide a reference for nutrition therapy or support for patients with alimentary canal malignancies. Hypocarnitinemia is a risk factor for gastrointestinal cancer patients and affects TTP, PFS, and RR by liver function. This study shows that tandem mass spectrometry can be used to detect blood amino acids and carnitine spectrum may be used for an early diagnosis and evaluation of adverse reactions and prognosis of the digestive tract malignant tumor patients.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Jiaqi Wang
- Traditional Chinese Medicine Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Zhenghua Wang
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Qingjun Wang
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Hua Li
- Second Ward of Oncology Department, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
42
|
Liao CC, Lin YL, Kuo CF. Effect of high-fat diet on hepatic proteomics of hamsters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1869-1881. [PMID: 25634685 DOI: 10.1021/jf506118j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A high-fat diet contributes to the etiology of metabolic diseases. As the liver plays a crucial role in metabolism, an insight into the hepatic proteomics will help to illustrate the physiological effect of a high-fat diet. Fourteen nine-week old male Syrian hamsters were maintained on either control (C) or high-fat (HF) diets (0.2% cholesterol +22% fat) for 8 weeks. Hamsters were chosen because they show close similarity to human lipid metabolism. At the end of study, blood and livers were collected for analysis. Liver proteins were fractionated by electrophoresis, digested by trypsin, and then separated by label-free nano-LC/MS/MS. The TurboSequest algorithm was used to identify the peptide sequences against the hamster database in Universal Proteins Resource Knowledgebase (UniProt). The results indicate that 1191 hepatic proteins were identified and 135 of them were expressed differentially in the high-fat group (p < 0.05). Some of these 135 proteins that involve in metabolic diseases were further validated by Western blotting. The animals maintained on the high-fat diet had significantly (p < 0.05) higher serum triglyceride, cholesterol, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and uric acid. Animals consuming a high-fat diet also had significantly (p < 0.05) more accumulation of triglyceride and cholesterol in livers. Xanthine dehydrogenase (XDH), which plays an important role in uric acid synthesis, was up-regulated by the high-fat diet (p < 0.05). The α-subunit of hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (HADHA), which catalyzes the second and third reactions of β-oxidation, was down-regulated by the high-fat diet (p < 0.05). Aconitate hydratase 2 (ACO2), which catalyzes the conversion of citrate to isocitrate in TCA cycle, was down-regulated in animals of the high-fat group (p < 0.05). Inflammatory markers annexin A3 (ANXA3) and annexin A5 (ANXA5) were up-regulated by the high-fat diet (p < 0.05). Moreover, enzymes involved in the urea cycle were suppressed by high-fat diet, including carbamoyl phosphate synthase 1 (CPS1), ornithine transcarbamoylase (OTC), argininosuccinate synthase (ASS), argininosuccinate lyase (ASL), and arginase 1 (ARG 1). Post-translational modifications (PTM) of ANXA3, ANXA5, and XDH were also analyzed. A set of differentially expressed proteins were identified as molecular markers for elucidating the pathological mechanism of high-fat diet.
Collapse
Affiliation(s)
- Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University , Taipei 112, Taiwan
| | | | | |
Collapse
|
43
|
Landsverk ML, Zhang VW, Wong LJC, Andersson HC. A SUCLG1 mutation in a patient with mitochondrial DNA depletion and congenital anomalies. Mol Genet Metab Rep 2014; 1:451-454. [PMID: 27896121 PMCID: PMC5121340 DOI: 10.1016/j.ymgmr.2014.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 02/05/2023] Open
Abstract
Defects in two subunits of succinate-CoA ligase encoded by the genes SUCLG1 and SUCLA2 have been identified in mitochondrial DNA (mtDNA) depletion syndromes. Patients generally present with encephalomyopathy and mild methylmalonic acidemia (MMA), however mutations in SUCLG1 normally appear to result in a more severe clinical phenotype. In this report, we describe a patient with fatal infantile lactic acidosis and multiple congenital anomalies (MCAs) including renal and cardiac defects. Molecular studies showed a defective electron transport chain (ETC), mtDNA depletion, and a novel homozygous mutation in the SUCLG1 gene. Although our patient's clinical biochemical phenotype is consistent with a SUCLG1 mutation, it is unclear whether the MCAs observed in our patient are a result of the SUCLG1 mutation or alterations in a second gene. An increasing number of reports have described MCAs associated with mitochondrial disorders and SUCLG1 specifically. Additional studies such as whole exome sequencing will further define whether additional genes are responsible for the observed MCAs.
Collapse
Affiliation(s)
- Megan L Landsverk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Sanford Health, Sioux Falls, SD, USA
| | - Victor Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Hans C Andersson
- Hayward Genetics Center, Tulane University, New Orleans, LA, USA; Department of Pediatrics, Tulane University, New Orleans, LA, USA
| |
Collapse
|
44
|
Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014; 17:76-100. [PMID: 24929216 DOI: 10.1016/j.mito.2014.05.007] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/19/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic β-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection.
Collapse
Affiliation(s)
- M Adeva-Andany
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain.
| | - M López-Ojén
- Internal Medicine Division, Policlínica Assistens, c/Federico García, 4-planta baja, 15009 La Coruña, Spain
| | - R Funcasta-Calderón
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - E Ameneiros-Rodríguez
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - C Donapetry-García
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - M Vila-Altesor
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - J Rodríguez-Seijas
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| |
Collapse
|
45
|
Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014; 13:433-44. [DOI: 10.1038/nrd4280] [Citation(s) in RCA: 451] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Kerner J, Minkler PE, Lesnefsky EJ, Hoppel CL. Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation. J Biol Chem 2014; 289:10223-34. [PMID: 24558043 DOI: 10.1074/jbc.m113.524314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat hearts were perfused with [1,2,3,4-(13)C4]palmitic acid (M+4), and the isotopic patterns of myocardial acylcarnitines and acyl-CoAs were analyzed using ultra-HPLC-MS/MS. The 91.2% (13)C enrichment in palmitoylcarnitine shows that little endogenous (M+0) palmitate contributed to its formation. The presence of M+2 myristoylcarnitine (95.7%) and M+2 acetylcarnitine (19.4%) is evidence for β-oxidation of perfused M+4 palmitic acid. Identical enrichment data were obtained in the respective acyl-CoAs. The relative (13)C enrichment in M+4 (84.7%, 69.9%) and M+6 (16.2%, 17.8%) stearoyl- and arachidylcarnitine, respectively, clearly shows that the perfused palmitate is chain-elongated. The observed enrichment of (13)C in acetylcarnitine (19%), M+6 stearoylcarnitine (16.2%), and M+6 arachidylcarnitine (17.8%) suggests that the majority of two-carbon units for chain elongation are derived from β-oxidation of [1,2,3,4-(13)C4]palmitic acid. These data are explained by conversion of the M+2 acetyl-CoA to M+2 malonyl-CoA, which serves as the acceptor for M+4 palmitoyl-CoA in chain elongation. Indeed, the (13)C enrichment in mitochondrial acetyl-CoA (18.9%) and malonyl-CoA (19.9%) are identical. No (13)C enrichment was found in acylcarnitine species with carbon chain lengths between 4 and 12, arguing against the simple reversal of fatty acid β-oxidation. Furthermore, isolated, intact rat heart mitochondria 1) synthesize malonyl-CoA with simultaneous inhibition of carnitine palmitoyltransferase 1b and 2) catalyze the palmitoyl-CoA-dependent incorporation of (14)C from [2-(14)C]malonyl-CoA into lipid-soluble products. In conclusion, rat heart has the capability to chain-elongate fatty acids using mitochondria-derived two-carbon chain extenders. The data suggest that the chain elongation process is localized on the outer surface of the mitochondrial outer membrane.
Collapse
|
47
|
Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2014; 306:F367-78. [PMID: 24305473 DOI: 10.1152/ajprenal.00571.2013] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.
Collapse
Affiliation(s)
- Ruochen Che
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Yanggang Yuan
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
48
|
Go YM, Roede JR, Orr M, Liang Y, Jones DP. Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of cd toxicity. Toxicol Sci 2014; 139:59-73. [PMID: 24496640 DOI: 10.1093/toxsci/kfu018] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) exposure contributes to human diseases affecting liver, kidney, lung, and other organ systems, but mechanisms underlying the pleotropic nature of these toxicities are poorly understood. Cd accumulates in humans from dietary, environmental (including cigarette smoke), and occupational sources, and has a twenty-year biologic half-life. Our previous mouse and cell studies showed that environmental low-dose Cd exposure altered protein redox states resulting in stimulation of inflammatory signaling and disruption of the actin cytoskeleton system, suggesting that Cd could impact multiple mechanisms of disease. In the current study, we investigated the effects of acute Cd exposure on the redox proteome and metabolome of mouse liver mitochondria to gain insight into associated toxicological mechanisms and functions. We analyzed redox states of liver mitochondrial proteins by redox proteomics using isotope coded affinity tag (ICAT) combined mass spectrometry. Redox ICAT identified 2687 cysteine-containing peptides (peptidyl Cys) of which 1667 peptidyl Cys (657 proteins) were detected in both control and Cd-exposed samples. Of these, 46% (1247 peptidyl Cys, 547 proteins) were oxidized by Cd more than 1.5-fold relative to controls. Bioinformatics analysis using MetaCore software showed that Cd affected 86 pathways, including 24 Cys in proteins functioning in branched chain amino acid (BCAA) and 14 Cys in proteins functioning in fatty acid (acylcarnitine/carnitine) metabolism. Consistently, high-resolution metabolomics data showed that Cd treatment altered levels of BCAA and carnitine metabolites. Together, these results show that mitochondrial protein redox and metabolites are targets in Cd-induced hepatotoxicity. The results further indicate that redox proteomics and metabolomics can be used in an integrated systems approach to investigate complex disease mechanisms.
Collapse
Affiliation(s)
- Young-Mi Go
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, Georgia 30322
| | | | | | | | | |
Collapse
|
49
|
HIBCH mutations can cause Leigh-like disease with combined deficiency of multiple mitochondrial respiratory chain enzymes and pyruvate dehydrogenase. Orphanet J Rare Dis 2013; 8:188. [PMID: 24299452 PMCID: PMC4222069 DOI: 10.1186/1750-1172-8-188] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/09/2013] [Indexed: 12/21/2022] Open
Abstract
Background Deficiency of 3-hydroxy-isobutyryl-CoA hydrolase (HIBCH) caused by HIBCH mutations is a rare cerebral organic aciduria caused by disturbance of valine catabolism. Multiple mitochondrial respiratory chain (RC) enzyme deficiencies can arise from a number of mechanisms, including defective maintenance or expression of mitochondrial DNA. Impaired biosynthesis of iron-sulphur clusters and lipoic acid can lead to pyruvate dehydrogenase complex (PDHc) deficiency in addition to multiple RC deficiencies, known as the multiple mitochondrial dysfunctions syndrome. Methods Two brothers born to distantly related Pakistani parents presenting in early infancy with a progressive neurodegenerative disorder, associated with basal ganglia changes on brain magnetic resonance imaging, were investigated for suspected Leigh-like mitochondrial disease. The index case had deficiencies of multiple RC enzymes and PDHc in skeletal muscle and fibroblasts respectively, but these were normal in his younger brother. The observation of persistently elevated hydroxy-C4-carnitine levels in the younger brother led to suspicion of HIBCH deficiency, which was investigated by biochemical assay in cultured skin fibroblasts and molecular genetic analysis. Results Specific spectrophotometric enzyme assay revealed HIBCH activity to be below detectable limits in cultured skin fibroblasts from both brothers. Direct Sanger sequence analysis demonstrated a novel homozygous pathogenic missense mutation c.950G <A; p.Gly317Glu in the HIBCH gene, which segregated with infantile-onset neurodegeneration within the family. Conclusions HIBCH deficiency, a disorder of valine catabolism, is a novel cause of the multiple mitochondrial dysfunctions syndrome, and should be considered in the differential diagnosis of patients presenting with multiple RC deficiencies and/or pyruvate dehydrogenase deficiency.
Collapse
|
50
|
Measurement of succinyl-carnitine and methylmalonyl-carnitine on dried blood spot by liquid chromatography-tandem mass spectrometry. Clin Chim Acta 2013; 429:30-3. [PMID: 24269713 DOI: 10.1016/j.cca.2013.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 11/14/2013] [Accepted: 11/14/2013] [Indexed: 11/24/2022]
Abstract
Methylmalonic aciduria (MMA) is one of the most frequent organic acidurias, a class of diseases caused by enzymatic defects mainly involved in the catabolism of branched-chain amino acids. Recently, mild MMA and C4-dicarboxylyl-carnitine (C4DC-C) accumulation have been reported in patients carrying mutation in genes encoding the α-subunit (SUCLG1) and the β-subunit (SUCLA2) of the ADP-forming succinyl-CoA synthetase (SCS). We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify in dried blood spot the two isobaric compounds of C4DC-C, succinyl-carnitine and methylmalonyl-carnitine, to allow the differential diagnosis between classical MMA and SCS-related defects. This method, with an easy liquid-phase extraction and derivatization procedure, has been validated to demonstrate the specificity, linearity, recovery, lowest limit of quantification (LLOQ), accuracy and precision for quantitative determination of blood succinyl-carnitine and methylmalonyl-carnitine. The assay was linear over a concentration range of 0.025-10 μmol/L and achieved the LLOQ of 0.025 μmol/L for both metabolites. The average slope, intercept, and coefficient of linear regression (r(2)) were respectively: 0.3389 (95% confidence interval 0.2888-0.3889), 0.0113 (95% confidence interval -0.0157 to 0.0384), 0.9995 (95% confidence interval 0.9990-1.0000) for succinyl-carnitine and 0.5699 (95% confidence interval 0.5263-0.6134), 0.0319 (95% confidence interval -0.0038 to 0.0677), 0.9997 (95% confidence interval 0.9995-1.0000) for methylmalonyl-carnitine. Within-day and between-day coefficients of variation (CV) were 1.94% and 3.19% for succinyl-carnitine and 3.21%, and 2.56 for methylmalonyl-carnitine. This method is accurate and provides a new tool to differentiate patients with classical methylmalonic acidemia from those with SCS-related defects.
Collapse
|