1
|
Nair P, Barrett H, Tanoto K, Xie L, Sun J, Yang D, Yao H, Song D, Peng H. Structure and Toxicity Characterization of Alkyl Hydroxylated Metabolites of 6PPD-Q. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7474-7484. [PMID: 40197020 DOI: 10.1021/acs.est.4c11823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Distinct from other nontoxic phenyl-p-phenylenediamine (PPD) quinones, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) was recently discovered to be regioselectively metabolized to alkyl hydroxylated metabolites (alkyl-OH-6PPD-Q) in rainbow trout. It remains unknown whether the unique alkyl-OH-6PPD-Q contributes to the toxicity of 6PPD-Q. To test this, we herein synthesized chemical standards of alkyl-OH-6PPD-Q isomers and investigated their metabolic formation mechanism and toxicity. The predominant alkyl-OH-6PPD-Q was confirmed to be hydroxylated on the C4 tertiary carbon (C4-OH-6PPD-Q). The formation of C4-OH-6PPD-Q was only observed in microsomal but not in cytosolic fractions of rainbow trout (O. mykiss) liver S9. A general cytochrome P450 (CYP450) inhibitor fluoxetine inhibited the formation of hydroxylated metabolites of 6PPD-Q, supporting that CYP450 catalyzed the hydroxylation. This well-explained the compound- and regio-selective formation of C4-OH-6PPD-Q, due to the weak C-H bond on the C4 tertiary carbon. Surprisingly, while cytotoxicity was observed for 6PPD-Q and C3-OH-6PPD-Q in a coho salmon (O. kisutch) embryo (CSE-119) cell line, no toxicity was observed for C4-OH-6PPD-Q. To further confirm this under physiologically relevant conditions, we fractionated 6PPD-Q metabolites formed in the liver microsome of rainbow trout. Cytotoxicity was observed for the fraction of 6PPD-Q, but not the fraction of C4-OH-6PPD-Q. In summary, this study highlighted the C4 tertiary carbon as the key moiety for both metabolism and toxicity of 6PPD-Q and confirmed that alkyl hydroxylation is a detoxification pathway for 6PPD-Q.
Collapse
Affiliation(s)
- Pranav Nair
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Kaylin Tanoto
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Linna Xie
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Han Yao
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Datong Song
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3J1, Canada
- Structural Genomics Consortium (SGC), University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
2
|
Wang Y, Quan L, Zheng X, Hu Q, Huang X, Pu Y, Xie G, Peng Q. Indole compounds from fermented soybean products activate the aryl hydrocarbon receptor to reduce liver injury. NPJ Sci Food 2025; 9:38. [PMID: 40122901 PMCID: PMC11930980 DOI: 10.1038/s41538-025-00404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
The consumption of stinky tofu, a traditional fermented soybean product from China, elevates the concentrations of indole and trimethylindole in murine feces and increases the levels of indole in serum, as well as indole in the liver. These hepatic compounds act as ligands for the Aryl Hydrocarbon Receptor (AHR), triggering activation of this receptor, which subsequently enhances the expression of the enzyme cytochrome P450 (CYP) 1A1. This upregulation diminishes the levels of pro-inflammatory cytokines, thereby attenuating alcohol-induced liver injury. This study underscores the potential of dietary indole from stinky tofu to mitigate Alcoholic liver disease (ALD), laying a foundation for the development of functional foods and novel treatment strategies for ALD.
Collapse
Affiliation(s)
- Yanyun Wang
- College of Life Science, Leshan Normal University, Leshan, China
| | - Leping Quan
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, China
| | - Qiang Hu
- College of Life Science, Leshan Normal University, Leshan, China
| | - Xiaoli Huang
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing, China
| | - Yang Pu
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing, China
| | - Guangfa Xie
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China.
| | - Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China.
| |
Collapse
|
3
|
Aragie TG, Asres K, Ergete W, Woldekidan S, Degu S, Abebe A, Gemechu W, Furgasa D, Seyoum G. Toxic effects of Lepidium sativum seed fixed oil on Wistar albino rats in acute and subacute toxicity models. FRONTIERS IN TOXICOLOGY 2025; 7:1535597. [PMID: 40191741 PMCID: PMC11969224 DOI: 10.3389/ftox.2025.1535597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction L. sativum L. (family Brassicaceae) is a versatile herbal medicine in Ethiopia. The seed extract is widely employed in traditional medicine, whilst the seed oil is used as edible oil. However, there are no available studies conducted on the safety of the fixed oil of L. sativum seed in Ethiopia. Therefore, this study aimed to evaluate the acute and subacute toxicity of the oil in Wistar albino rats. Methods Acute and subacute toxicity studies were conducted in Wistar albino rats. A single oral dose of L. sativum seed oil was administered, and the animals were followed for 14 days. The subacute oral dose toxicity study was conducted in rats of both sexes by repeated 28-day toxicity test as per OECD guidelines. Body weight was measured weekly, and observations of the animals were made regularly throughout the study period. Organ weight, histopathology, hematology, and clinical chemistry data were collected on the 29th day. One-way analysis of variance (ANOVA) was used to compare the means of the comparison groups and the results were presented as mean ± standard deviation, and significance was determined at the P-value of <0.05. Results In this study, the LD50 of the fixed oil of L. sativum was found to be 2818.32 mg/kg. According to the World Health Organization, the oil is classified as slightly hazardous at a single oral dose administration. In the subacute toxicity study, rats treated with the oil showed significant changes behavioral indices such as piloerection, lethargy, and tremor. In addition, gross pathology of organs, body weight, biochemical, and hematological parameters were deranged. Conclusion The results of the present study demonstrated that the fixed oil of L. sativum has toxic effects. Therefore, it is highly essential to create awareness among the Ethiopian public who use the seeds for medicinal purposes and/or consume the oil as edible oil about the possible health hazards that they may pose.
Collapse
Affiliation(s)
- Teshome Gebremeskel Aragie
- Department of Anatomy, College of Health Sciences, Woldia University, Woldia, Ethiopia
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wondwossen Ergete
- Department of Pathology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Samual Woldekidan
- Biomedical and Clinical Research Team, Traditional and Modern Medicine Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Sileshi Degu
- Biomedical and Clinical Research Team, Traditional and Modern Medicine Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Biomedical and Clinical Research Team, Traditional and Modern Medicine Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Worku Gemechu
- Biomedical and Clinical Research Team, Traditional and Modern Medicine Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Derso Furgasa
- Clinical Chemistry Department, Clinical Trial Research Directorate, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Girma Seyoum
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Chen Y, Jiang Y, Sarvanantharajah N, Apirakkan O, Yang M, Milcova A, Topinka J, Abbate V, Arlt VM, Stürzenbaum SR. Genome-modified Caenorhabditis elegans expressing the human cytochrome P450 (CYP1A1 and CYP1A2) pathway: An experimental model for environmental carcinogenesis and pharmacological research. ENVIRONMENT INTERNATIONAL 2024; 194:109187. [PMID: 39671827 DOI: 10.1016/j.envint.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), including the Group 1 human carcinogen benzo[a]pyrene (BaP), are produced by the incomplete combustion of organic matter and thus are present in tobacco smoke, charbroiled food and diesel exhaust. The nematode Caenorhabditis elegans is an established model organism, however it lacks the genetic components of the classical mammalian cytochrome P450 (CYP)-mediated BaP-diol-epoxide metabolism pathway. We therefore introduced human CYP1A1 or CYP1A2 together with human epoxide hydrolase (EPHX) into the worm genome by Mos1-mediated Single Copy Insertion (MosSCI) and evaluated their response to BaP exposure via toxicological endpoints. Compared to wild-type control, CYP-humanised worms were characterised by an increase in pharyngeal pumping rate and a decrease in volumetric surface area. Furthermore, BaP exposure reduced reproductive performance, as reflected in smaller brood size, which coincided with the downregulation of the nematode-specific major sperm protein as determined by transcriptomics (RNAseq). BaP-mediated reproductive toxicity was exacerbated in CYP-humanised worms at higher exposure levels. Collagen-related genes were downregulated in BaP-exposed animals, which correlate with the reduction in volumetric size. Whole genome DNA sequencing revealed a higher frequency of T > G (A > C) base substitution mutations in worms expressing human CYP1A1;EPHX which aligned with an increase in DNA adducts identified via an ELISA method (but not classical 32P-postlabelling). Overall, the CYP-humanised worms provided new insights into the value of genome-optimised invertebrate models by identifying the benefits and limitations within the context of the (3Rs) concept which aims to replace, reduce and refine the use of animals in research.
Collapse
Affiliation(s)
- Yuzhi Chen
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yang Jiang
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, Netherlands
| | - Nirujah Sarvanantharajah
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Orapan Apirakkan
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mengqi Yang
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Alena Milcova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Toxicology Department, GAB Consulting GmbH, 69126 Heidelberg, Germany
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
5
|
Fadel C, Łebkowska-Wieruszewskac B, Lisowski A, Serih F, Poapolathep A, Čudina N, Giorgi M. Imipramine in dogs: A pharmacokinetic study following oral administration under fasted and fed conditions. Vet J 2024; 308:106250. [PMID: 39362400 DOI: 10.1016/j.tvjl.2024.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
This study investigates the pharmacokinetics (PK) of imipramine, a tricyclic antidepressant used in human psychiatric disorders and increasingly considered in veterinary medicine. Despite its longstanding use in canines, prior research on imipramine's PK in dogs is lacking. This study aimed to determine the PK of imipramine in dogs in regards to feeding conditions, and to ascertain whether desipramine (active metabolite) is formed or not. In this study, six male Labrador dogs underwent oral administration (1.5 mg/kg) of imipramine tablets (10 mg each; Tofranil®, Novartis) in both fasted and fed conditions. Dogs were randomly allocated to one of two treatment groups, employing an open, single-dose, two-treatment, two-phase, cross-over design, with a washout period of one week. Blood was drawn from the left cephalic vein to heparinized tubes at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 6, 8, 10, 24, and 48 h. Plasma concentrations were quantified using a validated HPLC method, and the data were analyzed using PKanalix™ software with a non-compartmental approach. Concentrations of imipramine remained quantifiable up to 1.5 hr after administration under both conditions. Desipramine, in both feeding states, was detectable for a short duration, but not quantifiable. No significant differences were observed in the PK parameters of imipramine between the fasting and fed states. The rapid attainment of maximum concentration (Cmax) occurred within 0.25 h, indicating a swift absorption rate. Notably, the terminal half-life in dogs was remarkably short at 0.25 h, prompting a re-evaluation of dosing strategies. Considering the recommended therapeutic plasma concentrations in humans, the administered dose might result in effective levels for a brief period of time. Future research should explore intravenous administration, multiple-dose studies, and metabolic investigations to further elucidate imipramine's PK in dogs.
Collapse
Affiliation(s)
- C Fadel
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge, 2, Pisa 56124, Italy; Department of Veterinary Medicine, Lebanese University, Faculty of Agronomy Bldg., University Street, Dekwaneh, Beirut, Lebanon
| | - B Łebkowska-Wieruszewskac
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences in Lublin, 13 Akademicka Street Lublin 20-950, Poland
| | - A Lisowski
- Institute of Animal Breeding and Biodiversity Conservation, University of Life Sciences in Lublin, 13 Akademicka Street, Lublin 20-950, Poland
| | - F Serih
- Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, Sassari 07100, Italy
| | - A Poapolathep
- Faculty of Veterinary Medicine, Department of Pharmacology, Kasetsart University, 50 Paholyothin Road, Bangkok 10900, Thailand
| | - N Čudina
- University of Zagreb, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, 55 Ul. Vjekoslava Heinzela, Zagreb 10000, Croatia
| | - M Giorgi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge, 2, Pisa 56124, Italy; Department of Veterinary Medicine, University of Sassari, Via Vienna, 2, Sassari 07100, Italy.
| |
Collapse
|
6
|
Kuvek T, Marcher C, Berteotti A, Lopez Carrillo V, Schleifer KJ, Oostenbrink C. A Computational Pipeline Observes the Flexibility and Dynamics of Plant Cytochrome P450 Binding Sites. Int J Mol Sci 2024; 25:11381. [PMID: 39518933 PMCID: PMC11545509 DOI: 10.3390/ijms252111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Binding site flexibility and dynamics strongly affect the ability of proteins to accommodate substrates and inhibitors. The significance of these properties is particularly pronounced for proteins that are inherently flexible, such as cytochrome P450 enzymes (CYPs). While the research on human CYPs provides detailed knowledge on both structural and functional level, such analyses are still lacking for their plant counterparts. This study aims to bridge this gap. We developed a novel computational pipeline consisting of two steps. Firstly, we use molecular dynamics (MD) simulations to capture the full conformational ensemble for a certain plant CYP. Subsequently, we developed and applied a comprehensive methodology to analyze a number of binding site properties-size, flexibility, shape, hydrophobicity, and accessibility-using the fpocket and mdpocket packages on MD-generated trajectories. The workflow was validated on human CYPs 1A2, 2A6, and 3A4, as their binding site characteristics are well known. Not only could we confirm known binding site properties, but we also identified and named previously unseen binding site channels for CYPs 1A2 and 2A6. The pipeline was then applied to plant CYPs, leading to the first categorization of 15 chosen plant CYPs based on their binding site's (dis)similarities. This study provides a foundation for the largely uncharted fields of plant CYP substrate specificity and facilitates a more precise understanding of their largely unknown specific biological functions. It offers new insights into the structural and functional dynamics of plant CYPs, which may facilitate a more accurate understanding of the fate of agrochemicals or the biotechnological design and exploitation of enzymes with specific functions. Additionally, it serves as a reference for future structural-functional analyses of CYP enzymes across various biological kingdoms.
Collapse
Affiliation(s)
- Tea Kuvek
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Marcher
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
| | - Anna Berteotti
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | | | | | - Chris Oostenbrink
- Institute for Molecular Modeling and Simulation, BOKU University, Muthgasse 18, 1190 Vienna, Austria; (T.K.)
- Christian Doppler Laboratory for Molecular Informatics in the Biosciences, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
7
|
Belančić A, Pavešić Radonja A, Ganoci L, Vitezić D, Božina N. Challenging pharmacotherapy management of a psychotic disorder due to a delicate pharmacogenetic profile and drug-drug interactions: a case report and literature review. Croat Med J 2024; 65:383-395. [PMID: 39219201 PMCID: PMC11399719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
This report presents challenging psychopharmacotherapy management of a psychotic disorder in a patient with a delicate pharmacogenetic profile and drug-drug interactions. A 31-year old woman diagnosed with schizophrenia in 2017 was referred by her psychiatrist to a clinical pharmacologist for interpretation of a pharmacogenetic test and advice regarding optimal psychopharmacotherapy. In spite of adherence to aripiprazole, olanzapine, risperidone, and levomepromazine, and rational anxiolytic therapy, she still experienced anxiety, anhedonia, loss of appetite, sleeping problems, and auditory hallucinations with commands to harm herself. Due to a lack of alternative therapeutic steps, low aripiprazole serum concentrations, and a lack of explanation for pharmacotherapy unresponsiveness, pharmacogenetic testing was performed. The patient was defined as CYP2D6 *1/*1, CYP1A2 *1F/*1F, CYP3A4 *1/*1B, CYP3A5 *1/*3, and having increased activity of the enzymes UGT1A4 and UGT2B7, intermediate activity of ABCB1 transporter, and low activity of COMT. Carbamazepine was discontinued, aripiprazole was increased to a maximum of 30 mg/day orally with long-acting injection (400 mg monthly), and olanzapine was increased to a daily dose of 35 mg orally. These changes led to an optimal therapeutic drug concentration and improved clinical status. At the last follow-up, the patient was without severe auditory hallucinations, became more engaged in daily life, had more interaction with others, had found a job, and even had started an emotional relationship. In psychiatry, pharmacogenetic testing is an important tool for guiding pharmacological therapy, particularly in patients with an unsatisfactory clinical response and a lack of alternative therapeutic steps for pharmacotherapy unresponsiveness.
Collapse
Affiliation(s)
- Andrej Belančić
- Andrej Belančić, Clinical Hospital Centre Rijeka, Krešimirova 42, 51000 Rijeka, Croatia,
| | | | | | | | | |
Collapse
|
8
|
Kao LT, Chen AC, Wang HJ, Wen YL, Lu CK, Liaw CC, Tsai KC, Ueng YF. Xin-yi-san contains potent human CYP1A2 inhibitors and its combined use with theophylline in treatment increases adverse risks in patients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155760. [PMID: 38797029 DOI: 10.1016/j.phymed.2024.155760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/01/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND The Xin-yi-san herbal decoction (XYS) is commonly used to treat patients with allergic rhinitis in Taiwan. Theophylline is primarily oxidized with high affinity by human cytochrome P450 (CYP)1A2, and has a narrow therapeutic index. PURPOSE This study aimed to investigate the inhibition of human CYP1A2-catalyzed theophylline oxidation (THO) by XYS and its adverse effects in patients. METHODS Human CYPs were studied in recombinant enzyme systems. The influence of concurrent XYS usage in theophylline-treated patients was retrospectively analyzed. RESULTS Among the major human hepatic and respiratory CYPs, XYS inhibitors preferentially inhibited CYP1A2 activity, which determined the elimination and side effects of theophylline. Among the herbal components of XYS decoction, Angelicae Dahuricae Radix contained potent THO inhibitors. Furanocoumarin imperatorin was abundant in XYS and Angelicae Dahuricae Radix decoctions, and non-competitively inhibited THO activity with Ki values of 77‒84 nM, higher than those (20‒52 nM) of fluvoxamine, which clinically interacted with theophylline. Compared with imperatorin, the intestinal bacterial metabolite xanthotoxol caused weaker THO inhibition. Consistent with the potency of the inhibitory effects, the docking analysis generated Gold fitness values in the order-fluvoxamine > imperatorin > xanthotoxol. During 2017‒2018, 2.6 % of 201,093 theophylline users consumed XYS. After inverse probability weighting, XYS users had a higher occurrence of undesired effects than non-XYS users; in particular, there was an approximately two-fold higher occurrence of headaches (odds ratio (OR), 2.14; 95 % confidence interval (CI), 1.99‒2.30; p < 0.001) and tachycardia (OR, 1.83; 95 % CI, 1.21‒2.77; p < 0.05). The incidence of irregular heartbeats increased (OR, 1.36; 95 % CI, 1.07‒1.72; p < 0.05) only in the theophylline users who took a high cumulative dose (≥ 24 g) of XYS. However, the mortality in theophylline users concurrently taking XYS was lower than that in non-XYS users (OR, 0.24; 95 % CI, 0.14‒0.40; p < 0.001). CONCLUSION XYS contains human CYP1A2 inhibitors, and undesirable effects were observed in patients receiving both theophylline and XYS. Further human studies are essential to reduce mortality and to adjust the dosage of theophylline in XYS users.
Collapse
Affiliation(s)
- Li-Ting Kao
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - An-Chi Chen
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hong-Jaan Wang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Liang Wen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Kuang Lu
- Division of Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chia-Ching Liaw
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Keng-Chang Tsai
- Division of Chinese Medicinal Chemistry, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yune-Fang Ueng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan; Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Kazan HH, Bulgay C, Zorba E, Dalip M, Ceylan HI, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Ahmetov II, Cerit M. Exploring the relationship between caffeine metabolism-related CYP1A2 rs762551 polymorphism and team sport athlete status and training adaptations. Mol Biol Rep 2024; 51:841. [PMID: 39042267 PMCID: PMC11266271 DOI: 10.1007/s11033-024-09800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND This study aimed to achieve a dual objective: to compare the frequencies of CYP1A2 rs762551 genotypes between team sport athletes and a control group, and to determine the association between the rs762551 polymorphism and changes in physical performance after a six-week training program among elite basketball players. METHODS The study encompassed an analysis of 504 individuals, comprising 320 athletes and 184 controls. For the Turkish cohort, DNA was isolated using the buccal swab method, and genotyping was conducted using the KASP technique. Performance assessments included the Yo-Yo IR2 and 30 m sprint tests. For Russian participants, DNA samples were extracted from peripheral blood, a commercial kit was used for DNA extraction, and genotyping of the rs762551 polymorphism was conducted using DNA microarray. RESULT Notably, a statistically significant linear decline in the prevalence of the CC genotype was observed with ascending levels of athletic achievement within team sports (sub-elite: 18.0%, elite: 8.2%, highly elite: 0%; p = 0.001). Additionally, the CA genotype was the most prevalent genotype in the highly elite group compared to controls (80.0% vs. 45.1%, p = 0.048). Furthermore, statistically significant improvements in Yo-Yo IR2 performance were noted exclusively among basketball players harboring the CA genotype (p = 0.048). CONCLUSIONS The study's findings indicate that the rs762551 CC genotype is a disadvantage in elite team sports, whereas the CA genotype provides an advantage in basketball performance.
Collapse
Affiliation(s)
- Hasan H Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, 06010, Türkiye
| | - Celal Bulgay
- Sports Science Faculty, Bingol University, Bingol, 12000, Türkiye
| | - Ercan Zorba
- Faculty Faculty of Sport Sciences, Mugla Sıtkı Kocman University, Muğla, 48000, Türkiye
| | - Metin Dalip
- Faculty of Physical Culture and Health, University in Tetovo, Tetova, 1200, Republic of North Macedonia
| | - Halil I Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, 25240, Türkiye
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, 420138, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Nikolay A Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ildus I Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, 420012, Russia.
- Department of Physical Education, Plekhanov Russian University of Economics, Moscow, 115093, Russia.
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5AF, UK.
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510, Türkiye
| |
Collapse
|
10
|
Hidayat R, Shoieb SM, Mosa FES, Barakat K, Brocks DR, Isse FA, Gerges SH, El-Kadi AOS. 16R-HETE and 16S-HETE alter human cytochrome P450 1B1 enzyme activity probably through an allosteric mechanism. Mol Cell Biochem 2024; 479:1379-1390. [PMID: 37436655 DOI: 10.1007/s11010-023-04801-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.
Collapse
Affiliation(s)
- Rahmat Hidayat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Farag E S Mosa
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Khaled Barakat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Dion R Brocks
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Samar H Gerges
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada.
| |
Collapse
|
11
|
Selvaratnam RJ, Sovio U, Cook E, Gaccioli F, Charnock-Jones DS, Smith GCS. Objective measures of smoking and caffeine intake and the risk of adverse pregnancy outcomes. Int J Epidemiol 2023; 52:1756-1765. [PMID: 37759082 PMCID: PMC10749751 DOI: 10.1093/ije/dyad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND In pregnancy, women are encouraged to cease smoking and limit caffeine intake. We employed objective definitions of smoking and caffeine exposure to assess their association with adverse outcomes. METHODS We conducted a case cohort study within the Pregnancy Outcome Prediction study to analyse maternal serum metabolomics in samples from 12, 20, 28 and 36 weeks of gestational age. Objective smoking status was defined based on detectable cotinine levels at each time point and objective caffeine exposure was based on tertiles of paraxanthine levels at each time point. We used logistic and linear regression to examine the association between cotinine, paraxanthine and the risk of pre-eclampsia, spontaneous pre-term birth (sPTB), fetal growth restriction (FGR), gestational diabetes mellitus and birthweight. RESULTS There were 914 and 915 women in the smoking and caffeine analyses, respectively. Compared with no exposure to smoking, consistent exposure to smoking was associated with an increased risk of sPTB [adjusted odds ratio (aOR) = 2.58, 95% CI: 1.14 to 5.85)] and FGR (aOR = 4.07, 95% CI: 2.14 to 7.74) and lower birthweight (β = -387 g, 95% CI: -622 g to -153 g). On univariate analysis, consistently high levels of paraxanthine were associated with an increased risk of FGR but that association attenuated when adjusting for maternal characteristics and objective-but not self-reported-smoking status. CONCLUSIONS Based on objective data, consistent exposure to smoking throughout pregnancy was strongly associated with sPTB and FGR. High levels of paraxanthine were not independently associated with any of the studied outcomes and were confounded by smoking.
Collapse
Affiliation(s)
- Roshan J Selvaratnam
- The Ritchie Centre, Department of Obstetrics and Gynaecology, Monash University, VIC, Melbourne, Australia
| | - Ulla Sovio
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emma Cook
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
| | - Francesca Gaccioli
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Zhu W, Li M, Zou J, Zhang D, Fang M, Sun Y, Li C, Tang M, Wang Y, Zhou Q, Zhao T, Li W, Hu Z, Hu B. Induction of local immunosuppression in allogeneic cell transplantation by cell-type-specific expression of PD-L1 and CTLA4Ig. Stem Cell Reports 2023; 18:2344-2355. [PMID: 37995700 PMCID: PMC10724073 DOI: 10.1016/j.stemcr.2023.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Immune rejection has long hindered allogeneic cell transplantation therapy. Current genetic modification approaches, including direct targeting of major histocompatibility complex or constitutive expression of immune inhibitory molecules, exhibit drawbacks such as severe adverse effects or elevated tumorigenesis risks. To overcome these limitations, we introduce an innovative approach to induce cell-type-specific immune tolerance in differentiated cells. By engineering human embryonic stem cells, we ensure the exclusive production of the immune inhibitory molecules PD-L1/CTLA4Ig in differentiated cells. Using this strategy, we generated hepatocyte-like cells expressing PD-L1 and CTLA4Ig, which effectively induced local immunotolerance. This approach was evaluated in a humanized mouse model that mimics the human immune system dynamics. We thus demonstrate a robust and selective induction of immunotolerance specific to hepatocytes, improving graft survival without observed tumorigenesis. This precise immune tolerance strategy holds great promise for advancing the development of stem cell-based therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Wenliang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Mengqi Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jun Zou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Jilin, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin 130061, China
| | - Da Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Minghui Fang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Jilin, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin 130061, China
| | - Yun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Can Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Mingming Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Jilin, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin 130061, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
13
|
Fekete F, Menus Á, Tóth K, Kiss ÁF, Minus A, Sirok D, Belič A, Póti Á, Csukly G, Monostory K. CYP1A2 expression rather than genotype is associated with olanzapine concentration in psychiatric patients. Sci Rep 2023; 13:18507. [PMID: 37898643 PMCID: PMC10613299 DOI: 10.1038/s41598-023-45752-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023] Open
Abstract
Olanzapine is a commonly prescribed atypical antipsychotic agent for treatment of patients with schizophrenia and bipolar disorders. Previous in vitro studies using human liver microsomes identified CYP1A2 and CYP2D6 enzymes being responsible for CYP-mediated metabolism of olanzapine. The present work focused on the impact of CYP1A2 and CYP2D6 genetic polymorphisms as well as of CYP1A2 metabolizing capacity influenced by non-genetic factors (sex, age, smoking) on olanzapine blood concentration in patients with psychiatric disorders (N = 139). CYP2D6 genotype-based phenotype appeared to have negligible contribution to olanzapine metabolism, whereas a dominant role of CYP1A2 in olanzapine exposure was confirmed. However, CYP1A2 expression rather than CYP1A2 genetic variability was demonstrated to be associated with olanzapine concentration in patients. Significant contribution of - 163C > A (rs762551), the most common SNP (single nucleotide polymorphism) in CYP1A2 gene, to enhanced inducibility was confirmed by an increase in CYP1A2 mRNA expression in smokers carrying - 163A, and smoking was found to have appreciable impact on olanzapine concentration normalized by the dose/bodyweight. Furthermore, patients' olanzapine exposure was in strong association with CYP1A2 expression; therefore, assaying CYP1A2 mRNA level in leukocytes can be an appropriate tool for the estimation of patients' olanzapine metabolizing capacity and may be relevant in optimizing olanzapine dosage.
Collapse
Affiliation(s)
- Ferenc Fekete
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, 1117, Hungary
| | - Ádám Menus
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1082, Hungary
| | - Katalin Tóth
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Ádám Ferenc Kiss
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Annamária Minus
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Dávid Sirok
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
- Toxi-Coop Toxicological Research Center, Magyar jakobinusok 4/B, Budapest, 1122, Hungary
| | - Aleš Belič
- Lek Pharmaceuticals d.d., Kolodvorska 27, 1234, Menges, Slovenia
| | - Ádám Póti
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa 6, Budapest, 1082, Hungary
| | - Katalin Monostory
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok 2, Budapest, 1117, Hungary.
| |
Collapse
|
14
|
Grunze H. The role of the D3 dopamine receptor and its partial agonist cariprazine in patients with schizophrenia and substance use disorder. Expert Opin Pharmacother 2023; 24:1985-1992. [PMID: 37817489 DOI: 10.1080/14656566.2023.2266359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Comorbidity of substance use disorder (SUD) with schizophrenia, referred to as dual disorder (DD), significantly increases morbidity and mortality compared to schizophrenia alone. A dopaminergic dysregulation seems to be a common pathophysiological basis of the comorbidity. AREAS COVERED This article reports the current evidence on the role of dopamine dysregulations in DD, the pharmacological profile of cariprazine, a partial agonist of D3 and D2 dopamine receptors, and first clinical observations that may support its usefulness in the therapy of DD. PubMed/MEDLINE was searched for the keywords 'cariprazine,' 'schizophrenia,' 'dual disorder,' 'dopamine,' and 'dopamine receptor.' Preclinical and clinical studies, and reviews published in English were retrieved. EXPERT OPINION Although the management of DD remains challenging, and the evidence for pharmacologic treatments is still unsatisfactory, cariprazine may be a candidate medication in DD due to its unique mechanism of action. Preliminary clinical experiences suggest that cariprazine has both antipsychotic and anticraving properties and should be considered early in patients with DD.
Collapse
Affiliation(s)
- Heinz Grunze
- Psychiatrie Schwäbisch Hall, Schwäbisch Hall, Germany
- Department of Psychiatry, Paracelsus Medical University Nuremberg, Nuremberg, Germany
| |
Collapse
|
15
|
Qubad M, Bittner RA. Second to none: rationale, timing, and clinical management of clozapine use in schizophrenia. Ther Adv Psychopharmacol 2023; 13:20451253231158152. [PMID: 36994117 PMCID: PMC10041648 DOI: 10.1177/20451253231158152] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 03/31/2023] Open
Abstract
Despite its enduring relevance as the single most effective and important evidence-based treatment for schizophrenia, underutilization of clozapine remains considerable. To a substantial degree, this is attributable to a reluctance of psychiatrists to offer clozapine due to its relatively large side-effect burden and the complexity of its use. This underscores the necessity for continued education regarding both the vital nature and the intricacies of clozapine treatment. This narrative review summarizes all clinically relevant areas of evidence, which support clozapine's wide-ranging superior efficacy - for treatment-resistant schizophrenia (TRS) and beyond - and make its safe use eminently feasible. Converging evidence indicates that TRS constitutes a distinct albeit heterogeneous subgroup of schizophrenias primarily responsive to clozapine. Most importantly, the predominantly early onset of treatment resistance and the considerable decline in response rates associated with its delayed initiation make clozapine an essential treatment option throughout the course of illness, beginning with the first psychotic episode. To maximize patients' benefits, systematic early recognition efforts based on stringent use of TRS criteria, a timely offer of clozapine, thorough side-effect screening and management as well as consistent use of therapeutic drug monitoring and established augmentation strategies for suboptimal responders are crucial. To minimize permanent all-cause discontinuation, re-challenges after neutropenia or myocarditis should be considered. Owing to clozapine's unique efficacy, comorbid conditions including substance use and most somatic disorders should not dissuade but rather encourage clinicians to consider clozapine. Moreover, treatment decisions need to be informed by the late onset of clozapine's full effects, which for reduced suicidality and mortality rates may not even be readily apparent. Overall, the singular extent of its efficacy combined with the high level of patient satisfaction continues to distinguish clozapine from all other available antipsychotics.
Collapse
Affiliation(s)
- Mishal Qubad
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Robert A. Bittner
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Heinrich-Hoffmann-Str. 10, D-60528 Frankfurt am Main, Germany
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Jangala M, Manche SK, Katika MM, Koralla RM, Akka J. Association of CYP1A2 and GST gene variants with asthma in cases presenting with allergic chronic rhinosinusitis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Abstract
Background
Inter-individual differences in regulation and activity of xenobiotic metabolizing enzymes (XMEs) CYP1A and GST might cause distinct susceptibility to chronic rhinosinusitis (CRS) phenotypes that need to be explored. Therefore, the present study aimed to evaluate the role and risk of CYP1A and GST gene variants in allergic CRS subjects with and without asthma. A total of 224 allergic CRS cases with asthma, 252 allergic CRS cases without asthma, and 350 healthy control subjects were subjected to genetic analysis. Gene variants of cytochrome P450 (CYP1A1 T3801 rs4646903, A2455G rs1048943, C2453A rs1799814 and CYP1A2 G3858A rs2069514, T739G rs2069526, C163A rs762551) and glutathione S-transferase P (GSTP1 A313G rs1605 & C341T rs1799811) were investigated by polymerase chain reaction-restriction fragment length polymorphism and GSTM1null, and GSTT1null by multiplex PCR methods.
Results
TG genotype of CYP1A2 rs2069526 (OR 1.73, 95% CI 1.20–2.50, p < 0.002), TC genotype of CYP1A1 rs4646903 (OR 1.43, 95% CI 1.03–1.98, p < 0.031) and GSTM1del (OR 1.87, 95% CI 1.24–2.81, p < 0.003) and were found to be significantly associated with only allergic CRS cases. CYP1A2 rs2069526 (OR 2.33, 95% CI 1.61–3.37, p < 0.001), GG genotype of GSTP1 rs1605 (OR 4.75, 95% CI 2.62–8.63, p < 0.001), GSTM1del (OR 1.82, 95% CI 1.19–2.78, p < 0.006), GSTM1/GSTT1 double null (OR 2.58, 95% CI 1.36–4.87, p < 0.004) and were found to be significantly associated with asthma in allergic CRS cases. Further, G-G-C haplotype of CYP1A2 rs2069514, rs2069526 and rs762551 gene variants was found to increase the risk for asthma by 5 folds in allergic CRS subjects (OR 5.53, 95% CI 1.76–17.31, p < 0.003) while T-G-C haplotype of CYP1A1 rs4646903, rs1048943, rs1799814 (OR 0.11, 95% CI (0.01–0.95, p < 0.045) and A-T haplotype of GSTP1 rs1605, rs1799811 (OR 0.27, 95% CI (0.08–0.89, p < 0.032) showed protective effect in allergic CRS group.
Conclusion
The present study reports the significantly increased association of CYP1A2, GSTM, and GSTP gene variants with asthma in allergic CRS.
Collapse
|
18
|
4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci 2023; 24:ijms24032129. [PMID: 36768453 PMCID: PMC9917189 DOI: 10.3390/ijms24032129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors.
Collapse
|
19
|
Vilčková M, Škereňová M, Dobrota D, Kaplán P, Jurečeková J, Kliment J, Híveš M, Dušenka R, Evin D, Knoško Brožová M, Kmeťová Sivoňová M. Polymorphisms in the gene encoding CYP1A2 influence prostate cancer risk and progression. Oncol Lett 2023; 25:85. [PMID: 36760517 PMCID: PMC9878356 DOI: 10.3892/ol.2023.13671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023] Open
Abstract
The role of the cytochrome P450 1A2 (CYP1A2) rs2472299, rs2470890 and rs11072508 polymorphisms in prostate cancer risk, disease progression and tumour development remains unclear. The potential associations of these three CYP1A2 polymorphisms and haplotypes with prostate cancer susceptibility and its clinicopathological characteristics were therefore investigated. The present case-control study consisted of 522 patients with prostate cancer and 554 healthy controls. High-resolution melting analysis was used to determine the CYP1A2 polymorphisms. No significant association in prostate cancer risk was seen for CYP1A2 rs2472299 and rs11072508. However, a significantly decreased risk of prostate cancer was found for CYP1A2 rs2470890 [odds ratio (OR), 0.67; P=0.02] in the recessive model. After analysis of the associations of clinical status and these three CYP1A2 polymorphisms, the CYP1A2 rs2470890 and rs11072508 polymorphisms showed a positive association with a higher Gleason score (rs2470890 OR, 1.36, P=0.04 in the allelic model; rs11072508 OR, 1.37, P=0.04 in the allelic model and OR, 1.60, P=0.03 in the dominant model). All three polymorphisms showed a significant positive association with pathological T stage in the additive, allelic and dominant genetic models (P<0.05). Haplotype analysis revealed that the most common haplotypes 'GTT' and 'ACC' were significantly associated with pathological T stages 3 and 4 (OR, 0.62; P=0.02 and OR, 1.54; P=0.03, respectively). A significant association was found between the 'GTT' haplotype and the Gleason score (OR, 0.71; P=0.03). In conclusion, these CYP1A2 polymorphisms and haplotypes have the potential to predict prostate cancer disease progression.
Collapse
Affiliation(s)
- Marta Vilčková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Mária Škereňová
- Department of Clinical Biochemistry, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Dušan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Department of Clinical Biochemistry, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Jana Jurečeková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Ján Kliment
- Department of Urology, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Márk Híveš
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Róbert Dušenka
- Department of Urology, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Daniel Evin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Department of Nuclear Medicine, Jessenius Faculty of Medicine and University Hospital Martin, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Martina Knoško Brožová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Monika Kmeťová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic,Correspondence to: Dr Monika Kmet'ová Sivoňová, Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 4D Malá Hora, 03601 Martin, Slovak Republic, E-mail:
| |
Collapse
|
20
|
Pharmakogenomik der perimenopausalen Hormontherapie. GYNAKOLOGISCHE ENDOKRINOLOGIE 2022. [DOI: 10.1007/s10304-022-00483-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Atractylodes lancea for cholangiocarcinoma: Modulatory effects on CYP1A2 and CYP3A1 and pharmacokinetics in rats and biodistribution in mice. PLoS One 2022; 17:e0277614. [PMID: 36374864 PMCID: PMC9662714 DOI: 10.1371/journal.pone.0277614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC. (A. lancea: AL) is a promising candidate for the treatment of cholangiocarcinoma (bile duct cancer). The study investigated (i) the propensity of capsule formulation of the standardized extract of AL (formulated AL) to modulate mRNA and protein expression and activities of CYP1A2 and CYP3A1 in rats after long- and short-term exposure, (ii) the pharmacokinetics of atractylodin (ATD: active constituent) after long-term administration of formulated AL, and (iii) the biodistribution of atractylodin-loaded polylactic-co-glycolic acid (ATD-PLGA-NPs) in mice. To investigate CYP1A2 and CYP3A1 modulatory activities following long-term exposure, rats of both genders received oral doses of the formulated AL at 1,000 (low dose), 3,000 (medium dose), and 5,000 (high dose) mg/kg body weight daily for 12 months. For short-term effects, male rats were orally administered the formulated AL at the dose of 5,000 mg/kg body weight daily for 1, 7, 14 and 21 days. The pharmacokinetic study was conducted in male rats after administration of the formulated AL at the dose of 5,000 mg/kg body weight daily for 9 months. The biodistribution study was conducted in a male mouse receiving ATD-PLGA-NPs at the equivalent dose to ATD of 100 mg/kg body weight. The high dose of formulated AL produced an inducing effect on CYP1A2 but an inhibitory effect on CYP3A1 activities in male rats. The low dose, however, did not inhibit or induce the activities of both enzymes in male and female rats. ATD reached maximum plasma concentration (Cmax) of 359.73 ng/mL at 3 h (tmax). Mean residence time (MRT) and terminal phase elimination half-life (t1/2z) were 3.03 and 0.56 h, respectively. The extent of biodistribution of ATD in mouse livers receiving ATD-PLGA-NPs was 5-fold of that receiving free ATD. Clinical use of low-dose AL should be considered to avoid potential herb-drug interactions after long-term use. ATD-PLGA-NPs is a potential drug delivery system for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Nadda Muhamad
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand
- * E-mail:
| |
Collapse
|
22
|
Zhang H, Yang Y, Guo F, He R, Gao S, Cao C, Zhao C, Xia B, Xu Q, Gong P, Wang L, Su P, Liu T. Danlu tongdu tablets: Preclinical safety evaluation and mechanism of hepatotoxicity. Front Pharmacol 2022; 13:1023379. [PMID: 36408216 PMCID: PMC9669307 DOI: 10.3389/fphar.2022.1023379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Danlu tongdu tablets (DLTD) is a listed Chinese patent medicine collected in the Pharmacopoeia of the People’s Republic of China (version 2020). This prescription has been applied in clinics in China for lumbar spinal stenosis and lumbosacral disc herniations. The wide application of Danlu tongdu in therapy has raised some clinical adverse reactions, such as significant elevation of alanine transaminase (ALT) and aspartate transaminase (AST) in individual patients after use. The present study aimed to investigate the safety of Danlu tongdu and analyze its adverse effects on the liver. The maximum feasible dose (MFD) was used to carry out the acute toxicity tests. Mortality, adverse effects, body weight and food consumption were recorded for up to 14 days post treatment. In the 6-month chronic toxicity test, sprague-dawley rats were randomly divided into four groups according body weight, the experimental groups were administrated to rats at the concentrations of 1.67, 3.34 and 6.67 g/kg/day, whereas the control group was received the ultrapure water (vehicle) only, 10 ml/kg, once a day. The animal’s body weight, food consumption was monitored weekly. In addition, their hematological and biochemical parameters, body and organ weights and histopathology, were all measured at specific observation time points. Additionally, we further explored the adverse effects mechanism of Danlu tongdu on the liver through transcriptome analysis. No deaths or substance-relative toxicity were observed in the acute toxicity study or the 6-month chronic toxicity study with doses of 1.67 g/kg and 3.34 g/kg, respectively. We found that mild hypertrophy and hyperplasia of hepatic interlobular bile ducts were detected in some rats with doses of 6.67 g/kg after repeated oral administration of Danlu tongdu for 13 and 26 weeks, but the above changes in liver were reversible. The results of transcriptome sequencing showed that Danlu tongdu had a significant effect on cytochrome P450 enzymes in rat liver, especially cytochrome P450 1 (CYP1) subtype. Therefore, the toxic target organ of Danlu tongdu is the liver and the mechanism of mild liver injury is closely related to the up-regulation of cytochrome P450 1A1 (CYP1A1) and cytochrome P450 1A2 (CYP1A2) expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ping Su
- *Correspondence: Ping Su, ; Ting Liu,
| | - Ting Liu
- *Correspondence: Ping Su, ; Ting Liu,
| |
Collapse
|
23
|
He Y, Cen H, Guo L, Zhang T, Yang Y, Dong D, Wu B. Circadian Oscillator NPAS2 Regulates Diurnal Expression and Activity of CYP1A2 in Mouse Liver. Biochem Pharmacol 2022; 206:115345. [DOI: 10.1016/j.bcp.2022.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/14/2022]
|
24
|
Kammala AK, Lintao RC, Vora N, Mosebarger A, Khanipov K, Golovko G, Yaklic JL, Peltier MR, Conrads TP, Menon R. Expression of CYP450 enzymes in human fetal membranes and its implications in xenobiotic metabolism during pregnancy. Life Sci 2022; 307:120867. [DOI: 10.1016/j.lfs.2022.120867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
25
|
Imidazole-Based Monomer as Functional Unit for the Specific Detection of Paraxanthine in Aqueous Environments. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In the context of personalized medicine, the paraxanthine-to-caffeine ratio is an accepted standard for the optimization of the dose-response effect of many pharmaceuticals in individual patients. There is a strong drive towards the development of cheaper and portable devices for the detection of biomarkers, including paraxanthine and caffeine, which requires materials with high binding efficiency and specificity. We designed a recognition unit specific for paraxanthine which can discriminate molecules with small structural differences and can be used to increase the sensitivity of sensors. A number of functional units were screened by nuclear magnetic resonance for their ability to form specific binding interactions with paraxanthine in water and negligible interactions with its structural analogue caffeine. Imidazole was identified as the unit showing the most promising results and its two polymerizable derivatives were evaluated by isothermal titration calorimetry to identify the best monomer. The data suggested that 4-vinylimidazole was the most promising unit forming specific and strong binding interaction with paraxanthine. The calorimetry experiments allowed also the determination of the thermodynamic parameters of all interactions and the association constant values. Optimization of polymerization protocols in water, achieving high monomer conversions and chemical yields, demonstrate the suitability of the selected functional monomer for polymer preparations, targeting the detection of paraxanthine in aqueous environments.
Collapse
|
26
|
A Disproportionality Analysis of Drug-Drug Interactions of Tizanidine and CYP1A2 Inhibitors from the FDA Adverse Event Reporting System (FAERS). Drug Saf 2022; 45:863-871. [PMID: 35834155 DOI: 10.1007/s40264-022-01200-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Tizanidine is primarily metabolized via cytochrome P450 (CYP) 1A2 and therefore medications that inhibit the enzyme will affect the clearance of tizanidine, leading to increased plasma concentrations of tizanidine and potentially serious adverse events. OBJECTIVES Our aim was to study the occurrence of adverse events reported in the FDA Adverse Event Reporting System (FAERS) involving the combination of tizanidine and drugs that inhibit the metabolic activity of CYP1A2. METHODS A disproportionality analysis of FAERS reports from 2004 quarter 1 through 2020 quarter 3 was conducted to calculate the reporting odds ratio (ROR) of reports mentioning tizanidine in a suspect or interacting role or having any role, a CYP1A2 inhibitor, and the following adverse events: hypotension, bradycardia, syncope, shock, cardiorespiratory arrest, and fall or fracture. RESULTS A total of 89 reports were identified mentioning tizanidine, at least one CYP1A2 inhibitor, and one of the adverse events of interest. More than half of the reports identified tizanidine as having a suspect or interacting role (n = 59, 66.3%), and the reports more frequently involved women (n = 58, 65.1%). The median age was 56.1 years (standard deviation 17.1). Some of the important safety signals included interactions between tizanidine in a suspect or interacting role and ciprofloxacin (ROR for hypotension 28.1, 95% confidence interval [CI] 19.2-41.2) or fluvoxamine (ROR for hypotension 36.9, 95% CI 13.1-103.4), and also when reported in "any role" with ciprofloxacin (ROR for hypotension 6.3, 95% CI 4.7-8.5), fluvoxamine (ROR for hypotension 11.4, 95% CI 4.5-28.8), and zafirlukast (ROR for falls 16.0, 95% CI 6.1-42.1). CONCLUSIONS Reports involving tizanidine and a CYP1A2 inhibitor have higher odds of reporting hypotension. This study suggests that concurrent use of tizanidine with CYP1A2 inhibitors may lead to serious health consequences associated with low blood pressure such as falls and fractures.
Collapse
|
27
|
van Vugt-Lussenburg BMA, Capinha L, Reinen J, Rooseboom M, Kranendonk M, Onderwater RCA, Jennings P. " Commandeuring" Xenobiotic Metabolism: Advances in Understanding Xenobiotic Metabolism. Chem Res Toxicol 2022; 35:1184-1201. [PMID: 35768066 PMCID: PMC9297329 DOI: 10.1021/acs.chemrestox.2c00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The understanding
of how exogenous chemicals (xenobiotics) are
metabolized, distributed, and eliminated is critical to determine
the impact of the chemical and its metabolites to the (human) organism.
This is part of the research and educational discipline ADMET (absorption,
distribution, metabolism, elimination, and toxicity). Here, we review
the work of Jan Commandeur and colleagues who have not only made a
significant impact in understanding of phase I and phase II metabolism
of several important compounds but also contributed greatly to the
development of experimental techniques for the study of xenobiotic
metabolism. Jan Commandeur’s work has covered a broad area
of research, such as the development of online screening methodologies,
the use of a combination of enzyme mutagenesis and molecular modeling
for structure–activity relationship (SAR) studies, and the
development of novel probe substrates. This work is the bedrock of
current activities and brings the field closer to personalized (cohort-based)
pharmacology, toxicology, and hazard/risk assessment.
Collapse
Affiliation(s)
| | - Liliana Capinha
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jelle Reinen
- Charles River Den Bosch, Hambakenwetering 7, 5203 DL Hertogenbosch, The Netherlands
| | - Martijn Rooseboom
- Shell Global Solutions International B.V., 1030 BN The Hague, The Netherlands
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | | | - Paul Jennings
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
28
|
Zayed A, Sobeh M, Farag MA. Dissecting dietary and semisynthetic volatile phenylpropenes: A compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr 2022; 63:11105-11124. [PMID: 35708064 DOI: 10.1080/10408398.2022.2087175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylpropenes represent a major subclass of plant volatiles, including eugenol, and (E)-anethole. They contribute to the flavor and aroma of many chief herbs and spices, to exert distinct notes in food, i.e., spicy anise- and clove-like to fruit. Asides from their culinary use, they appear to exert general health effects, whereas some effects are specific, e.g., eugenol being a natural local anesthetic. This review represents the most comprehensive overview of phenylpropenes with respect to their chemical structures, different health effects, and their food applications as flavor and food preservatives. Side effects and toxicities of these compounds represent the second main part of this review, as some were reported for certain metabolites generated inside the body. Several metabolic reactions mediating for phenylpropenes metabolism in rodents via cytochrome P450 (CYP450) and sulfotransferase (SULT) enzymes are presented being involved in their toxicities. Such effects can be lessened by influencing their pharmacokinetics through a matrix-derived combination effect via administration of herbal extracts containing SULT inhibitors, i.e., nevadensin in sweet basil. Moreover, structural modification of phenylpropanes appears to improve their effects and broaden their applications. Hence, such review capitalizing on phenylpropenes can help optimize their applications in nutraceuticals, cosmeceuticals, and food applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Fekete F, Mangó K, Minus A, Tóth K, Monostory K. CYP1A2 mRNA Expression Rather than Genetic Variants Indicate Hepatic CYP1A2 Activity. Pharmaceutics 2022; 14:pharmaceutics14030532. [PMID: 35335907 PMCID: PMC8954692 DOI: 10.3390/pharmaceutics14030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
CYP1A2, one of the most abundant hepatic cytochrome P450 enzymes, is involved in metabolism of several drugs and carcinogenic compounds. Data on the significance of CYP1A2 genetic polymorphisms in enzyme activity are highly inconsistent; therefore, the impact of CYP1A2 genetic variants (−3860G>A, −2467delT, −739T>G, −163C>A, 2159G>A) on mRNA expression and phenacetin O-dealkylation selective for CYP1A2 was investigated in human liver tissues and in psychiatric patients belonging to Caucasian populations. CYP1A2*1F, considered to be associated with high CYP1A2 inducibility, is generally identified by the presence of −163C>A polymorphism; however, we demonstrated that −163C>A existed in several haplotypes (CYP1A2*1F, CYP1A2*1L, CYP1A2*1M, CYP1A2*1V, CYP1A2*1W), and consequently, CYP1A2*1F was a much rarer allelic variant (0.4%) than reported in Caucasian populations. Of note, −163C>A polymorphism was found to result in an increase of neither mRNA nor the activity of CYP1A2. Moreover, hepatic CYP1A2 activity was associated with hepatic or leukocyte mRNA expression rather than genetic polymorphisms of CYP1A2. Consideration of non-genetic phenoconverting factors (co-medication with CYP1A2-specific inhibitors/inducers, tobacco smoking and non-specific factors, including amoxicillin+clavulanic acid therapy or chronic alcohol consumption) did not much improve genotype−phenotype estimation. In conclusion, CYP1A2-genotyping is inappropriate for the prediction of CYP1A2 function; however, CYP1A2 mRNA expression in leukocytes can inform about patients’ CYP1A2-metabolizing capacity.
Collapse
Affiliation(s)
- Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (F.F.); (K.M.); (A.M.); (K.T.)
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (F.F.); (K.M.); (A.M.); (K.T.)
| | - Annamária Minus
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (F.F.); (K.M.); (A.M.); (K.T.)
| | - Katalin Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (F.F.); (K.M.); (A.M.); (K.T.)
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (F.F.); (K.M.); (A.M.); (K.T.)
- Correspondence:
| |
Collapse
|
30
|
Khan S, Buğday N, UrRehman A, Ul Haq I, Yaşar S, Özdemir İ. Synthesis, Molecular Docking and Biological Evaluation of 5‐Alkyl (aryl)‐2‐isobutylthiazole Derivatives: As α‐amylase, α‐Glucosidase, and Protein Kinase Inhibitors. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siraj Khan
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Nesrin Buğday
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
| | - Asim UrRehman
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences Quaid‐i‐Azam University Islamabad Pakistan
| | - Sedat Yaşar
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art İnönü University Malatya Turkey
- Inönü University, Catalysis Research and Application Center Malatya Turkey
- İnönü University, Drug Application and Research Center Malatya Turkey
| |
Collapse
|
31
|
Wu Y, Li M, Guo Y, Liu T, Zhong L, Huang C, Ye C, Liu Q, Ren Z, Wang Y. The Effects of AT-533 and AT-533 gel on Liver Cytochrome P450 Enzymes in Rats. Eur J Drug Metab Pharmacokinet 2022; 47:345-352. [PMID: 35137361 DOI: 10.1007/s13318-022-00757-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES AT-533 is a novel heat shock protein 90 inhibitor, which exhibits various biological activities in vitro and in vivo. Cytochrome P450 (CYP) enzymes in the liver are involved in the biotransformation of drugs and considered to be essential indicators of liver toxicity. The aim of this study was to assess the effect of AT-533, either as active pharmaceutical ingredient or in gel form, on liver CYP enzymes. METHODS The effect of AT-533 or AT-533 gel on rat liver cytochrome P450 enzymes, including CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, was analyzed using LC-MS/MS. RESULTS AT-533 and AT-533 gel did not significantly increase or reduce the enzymatic activity of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 at any treatment dose. CONCLUSIONS AT-533 and AT-533 gel did not have any effect on CYP activity and may be considered safe for external use in gel form, as an alternative to conventional treatment.
Collapse
Affiliation(s)
- Yanting Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Menghe Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yuying Guo
- Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China
| | - Tao Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Lishan Zhong
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Chen Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Cuifang Ye
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Qiuying Liu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China.,Department of pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhe Ren
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China.,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, No. 601, Whampoa Road West, Guangzhou, 510632, People's Republic of China. .,Department of Cell Biology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, People's Republic of China. .,Department of Cell Biology, Guangzhou Jinan Biomedicine Research and Development Center Co. Ltd, Guangzhou, People's Republic of China.
| |
Collapse
|
32
|
Vassiliou D, Sardh E, Harper P, Simon AR, Clausen VA, Najafian N, Robbie GJ, Agarwal S. A Drug-Drug Interaction Study Evaluating the Effect of Givosiran, a Small Interfering Ribonucleic Acid, on Cytochrome P450 Activity in the Liver. Clin Pharmacol Ther 2021; 110:1250-1260. [PMID: 34510420 DOI: 10.1002/cpt.2419] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
Givosiran (trade name GIVLAARI) is a small interfering ribonucleic acid that targets hepatic delta-aminolevulinic acid synthase 1 (ALAS1) messenger RNA for degradation through RNA interference (RNAi) that has been approved for the treatment of acute hepatic porphyria (AHP). RNAi therapeutics, such as givosiran, have a low liability for drug-drug interactions (DDIs) because they are not metabolized by cytochrome 450 (CYP) enzymes, and do not directly inhibit or induce CYP enzymes in the liver. The pharmacodynamic effect of givosiran (lowering of hepatic ALAS1, the first and rate limiting enzyme in the heme biosynthesis pathway) presents a unique scenario where givosiran could potentially impact heme-dependent activities in the liver, such as CYP enzyme activity. This study assessed the impact of givosiran on the pharmacokinetics of substrates of 5 major CYP450 enzymes in subjects with acute intermittent porphyria (AIP), the most common type of AHP, by using the validated "Inje cocktail," comprised of caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), and midazolam (CYP3A4). We show that givosiran treatment had a differential inhibitory effect on CYP450 enzymes in the liver, resulting in a moderate reduction in activity of CYP1A2 and CYP2D6, a minor effect on CYP3A4 and CYP2C19, and a similar weak effect on CYP2C9. To date, this is the first study evaluating the DDI for an oligonucleotide therapeutic and highlights an atypical drug interaction due to the pharmacological effect of givosiran. The results of this study suggest that givosiran does not have a large effect on heme-dependent CYP enzyme activity in the liver.
Collapse
Affiliation(s)
- Daphne Vassiliou
- Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden.,Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Eliane Sardh
- Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden.,Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Pauline Harper
- Centre for Inherited Metabolic Diseases (CMMS), Porphyria Centre Sweden, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amy R Simon
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | | - Sagar Agarwal
- Alnylam Pharmaceuticals, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Zhai XR, Zou ZS, Wang JB, Xiao XH. Herb-Induced Liver Injury Related to Reynoutria multiflora (Thunb.) Moldenke: Risk Factors, Molecular and Mechanistic Specifics. Front Pharmacol 2021; 12:738577. [PMID: 34539416 PMCID: PMC8443768 DOI: 10.3389/fphar.2021.738577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal medicine is widely used in Asia as well as the west. Hepatotoxicity is one of the most severe side effects of herbal medicine which is an increasing concern around the world. Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb., PM) is the most common herb that can cause herb-induced liver injury (HILI). The recent scientific and technological advancements in clinical and basic research are paving the way for a better understanding of the molecular aspects of PM-related HILI (PM-HILI). This review provides an updated overview of the clinical characteristics, predisposing factors, hepatotoxic components, and molecular mechanisms of PM-HILI. It can also aid in a better understanding of HILI and help in further research on the same.
Collapse
Affiliation(s)
- Xing-Ran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Zheng-Sheng Zou
- Peking University 302 Clinical Medical School, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-He Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Frequency of Important CYP450 Enzyme Gene Polymorphisms in the Iranian Population in Comparison with Other Major Populations: A Comprehensive Review of the Human Data. J Pers Med 2021; 11:jpm11080804. [PMID: 34442448 PMCID: PMC8401584 DOI: 10.3390/jpm11080804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Genetic polymorphisms in cytochrome P450 genes can cause alteration in metabolic activity of clinically important medicines. Thus, single nucleotide variants (SNVs) and copy number variations (CNVs) in CYP genes are leading factors of drug pharmacokinetics and toxicity and form pharmacogenetics biomarkers for drug dosing, efficacy, and safety. The distribution of cytochrome P450 alleles differs significantly between populations with important implications for personalized drug therapy and healthcare programs. To provide a meta-analysis of CYP allele polymorphisms with clinical importance, we brought together whole-genome and exome sequencing data from 800 unrelated individuals of Iranian population (100 subjects from 8 major ethnics of Iran) and 63,269 unrelated individuals of five major human populations (EUR, AMR, AFR, EAS and SAS). By integrating these datasets with population-specific linkage information, we evolved the frequencies of 140 CYP haplotypes related to 9 important CYP450 isoenzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) giving a large resource for major genetic determinants of drug metabolism. Furthermore, we evaluated the more frequent Iranian alleles and compared the dataset with the Caucasian race. Finally, the similarity of the Iranian population SNVs with other populations was investigated.
Collapse
|
35
|
OpenCYP: An open source database exploring human variability in activities and frequencies of polymophisms for major cytochrome P-450 isoforms across world populations. Toxicol Lett 2021; 350:267-282. [PMID: 34352333 DOI: 10.1016/j.toxlet.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
The open source database "OpenCYP database" has been developed based on the results of extensive literature searches from the peer-reviewed literature. OpenCYP provides data on human variability on baseline of activities and polymophism frequencies for selected cytochrome P-450 isoforms (CYP1A2, CYP2A6, CYP2D6, CYP3A4/3A5 and CYP3A7) in healthy adult populations from world populations. CYP enzymatic activities were generally expressed as the metabolic ratio (MR) between an unchanged probe drug and its metabolite(s) in urine or plasma measured in healthy adults. Data on other age groups were very limited and fragmented, constituting an important data gap. Quantitative comparisons were often hampered by the different experimental conditions used. However, variability was quite limited for CYP1A2, using caffeine as a probe substrate, with a symmetrical distribution of metabolic activity values. For CYP3A4, human variability was dependent on the probe substrate itself with low variability when data considering the dextromethorphan/demethilathed metabolite MR were used and large variability when the urinary 6β-hydroxycortisol/cortisol ratio was used. The largest variability in CYP activity was shown for CYP2D6 activity, after oral dosing of dextromethorphan, for which genetic polymorphisms are well characterised and constitute a significant source of variability. It is foreseen that the OpenCYP database can contribute to promising tools to support the further development of QIVIVE and PBK models for human risk assessment of chemicals particularly when combined with information on isoform-specific content in cells using proteomic approaches.
Collapse
|
36
|
Sun D, Lu J, Zhang Y, Liu J, Liu Z, Yao B, Guo Y, Wang X. Characterization of a Novel CYP1A2 Knockout Rat Model Constructed by CRISPR/Cas9. Drug Metab Dispos 2021; 49:638-647. [PMID: 34074728 DOI: 10.1124/dmd.121.000403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
CYP1A2, as one of the most important cytochrome P450 isoforms, is involved in the biotransformation of many important endogenous and exogenous substances. CYP1A2 also plays an important role in the development of many diseases because it is involved in the biotransformation of precancerous substances and poisons. Although the generation of Cyp1a2 knockout (KO) mouse model has been reported, there are still no relevant rat models for the study of CYP1A2-mediated pharmacokinetics and diseases. In this report, CYP1A2 KO rat model was established successfully by CRISPR/Cas9 without any detectable off-target effect. Compared with wild-type rats, this model showed a loss of CYP1A2 protein expression in the liver. The results of pharmacokinetics in vivo and incubation in vitro of specific substrates of CYP1A2 confirmed the lack of function of CYP1A2 in KO rats. In further studies of potential compensatory effects, we found that CYP1A1 was significantly upregulated, and CYP2E1, CYP3A2, and liver X receptor β were downregulated in KO rats. In addition, CYP1A2 KO rats exhibited a significant increase in serum cholesterol and free testosterone accompanied by mild liver damage and lipid deposition, suggesting that CYP1A2 deficiency affects lipid metabolism and liver function to a certain extent. In summary, we successfully constructed the CYP1A2 KO rat model, which provides a useful tool for studying the metabolic function and physiologic function of CYP1A2. SIGNIFICANCE STATEMENT: Human CYP1A2 not only metabolizes clinical drugs and pollutants but also mediates the biotransformation of endogenous substances and plays an important role in the development of many diseases. However, there are no relevant CYP1A2 rat models for the research of pharmacokinetics and diseases. This study successfully established CYP1A2 knockout rat model by using CRISPR/Cas9. This rat model provides a powerful tool to study the function of CYP1A2 in drug metabolism and diseases.
Collapse
Affiliation(s)
- Dongyi Sun
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jian Lu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zongjun Liu
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital (D.S., J.Lu, Y.Z., J.Liu, B.Y., Y.G., X.W.), Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences (D.S, J.Lu, Y.Z., J.Liu, X.W.), East China Normal University, Shanghai, People's Republic of China and Department of Cardiology, Central Hospital of Shanghai Putuo District (Z.L.), Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Kumondai M, Gutiérrez Rico EM, Hishinuma E, Nakanishi Y, Yamazaki S, Ueda A, Saito S, Tadaka S, Kinoshita K, Saigusa D, Nakayoshi T, Oda A, Hirasawa N, Hiratsuka M. Functional Characterization of 21 Rare Allelic CYP1A2 Variants Identified in a Population of 4773 Japanese Individuals by Assessing Phenacetin O-Deethylation. J Pers Med 2021; 11:690. [PMID: 34442334 PMCID: PMC8401128 DOI: 10.3390/jpm11080690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cytochrome P450 1A2 (CYP1A2), which accounts for approximately 13% of the total hepatic cytochrome content, catalyzes the metabolic reactions of approximately 9% of frequently used drugs, including theophylline and olanzapine. Substantial inter-individual differences in enzymatic activity have been observed among patients, which could be caused by genetic polymorphisms. Therefore, we functionally characterized 21 novel CYP1A2 variants identified in 4773 Japanese individuals by determining the kinetic parameters of phenacetin O-deethylation. Our results showed that most of the evaluated variants exhibited decreased or no enzymatic activity, which may be attributed to potential structural alterations. Notably, the Leu98Gln, Gly233Arg, Ser380del Gly454Asp, and Arg457Trp variants did not exhibit quantifiable enzymatic activity. Additionally, three-dimensional (3D) docking analyses were performed to further understand the underlying mechanisms behind variant pharmacokinetics. Our data further suggest that despite mutations occurring on the protein surface, accumulating interactions could result in the impairment of protein function through the destabilization of binding regions and changes in protein folding. Therefore, our findings provide additional information regarding rare CYP1A2 genetic variants and how their underlying effects could clarify discrepancies noted in previous phenotypical studies. This would allow the improvement of personalized therapeutics and highlight the importance of identifying and characterizing rare variants.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Evelyn Marie Gutiérrez Rico
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Yuya Nakanishi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
| | - Shuki Yamazaki
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
| | - Akiko Ueda
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
| | - Sakae Saito
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| | - Tomoki Nakayoshi
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (T.N.); (A.O.)
| | - Akifumi Oda
- Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan; (T.N.); (A.O.)
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan; (M.K.); (E.M.G.R.); (Y.N.); (S.Y.); (N.H.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8575, Japan; (E.H.); (A.U.); (S.S.)
- Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8575, Japan; (S.T.); (K.K.); (D.S.)
| |
Collapse
|
38
|
Jessurun NT, Derijks HJ, van Marum RJ, Jongkind A, Giraud EL, van Puijenbroek EP, Grootens KP. Body weight gain in clozapine-treated patients: Is norclozapine the culprit? Br J Clin Pharmacol 2021; 88:853-857. [PMID: 34355423 DOI: 10.1111/bcp.14992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022] Open
Abstract
The antipsychotic drug clozapine is associated with weight gain. The proposed mechanisms include blocking of serotonin (5-HT2a/2c ), dopamine (D2 ) and histamine (H1 ) receptors. Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2) to norclozapine, a metabolite with more 5-HT2c -receptor and less H1 blocking capacity. We hypothesized that norclozapine serum levels correlate with body mass index (BMI), waist circumference and other parameters of the metabolic syndrome. We performed a retrospective cross-sectional study in 39 patients (female n = 8 (20.5%), smokers n = 18 (46.2%), average age 45.8 ± 9.9 years) of a clozapine outpatient clinic in the Netherlands between 1 January 2017 and 1 July 2020. Norclozapine concentrations correlated with waist circumference (r = 0.354, P = .03) and hemoglobin A1c (HbA1c) (r = 0.34, P = .03). In smokers (smoking induces CYP1A2), norclozapine concentrations correlated with waist circumference (r = 0.723, P = .001), HbA1c (r = 0.49, P = .04) and BMI (r = 0.63, P = .004). Elucidating the relationship between norclozapine and adverse effects of clozapine use offers perspectives for interventions and treatment options.
Collapse
Affiliation(s)
- Naomi T Jessurun
- Netherlands Pharmacovigilance Centre Lareb, Hertogenbosch, the Netherlands.,Unit of PharmacoTherapy, Epidemiology & -Economics, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Hieronymus J Derijks
- Department of Pharmacy, Jeroen Bosch Hospital, Hertogenbosch, the Netherlands.,Department of Pharmacy, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Rob J van Marum
- Department of Clinical Pharmacology, Jeroen Bosch Hospital, Hertogenbosch, the Netherlands.,Department of Elderly Care Medicine/Amsterdam Public Health Research Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Amy Jongkind
- Reinier van Arkel Mental Health Institute, Hertogenbosch, the Netherlands
| | - Eline L Giraud
- Netherlands Pharmacovigilance Centre Lareb, Hertogenbosch, the Netherlands
| | - Eugène P van Puijenbroek
- Netherlands Pharmacovigilance Centre Lareb, Hertogenbosch, the Netherlands.,Unit of PharmacoTherapy, Epidemiology & -Economics, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Koen P Grootens
- Reinier van Arkel Mental Health Institute, Hertogenbosch, the Netherlands
| |
Collapse
|
39
|
Shamovsky I, Ripa L, Narjes F, Bonn B, Schiesser S, Terstiege I, Tyrchan C. Mechanism-Based Insights into Removing the Mutagenicity of Aromatic Amines by Small Structural Alterations. J Med Chem 2021; 64:8545-8563. [PMID: 34110134 DOI: 10.1021/acs.jmedchem.1c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic and heteroaromatic amines (ArNH2) are activated by cytochrome P450 monooxygenases, primarily CYP1A2, into reactive N-arylhydroxylamines that can lead to covalent adducts with DNA nucleobases. Hereby, we give hands-on mechanism-based guidelines to design mutagenicity-free ArNH2. The mechanism of N-hydroxylation of ArNH2 by CYP1A2 is investigated by density functional theory (DFT) calculations. Two putative pathways are considered, the radicaloid route that goes via the classical ferryl-oxo oxidant and an alternative anionic pathway through Fenton-like oxidation by ferriheme-bound H2O2. Results suggest that bioactivation of ArNH2 follows the anionic pathway. We demonstrate that H-bonding and/or geometric fit of ArNH2 to CYP1A2 as well as feasibility of both proton abstraction by the ferriheme-peroxo base and heterolytic cleavage of arylhydroxylamines render molecules mutagenic. Mutagenicity of ArNH2 can be removed by structural alterations that disrupt geometric and/or electrostatic fit to CYP1A2, decrease the acidity of the NH2 group, destabilize arylnitrenium ions, or disrupt their pre-covalent transition states with guanine.
Collapse
|
40
|
Luo N, Sun M, Han X, Li L, Wang L, Cheng Z. Preclinical metabolic characterization of mefunidone, a novel anti-renal fibrosis drug. Life Sci 2021; 280:119666. [PMID: 34087279 DOI: 10.1016/j.lfs.2021.119666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022]
Abstract
AIMS The preclinical evaluation of innovative drugs plays an important role in the new drugs development. As a derivative of pirfenidone (PFD), mefunidone (MFD) has shown better anti-fibrosis and anti-inflammatory activity in both cell lines and animal models. To support the clinical investigations of MFD, the metabolic characterization of MFD was initially evaluated in preclinical models. MAIN METHODS The potential metabolites of MFD were analyzed by LC-MS/MS methods. The induction effect of MFD on CYP1A2, CYP2B6, and CYP3A4 was performed in primary human hepatocytes, and the inhibition of CYP enzymes by MFD was also evaluated in human liver microsomes. Finally, the pharmacokinetic profiles of MFD were assessed in SD rats after the rats had received multiple doses (62.5 mg/kg) of MFD. KEY FINDINGS MFD was metabolized in three pathways including oxidation, N-demethylation, and hydroxylation. Except for slight inhibition on the activity of CYP2D6, MFD exerted no effect on other CYP enzymes. Moreover, drug accumulation of MFD was not observed in rats after repeated dosing of MFD. SIGNIFICANCE MFD was first discovered in preclinical investigations without inducing and inhibiting metabolic enzymes. This work provides some important information about the metabolic characterization of MFD for its further clinical investigations.
Collapse
Affiliation(s)
- Ni Luo
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ming Sun
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xuhua Han
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Linling Li
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Lei Wang
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Zeneng Cheng
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
41
|
Zhang X, Gu X, Huang C, Zhang Y, Shi Y, Qi DD. An Effective Method to Facilitate Personalized and Precise Medicine for Schizophrenia Treatment Based on Pharmacogenomics. PSYCHIAT CLIN PSYCH 2021; 31:148-156. [PMID: 38765225 PMCID: PMC11079651 DOI: 10.5152/pcp.2021.20176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/11/2021] [Indexed: 05/21/2024] Open
Abstract
Background Schizophrenia is a serious mental illness affecting 0.3-0.7% of the world's population. It is a classic quantitative genetic disease and is affected by a variety of common and rare genetic variants. Methods To facilitate personalized and precise medicine for schizophrenia treatment, we designed a program by genotyping a panel of related genes for schizophrenic patients using MassARRAY time-of-flight mass spectrometry. The program was tested in an observational clinical study conducted at the Hulunbuir Mental Health Center of China. In the study, a total of 254 patients diagnosed with schizophrenia were recruited and genotyped. The genotyping results were used to generate reports listing where the 16 included antipsychotics should be placed: "Use as directed," "Use with caution," or "Use with caution and with frequent blood concentration monitoring" categories. Seventy-two of the patients completed the 24-week follow-up observation, during which their PANSS scores were assessed at eight time points. Results For all of the subjects who completed the study, the PANSS scores dropped significantly, showing the effectiveness of the treatment. During the 24-week study, PANSS scores of patients whose medications were consistent (N = 48) with their genetic test results dropped from 84.3 (SD = 12.4) to 58.8 (SD = 15.3), and average PANSS change rate reached 56.1% after 24 weeks. In contrast, PANSS scores of patients with genetic tests reported as "Use with caution" or "Use with caution and with frequent blood concentration monitoring" (N = 24) dropped from 81.1 (SD = 10.5) to 63.8 (SD = 10.1), and their average PANSS change rate was 37.6%. Conclusions This research indicates that our pharmacogenomic-based program could be a suitable and effective tool to facilitate precise medication in schizophrenia treatment.
Collapse
Affiliation(s)
- Xiong Zhang
- Hulunbuir Mental Health Center, Yakeshi, China
| | - Xiaoping Gu
- Shanghai Conlight Medical Institute, Shanghai, China
| | | | - Yue Zhang
- Shanghai Conlight Medical Institute, Shanghai, China
| | - Yixiang Shi
- Shanghai Conlight Medical Institute, Shanghai, China
| | | |
Collapse
|
42
|
Fouad MA, Zaki MY, Lotfy RA, Mahmoud WR. Insight on a new indolinone derivative as an orally bioavailable lead compound against renal cell carcinoma. Bioorg Chem 2021; 112:104985. [PMID: 34020239 DOI: 10.1016/j.bioorg.2021.104985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023]
Abstract
A series of novel 3-indolinone-thiazolidinones and oxazolidinones 4a-k was synthesized via molecular hybridization approach and sequentially evaluated to explore its cytotoxic activity. The cytotoxicity screening pointed toward the N-cyclohexyl thiazolidinone derivative 4f that revealed promising renal cytotoxicity against CAKI-1 and UO-31 renal cancer cell lines with IC50 values 4.74 and 3.99 µM, respectively, which were comparable to those of sunitinib along with good safety threshold against normal renal cells. Further emphasis on compound 4f renal cytotoxicity was achieved via different enzyme assays and CAKI-1 and UO-31 cell cycle analysis. The results were supported by in silico studies to explore its physicochemical, pharmacokinetic and drug-likeness properties. Finally, compound 4f was subjected to an in vivo pharmacokinetic study through two different routes of administration showing excellent oral bioavailability. This research represents compound 4f as a promising candidate against renal cell carcinoma.
Collapse
Affiliation(s)
- Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562 Cairo, Egypt.
| | - Mayssoune Y Zaki
- Applied Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Raghda A Lotfy
- Applied Organic Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, P.O. Box 11562 Cairo, Egypt
| |
Collapse
|
43
|
Paudel S, Kim Y, Choi SM, Kim JH, Bae JS, Lee T, Lee S. Identification of suberosin metabolites in human liver microsomes by high-performance liquid chromatography combined with high-resolution quadrupole-orbitrap mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4623. [PMID: 32734675 DOI: 10.1002/jms.4623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Suberosin is a natural prenylated coumarin derivative isolated from Citropsis articulata. It has various pharmacological properties, especially as an anticoagulant, for which it has been used since antiquity. However, its metabolic pathway and metabolites have not yet been studied. Therefore, this study characterizes its metabolic pathway and metabolites in human liver microsomes (HLMs) using high-resolution quadrupole-orbitrap mass spectrometry (HRMS/MS). Eight metabolites (M1-M8) were found, including three monohydroxylated (M1-M3), one hydrated (M4), three dihydroxylated (M5-M7), and one glucuronide conjugate (M8). Furthermore, forms of cytochrome P450 (CYPs) responsible for suberosin metabolism in HLMs were characterized. CYP1A2 was identified as a major enzyme for the production of M1 and M5 metabolites. The M2, M3, and M7 metabolites were predominantly generated by CYP2B6. M8 was the only phase II metabolite, identified as a glucuronide conjugate from either M1 or M2. This glucuronide conjugate may be the only promising metabolite from phase II metabolism. Phase I metabolism, especially hydroxylation, was found to provide a predominant metabolic pathway of suberosin in HLMs. Further studies should be conducted to explore the metabolites, examining their efficacy and their toxicity in an in vivo system.
Collapse
Affiliation(s)
- Sanjita Paudel
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Younah Kim
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su Min Choi
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong-Sup Bae
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Taeho Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
44
|
|
45
|
Kanacher T, Lindauer A, Mezzalana E, Michon I, Veau C, Mantilla JDG, Nock V, Fleury A. A Physiologically-Based Pharmacokinetic (PBPK) Model Network for the Prediction of CYP1A2 and CYP2C19 Drug-Drug-Gene Interactions with Fluvoxamine, Omeprazole, S-mephenytoin, Moclobemide, Tizanidine, Mexiletine, Ethinylestradiol, and Caffeine. Pharmaceutics 2020; 12:pharmaceutics12121191. [PMID: 33302490 PMCID: PMC7764797 DOI: 10.3390/pharmaceutics12121191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling is a well-recognized method for quantitatively predicting the effect of intrinsic/extrinsic factors on drug exposure. However, there are only few verified, freely accessible, modifiable, and comprehensive drug–drug interaction (DDI) PBPK models. We developed a qualified whole-body PBPK DDI network for cytochrome P450 (CYP) CYP2C19 and CYP1A2 interactions. Template PBPK models were developed for interactions between fluvoxamine, S-mephenytoin, moclobemide, omeprazole, mexiletine, tizanidine, and ethinylestradiol as the perpetrators or victims. Predicted concentration–time profiles accurately described a validation dataset, including data from patients with genetic polymorphisms, demonstrating that the models characterized the CYP2C19 and CYP1A2 network over the whole range of DDI studies investigated. The models are provided on GitHub (GitHub Inc., San Francisco, CA, USA), expanding the library of publicly available qualified whole-body PBPK models for DDI predictions, and they are thereby available to support potential recommendations for dose adaptations, support labeling, inform the design of clinical DDI trials, and potentially waive those.
Collapse
Affiliation(s)
- Tobias Kanacher
- SGS-Exprimo, 2800 Mechelen, Belgium; (T.K.); (A.L.); (E.M.); (I.M.)
| | - Andreas Lindauer
- SGS-Exprimo, 2800 Mechelen, Belgium; (T.K.); (A.L.); (E.M.); (I.M.)
| | - Enrica Mezzalana
- SGS-Exprimo, 2800 Mechelen, Belgium; (T.K.); (A.L.); (E.M.); (I.M.)
| | - Ingrid Michon
- SGS-Exprimo, 2800 Mechelen, Belgium; (T.K.); (A.L.); (E.M.); (I.M.)
| | - Celine Veau
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany; (C.V.); (J.D.G.M.); (V.N.)
| | - Jose David Gómez Mantilla
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany; (C.V.); (J.D.G.M.); (V.N.)
| | - Valerie Nock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany; (C.V.); (J.D.G.M.); (V.N.)
| | - Angèle Fleury
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany; (C.V.); (J.D.G.M.); (V.N.)
- Correspondence: ; Tel.: +49-7351-54-96020
| |
Collapse
|
46
|
Iqbal E, Govind R, Romero A, Dzahini O, Broadbent M, Stewart R, Smith T, Kim CH, Werbeloff N, MacCabe JH, Dobson RJB, Ibrahim ZM. The side effect profile of Clozapine in real world data of three large mental health hospitals. PLoS One 2020; 15:e0243437. [PMID: 33290433 PMCID: PMC7723266 DOI: 10.1371/journal.pone.0243437] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/22/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Mining the data contained within Electronic Health Records (EHRs) can potentially generate a greater understanding of medication effects in the real world, complementing what we know from Randomised control trials (RCTs). We Propose a text mining approach to detect adverse events and medication episodes from the clinical text to enhance our understanding of adverse effects related to Clozapine, the most effective antipsychotic drug for the management of treatment-resistant schizophrenia, but underutilised due to concerns over its side effects. MATERIAL AND METHODS We used data from de-identified EHRs of three mental health trusts in the UK (>50 million documents, over 500,000 patients, 2835 of which were prescribed Clozapine). We explored the prevalence of 33 adverse effects by age, gender, ethnicity, smoking status and admission type three months before and after the patients started Clozapine treatment. Where possible, we compared the prevalence of adverse effects with those reported in the Side Effects Resource (SIDER). RESULTS Sedation, fatigue, agitation, dizziness, hypersalivation, weight gain, tachycardia, headache, constipation and confusion were amongst the highest recorded Clozapine adverse effect in the three months following the start of treatment. Higher percentages of all adverse effects were found in the first month of Clozapine therapy. Using a significance level of (p< 0.05) our chi-square tests show a significant association between most of the ADRs and smoking status and hospital admission, and some in gender, ethnicity and age groups in all trusts hospitals. Later we combined the data from the three trusts hospitals to estimate the average effect of ADRs in each monthly interval. In gender and ethnicity, the results show significant association in 7 out of 33 ADRs, smoking status shows significant association in 21 out of 33 ADRs and hospital admission shows the significant association in 30 out of 33 ADRs. CONCLUSION A better understanding of how drugs work in the real world can complement clinical trials.
Collapse
Affiliation(s)
- Ehtesham Iqbal
- The Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Risha Govind
- The Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Alvin Romero
- SLAM BioResource for Mental Health, South London and Maudsley NHS Foundation Trust and King’s College London, London, United Kingdom
| | - Olubanke Dzahini
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Matthew Broadbent
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation, London, United Kingdom
- Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, United Kingdom
| | - Robert Stewart
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation, London, United Kingdom
- Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, United Kingdom
- Department of Health Service & Population Research, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Tanya Smith
- Oxford Health NHS Foundation Trust, Oxford, United Kingdom
- NIHR Oxford Health Biomedical Research Centre, University of Oxford and Oxford Health NHS Foundation Trust, Oxford, United Kingdom
| | - Chi-Hun Kim
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nomi Werbeloff
- UCL Division of Psychiatry, University College London, London, United Kingdom
- Camden and Islington, NHS Foundation Trust, London, United Kingdom
| | - James H. MacCabe
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation, London, United Kingdom
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, United Kingdom
| | - Richard J. B. Dobson
- The Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation, London, United Kingdom
- Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, United Kingdom
- The Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Zina M. Ibrahim
- The Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation, London, United Kingdom
- Biomedical Research Unit for Dementia, South London and Maudsley NHS Foundation, London, United Kingdom
- The Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, United Kingdom
- NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| |
Collapse
|
47
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
48
|
de Andrés F, Altamirano-Tinoco C, Ramírez-Roa R, Montes-Mondragón CF, Dorado P, Peñas-Lledó EM, LLerena A. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. THE PHARMACOGENOMICS JOURNAL 2020; 21:140-151. [PMID: 33024249 DOI: 10.1038/s41397-020-00190-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
Interethnic variability in the drug-metabolizing capacity of CYP450 enzymes may lead to discrepancies in the relationship between genotypes and phenotypes worldwide. The present study was aimed to analyze for the first time whether there is a relationship between clinically relevant CYP450 genetic polymorphisms and their drug oxidation capacity (metabolic phenotype) in a population of healthy Nicaraguan volunteers. Two hundred and twelve participants were genotyped for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, and their actual metabolic phenotype (evaluated by the Metabolic Ratio, MR) was analyzed by using the CEIBA cocktail approach. The results showed the wide interindividual variability in all the studied enzymes and a significant difference (p < 0.004) in the activity of CYP1A2 between male and female subjects. The number of CYP2C19 (p < 0.0001) and CYP2D6 (p < 0.0001) active alleles were shown inversely correlated with their corresponding MR, although there were marked genotype-phenotype discrepancies. There was an actual enzyme capacity overlapping (MR) between genotypically Poor (gPMs) and Extensive Metabolizers (gEMs) of 3.14% subjects for CYP2D6 and 0.94% for CYP2C9. Similarly, there was an overlapping for metabolic phenotypes of 11.48% of genotypically ultrarapid metabolizers (gUMs) for CYP2C19 and 2.09% for CYP2D6 and gEMs. Therefore, the current approach for metabolic phenotype prediction based just on genotype does not predict properly for all individuals within this Nicaraguan Mestizo population, thus representing a potential barrier for the clinical implementation of personalized medicine in this region. However, it is necessary to improve the prediction of phenotype from genotype in order to improve the pharmacogenetic implementation in populations with specific ethnic backgrounds.
Collapse
Affiliation(s)
- Fernando de Andrés
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua
| | - Catalina Altamirano-Tinoco
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua
| | - Ronald Ramírez-Roa
- RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,UNAN Universidad Nacional Autónoma de Nicaragua, Facultad de Ciencias Médicas, León, Nicaragua.
| | | | - Pedro Dorado
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Eva M Peñas-Lledó
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain.,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua.,Faculty of Medicine, University of Extremadura, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary University Research Institute, CICAB Clinical Research Centre, Badajoz University Hospital; University of Extremadura, Badajoz, Spain. .,RIBEF Ibero American Network of Pharmacogenetics and Pharmacogenomics, León, Nicaragua. .,Faculty of Medicine, University of Extremadura, Badajoz, Spain. .,CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
49
|
Inpota P, Phonchai A, Wilairat P, Chantiwas R. Rapid measurement of indole levels in Brassica vegetables using one millilitre binary organic extraction solvent and capillary electrophoresis-UV analysis. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:522-530. [PMID: 31914485 DOI: 10.1002/pca.2916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Brassica vegetables contain high levels of indole compounds which have been found to provide health benefits, especially as cancer-preventive agents. An efficient and rapid method using solvent extraction with capillary electrophoresis (CE) and ultraviolet (UV) detection was developed for the determination of four major indoles from four types of Brassica vegetables. MATERIALS AND METHODS Freeze-dried samples of four Brassica vegetables, i.e. broccoli, cauliflower, Chinese cabbage and cabbage, were selected. Hence, 1 mL of the binary solvent dimethylformamide (DMF)-methanol, 4:1 (v/v), was used for sample extraction. The extracts were diluted with the running buffer and directly analysed using CE with UV detection of four indole compounds. RESULTS The binary solvent DMF-methanol, 4:1 (v/v) was selected from studies of the extraction efficiency of standard indoles spiked in ivy gourd (as the negative control sample) and using diphenylamine as the internal standard. Recovery was 80(±10)-120(±3)% for the four indoles: indole-3-carbinol (I3C), indole-3-acetonitrile (I3A), indole-3-acetic acid (IAA), and 3,3'-diindolylmethane (DIM). For direct analysis suitable dilution of the extract with the running buffer was required. The linear range of the quantitation is 0.75-25.0 μg/mL, limit of detection (LOD) of 0.14-0.52 μg/mL and r2 > 0.998. The amount of indole in the Brassica vegetables are in the order I3C > > IAA, I3A > DIM. CONCLUSION A rapid method for extraction and quantitation of four indoles in four Brassica vegetables using CE with UV detection was developed. It has the potential as an efficient technique for generating data for use in agricultural and nutritional studies.
Collapse
Affiliation(s)
- Prawpan Inpota
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Apichai Phonchai
- Department of Applied Science, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd, Hat Yai, Songkhla, 90110, Thailand
| | - Prapin Wilairat
- National Doping Control Centre, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| | - Rattikan Chantiwas
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry and Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| |
Collapse
|
50
|
D'Arcy MS. A review of the chemopreventative and chemotherapeutic properties of the phytochemicals berberine, resveratrol and curcumin, and their influence on cell death via the pathways of apoptosis and autophagy. Cell Biol Int 2020; 44:1781-1791. [PMID: 32449796 DOI: 10.1002/cbin.11402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Phytochemicals are a diverse group of compounds found in a variety of fruits, vegetables and herbs, and have been reported to possess a number of health benefits. Marketed as supplements by health food retailers, this group of naturally occurring compounds have been investigated for a number of years to determine if they possess any chemopreventative and/or chemotherapeutic benefits. In this comprehensive review, the phytochemicals resveratrol, berberine and curcumin will be discussed, with particular focus being given to their proposed anticancer applications. The purpose of this review is to help clarify whether there is any truth in the claims that are regularly made regarding the efficacy of these compounds. To this end, a number of significant studies that involved the use of these phytochemicals will be identified, discussed and evaluated, to determine if they show promise in the ongoing fight to reduce the incidence rates and severity of various cancers. Specifically, it is the aim of this review to present and discuss key studies performed over the last two decades using these compounds and to evaluate, compare and contrast their effectiveness as chemopreventatives and chemotherapeutics. This should provide the reader with an overarching picture of how these structurally similar phytochemicals might be used in both clinical and nonclinical settings, as a part of the ongoing effort by clinicians, to help to slow down the increasing rate of cancers observed over the last few decades.
Collapse
Affiliation(s)
- Mark Sean D'Arcy
- Biology Division, Hertfordshire International College, College Lane Campus, Hatfield, UK
| |
Collapse
|