1
|
Wang Y, Yang X, Liu Y, Li Y. A review of common immunotherapy and nano immunotherapy for acute myeloid leukemia. Front Immunol 2025; 16:1505247. [PMID: 40129984 PMCID: PMC11931025 DOI: 10.3389/fimmu.2025.1505247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy. Traditional chemotherapy methods not only bring serious side effects, but also lead to high recurrence rate and drug resistance in some patients. However, as an emerging therapeutic strategy, immunotherapy has shown great potential in the field of AML treatment in recent years. At present, common immunotherapy methods for AML include monoclonal antibodies, CAR-T cell therapy, and immune checkpoint inhibitors. With the deepening of research and technological progress, especially the application of nanotechnology in medicine, new immunotherapy is expected to become one of the important means for the treatment of acute myeloid leukemia in the future.
Collapse
Affiliation(s)
- Yaoyao Wang
- Department of Pediatrics of Yantai Affiliated Hospital, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| | - Xiancong Yang
- Laboratory Department, Qilu Hospital of ShanDong University Dezhou Hospital, Dezhou, Shandong, China
| | - Yalin Liu
- Department of Pediatrics of Yantai Affiliated Hospital, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
2
|
Bazzazan MA, Fattollazadeh P, Keshavarz Shahbaz S, Rezaei N. Polymeric nanoparticles as a promising platform for treating triple-negative breast cancer: Current status and future perspectives. Int J Pharm 2024; 664:124639. [PMID: 39187034 DOI: 10.1016/j.ijpharm.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks expression of estrogen, progesterone, and HER2 receptor targets for therapy. Polymeric nanoparticles help address the challenges in treating TNBC by enabling tailored and targeted drug delivery. Biocompatible polymeric nanoparticles leverage enhanced tumor permeability for site-specific accumulation and ligand-mediated active targeting to boost specificity. Controlled, sustained intratumorally release of encapsulated chemotherapies, such as paclitaxel and curcumin, improves antitumor efficacy as demonstrated through preclinical TNBC models. However, the practical application of these nanomedicines still has room for improvement. Advancing personalized nanoparticle platforms that align treatments to TNBC's expanding molecular subtypes shows promise. Expanding the polymer range through novel copolymers or drug conjugates may improve tumor penetration, stability, and drug encapsulation. Incorporating gene therapies, imaging agents, or triggering stimuli responsiveness into polymeric nanoparticles can also overcome innate and acquired drug resistance in TNBC while monitoring outcomes. This article reviews the different types of nanoparticles used to treat TNBC and the different mechanisms of nanoparticles that can deliver drugs to tumor cells. Collaboration across different disciplines aimed at developing combination therapies, immuno-oncology, tumor-targeting ligands, and translating preclinical safety/efficacy via scalable manufacturing practices is essential. Well-designed polymeric nanoparticles offer immense potential for patient-centric TNBC treatment, but continued optimization across bench to bedside efforts is critical for clinical realization and transforming patient outcomes.
Collapse
Affiliation(s)
- Mohammad Amin Bazzazan
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Pouriya Fattollazadeh
- Student Research Committee, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Sanaz Keshavarz Shahbaz
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran; Cellular and Molecular Research Center, Research Institute for Prevention of Noncommunicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Bennani I, Cherif Chefchaouni A, Hafidi Y, Moukafih B, El Marrakchi S, Bandadi FZ, Rahali Y, El Kartouti A. Advancements in the use of nanopharmaceuticals for cancer treatment. J Oncol Pharm Pract 2024; 30:1078-1083. [PMID: 38706188 DOI: 10.1177/10781552241251757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
OBJECTIVE Advances in nanotechnology make it possible to specifically target therapies to cancer cells and neoplasms, guide the surgical resection of tumors, and optimize the effectiveness of radiological treatments. This research article provides a concise synthesis of current knowledge in the field of galenic pharmacy focused on targeted drug delivery in oncology. This research article synthesizes current knowledge in galenic pharmacy, focusing on targeted drug delivery in oncology and reviewing recent advancements in nanopharmaceuticals for cancer treatment. DATA SOURCE The data for this review are derived from a comprehensive analysis of the most cited scientific literature (Pubmed). Recent studies, clinical trials, and technological breakthroughs related to nanopharmaceuticals have been rigorously examined. This diverse source ensures a comprehensive representation of the latest developments in the field. SUMMARY OF DATA The results highlight the emergence of nanopharmaceuticals as a promising approach to cancer treatment. The most common in oncology remain liposomes, nanopolymers, and nanocrystals. From a galenic point of view, these three forms offer a wide range of improvements compared to conventional forms such as improvement in solubility as well as stability. The same observation is in the clinic where treatment response rates are significantly improved. The most advantageous form will depend on the specific characteristics of each patient and each type of cancer. The precise design of nanocarriers allows for targeted drug delivery, enhancing therapeutic efficacy while reducing side effects. Concrete examples of clinical applications are presented, illustrating the practical potential of these advancements. CONCLUSION In conclusion, this review provides a holistic overview of recent developments in galenic pharmacy for targeted drug delivery in oncology. The stability of nanocarriers is a crucial challenge because it conditions the effectiveness and safety of the drugs transported. Environmental and biological variations encountered in the body can compromise this stability, jeopardizing the therapeutic effectiveness and safety of treatments. Likewise, personalized approaches are essential to address interindividual variations in treatment response, as well as patients' pharmacogenomic profiles, in order to optimize therapeutic effectiveness and minimize adverse effects.
Collapse
Affiliation(s)
- Ismail Bennani
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Ali Cherif Chefchaouni
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| | - Youssef Hafidi
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Badreddine Moukafih
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Soufiane El Marrakchi
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Fatima-Zahra Bandadi
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Department of Pharmacy, Hassan II University Hospital of Fez, Fez, Morocco
| | - Younes Rahali
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Rabat, Morocco
| | - Abdeslam El Kartouti
- Department of Pharmacy, Faculty of Medicine, Pharmacy, and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Meng Y, Wang L, Zhao G, Diao J, Qi Z, Yu M, Li Z, Niu Y, He G, Jiang X. Hydrogel Nanoparticles Enable Nucleation Barrier Regulation and Ion Anchoring as an Alternative Pathway for Monosodium Urate Monohydrate Crystallization Control. ACS NANO 2024; 18:13794-13807. [PMID: 38741414 DOI: 10.1021/acsnano.4c02040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Gout flare-up, commonly resulting from monosodium urate monohydrate (MSUM) crystallization, has led to painful inflammatory arthritis among hundreds of millions of people. Herein, a kind of hydrogel nanoparticles (HNPs) with specific properties was developed, aimed at providing a promising pathway for MSUM crystallization control. The experimental and molecular dynamics simulation results synchronously indicate that the fabricated HNPs achieve efficient inhibition of MSUM crystallization governed by the mechanism of "host-guest interaction" even under very low-dose administration. HNPs as the host dispersed in the hyperuricemic model effectively lift the relative heterogeneous nucleation barrier of the MSUM crystal and hinder solute aggregation with strong electronegativity and hydrophobicity. The initial appearance of MSUM crystals was then delayed from 94 to 334 h. HNPs as the guest on the surface of the formed crystal can decelerate the growth rate by anchoring ions and occupying the active sites on the surface, and the terminal yield of the MSUM crystal declined to less than 1% of the control group. The good biocompatibility of HNPs (cell viability > 94%) renders it possible for future clinical applications. This study can guide the rational design of inhibitory nanomaterials and the development of their application in the control of relevant pathological crystallization.
Collapse
Affiliation(s)
- Yingshuang Meng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lingfeng Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guangming Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jibo Diao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhibo Qi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Mingyang Yu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian University of Technology, Dalian, Liaoning 1160831, China
| | - Zhonghua Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yuchao Niu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
5
|
Nemati S, Mottaghi M, Karami P, Mirjalali H. Development of solid lipid nanoparticles-loaded drugs in parasitic diseases. DISCOVER NANO 2024; 19:7. [PMID: 38175309 PMCID: PMC10767167 DOI: 10.1186/s11671-023-03955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Parasites cause illnesses with broad spectrum of symptoms from mild to severe, and are responsible for a significant number of outbreaks in the world. Current anti-parasitic drugs are toxic and have significant side effects. Nano-carriers are believed to obviate the limitations of conventional drugs via decreasing side effects and increasing target delivery and drug permeability with a controlled prolonged release of a drug. Solid lipid nanoparticles (SLNs) are lipid nanoparticles (LNPs), which have frequently been practiced. Suitable release rate, stability, and target delivery make SLNs a good alternative for colloidal carriers. SLNs are supposed to have great potential to deliver natural products with anti-parasitic properties. Nanoparticles have employed to improve stability and capacity loading of SLNs, during recent years. This review describes development of SLNs, the methods of preparation, characterization, and loaded drugs into SLNs in parasitic diseases. In addition, we summarize recent development in anti-parasitic SLNs-loaded drugs.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mottaghi
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Karami
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Nair M, Chandra A, Krishnan A, Chandra A, Basha R, Orimoloye H, Raut S, Gayathri V, Mudgapalli VV, Vishwanatha JK. Protein and peptide nanoparticles for drug delivery applications. NANOSTRUCTURED MATERIALS FOR BIOMEDICAL APPLICATIONS 2024:339-404. [DOI: 10.1016/b978-0-323-90838-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Armstrong M, Wang L, Ristroph K, Tian C, Yang J, Ma L, Panmai S, Zhang D, Nagapudi K, Prud'homme RK. Formulation and Scale-Up of Fast-Dissolving Lumefantrine Nanoparticles for Oral Malaria Therapy. J Pharm Sci 2023; 112:2267-2275. [PMID: 37030438 DOI: 10.1016/j.xphs.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Lumefantrine (LMN) is one of the first-line drugs in the treatment of malaria due to its long circulation half-life, which results in enhanced effectiveness against drug-resistant strains of malaria. However, LMN's therapeutic efficacy is diminished due to its low bioavailability when dosed as a crystalline solid. The goal of this work was to produce low-cost, highly bioavailable, stable LMN powders for oral delivery that would be suitable for global health applications. We report the development of a LMN nanoparticle formulation and the translation of that formulation from laboratory to industrial scale. We applied Flash NanoPrecipitation (FNP) to develop nanoparticles with 90% LMN loading and sizes of 200-260 nm. The integrated process involves nanoparticle formation, concentration by tangential flow ultrafiltration, and then spray drying to obtain a dry powder. The final powders are readily redispersible and stable over accelerated aging conditions (50°C, 75% RH, open vial) for at least 4 weeks and give equivalent and fast drug release kinetics in both simulated fed and fasted state intestinal fluids, making them suitable for pediatric administration. The nanoparticle-based formulations increase the bioavailability of LMN 4.8-fold in vivo when compared to the control crystalline LMN. We describe the translation of the laboratory-scale process at Princeton University to the clinical manufacturing scale at WuXi AppTec.
Collapse
Affiliation(s)
- Madeleine Armstrong
- Department of Chemical and Biological Engineering, Princeton University, Princeton NJ 08544
| | - Leon Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton NJ 08544
| | - Kurt Ristroph
- Department of Chemical and Biological Engineering, Princeton University, Princeton NJ 08544
| | - Chang Tian
- Department of Chemical and Biological Engineering, Princeton University, Princeton NJ 08544
| | - Jiankai Yang
- STA Pharmaceutical, a WuXi AppTec Company, Shanghai, China, 200131
| | - Lirong Ma
- STA Pharmaceutical, a WuXi AppTec Company, Shanghai, China, 200131
| | | | - Donglu Zhang
- Genentech Research and Early Development, South San Francisco, CA 94080
| | - Karthik Nagapudi
- Genentech Research and Early Development, South San Francisco, CA 94080
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton NJ 08544.
| |
Collapse
|
8
|
Beetler DJ, Di Florio DN, Law EW, Groen CM, Windebank AJ, Peterson QP, Fairweather D. The evolving regulatory landscape in regenerative medicine. Mol Aspects Med 2023; 91:101138. [PMID: 36050142 PMCID: PMC10162454 DOI: 10.1016/j.mam.2022.101138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/12/2022] [Indexed: 01/17/2023]
Abstract
Regenerative medicine as a field has emerged as a new component of modern medicine and medical research that encompasses a wide range of products including cellular and acellular therapies. As this new field emerged, regulatory agencies like the Food and Drug Administration (FDA) rapidly adapted existing regulatory frameworks to address the transplantation, gene therapy, cell-based therapeutics, and acellular biologics that fall under the broader regenerative medicine umbrella. Where it has not been possible to modify existing regulation and processes, entirely new frameworks have been generated with the intention of providing flexible, forward-facing systems to regulate this rapidly growing field. This review discusses the current state of FDA regulatory affairs in the context of stem cells and extracellular vesicles by highlighting gaps in the current regulatory system and then discussing where regulatory science in regenerative medicine may be headed based on these gaps and the FDA's historical ability to deal with emerging fields. Lastly, we utilize case studies in stem cell and acellular based treatments to demonstrate how regulatory science has evolved in regenerative medicine and highlight the ongoing clinical efforts and challenges of these therapies.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ethan W Law
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Chris M Groen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Anthony J Windebank
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Neurology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Quinn P Peterson
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Liu Y, Zhao J, Chen J, Miao X. Nanocrystals in cosmetics and cosmeceuticals by topical delivery. Colloids Surf B Biointerfaces 2023; 227:113385. [PMID: 37270904 DOI: 10.1016/j.colsurfb.2023.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
The main issues with local delivery of cosmetics are their high sensitivity and limited drug loading of active pharmaceutical ingredient. Nanocrystal technology offers consumers cutting-edge and effective products and exhibits enormous development potential in the beauty business as a new delivery method to address the issue of low solubility and low permeability of sensitive chemicals. In this review, we described the processes for making NCs, along with the impacts of loading and the uses of different carriers. Among them, nanocrystalline loaded gel and emulsion are widely used and may further improve the stability of the system. Then, we introduced the beauty efficacy of drug NCs from five aspects: anti-inflammation and acne, anti-bacterial, lightening and freckle removal, anti-aging as well as UV protection. Following that, we presented the current scenario about stability and safety. Finally, the challenges and vacancy were discussed along with the potential uses of NCs in the cosmetics industry. This review serves as a resource for the advancement of nanocrystal technology in the cosmetics sector.
Collapse
Affiliation(s)
- Yi Liu
- Marine College, Shandong University, Weihai 264209, China; SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Jingru Zhao
- Marine College, Shandong University, Weihai 264209, China
| | - Jing Chen
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
10
|
Koyappayil A, Chavan SG, Roh YG, Lee MH. Advances of MXenes; Perspectives on Biomedical Research. BIOSENSORS 2022; 12:454. [PMID: 35884257 PMCID: PMC9313156 DOI: 10.3390/bios12070454] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
The last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications. As an emerging 2D material with numerous phases and endless possible combinations with other 2D materials, 1D materials, nanoparticles, macromolecules, polymers, etc., MXenes opened a vast terra incognita for diverse biomedical applications. Recently, MXene research picked up the pace and resulted in a flood of literature reports with significant advancements in the biomedical field. In this context, this review will discuss the recent advancements, design principles, and working mechanisms of some interesting MXene-based biomedical applications. It also includes major progress, as well as key challenges of various types of MXenes and functional MXenes in conjugation with drug molecules, metallic nanoparticles, polymeric substrates, and other macromolecules. Finally, the future possibilities and challenges of this magnificent material are discussed in detail.
Collapse
Affiliation(s)
- Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| | - Yun-Gil Roh
- Department of Convergence in Health and Biomedicine, Chungbuk University, 1 Chungdae-ro, Seowon-gu, Cheongju 28644, Korea;
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Korea; (A.K.); (S.G.C.)
| |
Collapse
|
11
|
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022; 12:biom12060784. [PMID: 35740909 PMCID: PMC9221343 DOI: 10.3390/biom12060784] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects. Nanotechnology, through the development of nanoscale-based pharmaceuticals, has emerged to provide new and innovative drugs to overcome these limitations. In this review, we provide an overview of the approved nanomedicine for cancer treatment and the rationale behind their designs and applications. We also highlight the new approaches that are currently under investigation and the perspectives and challenges for nanopharmaceuticals, focusing on the tumor microenvironment and tumor disseminate cells as the most attractive and effective strategies for cancer treatments.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Pablo Caruana
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Noa De la Fuente
- Servicio de Cirugía General y del Aparato Digestivo, Hospital HM Rosaleda, 15701 Santiago de Compostela, Spain;
| | - Pía Español
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - María Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josep Balart
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Ramón Rovira
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Raúl Ruiz
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Cristina Martín-Lorente
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina and CIBER-BBN, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| |
Collapse
|
12
|
Petrenko D, Chubarev V, Syzrantsev N, Ismail N, Merkulov V, Sologova S, Grigorevskikh E, Smolyarchuk E, Alyautdin R. Temozolomide Efficacy and Metabolism: The Implicit Relevance of Nanoscale Delivery Systems. Molecules 2022; 27:3507. [PMID: 35684445 PMCID: PMC9181940 DOI: 10.3390/molecules27113507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
The most common primary malignant brain tumors in adults are gliomas. Glioblastoma is the most prevalent and aggressive tumor subtype of glioma. Current standards for the treatment of glioblastoma include a combination of surgical, radiation, and drug therapy methods. The drug therapy currently includes temozolomide (TMZ), an alkylating agent, and bevacizumab, a recombinant monoclonal IgG1 antibody that selectively binds to and inhibits the biological activity of vascular endothelial growth factor. Supplementation of glioblastoma radiation therapy with TMZ increased patient survival from 12.1 to 14.6 months. The specificity of TMZ effect on brain tumors is largely determined by special aspects of its pharmacokinetics. TMZ is an orally bioavailable prodrug, which is well absorbed from the gastrointestinal tract and is converted to its active alkylating metabolite 5-(3-methyl triazen-1-yl)imidazole-4-carbozamide (MTIC) spontaneously in physiological condition that does not require hepatic involvement. MTIC produced in the plasma is not able to cross the BBB and is formed locally in the brain. A promising way to increase the effectiveness of TMZ chemotherapy for glioblastoma is to prevent its hydrolysis in peripheral tissues and thereby increase the drug concentration in the brain that nanoscale delivery systems can provide. The review discusses possible ways to increase the efficacy of TMZ using nanocarriers.
Collapse
Affiliation(s)
- Daria Petrenko
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Vladimir Chubarev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nikita Syzrantsev
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Nafeeza Ismail
- Department of Pharmacology, University Technology MARA, Kuala Lumpur 50450, Malaysia;
| | - Vadim Merkulov
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| | - Susanna Sologova
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Ekaterina Grigorevskikh
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Elena Smolyarchuk
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
| | - Renad Alyautdin
- Department of Pharmacology, Sechenov University, 119019 Moscow, Russia; (V.C.); (N.S.); (V.M.); (S.S.); (E.G.); (E.S.)
- Scientific Centre for Expert Evaluation of Medicinal Products, 127051 Moscow, Russia
| |
Collapse
|
13
|
Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines. Pharmaceutics 2021; 13:pharmaceutics13122134. [PMID: 34959415 PMCID: PMC8706109 DOI: 10.3390/pharmaceutics13122134] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, there is an unmet need to manufacture nanomedicines in a continuous and controlled manner. Three-dimensional (3D) printed microfluidic chips are an alternative to conventional PDMS chips as they can be easily designed and manufactured to allow for customized designs that are able to reproducibly manufacture nanomedicines at an affordable cost. The manufacturing of microfluidic chips using existing 3D printing technologies remains very challenging because of the intricate geometry of the channels. Here, we demonstrate the manufacture and characterization of nifedipine (NFD) polymeric nanoparticles based on Eudragit L-100 using 3D printed microfluidic chips with 1 mm diameter channels produced with two 3D printing techniques that are widely available, stereolithography (SLA) and fuse deposition modeling (FDM). Fabricated polymeric nanoparticles showed good encapsulation efficiencies and particle sizes in the range of 50-100 nm. SLA chips possessed better channel resolution and smoother channel surfaces, leading to smaller particle sizes similar to those obtained by conventional manufacturing methods based on solvent evaporation, while SLA manufactured nanoparticles showed a minimal burst effect in acid media compared to nanoparticles fabricated with FDM chips. Three-dimensional printed microfluidic chips are a novel and easily amenable cost-effective strategy to allow for customization of the design process for continuous manufacture of nanomedicines under controlled conditions, enabling easy scale-up and reducing nanomedicine development times, while maintaining high-quality standards.
Collapse
|
14
|
Sivasankarapillai VS, Madaswamy SL, Dhanusuraman R. Role of nanotechnology in facing SARS-CoV-2 pandemic: Solving crux of the matter with a hopeful arrow in the quiver. SENSORS INTERNATIONAL 2021; 2:100096. [PMID: 34766054 PMCID: PMC8069635 DOI: 10.1016/j.sintl.2021.100096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus species with a zoonotic origin and responsible for the coronavirus disease 2019(COVID-19). This novel virus has an extremely high infectious rate, which occurs through the contact of contaminated surfaces and also by cough, sneeze, hand-to-mouth-to-eye contact with an affected person. The progression of infection, which goes beyond complications of pneumonia to affecting other physiological functions which cause gastrointestinal, Renal, and neurological complication makes this a life threatening condition. Intense efforts are going across the scientific community in elucidating various aspects of this virus, such as understanding the pathophysiology of the disease, molecular biology, and cellular pathways of viral replication. We hope that nanotechnology and material science can provide a significant contribution to tackle this problem through both diagnostic and therapeutic strategies. But the area is still in the budding phase, which needs urgent and significant attention. This review provides a brief idea regarding the various nanotechnological approaches reported for managing COVID-19 infection. The nanomaterials recently said to have good antiviral activities like Carbon nanotubes (CNTs) and quantum dots (QDs) were also discussed since they are also in the emerging stage of attaining research interest regarding antiviral applications.
Collapse
Affiliation(s)
- Vishnu Sankar Sivasankarapillai
- Nano Electrochemistry Lab(NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609-609, India
| | - Suba Lakshmi Madaswamy
- Nano Electrochemistry Lab(NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609-609, India
| | - Ragupathy Dhanusuraman
- Nano Electrochemistry Lab(NEL), Department of Chemistry, National Institute of Technology Puducherry, Karaikal, 609-609, India
| |
Collapse
|
15
|
Dawod A, Osman N, Heikal HS, Ali KA, Kandil OM, Shehata AA, Hafez HM, Mahboub H. Impact of Nano-Bromocriptine on Egg Production Performance and Prolactin Expression in Layers. Animals (Basel) 2021; 11:ani11102842. [PMID: 34679863 PMCID: PMC8532771 DOI: 10.3390/ani11102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Egg production is one of the most vital axes in the poultry industry. During the late laying period, the egg production continuously decreases, and pauses among the sequence of egg laying increases; however, the feed costs remain constant. Several attempts were carried out to improve the reproductive performance of laying hens by decreasing the prolactin level in the blood; an increase in this hormone initiates the onset of incubation behavior in chickens. In this study, we investigated the potential use of nano-bromocriptine to the improve egg production performance in laying hens. The use of alginate-bromocriptine leads to a significant reduction in the prolactin expression in the pituitary gland, which in turn allows the elongation in sequences and reduction in pauses, as well as the feed per dozen egg in laying hens. Further studies are needed to assess the impacts of nano-bromocriptine on other performance parameters. Thus, the improvement of egg production persistency must also go hand in hand with sustainable egg quality and the maintenance of the birds’ health. Abstract The current study aimed to investigate the potential use of nano-bromocriptine in improving the laying performance of late laying hens by modulating the prolactin gene expression. A total of 150 NOVOgen brown laying hens aged 70 weeks were randomly allocated into three groups of 50 birds each. The first group was kept as a control, while the second and the third groups were treated with bromocriptine and nano-bromocriptine, respectively, at a dose of 100 µg/kg body weight per week. The pause days, egg production, feed per dozen egg, and Haugh unit were determined on a monthly basis. Also, the relative prolactin gene expression in the pituitary gland was quantified using qPCR and the number of the ovarian follicles was determined after slaughtering at the 84th week of age. It was found that nano-bromocriptine and bromocriptine improved egg laying performance with minimal pause days, reduced feed per dozen egg, and depressed the relative prolactin gene expression; however, nano-bromocriptine treatment was significantly effective compared to bromocriptine. In conclusion, nano-bromocriptine might be beneficial for elongating sequences and reducing pauses.
Collapse
Affiliation(s)
- Ahmed Dawod
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| | - Noha Osman
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| | - Hanim S. Heikal
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| | - Korany A. Ali
- Center of Excellence for Advanced Science, Advanced Materials and Nanotechnology Group, Applied Organic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Omaima M. Kandil
- Center of Excellence for Embryo and Genetic Resources Conservation Bank, Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Center, Dokki, Giza 12622, Egypt;
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt;
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Free University Berlin, 14195 Berlin, Germany
- Correspondence:
| | - Hamada Mahboub
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, Menofia 32897, Egypt; (A.D.); (N.O.); (H.S.H.); (H.M.)
| |
Collapse
|
16
|
Yao J, Li T, Shi X, Wang Y, Fang S, Wang H. A general prodrug nanohydrogel platform for reduction-triggered drug activation and treatment of taxane-resistant malignancies. Acta Biomater 2021; 130:409-422. [PMID: 34087447 DOI: 10.1016/j.actbio.2021.05.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy has been widely used for treating the vast majority of cancer patients. Unfortunately, only a fraction of patients can respond to chemotherapies, but these patients still experience severe side effects. In this context, a wide range of nanotherapeutic platforms have been developed with the aim of improving treatment outcomes while reducing drug toxicities. Nanohydrogels are highly appealing "smart" biocompatible and biodegradable vehicles for either local or systemic delivery of bioactive compounds. Here, we developed prodrug hydrogelators that can undergo one-step distillation-precipitation polymerization to form systemically injectable nanohydrogels. The optimized nanohydrogels were capable of rapidly releasing active agents (e.g., the cytotoxic agent cabazitaxel or the PI3K molecular inhibitor PI103) in response to the reducing tumor microenvironment, while drug release was very slow in the absence of the reductive reagent glutathione. Cabazitaxel-loaded nanogels showed preferential tumor accumulation, and administration of nanogels produced durable tumor regression in a docetaxel-resistant cervical tumor xenograft-bearing mouse model. More significantly, nanogel-based therapy was proven to demonstrate a higher safety profile than solution-based free cabazitaxel. Collectively, this study provides an alternative formulation that meets the essential requirements of high stability in the blood, spontaneous drug release at diseased sites, favorable safety in vivo, and translational capacity for further investigations. STATEMENT OF SIGNIFICANCE: Chemotherapy remains a considerable challenge and only a fraction of patients can respond to chemotherapies. Here we report an intratumoral reducing agent-activatable, tumor-targeting prodrug nanogel platform for therapeutic delivery. To this end, two anticancer agents (e.g., cytotoxic cabazitaxel or PI3K molecular inhibitor PI103) are tested. Prodrug nanogels are stable in the blood but performed reduction-triggered release of chemically unmodified drug molecules in cancerous tissues. Cabazitaxel-loaded nanogels exhibit satisfactory anticancer performance in a preclinical docetaxel-resistant tumor model. This is a practical and expedient approach that combines the prodrug strategy and nanogel scaffold to re-engineer a hydrophobic and toxic anticancer drug. The approach also is broadly applicable for the formulation of other agents to improve the therapeutic index.
Collapse
|
17
|
Li R, Ng TSC, Wang SJ, Prytyskach M, Rodell CB, Mikula H, Kohler RH, Garlin MA, Lauffenburger DA, Parangi S, Dinulescu DM, Bardeesy N, Weissleder R, Miller MA. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. NATURE NANOTECHNOLOGY 2021; 16:830-839. [PMID: 33958764 PMCID: PMC8491539 DOI: 10.1038/s41565-021-00897-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/11/2021] [Indexed: 05/04/2023]
Abstract
Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy. In contrast, a targeted screen revealed that IGF1R kinase inhibitors enhance uptake and efficacy of nab-PTX by mimicking glucose deprivation and promoting macropinocytosis via AMPK, a nutrient sensor in cells. This study thus shows how nanoparticulate albumin bound drug efficacy can be therapeutically improved by reprogramming nutrient signalling and enhancing macropinocytosis in cancer cells.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie J Wang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Prytyskach
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Christopher B Rodell
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Hannes Mikula
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Vienna, Austria
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Michelle A Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniela M Dinulescu
- Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- MGH Cancer Center, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy. Front Bioeng Biotechnol 2021; 9:707319. [PMID: 34249894 PMCID: PMC8267819 DOI: 10.3389/fbioe.2021.707319] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have been widely used as carriers of drugs and bioimaging agents due to their excellent biocompatibility, biodegradability, and structural versatility. The principal application of polymeric nanoparticles in medicine is for cancer therapy, with increased tumor accumulation, precision delivery of anticancer drugs to target sites, higher solubility of pharmaceutical properties and lower systemic toxicity. Recently, the stimuli-responsive polymeric nanoplatforms attracted more and more attention because they can change their physicochemical properties responding to the stimuli conditions, such as low pH, enzyme, redox agents, hypoxia, light, temperature, magnetic field, ultrasound, and so on. Moreover, the unique properties of stimuli-responsive polymeric nanocarriers in target tissues may significantly improve the bioactivity of delivered agents for cancer treatment. This review introduces stimuli-responsive polymeric nanoparticles and their applications in tumor theranostics with the loading of chemical drugs, nucleic drugs and imaging molecules. In addition, we discuss the strategy for designing multifunctional polymeric nanocarriers and provide the perspective for the clinical applications of these stimuli-responsive polymeric nanoplatforms.
Collapse
Affiliation(s)
- Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuanyuan Ma
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
19
|
Iravani S, Varma RS. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater Sci Eng 2021; 7:1900-1913. [PMID: 33851823 DOI: 10.1021/acsbiomaterials.0c01763] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MXenes endowed with several attractive physicochemical attributes, namely, specific large surface area, significant electrical conductivity, magnetism, low toxicity, luminescence, and high biocompatibility, have been considered as promising candidates for cancer therapy and theranostics. These two-dimensional (2D) nanostructures endowed with photothermal, chemotherapeutic synergistic, and photodynamic effects have shown promising potential for decidedly effectual and noninvasive anticancer treatments. They have been explored for photothermal/chemo-photothermal therapy (PTT) and for targeted anticancer drug delivery. Remarkably, MXenes with their unique optical properties have been employed for bioimaging and biosensing, and their excellent light-to-heat transition competence renders them an ideal biocompatible and decidedly proficient nanoscaled agent for PTT appliances. However, several important challenging issues still linger regarding their stability in physiological environments, sustained/controlled release of drugs, and biodegradability that need to be addressed. This Perspective emphasizes the latest advancements of MXenes and MXene-based materials in the domain of targeted cancer therapy/diagnosis, with a focus on the current trends, important challenges, and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
20
|
Verma V, Ryan KM, Padrela L. Production and isolation of pharmaceutical drug nanoparticles. Int J Pharm 2021; 603:120708. [PMID: 33992712 DOI: 10.1016/j.ijpharm.2021.120708] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Nanosizing of pharmaceutical drug particles is one of the most important drug delivery platforms approaches for the commercial development of poorly water-soluble drug molecules. Though nanosizing of drug particles has been proven to greatly enhance drugs dissolution rate and apparent solubility, nanosized materials have presented significant challenges for their formulation as solid dosage forms (e.g. tablets, capsules). This is due to the strong Van der Waals attraction forces between dry nanoparticles leading to aggregation, cohesion, and consequently poor flowability. In this review, the broad area of nanomedicines is overviewed with the primary focus on drug nanocrystals and the top-down and bottom-up methods used in their fabrication. The review also looks at how nanosuspensions of pharmaceutical drugs are generated and stabilised, followed by subsequent strategies for isolation of the nanoparticles. A perspective on the future outlook for drug nanocrystals is also presented.
Collapse
Affiliation(s)
- Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
21
|
Carrion CC, Nasrollahzadeh M, Sajjadi M, Jaleh B, Soufi GJ, Iravani S. Lignin, lipid, protein, hyaluronic acid, starch, cellulose, gum, pectin, alginate and chitosan-based nanomaterials for cancer nanotherapy: Challenges and opportunities. Int J Biol Macromol 2021; 178:193-228. [PMID: 33631269 DOI: 10.1016/j.ijbiomac.2021.02.123] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
Although nanotechnology-driven drug delivery systems are relatively new, they are rapidly evolving since the nanomaterials are deployed as effective means of diagnosis and delivery of assorted therapeutic agents to targeted intracellular sites in a controlled release manner. Nanomedicine and nanoparticulate drug delivery systems are rapidly developing as they play crucial roles in the development of therapeutic strategies for various types of cancer and malignancy. Nevertheless, high costs, associated toxicity and production of complexities are some of the critical barriers for their applications. Green nanomedicines have continually been improved as one of the viable approaches towards tumor drug delivery, thus making a notable impact on which considerably affect cancer treatment. In this regard, the utilization of natural and renewable feedstocks as a starting point for the fabrication of nanosystems can considerably contribute to the development of green nanomedicines. Nanostructures and biopolymers derived from natural and biorenewable resources such as proteins, lipids, lignin, hyaluronic acid, starch, cellulose, gum, pectin, alginate, and chitosan play vital roles in the development of cancer nanotherapy, imaging and management. This review uncovers recent investigations on diverse nanoarchitectures fabricated from natural and renewable feedstocks for the controlled/sustained and targeted drug/gene delivery systems against cancers including an outlook on some of the scientific challenges and opportunities in this field. Various important natural biopolymers and nanomaterials for cancer nanotherapy are covered and the scientific challenges and opportunities in this field are reviewed.
Collapse
Affiliation(s)
- Carolina Carrillo Carrion
- Department of Organic Chemistry, University of Córdoba, Campus de Rabanales, Edificio Marie Curie, Ctra Nnal IV-A Km. 396, E-14014 Cordoba, Spain
| | | | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran
| | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, 65174 Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
22
|
Naidu ECS, Olojede SO, Lawal SK, Rennie CO, Azu OO. Nanoparticle delivery system, highly active antiretroviral therapy, and testicular morphology: The role of stereology. Pharmacol Res Perspect 2021; 9:e00776. [PMID: 34107163 PMCID: PMC8189564 DOI: 10.1002/prp2.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
The conjugation of nanoparticles (NPs) with antiretroviral drugs is a drug delivery approach with great potential for managing HIV infections. Despite their promise, recent studies have highlighted the toxic effects of nanoparticles on testicular tissue and their impact on sperm morphology. This review explores the role of stereological techniques in assessing the testicular morphology in highly active antiretroviral therapy (HAART) when a nanoparticle drug delivery system is used. Also, NPs penetration and pharmacokinetics concerning the testicular tissue and blood-testis barrier form the vital part of this review. More so, various classes of NPs employed in biomedical and clinical research to deliver antiretroviral drugs were thoroughly discussed. In addition, considerations for minimizing nanoparticle-drugs toxicity, ensuring enhanced permeability of nanoparticles, maximizing drug efficacy, ensuring adequate bioavailability, and formulation of HAART-NPs fabrication are well discussed.
Collapse
Affiliation(s)
- Edwin Coleridge S. Naidu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Onyemaechi Okpara Azu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of AnatomySchool of MedicineUniversity of NamibiaWindhoekNamibia
| |
Collapse
|
23
|
Wang Y, Tan X, Fan X, Zhao L, Wang S, He H, Yin T, Zhang Y, Tang X, Jian L, Jin J, Gou J. Current strategies for oral delivery of BCS IV drug nanocrystals: challenges, solutions and future trends. Expert Opin Drug Deliv 2021; 18:1211-1228. [PMID: 33719798 DOI: 10.1080/17425247.2021.1903428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Oral absorption of BCS IV drug benefits little from improved dissolution. Therefore, the absorption of BCS IV drug nanocrystals 'as a whole' strategy is preferred, and structural modification of nanocrystals is required. Surface modification helps the nanocrystals maintain particle structure before drug dissolution is needed, thus enhancing the oral absorption of BCS IV drugs and promoting therapeutic effect. Here, the main challenges and solutions of oral BCS IV drug nanocrystals delivery are discussed. Moreover, strategies for nanocrystal surface modification that facilitates oral bioavailability of BCS IV drugs are highlighted, and provide insights for the innovation in oral drug delivery. AREAS COVERED Promising size, shape, and surface modification of nanocrystals have gained interests for application in oral BCS IV drugs. EXPERT OPINION Nanocrystal surface modification is a feasible method to maintain the structural integrity of nanocrystals, and the introduced materials can also be modified to integrate additional functions to further facilitate the absorption of nanocrystals. It is expected that the absorption 'as a whole' strategy of nanocrystals will provide different choices for the oral BCS IV drugs.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Xinyi Tan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyu Fan
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linxuan Zhao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Shuhang Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmaceutics, School of Pharmacy, Jilin University, Changchun, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian Jin
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
24
|
Wagner J, Gößl D, Ustyanovska N, Xiong M, Hauser D, Zhuzhgova O, Hočevar S, Taskoparan B, Poller L, Datz S, Engelke H, Daali Y, Bein T, Bourquin C. Mesoporous Silica Nanoparticles as pH-Responsive Carrier for the Immune-Activating Drug Resiquimod Enhance the Local Immune Response in Mice. ACS NANO 2021; 15:4450-4466. [PMID: 33648336 DOI: 10.1021/acsnano.0c08384] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanoparticle-based delivery systems for cancer immunotherapies aim to improve the safety and efficacy of these treatments through local delivery to specialized antigen-presenting cells (APCs). Multifunctional mesoporous silica nanoparticles (MSNs), with their large surface areas, their tunable particle and pore sizes, and their spatially controlled functionalization, represent a safe and versatile carrier system. In this study, we demonstrate the potential of MSNs as a pH-responsive drug carrier system for the anticancer immune-stimulant R848 (resiquimod), a synthetic Toll-like receptor 7 and 8 agonist. Equipped with a biotin-avidin cap, the tailor-made nanoparticles showed efficient stimuli-responsive release of their R848 cargo in an environmental pH of 5.5 or below. We showed that the MSNs loaded with R848 were rapidly taken up by APCs into the acidic environment of the lysosome and that they potently activated the immune cells. Upon subcutaneous injection into mice, the particles accumulated in migratory dendritic cells (DCs) in the draining lymph nodes, where they strongly enhanced the activation of the DCs. Furthermore, simultaneous delivery of the model antigen OVA and the adjuvant R848 by MSNs resulted in an augmented antigen-specific T-cell response. The MSNs significantly improved the pharmacokinetic profile of R848 in mice, as the half-life of the drug was increased 6-fold, and at the same time, the systemic exposure was reduced. In summary, we demonstrate that MSNs represent a promising tool for targeted delivery of the immune modulator R848 to APCs and hold considerable potential as a carrier for cancer vaccines.
Collapse
Affiliation(s)
- Julia Wagner
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Dorothée Gößl
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Natasha Ustyanovska
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Mengyao Xiong
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Daniel Hauser
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland
| | - Olga Zhuzhgova
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Sandra Hočevar
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Betül Taskoparan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Laura Poller
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Stefan Datz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Youssef Daali
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
25
|
Kashyap D, Tuli HS, Yerer MB, Sharma A, Sak K, Srivastava S, Pandey A, Garg VK, Sethi G, Bishayee A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin Cancer Biol 2021; 69:5-23. [PMID: 31421264 DOI: 10.1016/j.semcancer.2019.08.014] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Application of natural product-based nanoformulations for the treatment of different human diseases, such as cancer, is an emerging field. The conventional cancer therapeutic modalities, including surgery, chemotherapy, immunotherapy, radiotherapy has limited achievements. A larger number of drawbacks are associated with these therapies, including damage to proliferating healthy tissues, structural deformities, systemic toxicity, long-term side effects, resistance to the drug by tumor cells, and psychological problems. The advent of nanotechnology in cancer therapeutics is recent; however, it has progressed and transformed the field of cancer treatment at a rapid rate. Nanotherapeutics have promisingly overcome the limitations of conventional drug delivery system, i.e., low aqueous solubility, low bioavailability, multidrug resistance, and non-specificity. Specifically, natural product-based nanoformulations are being intentionally studied in different model systems. Where it is found that these nanoformulations has more proximity and reduced side effects. The nanoparticles can specifically target tumor cells, enhancing the specificity and efficacy of cancer therapeutic modalities which in turn improves patient response and survival. The integration of phytotherapy and nanotechnology in the clinical setting may improve pharmacological response and better clinical outcome of patients.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala - 133 207, Haryana, India.
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, University of Erciyes, Kayseri 38039, Turkey
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker-Kharwarian, Hamirpur - 176 041, Himachal Pradesh, India
| | | | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad - 211 004, Uttar Pradesh, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad - 211 004, Uttar Pradesh, India
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Sector 32, Chandigarh - 160 031, Punjab, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
26
|
Malta R, Loureiro JB, Costa P, Sousa E, Pinto M, Saraiva L, Amaral MH. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
28
|
Jung BT, Lim M, Jung K, Li M, Dong H, Dube N, Xu T. Designing sub-20 nm self-assembled nanocarriers for small molecule delivery: Interplay among structural geometry, assembly energetics, and cargo release kinetics. J Control Release 2021; 329:538-551. [PMID: 32971202 DOI: 10.1016/j.jconrel.2020.09.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Biological constraints in diseased tissues have motivated the need for small nanocarriers (10-30 nm) to achieve sufficient vascular extravasation and pervasive tumor penetration. This particle size limit is only an order of magnitude larger than small molecules, such that cargo loading is better described by co-assembly processes rather than simple encapsulation. Understanding the structural, kinetic, and energetic contributions of carrier-cargo co-assembly is thus critical to achieve molecular-level control towards predictable in vivo behavior. These interconnected set of properties were systematically examined using sub-20 nm self-assembled nanocarriers known as three-helix micelles (3HM). Both hydrophobicity and the "geometric packing parameter" dictate small molecule compatibility with 3HM's alkyl tail core. Planar obelisk-like apomorphine and doxorubicin (DOX) molecules intercalated well within the 3HM core and near the core-shell interface, forming an integral component to the co-assembly, as corroborated by small-angle X-ray and neutron-scattering structural studies. DOX promoted crystalline alkyl tail ordering, which significantly increased (+63%) the activation energy of 3HM subunit exchange. Subsequently, 3HM-DOX displayed slow-release kinetics (t1/2 = 40 h) at physiological temperatures, with ~50× greater cargo preference for the micelle core as described by two drug partitioning coefficients (micellar core/shell Kp1 ~ 24, and shell/bulk solvent Kp2 ~ 2). The geometric and energetic insights between nanocarrier and their small molecule cargos developed here will aid in broader efforts to deconvolute the interconnected properties of carrier-drug co-assemblies. Adding this knowledge to pharmacological and immunological explorations will expand our understanding of nanomedicine behavior throughout all the physical and in vivo processes they are intended to encounter.
Collapse
Affiliation(s)
- Benson T Jung
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Marc Lim
- UCB-UCSF Graduate Program in Bioengineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Katherine Jung
- Department of Chemistry, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Michael Li
- Department of Chemistry, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - He Dong
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Nikhil Dube
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States; Department of Chemistry, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, CA 94720, United States; Material Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.
| |
Collapse
|
29
|
G. P, Kalarikkal N, Thomas S. Challenges in nonparenteral nanomedicine therapy. THEORY AND APPLICATIONS OF NONPARENTERAL NANOMEDICINES 2021. [PMCID: PMC7499062 DOI: 10.1016/b978-0-12-820466-5.00002-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Yeung AWK, Souto EB, Durazzo A, Lucarini M, Novellino E, Tewari D, Wang D, Atanasov AG, Santini A. Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
31
|
Matter MT, Li J, Lese I, Schreiner C, Bernard L, Scholder O, Hubeli J, Keevend K, Tsolaki E, Bertero E, Bertazzo S, Zboray R, Olariu R, Constantinescu MA, Figi R, Herrmann IK. Multiscale Analysis of Metal Oxide Nanoparticles in Tissue: Insights into Biodistribution and Biotransformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000912. [PMID: 32775166 PMCID: PMC7404155 DOI: 10.1002/advs.202000912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Indexed: 05/05/2023]
Abstract
Metal oxide nanoparticles have emerged as exceptionally potent biomedical sensors and actuators due to their unique physicochemical features. Despite fascinating achievements, the current limited understanding of the molecular interplay between nanoparticles and the surrounding tissue remains a major obstacle in the rationalized development of nanomedicines, which is reflected in their poor clinical approval rate. This work reports on the nanoscopic characterization of inorganic nanoparticles in tissue by the example of complex metal oxide nanoparticle hybrids consisting of crystalline cerium oxide and the biodegradable ceramic bioglass. A validated analytical method based on semiquantitative X-ray fluorescence and inductively coupled plasma spectrometry is used to assess nanoparticle biodistribution following intravenous and topical application. Then, a correlative multiscale analytical cascade based on a combination of microscopy and spectroscopy techniques shows that the topically applied hybrid nanoparticles remain at the initial site and are preferentially taken up into macrophages, form apatite on their surface, and lead to increased accumulation of lipids in their surroundings. Taken together, this work displays how modern analytical techniques can be harnessed to gain unprecedented insights into the biodistribution and biotransformation of complex inorganic nanoparticles. Such nanoscopic characterization is imperative for the rationalized engineering of safe and efficacious nanoparticle-based systems.
Collapse
Affiliation(s)
- Martin T. Matter
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Jian‐Hao Li
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Ioana Lese
- Department of Plastic and Hand SurgeryUniversity Hospital Bern (Inselspital)University of BernBern3010Switzerland
| | - Claudia Schreiner
- Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Laetitia Bernard
- Nanoscale MaterialsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Olivier Scholder
- Nanoscale MaterialsDepartment of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Jasmin Hubeli
- Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Kerda Keevend
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Elena Tsolaki
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
- Department of Medical Physics and Biomedical EngineeringUniversity College London (UCL)Malet Place Engineering BuildingLondonWC1E 6BTUK
| | - Enrico Bertero
- Mechanics of Materials and NanostructuresSwiss Federal Laboratories for Materials Science and Technology (Empa)Feuerwerkerstrasse 39Thun3602Switzerland
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College London (UCL)Malet Place Engineering BuildingLondonWC1E 6BTUK
| | - Robert Zboray
- Center for X‐ray AnalyticsSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Radu Olariu
- Department of Plastic and Hand SurgeryUniversity Hospital Bern (Inselspital)University of BernBern3010Switzerland
| | - Mihai A. Constantinescu
- Department of Plastic and Hand SurgeryUniversity Hospital Bern (Inselspital)University of BernBern3010Switzerland
| | - Renato Figi
- Advanced Analytical TechnologiesSwiss Federal Laboratories for Materials Science and Technology (Empa)Uberlandstrasse 129Dubendorf8600Switzerland
| | - Inge K. Herrmann
- Particles‐Biology Interactions, Department of Materials Meet LifeSwiss Federal Laboratories for Materials Science and Technology (Empa)Lerchenfeldstrasse 5St. Gallen9014Switzerland
- Nanoparticle Systems Engineering LaboratoryInstitute of Process EngineeringDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
32
|
Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020; 12:E604. [PMID: 32610448 PMCID: PMC7407889 DOI: 10.3390/pharmaceutics12070604] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have been extensively used as carriers for the delivery of chemicals and biomolecular drugs, such as anticancer drugs and therapeutic proteins. Natural biomolecules, such as proteins, are an attractive alternative to synthetic polymers commonly used in nanoparticle formulation because of their safety. In general, protein nanoparticles offer many advantages, such as biocompatibility and biodegradability. Moreover, the preparation of protein nanoparticles and the corresponding encapsulation process involved mild conditions without the use of toxic chemicals or organic solvents. Protein nanoparticles can be generated using proteins, such as fibroins, albumin, gelatin, gliadine, legumin, 30Kc19, lipoprotein, and ferritin proteins, and are prepared through emulsion, electrospray, and desolvation methods. This review introduces the proteins used and methods used in generating protein nanoparticles and compares the corresponding advantages and disadvantages of each.
Collapse
Affiliation(s)
- Seyoung Hong
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
33
|
Higbee-Dempsey EM, Amirshaghaghi A, Case MJ, Bouché M, Kim J, Cormode DP, Tsourkas A. Biodegradable Gold Nanoclusters with Improved Excretion Due to pH-Triggered Hydrophobic-to-Hydrophilic Transition. J Am Chem Soc 2020; 142:7783-7794. [PMID: 32271558 PMCID: PMC7238296 DOI: 10.1021/jacs.9b13813] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gold is a highly useful nanomaterial for many clinical applications, but its poor biodegradability can impair long-term physiological clearance. Large gold nanoparticles (∼10-200 nm), such as those required for long blood circulation times and appreciable tumor localization, often exhibit little to no dissolution and excretion. This can be improved by incorporating small gold particles within a larger entity, but elimination may still be protracted due to incomplete dispersion of gold. The present study describes a novel gold nanoparticle formulation capable of environmentally triggered decomposition. Ultrasmall gold nanoparticles are coated with thiolated dextran, and hydrophobic acetal groups are installed through direct covalent modification of the dextran. This hydrophobic exterior allows gold to be densely packed within ∼150 nm polymeric micelles. Upon exposure to an acidic environment, the acetal groups are cleaved and the gold nanoparticles become highly water-soluble, leading to destabilization of the micelle. Within 24 h, the ultrasmall water-soluble gold particles are released from the micelle and readily dispersed. Micelle degradation and gold nanoparticle dispersion was imaged in cultured macrophages, and micelle-treated mice displayed progressive physiological clearance of gold, with >85% elimination from the liver over three months. These particles present a novel nanomaterial formulation and address a critical unresolved barrier for clinical translation of gold nanoparticles.
Collapse
|
34
|
Wong CY, Al-Salami H, Dass CR. Current status and applications of animal models in pre-clinical development of orally administered insulin-loaded nanoparticles. J Drug Target 2020; 28:882-903. [DOI: 10.1080/1061186x.2020.1759078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
35
|
Durazzo A, Nazhand A, Lucarini M, Atanasov AG, Souto EB, Novellino E, Capasso R, Santini A. An Updated Overview on Nanonutraceuticals: Focus on Nanoprebiotics and Nanoprobiotics. Int J Mol Sci 2020; 21:E2285. [PMID: 32225036 PMCID: PMC7177810 DOI: 10.3390/ijms21072285] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Over the last few years, the application of nanotechnology to nutraceuticals has been rapidly growing due to its ability to enhance the bioavailability of the loaded active ingredients, resulting in improved therapeutic/nutraceutical outcomes. The focus of this work is nanoprebiotics and nanoprobiotics, terms which stand for the loading of a set of compounds (e.g., prebiotics, probiotics, and synbiotics) in nanoparticles that work as absorption enhancers in the gastrointestinal tract. In this manuscript, the main features of prebiotics and probiotics are highlighted, together with the discussion of emerging applications of nanotechnologies in their formulation. Current research strategies are also discussed, in particular the promising use of nanofibers for the delivery of probiotics. Synbiotic-based nanoparticles represent an innovative trend within this area of interest. As only few experimental studies on nanoprebiotics and nanoprobiotics are available in the scientific literature, research on this prominent field is needed, covering effectiveness, bioavailability, and safety aspects.
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, 9th km of Farah Abad Road, Mazandaran, 48181 68984 Sari, Iran
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition; Via Ardeatina 546, 00178 Rome, Italy
| | - Atanas G Atanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland
- Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 100, 80055 Portici (Napoli), Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
36
|
Salehi B, Del Prado-Audelo ML, Cortés H, Leyva-Gómez G, Stojanović-Radić Z, Singh YD, Patra JK, Das G, Martins N, Martorell M, Sharifi-Rad M, Cho WC, Sharifi-Rad J. Therapeutic Applications of Curcumin Nanomedicine Formulations in Cardiovascular Diseases. J Clin Med 2020; 9:746. [PMID: 32164244 PMCID: PMC7141226 DOI: 10.3390/jcm9030746] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVD) compromises a group of heart and blood vessels disorders with high impact on human health and wellbeing. Curcumin (CUR) have demonstrated beneficial effects on these group of diseases that represent a global burden with a prevalence that continues increasing progressively. Pre- and clinical studies have demonstrated the CUR effects in CVD through its anti-hypercholesterolemic and anti-atherosclerotic effects and its protective properties against cardiac ischemia and reperfusion. However, the CUR therapeutic limitation is its bioavailability. New CUR nanomedicine formulations are developed to solve this problem. The present article aims to discuss different studies and approaches looking into the promising role of nanotechnology-based drug delivery systems to deliver CUR and its derivatives in CVD treatment, with an emphasis on their formulation properties, experimental evidence, bioactivity, as well as challenges and opportunities in developing these systems.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Mexico City 04510, Mexico; (M.L.D.P.-A.); (G.L.-G.)
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Mexico City 04510, Mexico; (M.L.D.P.-A.); (G.L.-G.)
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat 791102, Arunachal Pradesh, India;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Korea; (J.K.P.); (G.D.)
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi 10326, Korea; (J.K.P.); (G.D.)
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Marzieh Sharifi-Rad
- Research Department of Agronomy and Plant Breeding, Agricultural Research Institute, University of Zabol, Zabol 3585698613, Iran;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| |
Collapse
|
37
|
Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, Ramezani M, Hamblin MR. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 2020; 321:442-462. [PMID: 32067996 DOI: 10.1016/j.jconrel.2020.02.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
Abstract
The application of nanotechnology in medicine has the potential to make a great impact on human health, ranging from prevention to diagnosis and treatment of disease. The kidneys are the main organ of the human urinary system, responsible for filtering the blood, and concentrating metabolic waste into urine by means of the renal glomerulus. The glomerular filtration apparatus presents a barrier against therapeutic agents based on charge and/or molecular size. Therefore, drug delivery to the kidneys faces significant difficulties resulting in treatment failure in several renal disorders. Accordingly, different strategies have recently being explored for enhancing the delivery of therapeutic agents across the filtration barrier of the glomerulus. Nanosystems with different physicochemical properties, including size, shape, surface, charge, and possessing biological features such as high cellular internalization, low cytotoxicity, controllable pharmacokinetics and biodistribution, have shown promising results for renal therapy. Different types of nanoparticles (NPs) have been used to deliver drugs to the kidney. In this review, we discuss nanotechnology-based drug delivery approaches for acute kidney injury, chronic kidney disease, renal fibrosis, renovascular hypertension and kidney cancer.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fahimeh Charbgoo
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Amani
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
38
|
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020; 12:E142. [PMID: 32046289 PMCID: PMC7076477 DOI: 10.3390/pharmaceutics12020142] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Sahar B. Hassan
- Department of Clinical pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy Sohag University, Sohag 82524, Egypt
| |
Collapse
|
39
|
Chauhan N, Kruse A, Newby H, Jaggi M, Yallapu MM, Chauhan SC. Pluronic Polymer-Based Ormeloxifene Nanoformulations Induce Superior Anticancer Effects in Pancreatic Cancer Cells. ACS OMEGA 2020; 5:1147-1156. [PMID: 31984272 PMCID: PMC6977081 DOI: 10.1021/acsomega.9b03382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/16/2019] [Indexed: 05/14/2023]
Abstract
Utilization of safe cytotoxic agents with precise anticancer activity is considered as the prime focus of cancer therapeutics research. A greater incentive for such agents arises from the molecules/drugs that are already being used for other indications. Ormeloxifene (ORM) is a nonsteroidal, nonhormonal selective estrogen receptor modulator (SERM), which has been in human use for contraception purposes. Although in the recent past, many reports have suggested its emerging role as an anticancer agent, no significant attention was paid toward generating simple and safe nanoformulation(s) for improved therapeutic activity and tumor cell-specific delivery. Our aim is to develop nanoformulation(s) of ormeloxifene to improve its targeted delivery in tumor cells. We developed ormeloxifene nanoformulation(s) by utilizing various biocompatible polymers. The optimized formulations with pluronic polymers F127 and F68 show improved nanoparticle characteristics. These formulations show enhanced cellular uptake that allows ormeloxifene's intracellular availability. We further evaluated its improved anticancer activity by performing cell proliferation, flow cytometry, and immunoblotting assays. Overall, this study confirms possible novel nanoformulation(s) of ormeloxifene to be evolved as a new therapeutic modality for cancer treatment.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
| | - Amber Kruse
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- Division
of Natural Sciences, Mount Marty College, Yankton, South Dakota 57078, United States
| | - Hilary Newby
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- Division
of Natural Sciences, Augustana College, Sioux Falls, South Dakota 57105, United States
| | - Meena Jaggi
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
| | - Murali M. Yallapu
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- E-mail: . Tel: +1 (956) 296 1734 (M.M.Y.)
| | - Subhash C. Chauhan
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Cancer
Biology Research Center, Sanford Research/USD, Sioux Falls, South Dakota 57105, United States
- E-mail: . Tel: +1 (956) 296 5000 (S.C.C.)
| |
Collapse
|
40
|
Sims KR, Maceren JP, Strand AI, He B, Overby C, Benoit DSW. Rigor and reproducibility in polymer nanoparticle synthesis and characterization. RSC Adv 2020; 10:2513-2518. [PMID: 34631039 PMCID: PMC8496373 DOI: 10.1039/c9ra10091a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023] Open
Abstract
Standardized process improvement methods and tools were used to enhance the rigor and reproducibility of diblock copolymer nanoparticle (NP) synthesis and characterization. Models linking design parameters with NP characteristics boosted process control for NP synthesis, which may improve translation and commercialization of NP research.
Collapse
Affiliation(s)
- Kenneth R. Sims
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
- Translational Biomedical Science, University of Rochester School of Medicine and DentistryRochesterNYUSA
| | | | | | - Brian He
- Dept. of Statistics, University of RochesterRochesterNYUSA
| | - Clyde Overby
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
| | - Danielle S. W. Benoit
- Dept. of Biomedical Engineering, University of RochesterRochesterNYUSA
- Materials Science ProgramRochesterNYUSA
- Center for Oral Biology, University of RochesterRochesterNYUSA
- Center for Musculoskeletal Research, University of RochesterRochesterNYUSA
- Dept. of Chemical Engineering, University of RochesterRochesterNYUSA
| |
Collapse
|
41
|
Fancher IS, Rubinstein I, Levitan I. Potential Strategies to Reduce Blood Pressure in Treatment-Resistant Hypertension Using Food and Drug Administration-Approved Nanodrug Delivery Platforms. Hypertension 2019; 73:250-257. [PMID: 30624988 DOI: 10.1161/hypertensionaha.118.12005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ibra S Fancher
- From the Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago (I.S.F., I.R., I.L.)
| | - Israel Rubinstein
- From the Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago (I.S.F., I.R., I.L.).,Jesse Brown VA Medical Center, Chicago, Illinois (I.R.)
| | - Irena Levitan
- From the Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois at Chicago (I.S.F., I.R., I.L.)
| |
Collapse
|
42
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Amphipathic Nanodiamond Supraparticles for Anticancer Drug Loading and Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18978-18987. [PMID: 31090388 DOI: 10.1021/acsami.9b04792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanodiamonds (NDs) have been attracting considerable attention due to their outstanding chemical, physical, and physiological properties. Additional functionalization of NDs can be carried out by the self-assembly technique. This study reports a straightforward chemical route for self-assembled supraparticles (SPs) based on ND (ND-SPs) using alkyl carboxylic acids with different aliphatic alkyl chain lengths by carbodiimide chemistry and sonication. Poly(ethylene glycol) (PEG)-modified ND-SPs are synthesized successfully for effective nanodrug formulations with the hydrophobic anticancer drug paclitaxel (PTX). The properties of these ND-SP nanomedicines are investigated thoroughly by complementary analytical, spectroscopic, and microscopic techniques. This simple methodology permitted the application of PEG-modified ND-SP-encapsulating PTX as a potent drug carrier, achieving greater efficacy than commercial Abraxane. Results revealed that the morphology, particle size, and water dispersibility of the prepared ND-SP nanoclusters affect the drug efficacy. These PEG-modified ND-SP nanoclusters serve as novel nanomedicine for a passive drug delivery system as well as anticancer chemotherapy.
Collapse
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation , 1239, Shinzaike , Aboshi-ku, Himeji , Hyogo 671-1283 , Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation , 1239, Shinzaike , Aboshi-ku, Himeji , Hyogo 671-1283 , Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation , 2-19-1 Konan , Minato-ku , Tokyo 108-8230 , Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
43
|
Application of the combinatorial approaches of medicinal and aromatic plants with nanotechnology and its impacts on healthcare. ACTA ACUST UNITED AC 2019; 27:475-489. [PMID: 31129806 DOI: 10.1007/s40199-019-00271-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Medicinal and aromatic plants are natural raw materials. Since ancient times these herbal materials are being commonly used as herbal drugs, food products, and cosmetics. The phytomolecules isolated from the medicinal and aromatic plants (MAPs) are in high demand specifically in drug industries. However, these phytomolecules have certain limitations of low absorption, high toxicity, and other side effects, bioavailability and efficacy. These limitations may be overcome by using nanotechnological tools. The plant extract or essential oil of MAPs are also useful in the synthesis of nanoparticles. In future this combinatorial application of MAPs and nanotechnology would be advantageous in the healthcare area. METHODS Literature search was performed using databases like Pubmed, Scopus and Google Scholar with the keywords "nanoparticles," "phytomolecules," "medicinal and aromatic plants" and "green synthesis of nanoparticles" in the text. RESULT Phytomolecules of medicinal and aromatic plants like curcumin, camptothecin, thymol, and eugenol have certain limitations of bioavailability, efficacy, and solubility. It limits its biological activity and therefore application in the biomedical area. The increment in the biological activity and sustained delivery was observed after the encapsulation of these potent phytomolecules encapsulated in the nanocarriers. Besides, MAPs and/or their molecules/oils mediate the synthesis of metal nanocarriers with less toxicity. CONCLUSION This review highlights the impact of the combination of the MAPs with the nanotechnology along with the challenges. It would be an effective technique for the efficient delivery of different phytomolecules and also in the synthesis of novel nano-materials, which escalates the opportunity of exploration of potential molecules of MAPs. Graphical abstract Graphical representation of the combinatorial approach of MAPs and nanotechnology.
Collapse
|
44
|
Nance E. Careers in nanomedicine and drug delivery. Adv Drug Deliv Rev 2019; 144:180-189. [PMID: 31260712 DOI: 10.1016/j.addr.2019.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
Nanomedicine continues to be a rapidly growing and increasingly interdisciplinary field. The career opportunities available in nanomedicine are also numerous, yet not always obvious to the early-career scientist determining their individual track for maximal impact. This perspective provides a brief overview of the field of nanomedicine, then delves into the many career trajectories one could take in this field. The article concludes with thoughts on how to provide diverse training to increase supply for the variety of career paths, and the role that mentors can play in young scientists' development and exploration of these career paths.
Collapse
Affiliation(s)
- Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States of America; Department of Radiology, University of Washington, Seattle, WA, United States of America; Center on Human Development & Disability, University of Washington, Seattle, WA, United States of America; eScience Institute, Seattle, WA, United States of America; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
45
|
Wu Z, Zhao M, Zhang W, Yang Z, Xu S, Shang Q. Influence of drying processes on the structures, morphology and in vitro release profiles of risperidone-loaded PLGA microspheres. J Microencapsul 2019; 36:21-31. [PMID: 30757946 DOI: 10.1080/02652048.2019.1582723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to investigate the influences of drying methods on the risperidone (RIS) release profiles of RIS-loaded PLGA microspheres. These microspheres were fabricated with an O/W emulsion solvent evaporation method. The wet microspheres were dried with freeze drying and vacuum drying methods. The microspheres were mono-dispersed spheres with an average diameter of 100 μm. Studies found that drying methods had great influence on the porosity, morphology, and release profiles of RIS-loaded PLGA microspheres. Specifically, the freeze-dried microspheres had higher porosity (78.46 ± 1.64%) than those vacuum-dried ones (52.45 ± 2.68%), and they showed higher RIS release rates (p < 0.05). In the accelerated release tests (45 °C), these microspheres dried under the pressures of 700 mmHg and 200 mmHg gave faster release rates than those ones dried under the pressure of 450 mmHg. Importantly, the accelerated release test (45 °C) had a high correlation with the real-time test (37 °C) (R2 > 0.99). These studies exhibited a significance in the precise preparation of RIS-loaded PLGA microspheres.
Collapse
Affiliation(s)
- Zhaoying Wu
- a Chemical and Pharmaceutical Engineering Institute , Hebei University of Science and Technology , Hebei , China
| | - Mengqing Zhao
- a Chemical and Pharmaceutical Engineering Institute , Hebei University of Science and Technology , Hebei , China
| | - Wei Zhang
- a Chemical and Pharmaceutical Engineering Institute , Hebei University of Science and Technology , Hebei , China
| | - Zhao Yang
- a Chemical and Pharmaceutical Engineering Institute , Hebei University of Science and Technology , Hebei , China
| | - Shuxin Xu
- b Tianjin Branch of Suzhou Institute of Biomedical Engineering and Technology, CAS , Tianjin , PR China
| | - Qing Shang
- a Chemical and Pharmaceutical Engineering Institute , Hebei University of Science and Technology , Hebei , China
| |
Collapse
|
46
|
A polyester with hyperbranched architecture as potential nano-grade antibiotics: An in-vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1246-1256. [PMID: 30889660 DOI: 10.1016/j.msec.2019.02.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/07/2019] [Accepted: 02/15/2019] [Indexed: 02/03/2023]
Abstract
A potential nanograde antibiotic with hyperbranched architecture was synthesized from melt esterification of poly(ethylene glycol) or PEG and Citric acid or CA with 1:1 mol composition. PEG of different molecular weights, c.a. 4000, 6000 and 20,000 were used during the polyesterification. The polyester molecules of nanometric size were highly water soluble and showed a melting point between 55 and 60 °C. The branching status was established from spectroscopy, flow behaviour (viscosity) and rheological evidences. The extent of branching and flowability, both were reduced as the molecular weight of PEG was increased. During in-vitro pathological study, all the grades showed reasonably strong antibacterial affect (both with gram positive and negative bacteria), high selectivity, biocompatibility and controlled generation of reactive oxygen species or ROS, however, the grade with maximum level of branching and functional chain ends displayed highest therapeutic efficiency, may that be considered further as a potential agent for next level investigation.
Collapse
|
47
|
Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv 2019; 10:113-132. [DOI: 10.4155/tde-2018-0062] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The emergence of nanomedicine as an innovative and promising alternative technology shows many advantages over conventional cancer therapies and provides new opportunities for early detection, improved treatment, and diagnosis of cancer. Despite the cancer nanomedicines’ capability of delivering chemotherapeutic agents while providing lower systemic toxicity, it is paramount to consider the cancer complexity and dynamics for bridging the translational bench-to-bedside gap. It is important to conduct appropriate investigations for exploiting the tumor microenvironment, and achieving a more comprehensive understanding of the fundamental biological processes in cancer and their roles in modulating nanoparticle–protein interactions, blood circulation, and tumor penetration. This review provides an overview of the current cancer nanomedicines, the major challenges, and the future opportunities in this research area.
Collapse
|
48
|
Godfrin PD, Lee H, Lee JH, Doyle PS. Photopolymerized Micelle-Laden Hydrogels Can Simultaneously Form and Encapsulate Nanocrystals to Improve Drug Substance Solubility and Expedite Drug Product Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803372. [PMID: 30645039 DOI: 10.1002/smll.201803372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/17/2018] [Indexed: 05/06/2023]
Abstract
Formulation technologies are critical for increasing the efficacy of drug products containing poorly soluble hydrophobic drugs, which compose roughly 70% of small molecules in commercial pipelines. Nanomedicines, such as nanocrystal formulations and amorphous solid suspensions, are effective approaches to increasing solubility. However, existing techniques require additional processing into a final dosage form, which strongly influences drug delivery and clinical performance. To enhance hydrophobic drug product efficacy and clinical throughput, a hydrogel material is developed as a sacrificial template to simultaneously form and encapsulate nanocrystals. These hydrogels contain micelles chemically bound to the hydrogel matrix, where the surfactant structure dictates the crystal size and drug loading. Therefore, nanocrystals can be produced in high yield (up to 90% drug loading, by weight) with precisely controlled sizes as small as 4 nm independently of hydrogel composition. Nanocrystals and surfactant are then released together to increase the solubility up to 70 times above bulk crystalline material. By integrating nanocrystals into a final dosage form, micelle-laden hydrogels simplify hydrophobic drug product design.
Collapse
Affiliation(s)
- Paul Douglas Godfrin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hyundo Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ji Hyun Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
49
|
Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy. J Control Release 2018; 292:256-276. [PMID: 30312721 PMCID: PMC6355332 DOI: 10.1016/j.jconrel.2018.10.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022]
Abstract
The development of therapeutic cancer vaccines as a means to generate immune reactivity against tumors has been explored since the early discovery of tumor-specific antigens by Georg Klein in the 1960s. However, challenges including weak immunogenicity, systemic toxicity, and off-target effects of cancer vaccines remain as barriers to their broad clinical translation. Advances in the design and implementation of biomaterials are now enabling enhanced efficacy and reduced toxicity of cancer vaccines by controlling the presentation and release of vaccine components to immune cells and their microenvironment. Here, we discuss the rational design and clinical status of several classes of cancer vaccines (including DNA, mRNA, peptide/protein, and cell-based vaccines) along with novel biomaterial-based delivery technologies that improve their safety and efficacy. Further, strategies for designing new platforms for personalized cancer vaccines are also considered.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Margaret M Billingsley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
50
|
Saleem MA, Nazar MF, Yameen B, Khan AM, Hussain SZ, Khalid MR. Structural Insights into the Microemulsion-Mediated Formation of Fluoroquinolone Nanoantibiotics. ChemistrySelect 2018. [DOI: 10.1002/slct.201801925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muhammad A. Saleem
- Department of Chemistry; Hafiz Hayat Campus; University of Gujrat; Gujrat 50700 Pakistan
- CCL Pharmaceuticals (Pvt.) Ltd; Lahore- 54000 Pakistan
| | - Muhammad F. Nazar
- Department of Chemistry; Hafiz Hayat Campus; University of Gujrat; Gujrat 50700 Pakistan
| | - Basit Yameen
- Department of Chemistry; Syed Babar Ali School of Science and Engineering (SBASSE); Lahore University of Management Sciences (LUMS); Lahore- 54792 Pakistan
| | - Asad M. Khan
- Department of Chemistry; COMSATS Institute of Information Technology; Abbottabad- 22060 Pakistan
| | - Syed Z. Hussain
- Department of Chemistry; Syed Babar Ali School of Science and Engineering (SBASSE); Lahore University of Management Sciences (LUMS); Lahore- 54792 Pakistan
| | | |
Collapse
|