1
|
Benedetti PR, Menezes LRA, Sassaki GL. Structural characterization and physicochemical properties of wine and yeast mannans and evaluation of their interactions with catechin and epicatechin. Int J Biol Macromol 2025; 306:141798. [PMID: 40054803 DOI: 10.1016/j.ijbiomac.2025.141798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Wines are primarily composed of water, ethanol, glycerol, polysaccharides, organic acids, polyphenols, minerals, and volatile compounds. Polysaccharides derived from grape cell walls and yeast play a significant role in wine texture and flavor modulation, notably modulating astringency through interactions with tannins. Mannans, obtained from both wine and yeast, share a similar structure - a main chain of α-D-Manp linked (1 → 6) with branching at position 2-O by α-D-Manp units or oligosaccharides linked (1 → 2). However, wine mannan has a lower estimated molecular weight (50.88 kDa) than yeast-derived mannan (62.27 kDa). Wine mannan exhibits a more linear structure, as indicated by its higher radius of gyration (RG). In contrast, the yeast mannan exhibited a smaller RG, suggesting a more globular conformation due to branching. Additionally, mannans adopt a helical conformation. Epitope mapping reveals that the aromatic ring of catechin and epicatechin is crucial for their interaction with mannan, suggesting a hydrophobic interaction. Based on the obtained dissociation constant (KD) values, it is suggested that mannans with lower molecular weights (MW) are more viable for neutralizing the astringency caused by catechin and epicatechin in white wines.
Collapse
Affiliation(s)
- Philippe Rodrigues Benedetti
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná 81.531-980, Brazil
| | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná 81.531-980, Brazil.
| |
Collapse
|
2
|
Lou H, Hu G, Luan X, Steinbach-Rankins JM, Hageman MJ. Application of a UV-vis spectrometer to investigate the effect of dissolution media on the diffusivity of small molecules and proteins. J Pharm Sci 2025; 114:256-264. [PMID: 39278591 DOI: 10.1016/j.xphs.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
To date, the commonly used methods for diffusion coefficient measurements have some hurdles that prevent them from being widely applied in pharmaceutical laboratories. This study aimed to modify a method developed by di Cagno et al. based on the use of a UV-Vis spectrometer and apply the method to investigate the effect of dissolution media on the diffusivity of small molecules and proteins. A total of five small molecules and two proteins in different aqueous media and polymer solutions were investigated in this study. By attaching a 3D-printed cover with an open slit to a standard UV-Vis cuvette, the incident UV light could only pass through the open slit to measure the local drug concentration. During the diffusion experiment, drug molecules diffused from the cuvette bottom to the slit. According to the concentration measured as a function of time, diffusion coefficient was calculated based on Fick's law of diffusion using the analytical and numerical approaches. As a result, diffusion coefficients could be accurately measured with high reproducibility. The results also suggested that different media could affect the diffusion coefficients of small molecules by < 10% and proteins by < 15%. Since the UV-Vis spectrometer is a routine instrument, this method can potentially be employed by many pharmaceutical laboratories for diffusion coefficient measurements.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA.
| | - Gang Hu
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Xi Luan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | - Jill M Steinbach-Rankins
- Innovation Technology Lead, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877, USA
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA; Biopharmaceutical Innovation & Optimization Center, The University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
3
|
Wang S, Rienstra CM, Chen K. Higher Order Structure Differences Among Insulin Crystalline Drugs Revealed by 2D heteronuclear NMR. ChemMedChem 2024; 19:e202400340. [PMID: 39116305 DOI: 10.1002/cmdc.202400340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
During therapeutic protein development, two-dimensional (2D) heteronuclear NMR spectra can be a powerful analytical method for measuring protein higher order structure (HOS) in solution since the spectra exhibit much higher resolution than homonuclear 1H spectra. However, 2D NMR capabilities for characterizing protein HOS in crystalline states remain to be assessed, given the low 13C natural abundance and intrinsically broader lines in solid-state NMR (SSNMR). Herein, high-resolution heteronuclear correlation (HETCOR) SSNMR was utilized to directly measure intact crystal drug products of insulin human, insulin analogs of insulin lispro and insulin aspart. The fingerprint regions in 2D 1H-13C HETCOR spectra were identified, which distinguished the insulin crystals in their primary structure, HOS heterogeneity and dynamics, as well as the manufacturing processes. The HOS heterogeneity in insulin analogs is consistent with their therapeutic effect of rapid action; while insulin human crystals showed more structural homogeneity, consistent with their slower pharmacokinetics (PK) peak time than insulin analogs. Therefore, heteronuclear NMR could be broadly applicable to study protein drug dosage forms from liquid to solid, yielding improved molecular level structure data for assessing drug HOS in biosimilar drug development.
Collapse
Affiliation(s)
- Songlin Wang
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI-53706, United States
| | - Chad M Rienstra
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI-53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI-53706, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI-53706, United States
| | - Kang Chen
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD-20993, United States
| |
Collapse
|
4
|
Wang D, Li J, Chen K. Intact NMR Approach Quickly Reveals Synchronized Microstructural Changes in Oil-in-Water Nanoemulsion Formulations. AAPS J 2024; 26:78. [PMID: 38981948 DOI: 10.1208/s12248-024-00945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024] Open
Abstract
A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.
Collapse
Affiliation(s)
- Deyun Wang
- Division of Liquid Based Products II, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jiayi Li
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
5
|
Li L, Qu J, Liu W, Peng B, Cong S, Yu H, Zhang B, Li Y. Advancements in Characterization Techniques for Microemulsions: From Molecular Insights to Macroscopic Phenomena. Molecules 2024; 29:2901. [PMID: 38930964 PMCID: PMC11206267 DOI: 10.3390/molecules29122901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Microemulsions are thermodynamically stable, optically isotropic, transparent, or semi-transparent mixed solutions composed of two immiscible solvents stabilized by amphiphilic solutes. This comprehensive review explores state-of-the-art techniques for characterizing microemulsions, which are versatile solutions essential across various industries, such as pharmaceuticals, food, and petroleum. This article delves into spectroscopic methods, nuclear magnetic resonance, small-angle scattering, dynamic light scattering, conductometry, zeta potential analysis, cryo-electron microscopy, refractive index measurement, and differential scanning calorimetry, examining each technique's strengths, limitations, and potential applications. Emphasizing the necessity of a multi-technique approach for a thorough understanding, it underscores the importance of integrating diverse analytical methods to unravel microemulsion structures from molecular to macroscopic scales. This synthesis provides a roadmap for researchers and practitioners, fostering advancements in microemulsion science and its wide-ranging industrial applications.
Collapse
Affiliation(s)
- Longfei Li
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China; (L.L.); (J.Q.); (B.P.); (S.C.); (B.Z.); (Y.L.)
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China;
- National Elite Institute of Engineering, China National Petroleum Corporation (CNPC), Beijing 102200, China
| | - Jiepeng Qu
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China; (L.L.); (J.Q.); (B.P.); (S.C.); (B.Z.); (Y.L.)
- National Elite Institute of Engineering, China National Petroleum Corporation (CNPC), Beijing 102200, China
- School of Rare Earth, University of Science and Technology of China, Hefei 230026, China
| | - Weidong Liu
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China; (L.L.); (J.Q.); (B.P.); (S.C.); (B.Z.); (Y.L.)
| | - Baoliang Peng
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China; (L.L.); (J.Q.); (B.P.); (S.C.); (B.Z.); (Y.L.)
| | - Sunan Cong
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China; (L.L.); (J.Q.); (B.P.); (S.C.); (B.Z.); (Y.L.)
| | - Haobo Yu
- College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China;
| | - Biao Zhang
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China; (L.L.); (J.Q.); (B.P.); (S.C.); (B.Z.); (Y.L.)
| | - Yingying Li
- Research Institute of Petroleum Exploration and Development, Beijing 100083, China; (L.L.); (J.Q.); (B.P.); (S.C.); (B.Z.); (Y.L.)
| |
Collapse
|
6
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
7
|
Calcagno D, Perina ML, Zingale GA, Pandino I, Tuccitto N, Oliveri V, Parravano MC, Grasso G. Detection of insulin oligomeric forms by a novel surface plasmon resonance-diffusion coefficient based approach. Protein Sci 2024; 33:e4962. [PMID: 38501507 PMCID: PMC10949399 DOI: 10.1002/pro.4962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Insulin is commonly used to treat diabetes and undergoes aggregation at the site of repeated injections in diabetic patients. Moreover, aggregation is also observed during its industrial production and transport and should be avoided to preserve its bioavailability to correctly adjust glucose levels in diabetic patients. However, monitoring the effect of various parameters (pH, protein concentration, metal ions, etc.) on the insulin aggregation and oligomerization state is very challenging. In this work, we have applied a novel Surface Plasmon Resonance (SPR)-based experimental approach to insulin solutions at various experimental conditions, monitoring how its diffusion coefficient is affected by pH and the presence of metal ions (copper and zinc) with unprecedented sensitivity, precision, and reproducibility. The reported SPR method, hereby applied to a protein for the first time, besides giving insight into the insulin oligomerization and aggregation phenomena, proved to be very robust for determining the diffusion coefficient of any biomolecule. A theoretical background is given together with the software description, specially designed to fit the experimental data. This new way of applying SPR represents an innovation in the bio-sensing field and expanding the potentiality of commonly used SPR instruments well over the canonical investigation of biomolecular interactions.
Collapse
Affiliation(s)
| | | | | | | | - Nunzio Tuccitto
- Dipartimento di Scienze ChimicheUniversity of CataniaCataniaItaly
| | | | | | - Giuseppe Grasso
- Dipartimento di Scienze ChimicheUniversity of CataniaCataniaItaly
| |
Collapse
|
8
|
Xian S, Xiang Y, Liu D, Fan B, Mitrová K, Ollier RC, Su B, Alloosh MA, Jiráček J, Sturek M, Alloosh M, Webber MJ. Insulin-Dendrimer Nanocomplex for Multi-Day Glucose-Responsive Therapy in Mice and Swine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308965. [PMID: 37994248 DOI: 10.1002/adma.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Indexed: 11/24/2023]
Abstract
The management of diabetes in a manner offering autonomous insulin therapy responsive to glucose-directed need, and moreover with a dosing schedule amenable to facile administration, remains an ongoing goal to improve the standard of care. While basal insulins with reduced dosing frequency, even once-weekly administration, are on the horizon, there is still no approved therapy that offers glucose-responsive insulin function. Herein, a nanoscale complex combining both electrostatic- and dynamic-covalent interactions between a synthetic dendrimer carrier and an insulin analogue modified with a high-affinity glucose-binding motif yields an injectable insulin depot affording both glucose-directed and long-lasting insulin availability. Following a single injection, it is even possible to control blood glucose for at least one week in diabetic swine subjected to daily oral glucose challenges. Measurements of serum insulin concentration in response to challenge show increases in insulin corresponding to elevated blood glucose levels, an uncommon finding even in preclinical work on glucose-responsive insulin. Accordingly, the subcutaneous nanocomplex that results from combining electrostatic- and dynamic-covalent interactions between a modified insulin and a synthetic dendrimer carrier affords a glucose-responsive insulin depot for week-long control following a single routine injection.
Collapse
Affiliation(s)
- Sijie Xian
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Yuanhui Xiang
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Dongping Liu
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bowen Fan
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Katarína Mitrová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | - Rachel C Ollier
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Bo Su
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| | | | - Jiří Jiráček
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Prague, 16610, Czech Republic
| | | | | | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, 105 McCourtney Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
9
|
Ten Klooster S, Takeuchi M, Schroën K, Tuinier R, Joosten R, Friedrich H, Berton-Carabin C. Tiny, yet impactful: Detection and oxidative stability of very small oil droplets in surfactant-stabilized emulsions. J Colloid Interface Sci 2023; 652:1994-2004. [PMID: 37690307 DOI: 10.1016/j.jcis.2023.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
HYPOTHESIS The shelf life of multiphase systems, e.g. oil-in-water (O/W) emulsions, is severely limited by physical and/or chemical instabilities, which degrade their texture, macroscopic appearance, sensory and (for edible systems) nutritional quality. One prominent chemical instability is lipid oxidation, which is notoriously complex. The complexity arises from the involvement of many physical structures present at several scales (1-10,000 nm), of which the smallest ones are often overlooked during characterization. EXPERIMENTS We used cryogenic transmission electron microscopy (cryo-TEM) to characterize the coexisting colloidal structures at the nanoscale (10-200 nm) in rapeseed oil-based model emulsions stabilized by different concentrations of a nonionic surfactant. We assessed whether the oxidative and physical instabilities of the smallest colloidal structures in such emulsions may be different from those of larger colloidal structures. FINDINGS By deploying cryo-TEM, we analyzed the size of very small oil droplets and of surfactant micelles, which are typically overlooked by dynamic light scattering when larger structures are concomitantly present. Their size and oil content were shown to be stable over incubation, but lipid oxidation products were overrepresented in these very small droplets. These insights highlight the importance of the fraction of "tiny droplets" for the oxidative stability of O/W emulsions.
Collapse
Affiliation(s)
- Sten Ten Klooster
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Machi Takeuchi
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Karin Schroën
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Rick Joosten
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Claire Berton-Carabin
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; INRAE, BIA, 44000 Nantes, France.
| |
Collapse
|
10
|
Li M, Razumtcev A, Turner GA, Hwang Y, Simpson GJ. Fast Diffusion Characterization by Multiphoton Excited Fluorescence Recovery while Photobleaching. Anal Chem 2023; 95:14331-14340. [PMID: 37699550 DOI: 10.1021/acs.analchem.3c02638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Multiphoton-excited fluorescence recovery while photobleaching (FRWP) is demonstrated as a method for quantitative measurements of rapid molecular diffusion over microsecond to millisecond timescales. Diffusion measurements are crucial in assessing molecular mobility in cell biology, materials science, and pharmacology. Optical and fluorescence microscopy techniques enable non-invasive rapid analysis of molecular diffusion but can be challenging for systems with diffusion coefficients exceeding ∼100 μm2/s. As an example, fluorescence recovery after photobleaching (FRAP) operates on the implicit assumption of a comparatively fast photobleaching step prior to a relatively slow recovery and is not generally applicable for systems exhibiting substantial recovery during photobleaching. These challenges are exacerbated in multiphoton excitation by the lower excitation efficiency and competing effects from local heating. Herein, beam-scanning FRWP with patterned line-bleach illumination is introduced as a technique that addresses FRAP limitations and further extends its application range by measuring faster diffusion events. In FRWP, the recovery of fluorescence is continuously probed after each pass of a fast-scanning mirror, and the upper bound of measurable diffusion rates is, therefore, only limited by the mirror scanning frequency. A theoretical model describing transient fluctuations in fluorescence intensity arising as a result of combined contributions from photobleaching and localized photothermal effect is introduced along with a mathematical framework for quantifying fluorescence intensity temporal curves and recovering room-temperature diffusion coefficients. FRWP is then tested by characterization of normal diffusion of rhodamine-labeled bovine serum albumin, green fluorescence protein, and immunoglobulin G molecules in aqueous solutions of varying viscosity.
Collapse
Affiliation(s)
- Minghe Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Gwendylan A Turner
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Wang K, Chen K. Direct Assessment of Oligomerization of Chemically Modified Peptides and Proteins in Formulations using DLS and DOSY-NMR. Pharm Res 2023; 40:1329-1339. [PMID: 36627448 DOI: 10.1007/s11095-022-03468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Protein higher order structure (HOS) including the oligomer distribution can be critical for efficacy, safety and stability of drug products (DP). Oligomerization is particularly relevant to chemically modified protein therapeutics that have an extended pharmacokinetics profile. Therefore, the direct assessment of protein oligomerization in drug formulation is desired for quality assurance and control. METHODS Here, two non-invasive methods, dynamic light scattering (DLS) and diffusion ordered spectroscopy (DOSY) NMR, were applied to measure translational diffusion coefficients (Ddls and Dnmr) of proteins in formulated drug products. The hydrodynamic molecular weights (MWhd), similar to hydrodynamic size, of protein therapeutics were derived based on a log(Ddls) vs log(MWhd) correlation model established using protein standards. RESULTS An exponent value of -0.40 ± 0.01 was established for DLS measured log(D) vs. log(MWhd) using protein standards and a theoretical exponent value of -0.6 was used for unstructured polyethylene glycol (PEG) chains. The analysis of DLS derived MWhd of the primary species showed the fatty acid linked glucagon-like peptide 1 (GLP-1) was in different oligomer states, but the fatty acid linked insulin and PEG linked proteins were in monomer states. Nevertheless, equilibrium and exchange between oligomers in formulations were universal and clearly evidenced from DOSY-NMR for all drugs except peginterferon alfa-2a. CONCLUSION The correlation models of log(D) vs. log(MWhd) could be a quick and efficient way to predict MWhd of protein, which directly informs on the state of protein folding and oligomerization in formulation.
Collapse
Affiliation(s)
- Kai Wang
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
12
|
Naranjani B, Sinko PD, Bergström CAS, Gogoll A, Hossain S, Larsson P. Numerical simulation of peristalsis to study co-localization and intestinal distribution of a macromolecular drug and permeation enhancer. Int J Biol Macromol 2023; 240:124388. [PMID: 37059282 DOI: 10.1016/j.ijbiomac.2023.124388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
In this work, simulations of intestinal peristalsis are performed to investigate the intraluminal transport of macromolecules (MMs) and permeation enhancers (PEs). Properties of insulin and sodium caprate (C10) are used to represent the general class of MM and PE molecules. Nuclear magnetic resonance spectroscopy was used to obtain the diffusivity of C10, and coarse-grain molecular dynamics simulations were carried out to estimate the concentration-dependent diffusivity of C10. A segment of the small intestine with the length of 29.75 cm was modeled. Peristaltic speed, pocket size, release location, and occlusion ratio of the peristaltic wave were varied to study the effect on drug transport. It was observed that the maximum concentration at the epithelial surface for the PE and the MM increased by 397 % and 380 %, respectively, when the peristaltic wave speed was decreased from 1.5 to 0.5 cm s-1. At this wave speed, physiologically relevant concentrations of PE were found at the epithelial surface. However, when the occlusion ratio is increased from 0.3 to 0.7, the concentration approaches zero. These results suggest that a slower-moving and more contracted peristaltic wave leads to higher efficiency in transporting mass to the epithelial wall during the peristalsis phases of the migrating motor complex.
Collapse
Affiliation(s)
- Benyamin Naranjani
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Patrick D Sinko
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Adolf Gogoll
- Department of Chemistry, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Shakhawath Hossain
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| |
Collapse
|
13
|
Simon CG, Borgos SE, Calzolai L, Nelson BC, Parot J, Petersen EJ, Roesslein M, Xu X, Caputo F. Orthogonal and complementary measurements of properties of drug products containing nanomaterials. J Control Release 2023; 354:120-127. [PMID: 36581261 DOI: 10.1016/j.jconrel.2022.12.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Quality control of pharmaceutical and biopharmaceutical products, and verification of their safety and efficacy, depends on reliable measurements of critical quality attributes (CQAs). The task becomes particularly challenging for drug products and vaccines containing nanomaterials, where multiple complex CQAs must be identified and monitored. To reduce (i) the risk of measurement bias and (ii) the uncertainty in decision-making during product development, the combination of orthogonal and complementary analytical techniques are generally recommended by regulators. However, despite frequent reference to "orthogonal" and "complementary" in guidance documents, neither term is clearly defined. How does one determine if two analytical methods are orthogonal or complementary to one another? Definitions are needed to design a robust characterization strategy aligned to regulatory needs. Definitions for "orthogonal" and "complementary" are proposed that are compatible with existing metrological terminology and are applicable to complex measurement problems. Orthogonal methods target the quantitative evaluation of the true value of a product attribute to address unknown bias or interference. Complementary measurements include a broader scope of methods that reinforce each other to support a common decision. Examples of the application of these terms are presented, with a focus on measurement of physical properties of nano-enabled drug products, including liposomes and polymeric nanoparticles for cancer treatment, lipid-based nanoparticles (LNPs) and virus-like particles for nucleic acid delivery. The proposed framework represents a first step in advancing the assessment of the orthogonality and complementarity of two measurements and it can potentially serve as the basis for a future international standard. This framework may help product developers to implement more efficient product characterization strategies, accelerate the introduction of novel medicines to the clinic and be applicable to other therapeutics beyond nanomaterial-containing pharmaceuticals.
Collapse
Affiliation(s)
- C G Simon
- National Institute of Standards and Technology (NIST), Biosystems and Biomaterials Division, Gaithersburg, MD, USA.
| | - S E Borgos
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - L Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - B C Nelson
- National Institute of Standards and Technology (NIST), Biosystems and Biomaterials Division, Gaithersburg, MD, USA
| | - J Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - E J Petersen
- National Institute of Standards and Technology (NIST), Biosystems and Biomaterials Division, Gaithersburg, MD, USA
| | - M Roesslein
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Materials Meet Life Department, St. Gallen, Switzerland
| | - X Xu
- US Food and Drug Administration, CDER/OPQ/OTR/DPQR, Silver Spring, MD, USA
| | - F Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; LNE-Centre for Scientific and Industrial Metrology, Avenue Roger Hennequin 29, 78197 Trappes, France.
| |
Collapse
|
14
|
Chen K, Smith CJ. Best Practices for Submission of NMR Data to Support Higher Order Structure Assessment of Generic Peptide Drugs. AAPS J 2023; 25:17. [PMID: 36670271 DOI: 10.1208/s12248-023-00782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Affiliation(s)
- Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Cameron J Smith
- Division of Liquid-Based Products I, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
15
|
Wang W, Jiang Y, Huang Z, Nguyen HVT, Liu B, Hartweg M, Shirakura M, Qin KP, Johnson JA. Discrete, Chiral Polymer-Insulin Conjugates. J Am Chem Soc 2022; 144:23332-23339. [PMID: 36126328 PMCID: PMC10440729 DOI: 10.1021/jacs.2c07382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymer conjugation has been widely used to improve the stability and pharmacokinetics of therapeutic biomacromolecules; however, conventional methods to generate such conjugates often use disperse and/or achiral polymers with limited functionality. The heterogeneity of such conjugates may lead to manufacturing variability, poorly controlled biological performance, and limited ability to optimize structure-property relationships. Here, using insulin as a model therapeutic polypeptide, we introduce a strategy for the synthesis of polymer-protein conjugates based on discrete, chiral polymers synthesized through iterative exponential growth (IEG). These conjugates eliminate manufacturing variables originating from polymer dispersity and poorly controlled absolute configuration. Moreover, they offer tunable molecular features, such as conformational rigidity, that can be modulated to impact protein function, enabling faster or longer-lasting blood glucose responses in diabetic mice when compared to PEGylated insulin and the commercial insulin variant Lantus. Furthermore, IEG-insulin conjugates showed no signs of decreased activity, immunogenicity, or toxicity following repeat dosing. This work represents a significant step toward the synthesis of precise synthetic polymer-biopolymer conjugates and reveals that fine tuning of synthetic polymer structure may be used to optimize such conjugates in the future.
Collapse
Affiliation(s)
- Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhihao Huang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Manuel Hartweg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Masamichi Shirakura
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - K. Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Dey A, Mitra D, Rachineni K, Khatri LR, Paithankar H, Vajpai N, Kumar A. Mapping of Methyl Epitopes of a Peptide-Drug with Its Receptor by 2D STDD-Methyl TROSY NMR Spectroscopy. Chembiochem 2022; 23:e202200489. [PMID: 36227643 DOI: 10.1002/cbic.202200489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Indexed: 01/25/2023]
Abstract
The current trend in the biopharmaceutical market has boosted the development and production of biological drugs with high efficacy and fidelity for receptor binding. While high-resolution structural insights into binding epitopes of the receptor are indispensable for better therapeutic design, it is tedious and costly. In this work, we develop a protocol by integrating two well-known NMR-based solution-state methods. Saturation transfer double-difference with methyl-TROSY (STDD-Methyl TROSY NMR) was used to probe methyl binding epitopes of the ligand in a label-free environment. This study was carried out with Human insulin as a model peptide drug, with the insulin growth factor receptor (IGFR), which is an off-target receptor for insulin. Methyl epitopes identified from STDD-Methyl TROSY NMR spectroscopy were validated through the HADDOCK platform to generate a drug-receptor model. Since this method can be applied at natural abundance, it has the potential to screen a large set of peptide-drug interactions for optimum receptor binding. Thus, we propose STDD-Methyl TROSY NMR spectroscopy as a technique for rapid screening of biologics for the development of optimized biopharmaceutics.
Collapse
Affiliation(s)
- Anomitra Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Debarghya Mitra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Kavitha Rachineni
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Lakshya Raj Khatri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Harshad Paithankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| | - Navratna Vajpai
- Biocon Biologics Limited, Biocon Park (SEZ), Bommasandra-Jigani Link Road, Bangalore, 560099, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai Mumbai, 400076, India
| |
Collapse
|
17
|
Nupur N, Joshi S, Gulliarme D, Rathore AS. Analytical Similarity Assessment of Biosimilars: Global Regulatory Landscape, Recent Studies and Major Advancements in Orthogonal Platforms. Front Bioeng Biotechnol 2022; 10:832059. [PMID: 35223794 PMCID: PMC8865741 DOI: 10.3389/fbioe.2022.832059] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Biopharmaceuticals are one of the fastest-growing sectors in the biotechnology industry. Within the umbrella of biopharmaceuticals, the biosimilar segment is expanding with currently over 200 approved biosimilars, globally. The key step towards achieving a successful biosimilar approval is to establish analytical and clinical biosimilarity with the innovator. The objective of an analytical biosimilarity study is to demonstrate a highly similar profile with respect to variations in critical quality attributes (CQAs) of the biosimilar product, and these variations must lie within the range set by the innovator. This comprises a detailed comparative structural and functional characterization using appropriate, validated analytical methods to fingerprint the molecule and helps reduce the economic burden towards regulatory requirement of extensive preclinical/clinical similarity data, thus making biotechnological drugs more affordable. In the last decade, biosimilar manufacturing and associated regulations have become more established, leading to numerous approvals. Biosimilarity assessment exercises conducted towards approval are also published more frequently in the public domain. Consequently, some technical advancements in analytical sciences have also percolated to applications in analytical biosimilarity assessment. Keeping this in mind, this review aims at providing a holistic view of progresses in biosimilar analysis and approval. In this review, we have summarized the major developments in the global regulatory landscape with respect to biosimilar approvals and also catalogued biosimilarity assessment studies for recombinant DNA products available in the public domain. We have also covered recent advancements in analytical methods, orthogonal techniques, and platforms for biosimilar characterization, since 2015. The review specifically aims to serve as a comprehensive catalog for published biosimilarity assessment studies with details on analytical platform used and critical quality attributes (CQAs) covered for multiple biotherapeutic products. Through this compilation, the emergent evolution of techniques with respect to each CQA has also been charted and discussed. Lastly, the information resource of published biosimilarity assessment studies, created during literature search is anticipated to serve as a helpful reference for biopharmaceutical scientists and biosimilar developers.
Collapse
Affiliation(s)
- Neh Nupur
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Srishti Joshi
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| | - Davy Gulliarme
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Anurag S Rathore
- Department of Chemical Engineering, IIT Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
18
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
19
|
Mann JL, Maikawa CL, Smith AAA, Grosskopf AK, Baker SW, Roth GA, Meis CM, Gale EC, Liong CS, Correa S, Chan D, Stapleton LM, Yu AC, Muir B, Howard S, Postma A, Appel EA. An ultrafast insulin formulation enabled by high-throughput screening of engineered polymeric excipients. Sci Transl Med 2021; 12:12/550/eaba6676. [PMID: 32611683 DOI: 10.1126/scitranslmed.aba6676] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Insulin has been used to treat diabetes for almost 100 years; yet, current rapid-acting insulin formulations do not have sufficiently fast pharmacokinetics to maintain tight glycemic control at mealtimes. Dissociation of the insulin hexamer, the primary association state of insulin in rapid-acting formulations, is the rate-limiting step that leads to delayed onset and extended duration of action. A formulation of insulin monomers would more closely mimic endogenous postprandial insulin secretion, but monomeric insulin is unstable in solution using present formulation strategies and rapidly aggregates into amyloid fibrils. Here, we implement high-throughput-controlled radical polymerization techniques to generate a large library of acrylamide carrier/dopant copolymer (AC/DC) excipients designed to reduce insulin aggregation. Our top-performing AC/DC excipient candidate enabled the development of an ultrafast-absorbing insulin lispro (UFAL) formulation, which remains stable under stressed aging conditions for 25 ± 1 hours compared to 5 ± 2 hours for commercial fast-acting insulin lispro formulations (Humalog). In a porcine model of insulin-deficient diabetes, UFAL exhibited peak action at 9 ± 4 min, whereas commercial Humalog exhibited peak action at 25 ± 10 min. These ultrafast kinetics make UFAL a promising candidate for improving glucose control and reducing burden for patients with diabetes.
Collapse
Affiliation(s)
- Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anton A A Smith
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA.,Department of Science and Technology, Aarhus University, 8000 Aarhus, Denmark
| | - Abigail K Grosskopf
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sam W Baker
- Department of Comparative Medicine, Stanford University, Palo Alto, CA 94305, USA
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Catherine M Meis
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Emily C Gale
- Department of Biochemistry, Stanford University, Palo Alto, CA 94305, USA
| | - Celine S Liong
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Santiago Correa
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Anthony C Yu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Ben Muir
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Shaun Howard
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Almar Postma
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA. .,Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.,ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.,Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Joshi S, Khatri LR, Kumar A, Rathore AS. Monitoring size and oligomeric-state distribution of therapeutic mAbs by NMR and DLS: Trastuzumab as a case study. J Pharm Biomed Anal 2020; 195:113841. [PMID: 33371967 DOI: 10.1016/j.jpba.2020.113841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies (mAbs) are the modalities of choice for immunotherapy. This class of products are known to exhibit considerable heterogeneity with respect to size, aggregation states, and charge. This makes it challenging for biopharmaceutical manufacturers, in particular biosimilar producers, to maintain consistency in product quality. In order to fingerprint these biotherapeutic products, multiple, high-resolution analytical tools are used to characterize the numerous critical quality attributes. Recently, there has been growing interest in enhancing adaptability of 1D and 2D NMR platforms for characterization of higher order structure with emphasis on 1D 1H, 2D 1H-15N and 1H-13C NMR experiments at natural abundance. In this communication, we report the applicability of 2D-DOSY NMR for quantification of colloidal diffusivities, namely diffusion coefficient (and associated hydrodynamic radius) for monomeric IgG1 mAb formulations at physiological conditions. Similarity assessment has been performed for trastuzumab originator (multiple batches) and marketed biosimilars to showcase the applicability of this approach. While dynamic light scattering measurements are known to be sensitive to presence of larger particles with a concentration dependence for estimation of colloidal diffusivities, size estimated by NMR experiments was found to be more in agreement with the computational hydrodynamic size estimations derived from the published crystal structures of intact mAb at formulation concentration.
Collapse
Affiliation(s)
- Srishti Joshi
- Department of Chemical Engineering, Indian Institute of Technology, 110016, Hauz Khas, India
| | - Lakshya Raj Khatri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, 110016, Hauz Khas, India.
| |
Collapse
|
21
|
Patil SM, Nguyen J, Keire DA, Chen K. Sedimentation Velocity Analytical Ultracentrifugation Analysis of Marketed Rituximab Drug Product Size Distribution. Pharm Res 2020; 37:238. [PMID: 33155155 DOI: 10.1007/s11095-020-02961-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Analytical methods suitable for intact drug products are often necessary to evaluate the equivalence in physicochemical properties between two drug products (DP) containing the same drug substance (DS), e.g., an innovator biologic drug and its proposed biosimilar. Analytical Ultracentrifugation (AUC) is a biophysics technique applied to the analysis of size and shape of biomolecules. However, the application of AUC to formulated monoclonal antibody (mAb) DP at high concentration has not been reported. METHODS A sedimentation velocity (SV) AUC procedure with a short-pathlength centerpiece was applied to two marketed rituximab DPs, Rituxan® (US) and Reditux® (India), without any buffer exchange or dilution. Detailed precision analysis was performed. RESULTS Highly reproducible sedimentation coefficient values (S) and peak areas were obtained for the dominant (> 84%) monomeric rituximab peak. The minor mAb fragment peaks had large variation in both S values and peak areas (3-12%). The identification of oligomer peaks was only reproducible once the abundance was higher than 2%. CONCLUSIONS SV-AUC provides an orthogonal characterization tool for protein size distribution, composition and assay, which could be informative for biosimilar drug developers who mostly only have access to formulated mAb. However, AUC needs thorough validation on its accuracy, precision and sensitivity.
Collapse
Affiliation(s)
- Sharadrao M Patil
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - John Nguyen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - David A Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, St. Louis, Missouri, 63110, USA
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| |
Collapse
|
22
|
Quantitative analysis of weakly bound insulin oligomers in solution using polarized multidimensional fluorescence spectroscopy. Anal Chim Acta 2020; 1138:18-29. [PMID: 33161979 DOI: 10.1016/j.aca.2020.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Being able to measure the size and distribution of oligomers in solution is a critical issue in the manufacture and stability of insulin and other protein formulations. Measuring oligomers reliably can however be complicated, due to their fragile self-assembled structures, which are held together by weak forces. This can cause issues in chromatographic based methods, where dissociation or re-equilibration of oligomer populations can occur e.g. upon dilution in a different eluting buffer, but also for light scattering based methods like dynamic light scattering (DLS) where the size difference involved (often less than a factor 3) does not allow mixtures of oligomers to be resolved. Intrinsic fluorescence offers an attractive alternative as it is non-invasive, sensitive but also because it contains scattered light when implemented via excitation emission matrix (EEM) measurements, that is sensitive to changes in particle size. Here, using insulin at formulation level concentrations, we show for the first time how EEM can both discriminate and quantify the proportion of oligomeric states in solution. This was achieved by using the Rayleigh scatter (RS) band and the fluorescence signal contained in EEM. After validating size changes with DLS, we show in particular how the volume under the RS band correlated linearly with protein/oligomer molecular weight, in agreement with the Debye-Zimm relationship. This was true for the RS data from both EEM and polarized EEM (pEEM) measurements, the latter providing a stronger scatter signal, more sensitive to particle size changes. The fluorescence signal was then used with multivariate curve resolution (MCR) to quantify more precisely the soluble oligomer composition of insulin solutions. In conditions that promoted the formation of mainly one type of oligomer (monomer, dimer, or hexamer), pEEM-MCR helped identify the presence of small amounts of other oligomeric forms, while in conditions that were previously said to favour the insulin tetramer, we show that in the presence of zinc, these insulin samples were instead a heterogenous mixture composed of mostly dimers and hexamers. These MCR results correlated in all cases with the observed discrimination by principal component analysis (PCA), and deviations observed in the RS data. In conclusion, using pEEM scatter and emission components with chemometric data analysis provides a unique analytical method for characterising and monitoring changes in the soluble oligomeric state of proteins.
Collapse
|
23
|
Suh MS, Patil SM, Kozak D, Pang E, Choi S, Jiang X, Rodriguez JD, Keire DA, Chen K. An NMR Protocol for In Vitro Paclitaxel Release from an Albumin-Bound Nanoparticle Formulation. AAPS PharmSciTech 2020; 21:136. [PMID: 32419122 DOI: 10.1208/s12249-020-01669-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 01/24/2023] Open
Abstract
The paclitaxel protein-bound particles for injectable suspension (marketed under the brand name Abraxane®) contains nanosized complexes of paclitaxel and albumin. The molecular interaction between paclitaxel and albumin within the higher-order nanostructure is analytically challenging to assess, as is any correlation of differences to differences in therapeutic effect. However, because the higher-order nanostructures may affect the paclitaxel release, a suitable in vitro assay to detect potential differences in paclitaxel release between comparator lots and products is desirable. Herein, solution NMR spectroscopy with a T2-filtering technique was developed to detect paclitaxel signal while suppressing albumin signals to follow the released paclitaxel in the NMR tube upon dilution. The non-invasive nature of NMR allows for precise measurement of a full range of dilution-induced drug release percentage from 14 to 92% without any sample extraction. The critical concentration of the drug product (DP) at 50% of release was 0.63 ± 0.04 mg/mL in PBS buffer. In addition, 2D diffusion ordered NMR spectroscopy (DOSY) results revealed that the released paclitaxel experiencing slightly slowed diffusion rates than free paclitaxel, which was attributed to paclitaxel in equilibrium with albumin-bound states. Collectively, the dilution-based NMR method offered an analytical approach to investigate physicochemical attributes of complex injectable products with minimal needed sample preparation and perturbation to nanoparticle formulation.
Collapse
|
24
|
Shurpik DN, Sevastyanov DA, Zelenikhin PV, Padnya PL, Evtugyn VG, Osin YN, Stoikov II. Nanoparticles based on the zwitterionic pillar[5]arene and Ag +: synthesis, self-assembly and cytotoxicity in the human lung cancer cell line A549. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:421-431. [PMID: 32215229 PMCID: PMC7082700 DOI: 10.3762/bjnano.11.33] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
For the first time, stable pillar[5]arene/Ag+ nanoparticles, consisting of water-soluble pillar[5]arene containing γ-sulfobetaine fragments and Ag+ ions without Ag-Ag bonds, were synthesized and characterized. The pillar[5]arene/Ag+ (ratio 1:10) nanoparticles obtained were cubic with a rib length of 100 nm and are less cytotoxic than Ag+ ions. The survival of the A549 model cells in the presence of pillar[5]arene/Ag+ (1:10) nanoparticles at a concentration of 30 and 40 μM was 76% and 55%, while in the absence of pillar[5]arene, the cell survival for free Ag+ ions at the same concentration was 30% and 10%, respectively. The results can be used to create new antibacterial materials and 2D biomedical coatings.
Collapse
Affiliation(s)
- Dmitriy N Shurpik
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Denis A Sevastyanov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel V Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Pavel L Padnya
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| | - Vladimir G Evtugyn
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Yuriy N Osin
- Interdisciplinary Centre for Analytical Microscopy, Kazan Federal University, 420008 Kazan, Kremlevskaya 18, Russian Federation
| | - Ivan I Stoikov
- Kazan Federal University, A.M. Butlerov Chemistry Institute, 420008 Kremlevskaya, 18, Kazan, Russian Federation
| |
Collapse
|
25
|
An NMR-Based Similarity Metric for Higher Order Structure Quality Assessment Among U.S. Marketed Insulin Therapeutics. J Pharm Sci 2020; 109:1519-1528. [PMID: 31927041 DOI: 10.1016/j.xphs.2020.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
Protein or peptide higher order structure (HOS) is a quality attribute that could affect therapeutic efficacy and safety. Where appropriate, the HOS similarity between a proposed follow-on product and the reference listed drug should be demonstrated during regulatory assessment. Establishing quantitative HOS similarity for 2 drug substances, manufactured by different processes, has been challenging. Herein, HOS differences among U.S. marketed insulin drug products (DPs) were quantified using nuclear magnetic resonance spectra and principal component analysis (PCA). Then, the unitless Mahalanobis distance (DM) in PCA space was calculated between insulin analog reference listed drugs and their recently approved follow-on products, and all DM values were 3.29 or less. By contrast, a larger DM value of 20.5 was obtained between the 2 insulin human DPs independently approved. However, upon mass-balanced and reversible dialysis of the 2 insulin human DPs against the same buffers, the DM value was reduced to 1.19 or less. Thus, the observed range of nuclear magnetic resonance-PCA-derived DM values can be used as a robust and sensitive measure of HOS similarity. Overall, the DM values of 3.3 for DP and 1.2 for drug substances using insulin therapeutics represented realistic and achievable similarity metrics for developing generic or biosimilar drugs, quality assurance, or control.
Collapse
|
26
|
Maikawa CL, Smith AAA, Zou L, Meis CM, Mann JL, Webber MJ, Appel EA. Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues. ADVANCED THERAPEUTICS 2020; 3:1900094. [PMID: 32190729 PMCID: PMC7079736 DOI: 10.1002/adtp.201900094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Current "fast-acting" insulin analogues contain amino acid modifications meant to inhibit dimer formation and shift the equilibrium of association states toward the monomeric state. However, the insulin monomer is highly unstable and current formulation techniques require insulin to primarily exist as hexamers to prevent aggregation into inactive and immunogenic amyloids. Insulin formulation excipients have thus been traditionally selected to promote insulin association into the hexameric form to enhance formulation stability. This study exploits a novel excipient for the supramolecular PEGylation of insulin analogues, including aspart and lispro, to enhance the stability and maximize the prevalence of insulin monomers in formulation. Using multiple techniques, it is demonstrated that judicious choice of formulation excipients (tonicity agents and parenteral preservatives) enables insulin analogue formulations with 70-80% monomer and supramolecular PEGylation imbued stability under stressed aging for over 100 h without altering the insulin association state. Comparatively, commercial "fast-acting" formulations contain less than 1% monomer and remain stable for only 10 h under the same stressed aging conditions. This simple and effective formulation approach shows promise for next-generation ultrafast insulin formulations with a short duration of action that can reduce the risk of post-prandial hypoglycemia in the treatment of diabetes.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anton A A Smith
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Catherine M Meis
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Vázquez-Leyva S, Vallejo-Castillo L, López-Morales CA, Herbert-Pucheta JE, Zepeda-Vallejo LG, Velasco-Velázquez M, Pavón L, Pérez-Tapia SM, Medina-Rivero E. Identity Profiling of Complex Mixtures of Peptide Products by Structural and Mass Mobility Orthogonal Analysis. Anal Chem 2019; 91:14392-14400. [PMID: 31664820 DOI: 10.1021/acs.analchem.9b02873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Identity is a critical quality attribute that must be determined before releasing batches of medicinal and dietary products. However, the identities of peptide-derived products composed of a large number of diverse molecules is challenging since most analytical techniques cannot analyze multiple molecules simultaneously. Here, we proposed the determination of the weight-average molecular weight (Mw) and polydispersity index (PDI) by mass spectrometry for control quality for the batch release of complex products, namely, glatiramer acetate (Copaxone), collagen hydrolysate (Colagenart), and a human dialyzable leucocyte extract (Transferon). The Mw and PDI values were orthogonally determined by PFG-STE-H2O(presaturation)-DOSY-NMR analysis. To the best of our knowledge, this is the first time that MS and NMR spectra have been combined to determine the PDI of complex products derived from protein hydrolysis that are not monodisperse. The performance of each method was evaluated by comparing the obtained results to those reported for glatiramer acetate using MALLS, the technique commonly employed to determine PDI. This combined approach demonstrates the ability of these techniques to separate peptide populations from complex mixtures to establish their identity through their mass distribution profiles.
Collapse
Affiliation(s)
- Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional . 11340 Mexico City , Mexico
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional . 11340 Mexico City , Mexico
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional . 11340 Mexico City , Mexico
| | - José Enrique Herbert-Pucheta
- Consejo Nacional de Ciencia y Tecnología-Laboratorio Nacional de Investigación y Servicio Agroalimentario Forestal , Universidad Autónoma Chapingo . 56230 Chapingo , Estado de México , Mexico
| | - L Gerardo Zepeda-Vallejo
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional . 11340 Mexico City , Mexico
| | - Marco Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Translacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina , Universidad Nacional Autónoma de México (UNAM) . 04510 Mexico City , Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias Instituto Nacional de Psiquiatría Ramón de la Fuente . 14370 Mexico City , Mexico
| | - Sonia M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional . 11340 Mexico City , Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional . 11340 Mexico City , Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos , LANSEIDI-FarBiotec-CONACyT . 11340 Mexico City , Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas , Instituto Politécnico Nacional . 11340 Mexico City , Mexico
- Consultoría Integral y Biodesarrollo LEMAR S.A.P.I. de C.V. 03300 Mexico City , Mexico
| |
Collapse
|
28
|
Aghamiri S, Jafarpour A, Shoja M. Effects of silver nanoparticles coated with anti-HER2 on irradiation efficiency of SKBR3 breast cancer cells. IET Nanobiotechnol 2019; 13:808-815. [PMID: 31625520 PMCID: PMC8676115 DOI: 10.1049/iet-nbt.2018.5258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/02/2018] [Accepted: 01/31/2019] [Indexed: 11/20/2023] Open
Abstract
Breast cancer is the second cause of death in the world. Ionising radiation is a potent mutagen that can cause DNA damage, chromosomes breakage, and cell death. In the present study, radiotherapy and nanoparticle-antibodies (ABs) have been combined to enhance the efficacy of cancer cell treatment. Silver nanoparticles (SNP) were synthesised, coated with anti-HER2, and then characterised with different techniques such as X-ray diffraction, dynamic light scattering, transmission electron microscopy, Fourier transform infrared, and UV-Vis spectroscopy. SKBR3 cells were irradiated with cobalt-60 in the presence of nanoparticle-AB as the drug. Cell viability was measured using the diphenyltetrazolium bromide assay, and the cellular status was assessed by Raman spectroscopy. Irradiation considerably decreased cell viability proportionate to the dose increase and post-irradiation time. The surface-enhanced Raman spectroscopy increased the signal in the presence of SNP. Increasing the dose to 2 Gy increased the irradiation resistance, and higher dose increases (4 and 6 Gy) enhanced the irradiation sensitivity. Moreover, the cellular changes induced by irradiation in the presence of the drug were stable after 48 h. The authors results introduced the combination of the drug with radiation as an effective treatment for cancer and Raman spectroscopy as a suitable tool to diagnose effective irradiation doses.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Virology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Shoja
- Faculty of Paramedicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
29
|
Weiss JN, Levy S. Dynamic light scattering spectroscopy of the retina-a non-invasive quantitative technique to objectively document visual improvement following ocular stem cell treatment. Stem Cell Investig 2019; 6:8. [PMID: 31119146 DOI: 10.21037/sci.2019.03.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/02/2019] [Indexed: 11/06/2022]
Abstract
Background A major difficulty in retinal research is the lack of a sensitive and quantitative method to objectively determine the functional ability of the retina. Dynamic light scattering (DLS) spectroscopy is a non-invasive quantitative technique that measures the thermal random motion of particles. DLS technology has been used to predict cataractogenesis in rabbits and detect and monitor diabetes mellitus in humans. The results demonstrated the utility of DLS to noninvasively quantitate subtle changes at the molecular level. Methods The Stem Cell Ophthalmology Treatment Study is an Institutional Review Board (IRB) approved clinical study and the largest ophthalmology stem cell study to date. A DLS system has been developed to perform retinal measurements. Using this device, sequential measurements were made in a patient with nonarteritic ischemic optic neuropathy (NAION) who underwent stem cell treatment in the Stem Cell Ophthalmology Treatment Study. Results The patient demonstrated visual acuity and visual field improvements in the absence of observed changes in his fundus or in ocular coherence tomography examinations. Measurements with the DLS device showed significant increases in the diffusion coefficient. The DLS results identified changes that anticipated the improvements in central and peripheral vision for the patient. Conclusions DLS has been demonstrated to have value in the early detection of molecular responses to interventions involving the retina and appears predictive of improvement in vision following stem cell treatment, irrespective of other imaging studies.
Collapse
Affiliation(s)
| | - Steven Levy
- MD Stem Cells, Westport, Connecticut 06880, USA
| |
Collapse
|
30
|
Abrami M, Marizza P, Zecchin F, Bertoncin P, Marson D, Lapasin R, de Riso F, Posocco P, Grassi G, Grassi M. Theoretical Importance of PVP-Alginate Hydrogels Structure on Drug Release Kinetics. Gels 2019; 5:22. [PMID: 31003517 PMCID: PMC6630402 DOI: 10.3390/gels5020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The new concepts of personalized and precision medicine require the design of more and more refined delivery systems. In this frame, hydrogels can play a very important role as they represent the best surrogate of soft living tissues for what concerns rheological properties. Thus, this paper focusses on a global theoretical approach able to describe how hydrogel polymeric networks can affect the release kinetics of drugs characterized by different sizes. The attention is focused on a case study dealing with an interpenetrated hydrogel made up by alginate and poly(N-vinyl-2-pyrrolidone). METHODS Information about polymeric network characteristics (mesh size distribution and polymer volume fraction) is deduced from the theoretical interpretation of the rheological and the low field Nuclear Magnetic Resonance (NMR) characterization of hydrogels. This information is then, embodied in the mass balance equation whose resolution provides the release kinetics. RESULTS Our simulations indicate the influence of network characteristics on release kinetics. In addition, the reliability of the proposed approach is supported by the comparison of the model outcome with experimental release data. CONCLUSIONS This study underlines the necessity of a global theoretical approach in order to design reliable delivery systems based on hydrogels.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Paolo Marizza
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Francesca Zecchin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Paolo Bertoncin
- Department of Life Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy.
| | - Domenico Marson
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Romano Lapasin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Filomena de Riso
- Department of Micro- and Nanotechnology, Technical University of Denmark (DTU), Ørsteds Plads Bygning 345Ø, 2800 Kgs, Lyngby, Denmark.
| | - Paola Posocco
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy.
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy.
| |
Collapse
|
31
|
Zhang R, Wu H, He M, Zhang W, Xu W. Mobility Capillary Electrophoresis-Restrained Modeling Method for Protein Structure Analysis in Mixtures. J Phys Chem B 2019; 123:2335-2341. [PMID: 30807169 DOI: 10.1021/acs.jpcb.9b01148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein stereostructure analysis in mixtures still remains challenging, especially large-scale analysis such as in proteomics. With the capability of measuring the hydrodynamic radius of ions in the liquid phase, mobility capillary electrophoresis (MCE) has been applied to study the structure of peptides. In this study, MCE was extended for protein mixture separation and their corresponding hydrodynamic radius analyses. After ellipsoid approximation, the results obtained by MCE experiments were then used as a restraint in molecular dynamics simulations to predict the most probable structure of each protein. Besides a three-protein mixture, a mixture of disulfide bond reduced insulin was also studied by this MCE-restrained modeling method. The results obtained by this method agree with literature studies, and mass spectrometry experiments were also carried out to confirm our findings.
Collapse
Affiliation(s)
- Rongkai Zhang
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , China
| | - Haimei Wu
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , China
| | - Muyi He
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , China
| | - Wenjing Zhang
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , China
| | - Wei Xu
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
32
|
Falk BT, Liang Y, McCoy MA. Diffusion Profiling of Therapeutic Proteins by Using Solution NMR Spectroscopy. Chembiochem 2019; 20:896-899. [PMID: 30515922 DOI: 10.1002/cbic.201800631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Indexed: 11/10/2022]
Abstract
Characterizing changes to structure and behavior is an important aspect of therapeutic protein development. NMR spectroscopy is well suited to study interactions and higher-order structure that could impact biological function and safety. We used NMR diffusion methods to describe the overall behavior of proteins in solution by defining a "diffusion profile" that captures the complexities in diffusion behavior. Diffusion profiles offer a simple means to interpret protein solution behavior as a distribution of sizes and association states. As a characterization method, diffusion profiling is well suited to complement and augment traditional biophysical and NMR methods to probe the solution behavior of therapeutic proteins.
Collapse
Affiliation(s)
- Bradley T Falk
- Mass Spectrometry and Biophysics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Yingkai Liang
- Pharmaceutical Sciences, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Mark A McCoy
- Mass Spectrometry and Biophysics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| |
Collapse
|
33
|
Singaraju AB, Bahl D, Stevens LL. Brillouin Light Scattering: Development of a Near Century-Old Technique for Characterizing the Mechanical Properties of Materials. AAPS PharmSciTech 2019; 20:109. [PMID: 30746575 DOI: 10.1208/s12249-019-1311-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
Brillouin light scattering (BLS), a technique theoretically described nearly a century back by the French physicist Léon Brillouin in 1922, is a light-scattering method for determining the mechanical properties of materials. This inelastic scattering method is described by the Bragg diffraction of light from a propagating fluctuation in the local dielectric. These fluctuations arise spontaneously from thermally populated sound waves intrinsic to all materials, and thus BLS may be broadly applied to transparent samples of any phase. This review begins with a brief historical overview of the development of BLS, from its theoretical prediction to the current state of the art, and notes specific technological advancements that enabled the development of BLS. Despite the broad utility of BLS, no commercial spectrometer is currently available for purchase, but rather individual components are assembled to suit a specific application. Central to any BLS spectrometer is the interferometer, and its performance characteristics-scanning or non-scanning, multi-passing, and stabilization-are critical considerations for spectrometer design. Consistent with any light-scattering method, the frequency shift is a key observable in BLS, and we summarize the connection of this measurement to evaluate the mechanical properties of materials. With emphasis toward pharmaceutical materials analysis, we introduce the traditional BLS approach for single-crystal elasticity, and this is followed by a discussion of more recent developments in powder BLS. We conclude our review with a perspective on future developments in BLS that may enable BLS as a novel addition to the current catalog of process analytical technologies.
Collapse
|
34
|
Patil SM, Li V, Peng J, Kozak D, Xu J, Cai B, Keire DA, Chen K. A Simple and Noninvasive DOSY NMR Method for Droplet Size Measurement of Intact Oil-In-Water Emulsion Drug Products. J Pharm Sci 2018; 108:815-820. [PMID: 30291851 DOI: 10.1016/j.xphs.2018.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022]
Abstract
In a typical oil-in-water emulsion drug product, oil droplets with varied sizes are dispersed in a water phase and stabilized by surfactant molecules. The size and polydispersity of oil droplets are critical quality attributes of the emulsion drug product that can potentially affect drug bioavailability. More critically, to ensure accuracy in characterization of the finished drug product, analytical methods should introduce minimal physical perturbation (e.g., temperature variation or dilution) before the analysis. The classical methods of dynamic light scattering or electron microscopy can be used but they generally require sample dilution or harsh preparation conditions, respectively. By contrast, the size distribution of emulsion formulations can be assessed with a simple and noninvasive solution nuclear magnetic resonance method, namely, two-dimensional Diffusion Ordered SpectroscopY. The two-dimensional Diffusion Ordered SpectroscopY method probed signal decay of methyl resonances from oil and sorbate molecules and was applied to 3 types of U.S.-marketed emulsion drug products, that is, difluprednate, cyclosporine, and propofol, yielding measured droplet sizes of 40-280 nm in diameter. The high precision of ±6 nm of the new nuclear magnetic resonance method allows analytical differentiation of lot-to-lot and brand-to-brand droplet size differences in emulsion drug products, critical for drug-quality development, control, and surveillance.
Collapse
Affiliation(s)
- Sharadrao M Patil
- Division of Pharmaceutical Analysis, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Vincent Li
- Division of Liquid Based Products, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Jiangnan Peng
- Division of Pharmaceutical Analysis, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Darby Kozak
- Division of Therapeutic Performance, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Jin Xu
- Division of Liquid Based Products, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Bing Cai
- Division of Liquid Based Products, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - David A Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Kang Chen
- Division of Pharmaceutical Analysis, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993.
| |
Collapse
|
35
|
Analytical considerations for measuring the globule size distribution of cyclosporine ophthalmic emulsions. Int J Pharm 2018; 550:229-239. [DOI: 10.1016/j.ijpharm.2018.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 11/22/2022]
|
36
|
An Evaluation of the Potential of NMR Spectroscopy and Computational Modelling Methods to Inform Biopharmaceutical Formulations. Pharmaceutics 2018; 10:pharmaceutics10040165. [PMID: 30248922 PMCID: PMC6320905 DOI: 10.3390/pharmaceutics10040165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Protein-based therapeutics are considered to be one of the most important classes of pharmaceuticals on the market. The growing need to prolong stability of high protein concentrations in liquid form has proven to be challenging. Therefore, significant effort is being made to design formulations which can enable the storage of these highly concentrated protein therapies for up to 2 years. Currently, the excipient selection approach involves empirical high-throughput screening, but does not reveal details on aggregation mechanisms or the molecular-level effects of the formulations under storage conditions. Computational modelling approaches have the potential to elucidate such mechanisms, and rapidly screen in silico prior to experimental testing. Nuclear Magnetic Resonance (NMR) spectroscopy can also provide complementary insights into excipient–protein interactions. This review will highlight the underpinning principles of molecular modelling and NMR spectroscopy. It will also discuss the advancements in the applications of computational and NMR approaches in investigating excipient–protein interactions.
Collapse
|
37
|
Sitkowski J, Bocian W, Bednarek E, Urbańczyk M, Koźmiński W, Borowicz P, Płucienniczak G, Łukasiewicz N, Sokołowska I, Kozerski L. Insight into human insulin aggregation revisited using NMR derived translational diffusion parameters. JOURNAL OF BIOMOLECULAR NMR 2018; 71:101-114. [PMID: 29948440 DOI: 10.1007/s10858-018-0197-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
The NMR derived translational diffusion coefficients were performed on unlabeled and uniformly labeled 13C,15N human insulin in water, both in neat, with zinc ions only, and in pharmaceutical formulation, containing only m-cresol as phenolic ligand, glycerol and zinc ions. The results show the dominant role of the pH parameter and the concentration on aggregation. The diffusion coefficient Dav was used for monitoring the overall average state of oligomeric ensemble in solution. The analysis of the experimental data of diffusion measurements, using the direct exponential curve resolution algorithm (DECRA) allows suggesting the two main components of the oligomeric ensemble. The 3D HSQC-iDOSY, (diffusion ordered HSQC) experiments performed on 13C, 15N-fully labeled insulin at the two pH values, 4 and 7.5, allow for the first time a more detailed experimental observation of individual components in the ensemble. The discussion involves earlier static and dynamic laser light scattering experiments and recent NMR derived translational diffusion results. The results bring new informations concerning the preparation of pharmaceutical formulation and in particular a role of Zn2+ ions. They also will enable better understanding and unifying the results of studies on insulin misfolding effects performed in solution by diverse physicochemical methods at different pH and concentration.
Collapse
Affiliation(s)
- Jerzy Sitkowski
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland
| | - Wojciech Bocian
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland
| | | | - Mateusz Urbańczyk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźmiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Piotr Borowicz
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | | | - Natalia Łukasiewicz
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Iwona Sokołowska
- Institute of Biotechnology and Antibiotics, Starościńska 5, 02-516, Warsaw, Poland
| | - Lech Kozerski
- National Medicines Institute, Chełmska 30, 00-725, Warsaw, Poland.
| |
Collapse
|
38
|
Efimov SV, Zgadzay YO, Tarasova NB, Klochkov VV. Evidence of oligomerization of bovine insulin in solution given by NMR. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:881-889. [PMID: 29858914 DOI: 10.1007/s00249-018-1310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/14/2018] [Accepted: 05/16/2018] [Indexed: 01/21/2023]
Abstract
The protein hormone insulin exists in several forms in nature, and a large number of modified sequences are used in pharmacy. They differ by physicochemical properties and efficiency of biological action. Pancreatic bovine insulin was studied in an acidic solution by nuclear magnetic resonance spectroscopy. [Formula: see text]H and [Formula: see text]C NMR signal assignment of backbone and side chains was made by analysis of a set of 2D spectra obtained on a sample with natural isotope abundance. The presence of certain secondary structure elements was revealed on a qualitative level based on nuclear Overhauser effect spectroscopy, which are similar to those observed in the crystal structure. The C-terminus of the B-chain possessed a remarkable flexibility. The molecule was shown to exist in exchange with oligomers based on its self-diffusion coefficient and correlation time measurements performed at different concentrations. Certain signals in the NOESY and HSQC spectra are consistent with the presence of minor conformers; this is an obstacle in simulating the molecular structure under the conditions used in the experiment.
Collapse
Affiliation(s)
- S V Efimov
- Laboratory of NMR spectroscopy, Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan, 420008, Russia.
| | - Yu O Zgadzay
- Laboratory of NMR spectroscopy, Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan, 420008, Russia
| | - N B Tarasova
- Laboratory of Molecular Biology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2 Lobachevskiy St., Kazan, 420111, Russia
| | - V V Klochkov
- Laboratory of NMR spectroscopy, Institute of Physics, Kazan Federal University, 18 Kremlevskaya St., Kazan, 420008, Russia
| |
Collapse
|
39
|
Chen K, Park J, Li F, Patil SM, Keire DA. Chemometric Methods to Quantify 1D and 2D NMR Spectral Differences Among Similar Protein Therapeutics. AAPS PharmSciTech 2018; 19:1011-1019. [PMID: 29110294 DOI: 10.1208/s12249-017-0911-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
NMR spectroscopy is an emerging analytical tool for measuring complex drug product qualities, e.g., protein higher order structure (HOS) or heparin chemical composition. Most drug NMR spectra have been visually analyzed; however, NMR spectra are inherently quantitative and multivariate and thus suitable for chemometric analysis. Therefore, quantitative measurements derived from chemometric comparisons between spectra could be a key step in establishing acceptance criteria for a new generic drug or a new batch after manufacture change. To measure the capability of chemometric methods to differentiate comparator NMR spectra, we calculated inter-spectra difference metrics on 1D/2D spectra of two insulin drugs, Humulin R® and Novolin R®, from different manufacturers. Both insulin drugs have an identical drug substance but differ in formulation. Chemometric methods (i.e., principal component analysis (PCA), 3-way Tucker3 or graph invariant (GI)) were performed to calculate Mahalanobis distance (D M) between the two brands (inter-brand) and distance ratio (D R) among the different lots (intra-brand). The PCA on 1D inter-brand spectral comparison yielded a D M value of 213. In comparing 2D spectra, the Tucker3 analysis yielded the highest differentiability value (D M = 305) in the comparisons made followed by PCA (D M = 255) then the GI method (D M = 40). In conclusion, drug quality comparisons among different lots might benefit from PCA on 1D spectra for rapidly comparing many samples, while higher resolution but more time-consuming 2D-NMR-data-based comparisons using Tucker3 analysis or PCA provide a greater level of assurance for drug structural similarity evaluation between drug brands.
Collapse
|
40
|
Rivera-Sánchez MC, García-Arriaga M, Hobley G, Morales-de-Echegaray AV, Rivera JM. Small-Molecule-Based Self-Assembled Ligands for G-Quadruplex DNA Surface Recognition. ACS OMEGA 2017; 2:6619-6627. [PMID: 29104952 PMCID: PMC5664172 DOI: 10.1021/acsomega.7b01255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/27/2017] [Indexed: 05/08/2023]
Abstract
Most drugs are small molecules because of their attractive pharmacokinetics, manageable development and manufacturing, and effective binding into the concave crevices of bio-macromolecules. Despite these features, they often fall short when it comes to effectively recognizing the surfaces of bio-macromolecules. One way to overcome the challenge of biomolecular surface recognition is to develop small molecules that become self-assembled ligands (SALs) prior to binding. Herein, we report SALs made from 8-aryl-2'-deoxyguanosine derivatives forming precise hydrophilic supramolecular G-quadruplexes (SGQs) with excellent size, shape, and charge complementarity to G-quadruplex DNA (QDNA). We show that only those compounds forming SGQs act as SALs, which in turn differentially stabilize QDNAs from selected oncogene promoters and the human telomeric regions. Fluorescence resonance energy-transfer melting assays are consistent with spectroscopic, calorimetric, and light scattering studies, showing the formation of a "sandwichlike" complex QDNA·SGQ·QDNA. These results open the door for the advent of SALs that recognize QDNAs and potentially the surfaces of other bio-macromolecules such as proteins.
Collapse
Affiliation(s)
- María
del C. Rivera-Sánchez
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Marilyn García-Arriaga
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Gerard Hobley
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Ana V. Morales-de-Echegaray
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - José M. Rivera
- Department of Chemistry and
Molecular Sciences Research Center, University
of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| |
Collapse
|